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FORWARD SENSITIVITY ANALYSIS FOR
CONTRACTING STOCHASTIC SYSTEMS
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Abstract

In this paper we investigate gradient estimation for a class of contracting stochastic
systems on a continuous state space. We find conditions on the one-step transitions,
namely differentiability and contraction in a Wasserstein distance, that guarantee
differentiability of stationary costs. Then we show how to estimate the derivatives,
deriving an estimator that can be seen as a generalization of the forward sensitivity analysis
method used in deterministic systems. We apply the results to examples, including a
neural network model.
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1. Introduction

Stationary gradient estimation starts with a Markov kernel P that depends on a parameter θ .
Given a cost function e defined on the states of the Markov chain, and assuming ergodicity of
the process, the problem is to estimate the derivative of the average cost, at stationarity, with
respect to the parameter θ . That is, setting πθ to the stationary measure of Pθ , the problem is
to estimate

∂

∂θ

∫
X

e(x) dπθ(x).

In this paper we investigate an approach to this problem based on forward sensitivity analysis,
an algorithm used for estimating sensitivities in deterministic systems. We review this now to
show the main idea.

Consider a continuous state space X ⊆ R
nX and a parameter space � ⊆ R

n� . Let f : X ×
� → X be such that f (·, θ) is a contraction mapping on X for all values of θ . Then f has a
unique fixed point x∗(θ) for each θ ∈ �. With further conditions on the differentiability of f ,
it holds that x∗ is differentiable in �. The problem is to estimate

∂

∂θ
(e ◦ x∗)(θ). (1.1)

Let M = L(Rn�, R
nX), the space of linear maps from R

n� to R
nX . Define the map T : X ×

M × � → X × M by

T ((x, m), θ) =
(

f (x, θ),
∂f

∂x
(x, θ)m + ∂f

∂θ
(x, θ)

)
.
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Forward sensitivity analysis 103

Using assumptions on the derivatives and contraction properties of f , one can show that T (·, θ)

is also a contraction, for a suitable metric on X×M . Denoting by (x∗, m∗) the fixed point of T

at θ , it can be proven that the derivative of the fixed-point cost is

∂

∂θ
(e ◦ x∗)(θ) = ∂e

∂x
(x∗)m∗.

Based on this, to approximately compute (1.1) we can iterate T to obtain a pair (x, m) near
(x∗, m∗), and then prepare the gradient estimate by computing (∂e/∂x)(x)m. For more
background on forward sensitivity analysis, we refer the reader to [6, Chapter 15].

In this paper we consider the method in the probabilistic setting. Let Pθ take the form

(Pθe)(x) =
∫

�

e(f (x, ξ, θ)) dν(ξ)

for a probability space (�, 	, ν) and a function f : X × � × � → X. We find that if certain
contraction and differentiability conditions are satisfied, then

∂

∂θ

∫
X

e(x) dπθ(x) =
∫

X×M

∂e

∂x
(x)m dγθ (x, m), (1.2)

where γθ is the stationary measure on X × M of the recursion

xn+1 = f (xn, ξn+1, θ), mn+1 = ∂f

∂x
(xn, ξn+1, θ)mn + ∂f

∂θ
(xn, ξn+1, θ), (1.3)

where the ξn form an independent and identically distributed sequence of ν-distributed random
variables. There are several challenges associated with this. The first is to extend the contraction
framework to include probabilistically interesting systems. The contraction framework should
enable us to show convergence of the forward sensitivity process (1.3) as well as the underlying
process. The second challenge is to show correctness of the procedure.

A simple case of our main result can be stated as follows. In the statement of this theorem
and throughout the paper, a function is said to be C1 if it is continuously differentiable, and the
function is C2 if it is twice continuously differentiable. For a function h defined on a set X and
taking values in a normed space, ‖h‖∞ = supx∈X ‖h(x)‖.

Theorem 1.1. Let the function f and the probability space (�, 	, ν) be such that

(i)
∫
�

‖f (x, ξ, θ)‖2 dν(ξ) < ∞ for all (x, θ) ∈ X × �;
(ii) (x, θ) 	→ f (x, ξ, θ) is a C2 function for each ξ ∈ �;

(iii) for 0 < i + j ≤ 2, the functions LXi,�j (x, θ) = ∫
�
‖(∂i+j f /∂xi∂θj )(x, ξ, θ)‖2 dν(ξ)

are continuous and bounded on X × �, and, in particular, sup(x,θ) LX(x, θ) < 1.

Then the forward sensitivity process (1.3) converges weakly to a stationary measure γθ , and
(1.2) holds for those e : X → R that are C2 with ‖∂e/∂x‖∞ + ‖∂2e/∂x2‖∞ < ∞.

The full version, stated below in Theorem 1.2, relaxes the assumptions. In the general
version the various bounds are assumed to hold with respect to a Finsler structure.
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104 T. FLYNN

1.1. Overview of the main results

First, the contraction framework is introduced. Second, criteria for differentiability of the
stationary costs are presented. The third component is a set of conditions on the function f

that allows us apply the abstract result on stationary differentiability, establish convergence of
the sensitivity process (xn, mn), and allow us to show that (1.2) holds. Finally, we consider an
application to neural networks.

1.1.1. Contraction framework. Given a matrix-valued function A(x) and a norm ‖ · ‖ on R
nX ,

we consider the following ergodicity condition:

sup
x∈X

(∫
�

∥∥∥∥A(f (x, ξ))
∂f

∂x
(x, ξ)A(x)−1

∥∥∥∥
p

dν(ξ)

)1/p

< 1. (1.4)

The object inside the norm is the composition of the linear maps A(f (x, ξ)), (∂f /∂x)(x, ξ),
and A(x)−1. The norm in this inequality is that induced by ‖ · ‖ on the space of linear
maps L(RnX , R

nX). Formally, the map (x, u) 	→ ‖A(x)u‖ defines a Finsler structure on the
space X, which induces a metric dA on X. This is extended to a metric on probability measures
using the Wasserstein distance dp,A. Condition (1.4) implies that the Markov kernel P is a
contraction mapping for this distance. This is developed in Section 2. In Section 2.1 we consider
interconnections of contracting systems, obtaining sufficient conditions for both feedback and
hierarchical combinations of contracting systems to again be contracting. This is useful to
analyze the forward sensitivity process, as it exhibits a hierarchical structure.

1.1.2. Stationary differentiability. In Section 3 we provide abstract conditions for stationary
differentiability, using a variant of the proof technique of [9]. The equation

l = lPθ + πθ

∂

∂θ
Pθ (1.5)

is shown to have a unique solution in the variable l, and this l is shown to evaluate the
stationary derivatives, meaning l(e) = (∂/∂θ)

∫
X

e(x) dπθ(x). While similar formulas have
been recovered by other authors (see [9]–[13]), we rederive this using assumptions that are
relevant for the smooth systems we are interested in.

1.1.3. Gradient estimation. To study the forward sensitivity process, we define an appropriate
metric on the space X × M and prove a pointwise contraction inequality for the joint system
(1.3) in this distance. This is used together with a Lyapunov function for the joint system to
establish ergodicity of the sensitivity process. This is carried out in Section 5. We then establish
that the functional e 	→ ∫

X×M
(∂e/∂x)(x)m dγθ (x, m) verifies (1.5). We conclude that (1.2)

holds for the class of cost functions.
Before formally stating the assumptions and main results, we introduce some notation and

conventions. For a function f : X → R
n, where X ⊆ R

m, we denote by (∂f /∂x)(x0) the
derivative of f with respect to x at the point x0, and for a vector u ∈ R

m, we denote by
(∂f /∂x)(x0)u the R

n-valued result of applying this linear map to the vector u. The second
derivative of f with respect to x is ∂2f /∂x2, and (∂2f /∂x2)(x0)[u, v] refers to the R

m-valued
result of applying this bilinear map to the arguments u, v. Given norms ‖ · ‖X and ‖ · ‖Y

on the space R
m and R

n, recall that the norm of a linear map E : R
n → R

m is ‖E‖ =
sup‖u‖X=1 ‖Eu‖Y . For a bilinear map F defined on R

n ×R
m and taking values in a third space

with norm ‖ · ‖Z , the norm is ‖F‖ = sup‖u‖X=‖v‖Y =1 ‖F [u, v]‖Z . Given two linear maps E

and F , their direct sum is the linear map (E⊕F)(u, v) = (Eu, Fv). For reference, AppendixA
contains a summary of notations and definitions of spaces used throughout the paper.
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Assumption 1.1. The set X is a closed, convex subset of R
nX , and R

nX carries a norm ‖ · ‖X.
The function A : X → L(RnX , R

nX) is continuous, such that each A(x) is invertible, and
supx∈X ‖A(x)−1‖X < ∞.

We will require differentiability and integrability of f .

Assumption 1.2. For an open set � ⊆ R
n� , the function f : X × � × � → X satisfies

(i) ξ 	→ dA(x, f (x, ξ, θ))2 is ν-integrable for all (x, θ) ∈ X × �;

(ii) (x, θ) 	→ f (x, ξ, θ) is twice continuously differentiable (C2) for each ξ ∈ �.

We also require some bounds on P as a function of θ , formulated with the help of a function
B(x) taking values in the invertible n� × n� matrices.

Assumption 1.3. Assume that R
n� has a norm ‖ · ‖�. The function B : X → L(Rn�, R

n�)

takes values in the invertible linear maps, and x 	→ ‖B(x)‖� is a dA-Lipschitz function.

For an example when Assumption 1.3 is satisfied, consider the following. Let g : X → R≥0
be a function that is Lipschitz continuous with respect to the underlying norm ‖·‖X on X. Then
use A(x) = exp(g(x))InX

and B(x) = exp(g(x))In� , where In is the n × n identity matrix.
Of course, the assumption always holds when B(x) = In� .

The next assumptions relate to the contraction property of P and the differentiability prop-
erties of Pθe. Before continuing, we define several norms derived from A and B. At each
x ∈ X, the matrix A(x) defines a norm ‖ · ‖A(x) on R

nX by ‖u‖A(x) = ‖A(x)u‖ and B(x)

defines a norm on R
n� by ‖v‖B(x) = ‖B(x)v‖. These extend to norms on the various

linear spaces. For example, if l ∈ L(RnX , R) then ‖l‖A(x) = ‖lA(x)−1‖. For a bilinear
map Q ∈ L(RnX , R

nX ; R), we can write ‖Q‖A(x),A(x) = ‖Q(A(x)−1 ⊕ A(x)−1)‖. Further
extend this to functions from X into the linear spaces by taking supremums, for example, if
h : X → L(Rn�, R) then ‖h‖B = supx ‖h(x)‖B(x). For the case of a real-valued h : X → R,
let ‖h‖A = supx |h(x)|/(1 + dA(x, x0)), where x0 is an arbitrary basepoint in X.

We introduce the space of cost functions E2:

E2 =
{
h : X → R | h is C2 and ‖h‖A +

∥∥∥∥∂h

∂x

∥∥∥∥
A

+
∥∥∥∥∂2h

∂x2

∥∥∥∥
A,A

< ∞
}
.

On E2 we put the norm

‖h‖E2 = ‖h‖A +
∥∥∥∥∂h

∂x

∥∥∥∥
A

+
∥∥∥∥∂2h

∂x2

∥∥∥∥
A,A

.

We consider bounds on the derivatives of f formulated using the following functions:

LX(x, θ) =
(∫

�

∥∥∥∥A(f (x, ξ, θ))
∂f

∂x
(x, ξ, θ)A(x)−1

∥∥∥∥
2

dν(ξ)

)1/2

,

L�(x, θ) =
(∫

�

∥∥∥∥A(f (x, ξ, θ))
∂f

∂θ
(x, ξ, θ)B(x)−1

∥∥∥∥
2

dν(ξ)

)1/2

,

LX2(x, θ) =
∫

�

∥∥∥∥A(f (x, ξ, θ))
∂2f

∂x2 (x, ξ, θ)(A(x)−1 ⊕ A(x)−1)

∥∥∥∥ dν(ξ),
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L�2(x, θ) =
∫

�

∥∥∥∥A(f (x, ξ, θ))
∂2f

∂θ2 (x, ξ, θ)(B(x)−1 ⊕ B(x)−1)

∥∥∥∥ dν(ξ),

LX,�(x, θ) =
∫

�

∥∥∥∥A(f (x, ξ, θ))
∂2f

∂x∂θ
(x, ξ, θ)(A(x)−1 ⊕ B(x)−1)

∥∥∥∥ dν(ξ).

Assumption 1.4. The functions LXi,�j satisfy the following:

(i) they are continuous on X × �;

(ii) there is a KX ∈ [0, 1) such that sup(x,θ)∈X×� LX(x, θ) ≤ KX;

(iii) for 0 < i + j ≤ 2, there are KXi,�j such that sup(x,θ)∈X×� LXi,�j (x, θ) ≤ KXi,�j .

Using these assumptions and definitions, we can now state the main result.

Theorem 1.2. Let Assumptions 1.1–1.4 be satisfied. Let θ be an arbitrary point of �. Then
the forward sensitivity process (1.3) possesses a unique stationary measure γθ and, for any
e ∈ E2, (1.2) is valid. Furthermore, if the variables (x1, m1) satisfy the integrability condition
E[dA(x0, x1) + ‖A(x1)m1‖] < ∞ for an arbitrary basepoint x0, then E[(∂e/∂x)(xn)mn] →
(∂/∂θ)

∫
X

e(x) dπθ(x) as n → ∞.

1.1.4. Neural network application. In Section 6 two examples are considered. The first involves
neural networks. In neural networks, a central problem is to compute derivatives of cost
functionals with respect to network parameters (weights on the connections between nodes).
We are concerned with long-term average cost problems, a type of problem that is relevant
when a network has cycles. The back-propagation algorithm for calculating derivatives [16],
originally formulated for a continuous state-space model with a finite-horizon objective, is also
valid for calculating gradients in long-term average cost problems under contraction assump-
tions [15]. Our contribution addresses the long-term average cost problem for continuous
stochastic networks.

The example system consists of a network with weights on connections between units.
At each step every node updates its value based on the values of its neighbors, but only a random
subset of possible connections are activated, leading to a stochastic process. We find contraction
conditions based on a sparsity coefficient, and verify that stochastic forward sensitivity analysis
can be used to calculate the derivative of stationary costs. We present a second example to
illustrate using a nontrivial metric on the underlying system. We finish with a discussion in
Section 7.

2. Contraction framework

We describe a class of metrics on Euclidean space that form the basis for the subsequent
discussion of contraction. These metrics are defined by minimizing a length functional, and
form a subclass of the Finsler metrics. Then we present ergodicity conditions which rely on
pointwise contraction estimates involving such metrics.

Let X be a closed convex subset of the Euclidean space R
n and let [x � y] be the set of

piecewise C1 curves from x to y. Given a norm ‖ · ‖ on R
n and a function x 	→ A(x) taking

values in the invertible n × n matrices, we can define a metric on X as follows.

Proposition 2.1. Let ‖·‖ be a norm on R
n and let x 	→ A(x) be a continuous function that ass-

igns to each x ∈ X an invertible linear map A(x) on R
n, in such a way that supx∈X ‖A(x)−1‖ <

∞. For a piecewiseC1 curveγ : [γs, γe] → X, defineL(γ ) = ∫ γe

γs
‖A(γ (t))γ ′(t)‖ dt . Then the
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function dA(x, y) = infγ∈[x�y] L(γ ) defines a metric on X compatible with the Euclidean
topology, and (X, dA) is complete.

Proof. See Appendix A. �
For instance, taking A = In we recover the norm dA(x, y) = ‖x−y‖. Using A(x) = V (x)In

for a real-valued function V means a cost V (x) is assigned for going through each point x.
Using a general matrix allows the cost for traveling through each point x to also depend on the
direction of the path at the point. For a function e : X → R, we let ‖e‖Lip(A) be the Lipschitz
constant of a function e : X → R with respect to the metric dA. When the metric dA is clear
we will just write ‖e‖Lip.

The collection of Borel probability measures on X is denoted P (X). We denote by μ(e)

the expectation of e under μ. That is, μ(e) = ∫
X

e(x) dμ(x). For a number k, we let R≥k

be the set {x ∈ R | x ≥ k}. For a probability measure μ and p ≥ 1, we write ‖V ‖Lp(μ) =
(
∫
X

‖V (x)‖p dμ(x))1/p. Given a function V : X → R≥0, the space Pp,V (X) is defined to be
all Borel measures μ on X which can integrate V p:

Pp,V (X) =
{
μ ∈ P (X)

∣∣∣∣
∫

X

V (x)p dμ(x) < ∞
}
.

Given a Markov kernel P , we denote the image of measure μ under P by μP . That is,
(μP )(A) = ∫

X
P (x, A) dμ(x). For V : X → R≥1, let ‖e‖V = supx∈X |e(x)|/V (x). We say

that V : X → R≥1 is a p-Lyapunov function for P if V has compact sublevel sets and there
exist numbers β ∈ [0, 1), K ≥ 0 so that (PV p(x))1/p ≤ βV (x) + K for all x. A measure
μ ∈ P (X × X) is a coupling of μ1 and μ2 if μ(A × X) = μ1(A) and μ(X × A) = μ2(A) for
each measurable set A. We define �(μ1, μ2) to be the set of all couplings of μ1 and μ2.

Let the Markov kernel P have an explicit representation as

(P e)(x) =
∫

�

e(f (x, ξ)) dν(ξ) (2.1)

for a measurable function f : X×� → X and a probability space (�, 	, ν). In this section we
present two separate conditions for the ergodicity of a Markov kernel given in the form (2.1). The
first, Proposition 2.3, is weaker and is used to show convergence of the forward sensitivity system
(consisting of the variables xn, mn). Proposition 2.4 relies on a stronger set of assumptions and
is used to establish differentiability of the stationary costs. Both results utilize the following
pointwise estimate of Proposition 2.2.

In this proposition, and throughout the paper, we consider a differentiable function defined
on a closed subset X of Euclidean space. In case X is a strict subset of the space, we assume f

is the restriction of a function f that is defined and differentiable on an open set U containing X.
In this way, there is no ambiguity in defining the derivative of f at each point of X.

Proposition 2.2. Let P be of the form (2.1), where

(i) x 	→ f (x, ξ) is C1 for each ξ ∈ �;

(ii) supx∈X supu∈Rn : ‖u‖=1(
∫
�

‖A(f (x, ξ))(∂f /∂x)(x, ξ)A−1(x)u‖p dν(ξ))1/p ≤ α for
some α ≥ 0.

Then, for any x1, x2 ∈ X, we have(∫
�

dA(f (x1, ξ), f (x2, ξ))p dν(ξ)

)1/p

≤ αdA(x1, x2). (2.2)
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Proof. Let x1 �= x2 be points of X, let ε > 0, and let γ : [0, T ] → X be a piecewise C1

path from x1 to x2 such that L(γ ) ≤ dA(x1, x2)+ε. We further assume that γ is parameterized
by arc length. For our definition of length, this means ‖A(γ (t))γ ′(t)‖ = 1 for all t and that
T = L(γ ). Since t 	→ f (γ (t), ξ) defines a curve from f (x1, ξ) to f (x2, ξ), we have

(∫
�

dA(f (x1, ξ), f (x2, ξ))p dν(ξ)

)1/p

≤
(∫

�

(∫ T

0

∥∥∥∥A(f (γ (t), ξ))
∂f

∂x
(x, ξ)γ ′(t)

∥∥∥∥ dt

)p

dν(ξ)

)1/p

≤ L(γ )(p−1)/p

(∫
�

∫ T

0

∥∥∥∥A(f (γ (t), ξ))
∂f

∂x
(x, ξ)γ ′(t)

∥∥∥∥
p

dt dν(ξ)

)1/p

.

In the first step the definition of length was applied. Then Jensen’s inequality was used together
with the fact that L(γ ) = T . Next, note the integrand in the final expectation is of the form
(t, ξ) 	→ g(t, ξ), where g is nonnegative, continuous in t for each ξ , and measurable in ξ for
each t . Then we may interchange the integrals, yielding

(∫
�

dA(f (x1, ξ), f (x2, ξ))p dν(ξ)

)1/p

= L(γ )(p−1)/p

(∫ T

0

∫
�

∥∥∥∥A(f (γ (t), ξ))
∂f

∂x
(x, ξ)γ ′(t)

∥∥∥∥
p

dν(ξ) dt

)1/p

.

Using the identity A(γ (t))−1A(γ (t))γ ′(t) = γ ′(t), and the assumption on ∂f /∂x, we obtain

(∫
�

dA(f (x1, ξ), f (x2, ξ))p dν(ξ)

)1/p

≤ L(γ )(p−1)/p

(∫ T

0
αp‖A(γ (t))γ ′(t)‖p dt

)1/p

.

Then since γ is parameterized by arc length,

(∫
�

dA(f (x1, ξ), f (x2, ξ))p dν(ξ)

)1/p

= L(γ )(p−1)/pαL(γ )1/p ≤ αdA(x1, x2) + αε.

As ε > 0 was arbitrary, the result follows. �

If a tuple {(�, 	, ν), f, (‖·‖, A)} satisfies the conditions of Proposition 2.2 for some α < 1,
we say that a pointwise p-contraction inequality holds for the process.

Combining this with the assumption that the system carries a Lyapunov function yields the
following ergodicity result.

Proposition 2.3. Let the assumptions of Proposition 2.2 hold for p ≥ 1 and α < 1, and assume
there is a p-Lyapunov function V for P . Then P has a unique invariant measure π ∈ Pp,V (X)

and, for any μ ∈ Pp,V , sup‖e‖Lip+‖e‖V ≤1 |μP n(e) − π(e)| → 0 as n → ∞. In particular,
μP n converges weakly to π .

Proof. The existence of a unique invariant measure π is an immediate result of Corollary 4.23
and Theorem 4.25 of [7]. To show that π ∈ Pp,V , we reason as follows. If V is a p-Lyapunov
function then V p is a 1-Lyapunov function (for possibly different values of the constants β

and K). Then apply Proposition 4.24 of [7].
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We turn to convergence of the expectations μP n(e) as n → ∞. Let e have ‖e‖Lip +‖e‖V <

∞. Using (2.2), we see that ‖Pe‖Lip ≤ α‖e‖Lip and by iterating the inequality, we have

|P ne(x) − P ne(y)| ≤ αn‖e‖LipdA(x, y). (2.3)

By iterating the Lyapunov inequality, we obtain

|P ne(x) − P ne(y)| ≤ ‖e‖V βn[V (x) + V (y)] + ‖e‖V K ′, (2.4)

where K ′ = 2K/(1 − β). Combining (2.3) and (2.4), for any coupling γ of μ and π ,

|μP n(e)−π(e)| ≤ (‖e‖Lip +‖e‖V )

∫
X×X

min{αndA(x, y), βn[V (x)+V (y)]+K ′} dγ (x, y).

It remains to show that the right-hand side of this inequality tends to 0 as n → ∞. Letting
fn(x, y) = min{αndA(x, y), βn[V (x) + V (y)] + K ′}, it is clear the pointwise convergence
of fn to 0 holds. Since also |fn| ≤ V (x) + V (y) + K ′, the latter function being γ -integrable,
the result follows by the dominated convergence theorem. �

Let x0 be an arbitrary basepoint in X. The next result strengthens the conclusion in the
V (x) = 1 + dA(x0, x) case, and concerns contraction in the Wasserstein space Pp,A. This is
the set of all measures that can integrate x 	→ dA(x0, x)p, together with the metric

dp,A(μ, ν) = inf
γ∈�(μ,ν)

(∫
X×X

dA(x, y)p dγ (x, y)

)1/p

.

The space Pp,A is complete if (X, dA) is complete. Furthermore, the Kantorovich duality
formula holds for p = 1:

sup
‖e‖Lip≤1

|μ1(e) − μ2(e)| = d1,A(μ1, μ2). (2.5)

See [22] for more background.

Proposition 2.4. Let the assumptions of Proposition 2.2 hold for some p ≥ 1 and α < 1.
Let V (x) = 1 + dA(x, x0) be a p-Lyapunov function for the kernel P . Then P determines
a contraction mapping on the Wasserstein space Pp,A(X) and possesses a unique invariant
measure π ∈ Pp,A. Furthermore, if μ ∈ Pp,V ,

sup
‖e‖Lip≤1

|μP n(e) − π(e)| ≤ αn sup
‖e‖Lip≤1

|μ(e) − π(e)|. (2.6)

Proof. Let γ be any coupling in �(μ1, μ2). For any points x, y of X, we can form a coupling
of δxP and δyP using common random numbers. Formally, this is the measure C(x, y) which
arises as the pushforward of ν under the map ξ 	→ (f (x, ξ), f (y, ξ)). Then C is a well-defined
Markov kernel on X × X, and according to Proposition 2.2,(∫

X×X

dA(x′, y′)p d(δ(x,y)C)(x′, y′)
)1/p

≤ αdA(x, y).

Then

dp,A(μ1P, μ2P) ≤
(∫

X×X

dA(x, y)p d(γC)(x, y)

)1/p

≤ α

(∫
X×X

dA(x, y)p dγ (x, y)

)1/p

.
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Since γ was arbitrary, it follows that P is a contraction. Since Pp,A is complete, P has a unique
stationary measure π in Pp,A. Inequality (2.6) results by combining the contraction property
with the duality formula (2.5). �

Conditions similar to those used in Proposition 2.2 have been mentioned in other works.
Steinsaltz [19] considered the case of a scalar potential A(x) = V (x)I . The metric viewpoint
for the scalar potential can be found in [8] and [20]. The results of [1] may be helpful to find
scalar weight functions. The contraction conditions were also motivated by work on contraction
analysis for deterministic systems [5], [12].

Aside from generality, there is a reason related to gradient estimation for considering matrix-
valued functions A. Even if the underlying system has the unweighted average contraction
property, meaning inequality (ii) of Proposition 2.2 holds with the function A(x) = I , this does
not extend to the joint system (1.3). This is due to the factor m in the auxiliary system of (1.3),
which makes the Jacobian ∂T /∂z large at points (x, m), where ‖m‖ is large. One approach is
to look beyond the scalar potentials to metrics that weigh the x and m directions differently.
We will see in Section 5 that, for the case of unweighted contraction, a suitable metric involves
a matrix H(x, m)(ux, um) = ((1 + h(x, m))ux, um) for a scalar function h(x, m).

2.1. Interconnections of contractions

In this section we provide conditions for the interconnection of two contracting systems
to again be contracting. It is relevant to gradient estimation since the system (1.3) has a
hierarchical form, the underlying system x feeding into the system m. Interconnection theorems
for contracting systems hold in other dynamical settings as well; results for deterministic
continuous-time systems can be found in [17] and [18].

Let X ⊆ R
n, Y ⊆ R

m be closed, convex sets, and let Z = X × Y . For instance, when these
results are applied later to the forward sensitivity process, the space Y will be L(RnX , R

n�). Let
(�, 	, ν) be a probability space and let R be the Markov kernel that corresponds to following
stochastic recursion on Z:

xn+1 = f (xn, yn, ξn+1), yn+1 = g(xn, yn, ξn+1),

where the ξn are independent ν-distributed random variables. For measurable φ : Z → R,
we have (Rφ)(x, y) = ∫

�
φ(T (x, y, ξ)) dν(ξ), where T (x, y, ξ) = (f (x, y, ξ), g(x, y, ξ)).

We find conditions on f and g that guarantee the joint system is contracting.

Assumption 2.1. Regarding the functions f, g and the probability space (�, 	, ν),

(i) the maps (x, y) 	→ f (x, y, ξ) and (x, y) 	→ g(x, y, ξ) are C1 for each ξ ∈ �;

(ii) there are pairs (‖ · ‖X, F ), (‖ · ‖Y , G), such that ‖ · ‖X, ‖ · ‖Y are norms on R
n, R

m,
respectively, F : X × Y → R

n×n and G : X × Y → R
m×m are continuous with values

in the invertible matrices, and sup(x,y)∈X×Y ‖F(x, y)−1‖X + ‖G(x, y)−1‖Y < ∞;

(iii) there are α1 and α2, both in [0, 1), such that

sup
z∈Z

sup
u∈Rn : ‖u‖X=1

(∫
�

∥∥∥∥F(T (z, ξ))
∂f

∂x
(z, ξ)F−1(z)u

∥∥∥∥
p

X

dν(ξ)

)1/p

≤ α1,

sup
z∈Z

sup
u∈Rm : ‖u‖Y =1

(∫
�

∥∥∥∥G(T (z, ξ))
∂g

∂y
(z, ξ)G−1(z)u

∥∥∥∥
p

Y

dν(ξ)

)1/p

≤ α2.
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We are concerned with pointwise contraction as in Proposition 2.2. With further integrability
assumptions, convergence to a unique stationary measure can be obtained with the results of
the previous section.

Proposition 2.5. Let Assumption 2.1 hold. Let K1, K2, and p ≥ 1 be such that

(i) supz∈Z sup‖uy‖Y =1(
∫
�

‖F(T (z, ξ))(∂f /∂y)(z, ξ)G(z)−1uy‖p
Y dν(ξ))1/p ≤ K1;

(ii) supz∈Z sup‖ux‖X=1(
∫
�

‖G(T (z, ξ))(∂g/∂x)(z, ξ)F (z)−1ux‖p
X dν(ξ))1/p ≤ K2;

(iii) K1K2 < (1 − α1)(1 − α2).

Choose η1, η2 so that η2K2 < η1(1 − α1) and η1K1 < η2(1 − α2). Then a pointwise p-
contraction inequality holds for the system {(�, 	, ν), T , (‖ · ‖Z, H)} on Z, where

H(z)(ux, uy) = (F (z)ux, G(z)uy), ‖(ux, uy)‖Z = η1‖ux‖X + η2‖uy‖Y . (2.7)

Proof. We will apply Proposition 2.2. We need to find an α < 1 so that

sup
z∈Z

sup
u∈Rn×Rm : ‖u‖Z=1

(∫
�

∥∥∥∥H(T (z, ξ))
∂T

∂z
(z, ξ)H(z)−1u

∥∥∥∥
p

Z

dν(ξ)

)1/p

≤ α.

Let z ∈ Z and let u = (ux, uy) be any vector with η1‖ux‖X + η2‖uy‖Y = 1. Then

(∫
�

∥∥∥∥H(T (z, ξ))
∂T

∂z
(z, ξ)H(z)−1u

∥∥∥∥
p

Z

dν(ξ)

)1/p

=
(∫

�

[
η1

∥∥∥∥F(T (z, ξ))
∂f

∂x
(z, ξ)F (z)−1ux + F(T (z, ξ))

∂f

∂y
(z, ξ)G(z)−1uy

∥∥∥∥
X

+ η2

∥∥∥∥G(T (z, ξ))
∂g

∂x
(x, ξ)F (z)−1ux + G(T (z, ξ))

∂g

∂y
(x, ξ)G(z)−1uy

∥∥∥∥
Y

]p

dν(ξ)

)1/p

≤ η1α1‖ux‖X + η1K1‖uy‖Y + η2K2‖ux‖X + η2α2‖uy‖Y

≤ max

{
α1 + η2

η1
K2, α2 + η1

η2
K1

}
.

Finally, note that satisfiability of the condition max{α1 + (η2/η1)K2, α2 + (η1/η2)K2} < 1 is
equivalent to the condition K1K2 < (1 − α1)(1 − α2). �

The above can be specialized to hierarchical interconnections.

Corollary 2.1. Let Assumption 2.1 hold. Say that f does not depend on Y (∂f /∂y = 0). Let K
be such that

sup
z∈Z

sup
‖ux‖X=1

(∫
�

∥∥∥∥G(T (z, ξ))
∂g

∂x
(z, ξ)F (z)−1ux

∥∥∥∥
p

Y

dν(ξ)

)1/p

≤ K. (2.8)

Choose η1, η2 so that η2K < η1(1 − α1). Then a pointwise p-contraction property holds for
the system {(�, 	, ν), T , (‖ · ‖Z, H)} on Z using the H and ‖ · ‖Z of (2.7).

Condition (2.8) in Corollary 2.1 can be relaxed using a kind of Lyapunov function for the
interconnection of the two systems, while requiring a stronger form of contraction on the input
system.
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Proposition 2.6. Let Assumption 2.1 hold, with p ≥ 2q for some q ≥ 1. Let K and the
continuous function h : Z → R≥0 be such that, for all z ∈ Z,

(i) sup‖ux‖X=1(
∫
�

‖G(T (z, ξ))(∂g/∂x)(z, ξ)F−1(z)ux‖q
X dν(ξ))1/q ≤ h(z);

(ii) (
∫
�

h(T (z, ξ))p dν(ξ))1/p ≤ h(z) + K .

Then there are some η1, η2 so that a pointwise q-contraction inequality holds for the system
{(�, 	, ν), T , (‖ · ‖Z, H)} on Z, where

H(z)(ux, uy) = ((1 + η1h(z))F (z)ux, G(z)uy), ‖(ux, uy)‖Z = ‖ux‖X + η2‖uy‖Y .

Proof. Let α1, α2 be contraction coefficients for f, g, respectively. Let F1(z) = [1 +
η3h(z)]F(z), using an η3 ≥ 0 such that α1(1 + η3K) < 1. We aim to apply Corollary 2.1 to
the pair of systems f and g, using a metric defined by the pairs (‖ · ‖X, F1) and (‖ · ‖Y , G), in
order to find q-contraction of the joint system. Letting ‖ux‖X = 1, then,

(∫
�

∥∥∥∥F1(T (z, ξ))
∂f

∂x
(x, ξ)F1(z)

−1ux

∥∥∥∥
q

X

dν(ξ)

)1/q

=
(∫

�

∥∥∥∥1 + η3h(T (z, ξ))

1 + η3h(z)
F (T (z, ξ))

∂f

∂x
(x, ξ)F (z)−1ux

∥∥∥∥
q

X

dν(ξ)

)1/q

.

Applying Hölder’s inequality, and the assumption on ∂f /∂x, yields

(∫
�

∥∥∥∥F1(T (z, ξ))
∂f

∂x
(x, ξ)F1(z)

−1ux

∥∥∥∥
q

X

dν(ξ)

)1/q

≤ 1

1 + η3h(z)

(
1 + η3

(∫
�

h(T (z, ξ))2q dν(ξ)

)1/(2q))
α1

≤ 1 + η3(h(z) + K)

1 + η3h(z)
α1

≤ α1(1 + η3)K.

It remains to show that (2.8) holds. Let ‖ux‖X = 1. Then

(∫
�

∥∥∥∥G(T (z, ξ))
∂g

∂x
(z, ξ)F1(z)

−1ux

∥∥∥∥
q

Y

dν(ξ)

)1/q

= 1

1 + η3h(z)

(∫
�

∥∥∥∥G(T (z, ξ))
∂g

∂x
(z, ξ2)F (x)−1ux

∥∥∥∥
q

Y

dν(ξ)

)1/q

≤ h(z)

1 + η3h(z)

≤ 1

η3
.

Let η1, η2 be chosen so that η2(1/η3) < η1(1 − α1(1 + η3)K). Then, by Corollary 2.1,
the tuple {(�, 	, ν), T , (‖ · ‖Z, H)} determines a q-contracting system, where ‖(u, v)‖Z =
η1‖u‖ + η2‖v‖ and H(z)(ux, uy) = ((1 + η3h(z))F (z)ux, G(z)uy). One can take η1 = 1 in
these requirements, by choosing η2 small enough that η2(1/η3) < (1 − α1(1 + η3)K). �
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3. Stationary differentiability

Differentiability of stationary costs is established using properties of the Markov kernel P .
In the next section, the assumptions are verified based on properties of the derivatives of the
system.

Formally differentiating the equation πθ = πθPθ in θ suggests the stationary derivative π ′
solves the equation l = lPθ +πθP

′
θ in the variable l. By defining P ′ properly, as the linear map

e 	→ (∂/∂θ)Pθe on the space of cost functions, and considering this equation as being between
functionals defined on the cost functions, we can show that it has a unique solution l∗, which is
such that l∗(e) = (∂/∂θ)

∫
X

e(x) dπθ(x). The line of argument used in this section is a variant
of Theorem 2 of [9], adapted to the specific ergodicity and state space conditions that we work
with. In that work, a class of functions with a norm ‖e‖ = supx |e(x)|/V (x) was considered,
while the norm we will use also involves the derivatives of e. In Heidergott and Hordijk [9], an
important role is played by the deviation operator Dθ (see Section 3 of that work) in that, in
their setting, Dθ maps E2 back into itself. Dealing directly with the deviation operator in our
case requires care since the space of functions will have more subtle topological properties due
to the terms involving derivatives. We leave a possible unification of these two approaches to
future work.

We introduce the assumptions on P and the cost functions E .

Assumption 3.1. Denote by X a Polish space, E a vector space of real-valued functions on X

with norm ‖ · ‖E , and P a space of probability measures on X. For any μ ∈ P , it is required
that sup‖e‖E≤1 |μ(e)| < ∞.

Denote by �θ the Markov kernel �θ(x, A) = πθ(A). The parameter space is an open set
� ⊆ R

n� and we fix a θ0 ∈ �. The space R
n� has a norm ‖ · ‖�. We show that the map

sending a cost function e to its stationary derivative at the fixed parameter θ0 is an element of
the set L of linear maps from E to L(Rn�, R) that vanish on the constant functions and are
bounded with respect to the norm ‖l‖L = sup‖e‖E≤1 ‖l(e)‖�:

L = {l ∈ L(E , L(Rn�, R)) | ‖l‖L < ∞, l(1) = 0},
where 1 refers to the constant function x 	→ 1. Note that L is a complete space.

To discuss stationary differentiability, we introduce the operator (∂/∂θ)Pθ0 . If e ∈ E then
(∂/∂θ)Pθ0e is the function from X into L(Rnθ , R) defined by(

∂

∂θ
Pθ0e

)
(x) = ∂

∂θ

(
Pθ0e(x)

)
.

Assumption 3.2. For any θ ∈ � the following hold:

(i) if μ ∈ P then μPθ ∈ P and Pθ has a stationary measure πθ in P ;

(ii) if e ∈ E then Pθe ∈ E , ‖Pθ‖E < ∞, and
∑∞

i=0 ‖P i
θ0

− �θ0‖E ≤ Kθ0 for some Kθ0 ≥ 0;

(iii) for e ∈ E and x ∈ X, the function θ 	→ Pθe(x) is differentiable at ‖πθ0(∂/∂θ)Pθ0‖L <

∞ and θ0;

(iv) (1/‖�θ‖�)‖πθ0 [Pθ0+�θ − Pθ0 − (∂/∂θ)Pθ0(�θ)]‖E → 0 as ‖�θ‖� → 0;

(v) (1/‖�θ‖�)‖(πθ0+�θ − πθ0)[Pθ0+�� − Pθ0 ]‖E → 0 as ‖�θ‖� → 0.
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In part (iv), the functional πθ0 [Pθ0+�θ − Pθ0 − (∂/∂θ)Pθ0(�θ)] maps a function e ∈ E to
the number πθ0Pθ+�θ(e) − πθ0Pθ0(e) − πθ0((∂/∂θ)Pθ0e(�θ)).

The main theorem on stationary differentiability now follows.

Theorem 3.1. Under Assumptions 3.1 and 3.2, if e ∈ E2 then πθ(e) is differentiable at θ0 and
(∂/∂θ)

∫
X

e(x) dπθ0(x) = l∗(e), where l∗ ∈ L satisfies l∗ = l∗Pθ0 + πθ0(∂/∂θ)Pθ0 .

Proof. First, define T : L → L as T (l) := lPθ0 +πθ0(∂/∂θ)Pθ0 . The fact that πθ0(∂/∂θ)Pθ0

is in L was one of our assumptions along with ‖Pθ‖E < ∞, which implies that T is well defined.
Let l∗ be the functional l∗ = ∑∞

i=0(πθ0(∂/∂θ)Pθ0)P
i
θ0

. This is in L since the space is Banach
and, by Assumption 3.2(ii),

∞∑
i=0

∥∥∥∥
(

πθ0

∂

∂θ
Pθ0

)
P i

θ0

∥∥∥∥
L

=
∞∑
i=0

∥∥∥∥
(

πθ0

∂

∂θ
Pθ0

)
(P i

θ0
− �θ0)

∥∥∥∥
L

≤
∥∥∥∥πθ0

∂

∂θ
Pθ0

∥∥∥∥
L

K.

To see that l∗ is a fixed point of T , note that

T (l∗) =
∞∑
i=1

(
πθ0

∂

∂θ
Pθ0

)
P i

θ0
+ πθ0

∂

∂θ
Pθ0 = l∗.

To show that l∗ is the unique fixed point, let l be any other fixed point of T . Then

‖l − l∗‖L = ‖T n(l) − T n(l∗)‖L = ‖(l − l∗)(P n
θ0

− �θ0)‖L ≤ ‖l − l∗‖L‖P n
θ0

− �θ0‖E .

Using Assumption 3.2(ii) again, the right-hand side of this inequality goes to 0 as n → ∞,
hence, T possesses a unique fixed point l∗ in L.

Define c(�θ) as the functional c(�θ)(e) = πθ0+�θ(e) − πθ0(e) − l∗(e)(�θ). Assump-
tion 3.1 and the definition of L guarantee that c(�θ) ∈ L(E , R). It suffices to show that
(1/‖�θ‖�)‖c(�θ)‖E → 0 as �θ → 0. Using the fact that T (l∗) = l∗, we have

c(�θ) = πθ0

[
Pθ0+�θ − Pθ0 − ∂

∂θ
Pθ0(�θ)

]
+ (πθ0+�θ − πθ0)[Pθ0+�θ − Pθ0 ] + c(�θ)Pθ0 .

Iterating this, and noting that each summand is a functional vanishing on the constant functions,
we obtain, for any k > 0,

c(�θ) = πθ0

(
Pθ0+�θ − Pθ0 − ∂

∂θ
Pθ0(�θ)

) k−1∑
i=0

(P i
θ0

− �θ0)

+ (πθ0+�θ − πθ0)[Pθ0+�θ − Pθ0 ]
k−1∑
i=0

(P i
θ0

− �θ0) + c(�θ)(P k
θ0

− �θ0).

Taking norms and letting k → ∞, we see that

‖c(�θ)‖E ≤
∥∥∥∥πθ

(
Pθ0+�θ − Pθ0 − ∂

∂θ
Pθ0(�θ)

)∥∥∥∥
E

Kθ0

+ ‖(πθ0+�θ − πθ0)[Pθ0+�θ − Pθ0 ]‖EKθ0 .

Finally, use parts (iv) and (v) of Assumption 3.2. �
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4. State space conditions

Let Pθ be the transition kernel of the Markov chain

xn+1 = f (xn, ξn+1, θ) (4.1)

with a ν-distributed random input ξn. In this section we show how Assumptions 1.1–1.4 imply
Assumptions 3.1 and 3.2, thereby establishing differentiability of the stationary costs for those
cost functions e ∈ E2.

Theorem 4.1. Let Assumptions 1.1–1.4 be satisfied. Then Assumptions 3.1 and 3.2 are verified
for the space P2,A(X) of probability measures and the space of cost functions E2, at any θ0 ∈ �.
Hence, πθ0(e) is differentiable for any θ0 ∈ � and e ∈ E2.

To show this, several preliminary results will be used. The first is concerned with how Pθ

varies with θ . Recall that x0 denotes an arbitrary basepoint.

Proposition 4.1. Let Pθ be the transition kernel of the recursion (4.1), where

(i) the map ξ 	→ dA(x0, f (x, ξ, θ))p is ν-integrable for each (x, θ) ∈ X × �;

(ii) the function (x, θ) 	→ f (x, ξ, θ) is C1 for each ξ ∈ �;

(iii) and

sup
(x,θ)∈X×�

sup
‖uθ‖=1

(∫
�

∥∥∥∥A(f (x, ξ, θ))
∂f

∂θ
(x, ξ, θ)B(x)−1uθ

∥∥∥∥
p

dν(ξ)

)1/p

≤ K.

Fix a θ0 ∈ �. Then, for all �θ sufficiently small and all μ ∈ Pp,A(X), the inequality
dp,A(μPθ0 , μPθ0+�θ) ≤ K‖B�θ‖Lp(μ) holds.

Proof. Let �θ be so small that θ0 + t�θ ∈ � for t ∈ [0, 1]. If (x, ξ) is distributed according
to μ × ν then the law of (f (x, ξ, θ0), f (x, ξ, θ0 + �θ)) is a coupling of μPθ0 and μPθ0+�θ .
Let γ : [0, 1] → R

n� be γ (t) = θ0 + t�θ . Then t 	→ f (x, ξ, γ (t)) determines a curve from
f (x, ξ, θ0) to f (x, ξ, θ0 + �θ), and reasoning as in Proposition 2.2,

(∫
X

∫
�

dA(f (x, ξ, θ0), f (x, ξ, θ0 + �θ))p dν(ξ) dμ(x)

)1/p

≤
(∫

X

∫
�

(∫ 1

0

∥∥∥∥A(f (x, ξ, γ (t))
∂f

∂θ
(x, ξ, γ (t))�θ

∥∥∥∥ dt

)p

dν(ξ) dμ(x)

)1/p

≤
(∫ 1

0

∫
X

∫
�

∥∥∥∥A(f (x, ξ, γ (t)))
∂f

∂θ
(x, ξ, γ (t))�θ

∥∥∥∥
p

dν(ξ) dμ(x) dt

)1/p

≤
(∫ 1

0

∫
X

Kp‖B(x)�θ‖p dμ(x) dt

)1/p

= K‖B�θ‖Lp(μ). �

The continuity assumptions on the LXi,�j ensure that integration and differentiation can be
exchanged. In the discussion of differentiability, it will be useful to introduce the following
concept. A function f : X × � → R

n is said to be L1(ν)-continuous when

(i) x 	→ f (x, ξ) is continuous for each ξ ∈ �;
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(ii) ξ 	→ f (x, ξ) is measurable for each x ∈ X;

(iii) x 	→ ∫
�

‖f (x, ξ)‖ dν(ξ) is continuous.

The following two properties are not difficult to show.

(i) If f, g are L1(ν)-continuous functions then so are αf + βg for any numbers α, β.

(ii) A monotonicity property holds: if f is a function satisfying the first two requirements
of L1(ν)-continuity and if ‖f (x, ξ)‖ ≤ ‖g(x, ξ)‖ for an L1(ν)-continuous function g,
then f is L1(ν)-continuous.

Using this notion we state a condition for interchanging derivatives and integrals, which is
a generalized form of a result from [14], that considers a scalar parameter.

Theorem 4.2. (See [14, Theorem 3.13].) Let (�, 	, ν) be a probability space and W ⊆ R
n

be an open set. Let h : W × � → R
m be a function such that

(i) ξ 	→ h(w, ξ) is integrable for each w ∈ W ;

(ii) w 	→ h(w, ξ) is continuously differentiable for each ξ ∈ �;

(iii) ∂h/∂w is L1(ν)-continuous.

Then (∂/∂w)
∫
�

h(w, ξ) dν(ξ) = ∫
�
(∂h/∂w)(w, ξ) dν(ξ) for all w ∈ W .

This criteria has the useful property that once it is established for f , it is easily extended to
the function e ◦ f . This is shown in the next proposition.

Proposition 4.2. Let Assumptions 1.1–1.4 hold. If e ∈ E2 and i + j ≤ 2 then, for any
(x, θ) ∈ X × �,

∂i+j

∂xi∂θj

∫
�

e(f (x, ξ, θ)) dν(ξ) =
∫

�

∂i+j

∂xi∂θj
e(f (x, ξ, θ)) dν(ξ).

Proof. Consider the derivative ∂/∂x. To apply Theorem 4.2, we show that the map x 	→∫
�

‖(∂e/∂x)(f (x, ξ, θ))(∂f /∂x)(x, ξ, θ)‖ dν(ξ) is continuous. Noting that∥∥∥∥ ∂e

∂x
(f (x, ξ, θ))

∂f

∂x
(x, ξ, θ)

∥∥∥∥ ≤
∥∥∥∥ ∂e

∂x

∥∥∥∥
A

∥∥∥∥A(f (x, ξ, θ))
∂f

∂x
(x, ξ, θ)A(x)−1

∥∥∥∥‖A(x)‖,

the result follows by assumption on ∂f /∂x and the monotonicity property of L1(ν)-continuity.
Next, consider ∂2/∂θ2. We have

∥∥∥∥ ∂2

∂θ2 e(f (x, ξ, θ))

∥∥∥∥ ≤
∥∥∥∥ ∂2e

∂x2

∥∥∥∥
A,A

∥∥∥∥A(f (x, ξ, θ))
∂f

∂θ
(x, ξ, θ)B(x)−1

∥∥∥∥
2

‖B(x)‖2

+
∥∥∥∥ ∂e

∂x

∥∥∥∥
A

∥∥∥∥A(f (x, ξ, θ))
∂2f

∂θ2 (x, ξ, θ)(B(x)−1 ⊕ B(x)−1)

∥∥∥∥‖B(x)‖2.

The L1(ν)-continuity of the left-hand side follows by the L1(ν)-continuity of the right-hand
side together with the monotonicity property. Similar reasoning yields the other cases. �

Using this result, we can obtain the contraction property of P with respect to the class E2,
and obtain some bounds on the second-order derivatives of Pθe.
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Proposition 4.3. Let Assumptions 1.2–1.4 be in effect. For e ∈ E2 and θ ∈ �,

(i) ‖(∂2/∂x2)Pθe‖A,A ≤ KX2‖(∂e/∂x)‖A + K2
X‖(∂2e/∂x2)‖A,A;

(ii) ‖(∂2/∂θ2)Pθe‖B,B ≤ K�2‖∂e/∂x‖A + K2
�‖∂2e/∂x2‖A,A;

(iii) ‖(∂2/∂x∂θ)Pθe‖A,B ≤ KX,�‖∂e/∂x‖A + KXK�‖∂2e/∂x2‖A,A.

Furthermore, for each θ there is an Lθ ≥ 0 such that ‖Pθe‖E2 ≤ Lθ‖e‖E2 for all e ∈ E2.

Proof. We prove (ii); (i) and (iii) are established similarly. We have

∂2

∂θ2 Pθe(x)(B−1(x) ⊕ B−1(x)) = T1 + T2,

where T1 and T2 are defined as

T1 =
∫

�

∂e

∂x
(f (x, ξ, θ))

∂2f

∂θ2 (x, ξ, θ)(B(x)−1 ⊕ B(x)−1) dν(ξ),

T2 =
∫

�

∂2e

∂x2 (f (x, ξ, θ))

(
∂f

∂θ
(x, ξ, θ)B−1(x) ⊕ ∂f

∂θ
(x, ξ, θ)B−1(x)

)
dν(ξ).

Using the identity A(f (x, ξ, θ))−1A(f (x, ξ, θ))(∂2f /∂θ2)(x, ξ, θ) = (∂2f /∂θ2)(x, ξ, θ),
we obtain

‖T1‖ ≤
∥∥∥∥ ∂e

∂x

∥∥∥∥
A

K�2 , (4.2)

while for T2, we use the fact that

A(f (x, ξ, θ))−1A(f (x, ξ, θ))
∂f

∂θ
(x, ξ, θ) = ∂f

∂θ
(x, ξ, θ)

to obtain

‖T2‖ ≤
∥∥∥∥ ∂2e

∂x2

∥∥∥∥
A,A

(∫
�

∥∥∥∥A(f (x, ξ))
∂f

∂θ
(x, ξ)B−1(x)

∥∥∥∥
2

dν(ξ)

)
≤

∥∥∥∥ ∂2e

∂x2

∥∥∥∥
A,A

K2
�.

Combining this last inequality with (4.2) leads to∥∥∥∥ ∂2

∂θ2 Pθe(x)

∥∥∥∥
B(x), B(x)

≤
∥∥∥∥ ∂e

∂x

∥∥∥∥
A

K�2 +
∥∥∥∥ ∂2e

∂x2

∥∥∥∥
A,A

K2
�.

To show the boundedness with respect to ‖ · ‖E2 , note that, for any e ∈ E2,

|(Pθe)(x)| ≤ |e(x0)| +
∥∥∥∥ ∂e

∂x

∥∥∥∥
A

∫
X

dA(x0, y) d(δxPθ )(y)

≤ |e(x0)| +
∥∥∥∥ ∂e

∂x

∥∥∥∥
A

[Cθ + KXdA(x, x0)],

where Cθ is the number Cθ = ∫
X

dA(x0, y) d(δx0Pθ)(y). This follows, since, for the Lipschitz
function h(x) = d(x0, x), |(Ph)(x)| ≤ |Ph(x0)|+|(Ph)(x0)−(Ph)(x)| ≤ Cθ +KXdA(x0, x).
Also, for any x ∈ X, |e(x0)|/(1 + dA(x0, x)) ≤ |e(x0)|/(1 + dA(x0, x0)) ≤ ‖e‖A. Therefore,
‖Pθe‖A ≤ ‖e‖A + max{Cθ, KX}‖∂e/∂x‖A. �
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The following quadratic bound involving the metric dA will be used as well.

Proposition 4.4. Let h : X → R
n be differentiable, such that ‖(∂h/∂x)(x)A(x)−1‖ ≤ B(x),

where B : X → R is Lipschitz for the metric dA. Then the following inequalities hold:

(i) ‖h(x) − h(y)‖ ≤ B(x)dA(x, y) + 1
2‖B‖LipdA(x, y)2;

(ii) for any μ1, μ2 ∈ P2,A(X),∥∥∥∥
∫

X

h(x) dμ1(x) −
∫

X

h(y) dμ2(y)

∥∥∥∥
≤ ‖B‖L2(μ)d2,A(μ1, μ2) + 1

2‖B‖Lipd2,A(μ1, μ2)
2.

Proof. See Appendix A. �
With these tools in hand we can proceed to the proof of Theorem 4.1.

Proof of Theorem 4.1. In order to apply Theorem 3.1, we establish the requirements of
Assumptions 3.1 and 3.2. Assumption 3.1 requires that, for any μ in P2,A(X), the bound
sup‖e‖E2 ≤1 |μ(e)| < ∞ holds. Note that |e(x0)| = |e(x0)|/(1 + dA(x0, x0)) ≤ ‖e‖A. Then

|μ(e)| ≤
∫

X

[
|e(x0)| +

∥∥∥∥ ∂e

∂x

∥∥∥∥
A

dA(x0, x)

]
dμ(x) ≤ max

{
1,

∫
X

dA(x, x0) dμ(x)

}
‖e‖E2 .

The integrability part of Assumption 1.2 and the contraction part of Assumption 1.4 allow us
to apply Proposition 2.4. Hence, Pθ is a contraction on the space P2,A(X) with contraction
coefficient KX, and has a unique invariant measure πθ for each θ ∈ �. Then Assumption 3.2(i)
holds. Proposition 4.3 affirms that Pθe ∈ E2 if e ∈ E2, and Pθ is bounded for the norm ‖ · ‖E2 .
We now establish ‖P n

θ − �θ‖E2 ≤ ρθK
n
X for some constant ρθ . We consider each of the terms

in the norm ‖ · ‖E2 . First, for e ∈ E2,

‖P n
θ (e) − �θ(e)‖A ≤ Kn

X

∥∥∥∥ ∂e

∂x

∥∥∥∥
A

max{Cθ, 1}. (4.3)

To see this, observe that

|(P n
θ (e) − �θ(e))(x)| = |P n

θ (e)(x) − P n
θ (e)(x0) + P n

θ (e)(x0) − πθ(e)|
≤ Kn

X

∥∥∥∥ ∂e

∂x

∥∥∥∥
A

dA(x, x0) + Kn
X

∥∥∥∥ ∂e

∂x

∥∥∥∥
A

Cθ

≤ Kn
X

∥∥∥∥ ∂e

∂x

∥∥∥∥
A

max{Cθ, 1}(1 + dA(x, x0)),

where Cθ = ∫
X

dA(x0, y) dπθ(y). Next,∥∥∥∥ ∂

∂x
(P n

θ (e) − �θ(e))

∥∥∥∥
A

≤ Kn
X

∥∥∥∥ ∂e

∂x

∥∥∥∥
A

. (4.4)

This inequality follows from Proposition 4.2 and Assumption 1.4. Finally, by recursive appli-
cation of Proposition 4.3(i),∥∥∥∥ ∂2

∂x2 (P n
θ (e) − �θ(e))

∥∥∥∥
A,A

≤ KX2K
n−1
X

1

1 − KX

∥∥∥∥ ∂e

∂x

∥∥∥∥
A

+ K2n
X

∥∥∥∥ ∂2e

∂x2

∥∥∥∥
A,A

. (4.5)
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Adding (4.3)–(4.5), we obtain

‖P n
θ (e) − �θ(e)‖E2 ≤ Kn

X

(
max{Cθ, 1} + 1 + KX2

1

KX(1 − KX)

)∥∥∥∥ ∂e

∂x

∥∥∥∥
A

+ K2n
X

∥∥∥∥ ∂2e

∂x2

∥∥∥∥
A,A

≤ Kn
X

(
max{Cθ, 1} + 1 + KX2

1

KX(1 − KX)

)(∥∥∥∥ ∂e

∂x

∥∥∥∥
A

+
∥∥∥∥ ∂2e

∂x2

∥∥∥∥
A,A

)
≤ Kn

Xρθ‖e‖E2 ,

where ρθ = max{Cθ, 1} + 1 + KX2(1/KX(1 − KX)). In the second inequality, we have used
the fact that KX < 1. Thus, Assumption 3.2(ii) is satisfied.

Proposition 4.2 affirms that θ 	→ Pθe(x) is differentiable for e ∈ E2 and x ∈ X. Proceeding
as in the proof there, we see that ‖(∂/∂θ)Pθ0e(x)‖ ≤ ‖∂e/∂x‖AK�‖B(x)‖. Therefore,
‖πθ0(∂/∂θ)Pθ0‖L ≤ K�‖B‖L1(πθ0 ), which confirms Assumption 3.2(ii).

Proposition 4.3(ii) means that, for any e ∈ E2 and θ ∈ �, ‖(∂2/∂θ2)Pθe(x)‖B(x), B(x) ≤
k1‖e‖E2 , where k1 = max{K2

�, K�2}. Using the second-order version of Taylor’s theorem,
this implies that for all �θ sufficiently small, for all e ∈ E2, and x ∈ X, we have∣∣∣∣Pθ0+�θe(x) − Pθ0e(x) − ∂

∂θ
Pθ0e(x)(�θ)

∣∣∣∣≤ 1

2
k1‖e‖E2‖B(x)�θ‖2. (4.6)

Integrating (4.6) and dividing by ‖�θ‖ leads to

1

‖�θ‖
∥∥∥∥πθ0

[
Pθ0+�θ − Pθ0 − ∂

∂θ
Pθ0(�θ)

]∥∥∥∥
E2

≤ 1

2
k1‖B‖2

L2(πθ0 )
‖�θ‖

and the right-hand side goes to 0 as ‖�θ‖ → 0. Only Assumption 3.2(v) remains. By the
fundamental theorem of calculus,

(Pθ0+�θ − Pθ0)e(x) =
∫ 1

0

∫
�

∂e

∂x
(f (x, ξ, θ + λ�θ))

∂f

∂θ
(x, ξ, θ + λ�θ)�θ dν(ξ) dt.

Differentiating the above with respect to x and using Assumption 1.4(iii) yields∥∥∥∥ ∂

∂x
((Pθ0+�θ − Pθ0)e(x))A(x)−1

∥∥∥∥≤ ‖e‖E2k2‖�θ‖‖B(x)‖,

where k2 = max{KX,�, KXK�}. Applying Proposition 4.4, we have

‖(πθ0+�θ − πθ)(Pθ0+�θ − Pθ0)e‖
≤ k2‖�θ‖‖e‖E2 [‖B‖L2(πθ0 )d2,A(πθ0+�θ , πθ0) + 1

2‖B‖Lipd2,A(πθ0+�θ , πθ0)
2].

For the terms d2,A, first apply the contraction property of P and Proposition 4.1:

d2,A(πθ+�θ , πθ ) ≤ d2,A(πθ+�θPθ+�θ , πθPθ+�θ) + d2,A(πθPθ+�θ , πθPθ )

≤ KXd2,A(πθ+�θ , πθ ) + K�‖B�θ‖L2(πθ ).

Rearranging terms yields d2,A(πθ+�θ , πθ ) ≤ (1/(1 − KX))K�‖B�θ‖L2(πθ ). Hence,

‖(πθ0+�θ − πθ)(Pθ0+�θ − Pθ0)‖L

≤ k2‖B‖2
L2(πθ0 )

‖�θ‖
[

1

1 − KX

K�‖�θ‖ + 1

2
‖B‖Lip

(
1

1 − KX

K�‖�θ‖
)2]

,

and Assumption 3.2(v) is verified. �
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5. Gradient estimation

The goal of this section is to prove Theorem 1.2. The standing assumptions are Assump-
tions 1.1–1.4. We let Z = X × M and denote elements of this space by z = (x, m).
Denote by Rθ the Markov kernel corresponding to the recursion (1.3). In Proposition 5.1
and Corollary 5.1, we establish convergence of the forward sensitivity system in the sense of
Proposition 2.3. It involves finding an appropriate Lyapunov function V and metric dH on
X × M . In Proposition 5.2, we show that (x, m) 	→ (∂e/∂x)(x)m is an integrable function
for γθ , thereby establishing that the right-hand side of (1.2) is finite. Finally, we want to show
that the functional l defined by

l(e) =
∫

X×M

∂e

∂x
(x)m dγθ (x, m) (5.1)

is bounded for the norm ‖ · ‖L and satisfies the derivative equation of Theorem 3.1.
Define g and T to be the functions

g((x, m), ξ, θ) = ∂f

∂x
(x, ξ, θ)m + ∂f

∂θ
(x, ξ, θ),

T ((x, m), ξ, θ) = (f (x, ξ, θ), g((x, m), ξ, θ)).

As θ is fixed in this section, we simplify notation and denote the values of g by g(z, ξ). We use
ux, uθ , and um to denote vectors in R

nX , R
n�, and L(Rn�, R

nX), respectively.

Proposition 5.1. Define h : Z → R≥0 as h(z) = η1‖A(x)m‖ + η2‖B(x)‖ + η3dA(x0, x).

Then there are η1, η2, η3, η4, η5 so that {(�, 	, ν), T , (‖ · ‖Z, H)} satisfies a 1-contraction
inequality, where

H(z)(ux, um) = ((1 + η4h(z))A(x)ux, A(x)um), ‖(ux, um)‖Z = ‖ux‖ + η5‖um‖.
Proof. We will apply Proposition 2.6 to the map T (z, ξ) = (f (x, ξ, θ), g((x, m), ξ)) in

order to find contraction in the metric dH . The norm ‖ · ‖M is the usual norm on M induced by
‖ · ‖X and ‖ · ‖�. For Assumption 2.1(iii), we have

sup
‖um‖=1

∫
�

∥∥∥∥A(f (x, ξ, θ))
∂g

∂m
(z, ξ)A(x)−1um

∥∥∥∥ dν(ξ)

= sup
‖um‖=1

∫
�

sup
‖ux‖=1

∥∥∥∥A(f (x, ξ, θ))
∂f

∂x
(x, ξ, θ)A(x)−1umux

∥∥∥∥ dν(ξ)

≤ KX

and, directly by assumption,

sup
‖ux‖=1

(∫
�

∥∥∥∥A(f (x, ξ, θ))
∂f

∂x
(x, ξ, θ)A(x)−1ux

∥∥∥∥
2

dν(ξ)

)1/2

≤ KX.

We now establish Proposition 2.6(i). The function (∂g/∂x)(z, ξ) is a linear map from R
nX

to L(Rn�, R
nX), and we identify this with a bilinear map from R

nX ×R
n� to R

nX . Specifically,

∂g

∂x
(z, ξ)[ux, uθ ] = ∂2f

∂x2 (x, ξ, θ)[ux, m uθ ] + ∂2f

∂x∂θ
(x, ξ, θ)[ux, uθ ],
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and A(f (x, ξ, θ))(∂g/∂x)(z, ξ)A(x)−1 is the linear map from R
nX to L(Rn�, R

nX), where

A(f (x, ξ, θ))
∂g

∂x
(z, ξ)A(x)−1[ux, uθ ] = A(f (x, ξ, θ))

∂2f

∂x2 (x, ξ, θ)[A(x)−1ux, m uθ ]

+ A(f (x, ξ, θ))
∂2f

∂x∂θ
(x, ξ, θ)[A(x)−1ux, uθ ].

For the first term, we have, using the assumption on ∂2f /∂x2 from Assumption 1.4 and the
identity m uθ = A(x)−1A(x)m uθ ,

sup
‖ux‖=1

∫
�

sup
‖uθ‖=1

∥∥∥∥A(f (x, ξ, θ))
∂2f

∂x2 (x, ξ, θ)[A(x)−1ux, m uθ ]
∥∥∥∥ dν(ξ) ≤ KX2‖A(x)m‖.

For the second, use the identity uθ = B(x)−1B(x)uθ and our assumption on ∂2f /∂x∂θ ,

sup
‖ux‖=1

∫
�

sup
‖uθ‖=1

∥∥∥∥A(f (x, ξ, θ))
∂2f

∂x∂θ
(x, ξ, θ)[A(x)−1ux, uθ ]

∥∥∥∥ dν(ξ) ≤ KX,�‖B(x)‖.

Combining these two inequalities, while assuming KX2 ≤ η1 and KX,� ≤ η2,

sup
‖ux‖=1

∫
�

∥∥∥∥A(f (x, ξ, θ))
∂g

∂x
(z, ξ)A(x)−1ux

∥∥∥∥ dν(ξ) ≤ KX2‖A(x)m‖ + KX,�‖B(x)‖ ≤ h(z).

Next, we confirm Proposition 2.6(ii) by showing the Lyapunov property of the function h.
We consider the three terms of the function, starting with ‖A(x)m‖:

(∫
�

‖A(f (x, ξ, θ))g(z, ξ)‖2 dν(ξ)

)1/2

≤
(∫

�

∥∥∥∥A(f (x, ξ, θ))
∂f

∂x
(x, ξ, θ)m

∥∥∥∥
2

dν(ξ)

)1/2

+
(∫

�

∥∥∥∥A(f (x, ξ, θ))
∂f

∂θ
(x, ξ, θ)

∥∥∥∥
2

dν(ξ)

)1/2

≤ KX‖A(x)m‖ + K�‖B(x)‖.
Next, we consider ‖B(x)‖. Fix a basepoint x0 and set B0 = (

∫
�

‖B(f (x0, ξ, θ))‖2 dν(ξ))1/2.
Then(∫

�

‖B(f (x, ξ, θ))‖2 dν(ξ)

)1/2

≤ B0 + ‖B‖Lip

(∫
�

dA(f (x0, ξ, θ), f (x, ξ, θ))2 dν(ξ)

)1/2

≤ B0 + ‖B‖Lip KXdA(x0, x).

The first inequality uses Assumption 1.3 and the second uses the pointwise contraction property
of f which comes from Proposition 2.2. For the term dA(x0, x), we have, setting D0 =
(
∫
�

dA(x0, f (x0, ξ, θ))2 dν(ξ))1/2,

(∫
�

dA(x0, f (x, ξ, θ))2 dν(ξ)

)1/2

≤ D0 +
(∫

�

dA(f (x0, ξ, θ), f (x, ξ, θ))2 dν(ξ)

)1/2

≤ D0 + KXdA(x0, x).
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Combining these, we obtain(∫
�

h(T (z, ξ))2 dν(ξ)

)1/2

≤ η1KX‖A(x)m‖ + η1Kθ‖B(x)‖ + (η2‖B‖LipKX + η3KX)dA(x0, x) + K4,

where K4 = η2B0 + η3D0. Based on this inequality, it is evident that η1, η2, η3 can be
chosen so that the Lyapunov condition on h is satisfied. Specifically, we take KX2 ≤ η1,
max{KX,�, η1K�} < η2, and η2‖B‖LipKX < η3(1 − KX). �

We can use h to obtain a Lyapunov function, yielding ergodicity of the sensitivity process.

Corollary 5.1. Let the η1, η2, η3 of Proposition 5.1 be chosen so that they are all positive. Let V
be the function V (z) = η1‖A(x)m‖ + η2‖B(x)‖ + η3dA(x0, x) + 1. Then the kernel Rθ has a
unique invariant measure γθ ∈ P1,V (Z), and, for μ ∈ P1,V (Z), sup‖g‖Lip(H)+‖g‖V ≤1 |μRn

θ (g)−
γθ (g)| → 0 as n → ∞.

Proof. We apply Proposition 2.3, using the metric dH defined in Proposition 5.1. In
Proposition 5.1 we established the pointwise contraction inequality needed for Proposition 2.3.
For some β ∈ [0, 1), the inequality

∫
�

V (T (z, ξ, θ)) dν(ξ) ≤ βV (z) + (K4 + 1) holds at
z ∈ Z, as we have already shown in the proof of Proposition 5.1. It remains to show that V has
compact sublevel sets. Note that if V (x, m) ≤ r then dA(x0, x) ≤ r/η3 and ‖m‖ ≤ rK/η1,
where K is such that supx∈X ‖A(x)−1‖ ≤ K . Thus, V −1[0, r] is contained in the compact set
{(x, m) ∈ Z | dA(x0, x) ≤ r/η3 and ‖m‖ ≤ rK/η1}. �

To ensure that the function (x, m) 	→ (∂e/∂x)(x)m is integrable for the measure γθ , it
suffices that it is Lipschitz for the metric dH , and bounded for Lyapunov function V .

Proposition 5.2. For any e ∈ E2, the map (x, m) 	→ (∂e/∂x)(x)m is a Lipschitz function in
the metric dH of Proposition 5.1, and is also bounded for the norm ‖ · ‖V .

Proof. Let the ηi be as in Proposition 5.1. Let g(x, m) = (∂e/∂x)(x)m. We have

‖g(x, m)‖ ≤
∥∥∥∥ ∂e

∂x

∥∥∥∥
A

‖A(x)m‖ ≤ ‖e‖E2‖A(x)m‖ ≤ 1

η1
‖e‖E2V (x, m);

hence, ‖g‖V ≤ (1/η1)‖e‖E2 . Next, we show that ‖g‖Lip < ∞ for the metric dH . This is
equivalent to showing ‖∂g/∂x‖H < ∞. Let (ux, um) be a vector in R

nX × L(Rn�, R
nX).

Then H(z)−1(ux, um) is H(z)−1(ux, um) = ((1/(1 + η4h(z)))A−1(x)ux, A(x)−1um) and
(∂g/∂z)(z) is the linear map from R

nX × L(Rn�, R
nX) to L(Rn�, R), where

∂g

∂z
(z)[ux, um][uθ ] = ∂2e

∂x2 (x)[ux, muθ ] + ∂e

∂x
(x)[umuθ ].

Fix (ux, um) with ‖ux‖ + η5‖um‖ = 1. Then∥∥∥∥∂g

∂z
(z)H(z)−1(ux, um)

∥∥∥∥ = sup
‖uθ‖=1

∣∣∣∣ (∂2e/∂x2)(x)[A−1(x)ux, muθ ]
1 + η4h(z)

+ ∂e

∂x
(x)A−1(x)umuθ

∣∣∣∣
≤ sup

‖uθ‖=1

‖∂2e/∂x2‖A,A‖ux‖‖A(x)m‖‖uθ‖
1 + η4h(z)

+
∥∥∥∥ ∂e

∂x

∥∥∥∥
A

‖um‖‖uθ‖

≤ ‖∂2e/∂x2‖A,A‖ux‖‖A(x)m‖
1 + η4h(z)

+
∥∥∥∥ ∂e

∂x

∥∥∥∥
A

‖um‖.
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To continue, note by definition of h that ‖A(x)m‖/(1 + η4h(z)) ≤ 1/η1η4. Then

∥∥∥∥∂g

∂z
(z)H(z)−1(ux, um)

∥∥∥∥ ≤
∥∥∥∥ ∂2e

∂x2

∥∥∥∥
A,A

‖ux‖ 1

η1η4
+ η5

η5

∥∥∥∥ ∂e

∂x

∥∥∥∥
A

‖um‖

≤ max

{∥∥∥∥ ∂2e

∂x2

∥∥∥∥
A,A

1

η1η4
,

1

η5

∥∥∥∥ ∂e

∂x

∥∥∥∥
A

}

≤ ‖e‖E2 max

{
1

η1η4
,

1

η5

}
.

Therefore, a Lipschitz constant for the function g is ‖e‖E2 max{1/η1η4, 1/η5}. �

We now continue to the proof of Theorem 1.2.

Proof of Theorem 1.2. By Corollary 5.1, the forward sensitivity process converges to a
unique stationary measure γθ in P1,V (Z). Let g be the function g(x, m) = (∂e/∂x)(x)m.
By Proposition 5.2, we see that ‖g‖Lip + ‖g‖V < ∞, which means, in particular, that the
integral on the right-hand side of (5.1) is well defined.

We show that the functional l of (5.1) is bounded for the norm ‖ · ‖L. We have ‖l(e)‖ ≤
‖e‖E2

∫
Z

‖A(x)m‖ dγθ (z), with the latter integral being finite since γθ ∈ P1,V (Z). Then
‖l‖L < ∞. It remains to show that T (l) = l. By the identity γθ = γθRθ ,

l(e) =
∫

X×M

∂e

∂x
(x)m dγθ (x, m)

=
∫

X×M

(∫
�

∂e

∂x
(f (x, ξ, θ))

(
∂f

∂x
(x, ξ, θ)m + ∂f

∂θ
(x, ξ, θ)

)
dν(ξ)

)
dγθ (x, m). (5.2)

Recall that the definition of T is T (l)e = lPθ e + πθ(∂/∂θ)Pθe. With our definition of l, and
applying Proposition 4.2, these two terms are

lPθ (e) =
∫

X×M

∂

∂x
(Pθe)(x)m dγθ (x, m)

=
∫

X×M

(∫
�

∂e

∂x
(f (x, ξ, θ))

∂f

∂x
(x, ξ, θ) dν(ξ)

)
m dγθ (x, m) (5.3)

and

πθ

∂

∂θ
Pθe =

∫
X

(∫
�

∂e

∂x
(f (x, ξ, θ))

∂f

∂θ
(x, ξ, θ) dν(ξ)

)
dπθ(x). (5.4)

Add (5.3) to (5.4) and compare with (5.2) to see T (l) = l. �

To finish this section, we discuss how this estimator can be implemented. One option is to
iterate the joint recursion (1.3) for a large number of steps, to obtain a sample (xn, mn), and
then prepare the estimate by forming the product �n = (∂e/∂x)(xn)mn. This requires the
ability to compute the derivatives of e and f . According to Theorem 1.2, the estimate �n has
the property that E[�n] → (∂/∂θ)

∫
X

e(x) dπθ(x) as M → ∞. To control the variance of the
estimate, one can form the running averages An = (1/n)

∑n
i=1 �i . The results of [11] can be

used in certain cases to quantify how the variance of the An decreases with time.
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6. Examples

Example 6.1. We consider a stochastic neural network where at each time only a subset of
the edges in the network are activated. There are N nodes so that the state space X is [0, 1]N .
The random input is a binary vector in � = {0, 1}N×N . Let σ be the sigmoid function
σ(x) = (1 + exp(−x))−1. The function f : X × � × � → X is

fi(x, ξ, θ) = σ(ui(x, ξ, θ)),

where ui(x, ξ, θ) = ∑n
k=1 ξi,kθi,kxk . The bi are biases and considered fixed. A vector ξ ∈ �

indicates which edges are active at each time step; the edge (i, j) from j to i is only used
if ξi,j = 1. The probability measure on � is defined by ν(ξ) := ∏

(i,j)∈E ρ1−ξi,j (1 − ρ)ξi,j .
Under this law, in the extreme ρ = 1, we have ξi,j = 0 for all i, j with probability 1. The
parameter space � is the N × N matrix R

N×N , which are the weights θi,j between each unit.
We set A(x) = I and ‖ · ‖X = ‖ · ‖∞; hence, dA(x, y) = ‖x − y‖∞. We set B(x) = I .
We need to find conditions so that Assumptions 1.1–1.4 hold. After setting � to be an arbitrary
open ball, the only nontrivial part is the contraction criteria, Assumption 1.4(ii). Observe that
(∂fi/∂xj )(x, ξ, θ) = σ ′(ui(x, ξ, θ))ξi,j θi,j . With the norm ‖ · ‖∞ on X and as |σ ′(u)| ≤ 1

4 ,∥∥∥∥∂f

∂x
(x, ξ, θ)

∥∥∥∥∞
≤ 1

4
‖θ‖∞ sup

i,j

ξi,j .

Note that (
∫
�
(supi,j ξi,j )

2 dν(ξ))1/2 = (1 − ν(ξ = 0))1/2 = (1 − ρ|E|)1/2, so a sufficient
condition for contraction in d2 is ‖w‖∞(1 − ρ|E|)1/2 < 4. The matrix norm induced by ‖ · ‖∞
is the maximum absolute row sum; then the condition is that the sum of magnitudes of incoming
weights at each node must be bounded in this way.

The requirements for applying forward sensitivity analysis are met. For completeness we
derive the exact form of the sensitivity system. The space M consists of the linear maps from
R

N×N to R
N and (∂fi/∂θ(j,k))(x, ξ, θ) = δi,j σ

′(ui(x, ξ, θ))ξi,kxk.We use subscripts to denote
time, and v(k) means the kth component of vector v. Then

xn+1(i) = σ(u(xn, ξn+1, θ)(i)),

mn+1(i, (j, k))

= σ ′(u(xn, ξn+1, θ)(i))

[
δi,j ξn+1(i, k)xn(k) +

n∑
q=1

ξn+1(i, q)θ(i, q)mn(q, (j, k))

]
.

At time n+ 1, node i has to pull from each node q that connects to it the data mn(q, (j, k)) and
the state variable xn(q).

Example 6.2. Let � = R
2 and let ν be the law of two independent random variables ξ1, ξ2,

such that E[exp(6|ξ1|) + |ξ2|2] < ∞. Let f : R
2 × � × � → R

2 be the function

f (x, ξ, θ) = (f1(x1, ξ, θ), f2(x1, x2, ξ, θ)), (6.1)

where f1(x1, ξ, θ) = 1
2x1 + θ + εξ1 and f2(x1, x2, ξ, θ) = 1

2x1x2 + εξ2. Let g1, g2 be the
real-valued functions g1(x) = exp(2|x1|)(1+|x2|) and g2(x) = exp(2|x1|). The metric dA will
be defined using the pair (‖ ·‖, A), where ‖(u, v)‖ = p1|u|+p2|v| and A(x) = g1(x)⊕g2(x),
with p1, p2 determined below. The parameter θ is a number and B is B(x) = g1(x). We seek
conditions on ε and θ that guarantee contraction and the applicability of stochastic forward
sensitivity analysis.
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Proposition 6.1. Let the following hold:

(i) the parameter space is � = (− 1
4 log 2, 1

4 log 2);

(ii) ε < 1 and (1 + ε(
∫
�

|ξ2|2 dν(ξ))1/2)(
∫
�

exp(2ε|ξ1|)2 dν(ξ))1/2 < 21/4;

(iii) the coefficients p1, p2 are any positive numbers such that 1 + p2/p1 < 21/4.

For θ ∈ �, the stochastic forward sensitivity method is applicable for the system (6.1).

Proof. See Appendix A for a sketch of the calculations involved. �
Based on the definition of E2, the cost functions are those e : R

2 → R satisfying

sup
x

∣∣∣∣ ∂e

∂xi

(x)

∣∣∣∣gi(x)−1 < ∞ and sup
x

∣∣∣∣ ∂2e

∂xi∂xj

(x)

∣∣∣∣g−1
i (x)g−1

j (x) < ∞ for 1 ≤ i, j ≤ 2.

Note that since gi ≥ 1, the functions in E include those with supx ‖(∂e/∂x)(x)‖ < ∞ and
supx ‖(∂2e/∂x2)(x)‖ < ∞. The joint process takes the following form. We denote the kth
component of a vector v by v(k), and use a subscript to denote time. Thus,

xn+1(1) = 1
2xn(1) + θ + εξn+1(1), xn+1(2) = 1

2xn(1)xn(2) + εξn+1(2),

mn+1(1) = 1
2mn(1) + 1, mn+1(2) = 1

2xn(2)mn(1) + 1
2xn(1)mn(2).

7. Discussion

Our approach to establishing differentiability can be compared with works on measure-
valued differentiation, such as [9] and [10]. The ergodicity framework in those works is based
on normed ergodicity [1], while ours is also based on a norm but involves the derivatives of
the cost functions as well. The approach to establishing differentiability is based on setting up
a certain equation between linear functionals, showing that any solution to that equation must
evaluate the stationary derivative, and showing that the equation indeed has a solution. In this
sense, it is similar to [21], which works with the class of bounded measurable cost functions,
and in a different ergodicity framework. Pflug [13] also used contraction in the Wasserstein
distance in an ergodicity framework for stationary gradient estimation. This work was motivated
by derivative estimation and optimization in neural networks. The back-propagation procedure
is based on adjoint sensitivity analysis, as opposed to the forward sensitivity analysis studied
here. Adjoint sensitivity analysis is often preferred as the auxiliary system in this case evolves
in a space which has dimension nX as opposed to nθ × nX. In [3] and [4], the author analyzed
joint gradient estimation/optimization schemes based on adjoint sensitivity analysis. It may
be that the methods of this paper can be extended to adjoint sensitivity analysis. A counter
example to this possibility would also be very interesting.

Another interesting extension may be to apply recursively the construction to obtain estima-
tors for higher derivatives. Calculating (∂2/∂θ2)Eπθ [e(x)] should be equivalent to computing
(∂/∂θ)Eγθ [g(x)] for the ‘cost function’ g(x) = (∂e/∂x)(x)m.

Appendix A.

We adopt the following notation. Denote � the space of parameters, nX the dimensionality
of state space for the underlying system, n� the dimensionality of parameter space, L(Rn, R

m)

the space of linear maps from R
n to R

m, M the space L(Rn�, R
nX), and let ‖V ‖Lp(μ) be

shorthand for (
∫
X

‖V (x)‖p dμ)1/p. Further denote P (X) as the Borel probability measures
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on X, Pp,V (X) the measures in P (X) that such that ‖V ‖Lp(μ) < ∞, dA the metric induced
by a Finsler structure, Pp,A(X) the measures such that

∫
X

dA(x, x0)
p dμ(x) < ∞, dp,A

the Wasserstein distance on the space Pp,A, ‖ · ‖Lip the Lipschitz constant for a function
between metric spaces, and (E ⊕ F)(u, v) = (Eu, Fv) the direct sum of linear maps; (E ⊕
F)(u, v) = (Eu, Fv). Finally, denote ‖ · ‖A,A as the norm for a bilinear map: ‖m‖A,A =
sup‖u‖=‖v‖=1 ‖A[u, v]‖, ‖ · ‖E2 the norm ‖e‖E2 = ‖e‖A +‖∂e/∂x‖A +‖∂2e/∂x2‖A,A, and In

the identity matrix on R
n.

Proof of Proposition 2.1. The metric axioms follow the approach of [2, Chapter 2]. We show
the completeness. The condition on A(x)−1 means that for some k, the inequality

‖x − y‖ ≤ kdA(x, y) (A.1)

holds for all x, y ∈ X. The continuity of A means that ‖A‖ is bounded on compact subsets
of X. Combining this with (A.1), it follows that dA and the metric determined on ‖ · ‖ are
strongly equivalent on compact subsets of X. Using (A.1), one can show that any dA-Cauchy
sequence is contained in a compact subset of X. By the strong equivalence, dA is complete on
this subset. �

Proof of Proposition 4.4. We will make use of the following: whenever γ : [0, T ] → X is
a curve from x to y that is

• parameterized by arc length, and

• such that L(γ ) ≤ dA(x, y) + ε, then∫ T

0
dA(γ (t), x) dt ≤ (dA(x, y) + ε)2

2
. (A.2)

To see this, note that for any curve parameterized by arc length, dA(γ (t), x) ≤ t . Integrating
both sides of this inequality and using the first assumption yields the result.

We now proceed to the proof of (i). Let h : X → R
n be a function satisfying the assumptions

of the proposition. Given ε > 0 , let γ : [0, T ] → X be a piecewise C1 curve from x to y

with L(γ ) ≤ dA(x, y) + ε. Assume that γ is parameterized by arc length. By the identity
γ ′(t) = A(γ (t))−1A(γ (t))γ ′(t), and the assumption on h,

‖h(x) − h(y)‖ ≤
∫ T

0

∥∥∥∥∂h

∂x
(γ (t))γ ′(t)

∥∥∥∥ dt

=
∫ T

0

∥∥∥∥∂h

∂x
(γ (t))A(γ (t))−1A(γ (t))γ ′(t)

∥∥∥∥ dt

≤
∫ T

0
B(γ (t)) dt.

Noting that B is Lipschitz, and invoking (A.2),

‖h(x) − h(y)‖ ≤
∫ T

0
(B(x) + ‖B‖LipdA(γ (t), x)) dt

≤ B(x)

∫ T

0
1 dt + ‖B‖Lip

∫ T

0
dA(γ (t), x) dt

≤ B(x)[dA(x, y) + ε] + ‖B‖Lip

[
dA(x, y)2

2
+ dA(x, y)ε + ε2

2

]
.

Since ε was arbitrary, we have ‖h(x) − h(y)‖ ≤ B(x)dA(x, y) + 1
2‖B‖LipdA(x, y)2.
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For (ii), let γ be any coupling of μ1 with μ2 such that (
∫
X×X

dA(x, y)2 dγ (x, y))1/2 ≤
d2,A(μ1, μ2) + ε. Then∥∥∥∥

∫
X

h(x) dμ1(x) −
∫

X

h(y) dμ2(y)

∥∥∥∥
≤

∫
X×X

‖h(x) − h(y)‖ dγ (x, y)

≤
∫

X×X

B(x)dA(x, y) dγ (x, y) + 1

2
‖B‖Lip

∫
X×X

dA(x, y)2 dγ (x, y)

≤ ‖B‖L2(μ1)
(d2,A(μ1, μ2) + ε) + 1

2‖B‖Lip(d2,A(μ1, μ2) + ε)2.

Since ε > 0 was arbitrary, the proof is complete. �
Proof of Proposition 6.1. We verify Assumptions 1.1–1.4. For Assumption 1.1, the conti-

nuity is obvious. As A has a diagonal structure, ‖A(x)−1‖ = max{g1(x)−1, g2(x)−1}, so it is
clear that ‖A(x)−1‖ ≤ 1 for all x.

For Assumption 1.2, the differentiability is evident. For the integrability, using the basepoint
(0, 0), it suffices that (

∫
�

dA(0, f (x, ξ, θ))2 dν(ξ))1/2 < ∞ for any (x, θ) ∈ X ×�. Consider
the curve t 	→ t f (x, ξ, θ) for t ∈ [0, 1] from 0 to f (x, ξ, θ). Then dA(0, f (x, ξ, θ)) ≤∫ 1

0 ‖A(t f (x, ξ, θ))f (x, ξ, θ)‖ dt . Next, by the definition of ‖ · ‖,

‖A(t f (x, ξ, θ))f (x, ξ, θ)‖
= p1 |g1(t f (x, ξ, θ))f1(x, ξ, θ)| + p2 |g2(t f (x, ξ, θ))f2(x, ξ, θ)|.

For the first term on the right-hand side of this equation, we have

|g1(t f (x, ξ, θ))f1(x, ξ, θ)|
= exp

(
2
∣∣t 1

2x1 + tθ + tεξ1
∣∣)(1 + ∣∣t 1

2x1x2 + tεξ2
∣∣)∣∣ 1

2x1 + θ + εξ1
∣∣

≤ exp(|x1|) exp(2|θ |) exp(2ε|ξ1|)
(
1 + 1

2 |x1||x2| + ε|ξ2|
)( 1

2 |x1| + |θ | + ε|ξ1|
)

≤ exp(2|x1| + |x1||x2|) exp(2|θ |) exp(3ε|ξ1|)(1 + ε|ξ2|).
In the last inequality, we used the fact that θ < 1

2 . Likewise, for the second term,

|g2(tf (x, ξ, θ))f2(x, ξ, θ)| = exp
(
2
∣∣t 1

2x1 + tθ + tεξ1
∣∣)∣∣ 1

2x1x2 + εξ2
∣∣

≤ exp(|x1| + |x1x2|) exp(2|θ |) exp(2ε|ξ1|)ε|ξ2|.
Combining these, we obtain a bound for dA(0, f (x, ξ, θ)):

dA(0, f (x, ξ, θ)) ≤ p1 exp(2|x1| + |x1x2|) exp(2|θ |) exp(3ε|ξ1|)(1 + ε|ξ2|)
+ p2 exp(|x1| + |x1x2|) exp(2|θ |) exp(2ε|ξ1|)ε|ξ2|

≤ (p1 + p2) exp(2|x1| + |x1x2|) exp(2|θ |) exp(3ε|ξ1|)(1 + ε|ξ2|). (A.3)

Let Q = (
∫
�

|ξ2|2 dν(ξ))1/2 and set R = (
∫
�

exp(2ε|ξ1|)2 dν(ξ))1/2. Squaring and integrating
(A.3) yields(∫

�

dA(0, f (x, ξ, θ))2 dν(ξ)

)1/2

≤ (p1 + p2) exp(2|x1| + |x1x2|) exp(2|θ |)
(∫

�

exp(3ε|ξ1|)2 dν(ξ)

)1/2

(1 + εQ),

which is finite by the assumption that exp(6|ξ1|) is integrable and that ε < 1.
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For Assumption 1.3, the invertibility of B(x) follows since g1 > 1. Next, we show that
‖B(x)‖ is Lipschitz for dA. Since ‖e‖Lip = ‖∂e/∂x‖A when e is differentiable, the Lipschitz
continuity of g1 can be shown as follows. Let x = (x1, x2) be a point of differentiability for
(|x1|, |x2|), and let p1|u| + p2|v| = 1. Then∣∣∣∣∂g1

∂x
(x)A(x)−1(u, v)

∣∣∣∣ =
∣∣∣∣∂g1

∂x
(x)(g1(x)−1u, g2(x)−1v)

∣∣∣∣
=

∣∣∣∣∂g1

∂x1
(x)g1(x)−1u + ∂g1

∂x2
(x)g2(x)−1v

∣∣∣∣
≤ max

{
1

p1

∣∣∣∣∂g1

∂x1
(x)g1(x)−1

∣∣∣∣, 1

p2

∣∣∣∣∂g1

∂x2
(x)g2(x)−1

∣∣∣∣
}
,

where |(∂g1/∂x1)(x)g1(x)−1| ≤ 2 and |(∂g1/∂x2)(x)g2(x)−1| ≤ 1. By an argument using a
mollification of | · |, this is extended to all points of X. Therefore, ‖g‖Lip ≤ max{2/p1, 1/p2}.
We turn to the functions LXi,�j , starting with LX. Note the inequalities

g1(f (x, ξ, θ))

∣∣∣∣ ∂f1

∂x1
(x, ξ, θ)

∣∣∣∣ g1(x)−1

≤ 1
2 exp(2|θ |) exp(2ε|ξ1|) exp(|x1|)

(
1 + 1

2 |x1| + ε|ξ2|
)

exp(−2|x1|), (A.4)

g2(f (x, ξ, θ))

∣∣∣∣ ∂f2

∂x1
(x, ξ, θ)

∣∣∣∣ g1(x)−1

≤ 1
2 exp(2|θ |) exp(2ε|ξ1|) exp(|x1|) exp(−2|x1|), (A.5)

g2(f (x, ξ, θ))

∣∣∣∣ ∂f2

∂x2
(x, ξ, θ)

∣∣∣∣ g2(x)−1

≤ 1
2 exp(2|θ |) exp(2ε|x1|) exp(|x1|)|x1| exp(−2|x1|). (A.6)

Next, note that∥∥∥∥A(f (x, ξ, θ))
∂f

∂x
(x, ξ, θ)A(x)−1

∥∥∥∥
≤ max

{
g1(f (x, ξ, θ))

∣∣∣∣ ∂f1

∂x1
(x, ξ, θ)

∣∣∣∣g1(x)−1

+ p2

p1
g2(f (x, ξ, θ))

∣∣∣∣ ∂f2

∂x1
(x, ξ, θ)

∣∣∣∣g1(x)−1, g2(f (x, ξ, θ))

∣∣∣∣ ∂f2

∂x2
(x, ξ, θ)

∣∣∣∣g2(x)−1
}
.

Combining this with the three inequalities (A.4)–(A.6), we obtain∥∥∥∥A(f (x, ξ, θ))
∂f

∂x
(x, ξ, θ)A(x)−1

∥∥∥∥
≤ 1

2
exp(2|θ |) exp(2ε|ξ1|) exp(|x1|) max

{
1 + 1

2
|x1| + ε|ξ2| + p2

p1
, |x1|

}
exp(−2|x1|)

≤ 1

2
exp(2|θ |) exp(2ε|ξ1|) exp(|x1|)

[
1 + |x1| + ε|ξ2| + p2

p1

]
exp(−2|x1|).

Squaring and integrating the right-hand side of the last inequality, and using the independence
of the ξ1 and ξ2 variables yields

LX(x, θ) ≤ 1

2
exp(2|θ |)R exp(|x1|)

(
1 + εQ + p2

p1
+ |x1|

)
exp(−2|x1|).
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This is a continuous function of (x, θ), so the continuity of LX holds. We now show the
contraction property. Using the inequality a + x ≤ a exp(x/a), we obtain

≤
(

1 + εQ + p2

p1

)
1

2
exp(2|θ |)R exp

([
1 +

(
1 + εQ + p2

p1

)−1]
|x1|

)
exp(−2|x1|).

Based on this, the contraction property holds if ε, θ, p1, and p2 are such that (1 + εQ +
p2/p1) exp(2|θ |)R < 2 and one can verify that assumptions (i)–(iii) mean that this indeed is
the case. Now consider L�. Let ‖·‖� = |·|. Then ‖A(f (x, ξ, θ))(∂f /∂θ)(x, ξ, θ)B(x)−1‖ =
g1(f (x, ξ, θ))g1(x)−1. Using a similar analysis as above,

g1(f (x, ξ, θ))g1(x)−1 ≤ exp(2|θ |) exp(2ε|ξ1|) exp(|x|)(1 + 1
2 |x1| + ε|ξ2|

)
exp(−2|x1|).

Squaring and integrating the right-hand side of this equation yields

L�(x, θ) ≤ exp(2|θ |)R exp(|x1|)
(
1 + 1

2 |x1| + εQ
)

exp(−2|x1|)
≤ (1 + εQ) exp(2|θ |)R exp

([
1 + 1

2(1 + εQ)
− 2

]
|x1|

)
≤ (1 + εQ) exp(2|θ |)R.

From the first inequality, we can see that L� is continuous. From the last, we can see that L�

is bounded on the set X × �. It remains to verify conditions on the higher derivatives. The
higher derivatives vanish except for ∂2f /∂x2. This is defined as follows:

∂2fk

∂xi∂xj

(x, ξ, θ) =
{

1
2 if k = 2 and i �= j,

0 otherwise.

For i = 1, 2, we have A(x)−1ei = g−1
i (x)ei , and by the basic properties of bilinear maps

A(f (x, ξ, θ))
∂2f

∂x2 (z)(A(x)−1ei, A(x)−1ej ) = A(f (x, ξ, θ))g−1
i (x)g−1

j (x)
∂2f

∂xi∂xj

(x, ξ, θ).

Note that (∂2f /∂xi∂xj )(x, ξ, θ) = 0 if i = j . When i �= j , we have (∂2f /∂xi∂xj )(x, ξ, θ) =
(0, 1

2 ) and A(f (x, ξ))g−1
1 (x)g−1

2 (x)(0, 1
2 ) = (0, g2(f (x, ξ))g−1

1 g−1
2 (x)). Then, for any i, j ,∥∥∥∥A(f (x, ξ, θ))

∂2f

∂x2 (x, ξ, θ)(A(x)−1ei, A(x)−1ej )

∥∥∥∥ ≤ p2g2(f (x, ξ, θ))g1(x)−1g2(x)−1.

Note that |g−1
1 (x)| ≤ 1, and the norms ‖ · ‖1 and ‖ · ‖X satisfy ‖ · ‖1 ≤ max{1/p1, 1/p2}‖ · ‖X.

With this, we obtain∥∥∥∥A(f (x, ξ, θ))
∂2f

∂x2 (x, ξ, θ)(A(x)−1 ⊕ A(x)−1)

∥∥∥∥
≤

(
max

{
1

p1
,

1

p2

})2

p2g2(f (x, ξ, θ))g2(x)−1

= max

{
p2

p2
1

,
1

p2

}
g2(f (x, ξ, θ))g2(x)−1

= max

{
p2

p2
1

,
1

p2

}
exp(2|θ | + ε|ξ1|).

Integrating yields LX2(x, θ) ≤ max{p2/p
2
1,1/p2} exp(2|θ |)∫

�
exp(2ε|ξ1|) dν(ξ), which is

bounded and continuous on X × �. �
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