
326 Network Science 2 (3): 326–340, 2014. c© Cambridge University Press 2014

doi:10.1017/nws.2014.24

The evolution and structure of social networks

WHITMAN RICHARDS

CSAIL- 32-364, Mass. Inst. of Technology, Cambridge, MA 02139, USA

(e-mail: wrichards@mit.edu)

NICHOLAS WORMALD

School of Mathematical Sciences, Monash University, Clayton VIC 3149, Australia

(e-mail: nicholas.wormald@monash.edu)

Abstract

As social networks evolve, new nodes are linked to the large-scale organization already in

place. We show that the combination of two simple algorithms, one the Barabasi-Albert

preferential attachment proposal and the other a neighbor attachment rule, successfully

generate networks exhibiting both the local and global characteristics of empirical data on

social network structures. Ideally, one might hope that some coarse features of this linking

process and the form of the local patterns might enable the prediction of large-scale properties.

We show that this is generally not the case. This might help explain the variety of local and

global patterns in empirical networks.
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1 Introduction

Over the past decade there has been an increasing interest in understanding and

modeling the structure and dynamics of social networks. When a new node (or agent)

is added to a network, how are the links to current nodes selected? How do these

choices affect the resulting large-scale structure of the network as it grows? Finally,

what is the relation between the local structure in the network and its global form?

Barabasi & Albert (1999) and others (see Dorogovtsev and Mendes (2003)) have

proposed that new attachments in a network favor nodes with higher degrees,

which presumably would be the most popular choices. We explore a revision of

this proposal, namely that after a new node makes its first connection, to a node u,

attachments favor neighbors of u. The key motivation is that when an individual

joins a social network, that individual tends to meet friends of his first acquaintance

rather than arbitrary existing members. We explore variations on this theme related

to preferential versus random (uniform) attachments. As we explain below, models

related to this were studied by Kumar et al. (2000); Dorogovtsev & Mendes (2003);

Blum et al. (2006); and Bebek et al. (2006).

In this article we examine variations of the following rule for iteratively attaching

new nodes to an existing network.

Rule N: Choose a node, say vj in the network G
∗
n−1 using a prescribed distribution

D1. Link the new node vn to vj . Then for a fixed k � 1 add k additional links from
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Fig. 1. Neighbor attachments of a new node (square) to a first node (red disc) increase the

number of triangles, and consequently the cluster coefficients (left.) Non-neighbor attachments

lead to smaller cluster coefficients. From Richards, 2011.

vn to k neighbors of vj chosen according to a prescribed distribution D2 on those

neighbors.

Invoking Rule N means that, after the first link, the remaining k nodes linked to

must all be neighbors of the first.

We obtain variations in Rule N by specifying the fixed integer k and the

distribution D1 and D2. We will examine in particular two versions of the distribution

D1: (1) U denotes a uniform distribution of all nodes; (2) P denotes that the node

is chosen preferentially, with probability proportional to its degree. Thus P gives

exactly the bias encountered in the Barabasi-Albert (BA) rule. We also use U (or P)

to denote the analogous version of D2, in which the k nodes are chosen repeatedly

using uniform (or preferential) probabilities. This gives four versions of Rule N for

a given k: UU, UP, PU, and PP, where the first letter applies to the first node chosen

and the second for the remaining k nodes. To make our main points, we will focus

on two of these, namely UU, PP, plus BA. Normally, we will not permit multiple

edges in the U versions, but permit them in the P versions. (Permitting two nodes

to have multiple links between them was not expressly permitted or forbidden by

Barabasi & Albert.)

Note that if the neighbor constraint is dropped in the PP version, we then have

the Barabasi-Albert (BA) rule. We believe that, like the BA rule, networks that

evolve with Rule N will also lead to a power law for degree distributions and are

hence scale-free. The intuition behind this is the fact that even for the UU version of

Rule N, a node’s likelihood of being chosen as a secondary node (not the first one

chosen) is typically proportional to its degree. Using a preferential rule for D1 or D2

should only assist the effect. Moreover, we see Rule N as a natural way to achieve

the scale-free behavior of social networks. It also has other significance, which we

elaborate below with examples of evolving networks.

As shown in Figure 1, the obvious effect of including the neighbor constraint is

that at least k triangles are created in G
∗
n−1, improving the clustering among nodes

(Dorogovsev & Mendes, 2003.) This is consistent with the high clustering coefficients

that characterize many of the social networks we have studied (Macindoe, 2010;

Richards & Macindoe, 2010.)
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Fig. 2. Locations in the LBD simplex of 20 social networks are shown in red. Note these

all lie above the B = D diagonal, and are quite distinct from the location of Erdos-Renyi

random graphs (blue locus with link probabilities indicated) as well as “small world graphs”

(number 23) and other random networks (green). See Table 1. (From Macindoe & Richards,

2010.)

2 Large scale characterization of networks

Pictures fail to provide vivid representations of large networks and hence are often

difficult to differentiate the detailed form of these networks (see Read & Wilson,

1998 for the explosion in number of different graphs as number of nodes increases.)

Hence researchers have chosen to characterize networks using parameterizations

such as degree distributions, leadership measures, cluster coefficients, characteristic

path lengths and a host of others (Newman 2003, 2006). One of the more popular

parameterizations is the distribution of degrees of nodes. However, it is generally

agreed that this characterization fails to capture the underlying essence of the

network, with quite different evolutionary processes leading to nearly identical degree

distributions, with different underlying local structures (Wormald & Farczadi, 2013).

A new “LBD” parameterization (to be described shortly) provides more useful

insight into network differences (Richards & Wormald, 2009). For example, all

social networks we have studied lie in a limited portion of the space created by

the LBD parameterization, as shown in Figure 2. These networks (red numbers) lie

outside of the region of Erdos-Renyi random graphs (blue locus with link percent

labels), and also lie above the B = D divider of the LBD simplex. The diagram also

includes some of the BA networks (e.g. numbers 25 & 26). Note that these lie at the

opposite side of the simplex from the ER networks, nearer L = 1.

Briefly, the LBD parameters reflect three important aspects of social networks:

leadership, the bonding of agents, and their diversity. The definitions are as follows:

L: For any graph Gn, let di be the degree of node vi. The leadership index is

then:

L =
∑n

i=1
(dmax − di)/((n − 2)(n − 1))
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This relation sums the difference in the degree of a node with respect to the

maximum degree in Gn, and normalizes this sum by the maximum possible (Freeman,

1978.)

B: The bonding index the number of triangles normalized by the maximum

achievable by a graph with the same number of (directed) paths of length 2:

B = 6 ∗ (#triangles)/(#paths length two)

This is one of two classical measures going by the name of clustering coefficient

(Newman 2003, (3.4) and (3.6)). Note that if Gn is the fully connected graph Kn,

then bonding B is maximal with value “1”, whereas for the “star” graph Sn or for

any tree Tn, the bonding index will be zero.

D: The diversity index counts the number of pairs of disjoint nonadjacent dipoles

K2 in Gn with n � 4. This count is divided by the number in the graph consisting of

two disjoint cliques of size n/2, thus normalizing the measure to the interval [0,1].

The square root boosts low ratios (Richards & Wormald, 2009):

D = Sqrt

[
(#disjoint dipoles)

/(
1

2
∗ n

2

(n

2
− 1

))2
]

For convenience, it is useful to project the raw LBD values onto the <111> plane

as follows to create “the simplex”.

l = L/(L + B + D)

b = B/(L + B + D)

d = D/(L + B + D).

Figure 2 illustrated this compression. At the top of the triangle B = 1, (green

node) which is the position of a dense graph topology corresponding to the complete

graph. All complete graphs, regardless of size will be mapped to this point. Likewise,

with L = 1 (B = 0, D = 0), the topology of the graph will be a “star”, with all star

graphs regardless of size mapped to the red node at lower right. A ring topology is

a simple example of D = 1 with B = L = 0. Trees with nodes having roughly equal

degrees will have high D values, with low L ∼ 0 and B = 0. Hence when diversity

becomes maximal, the graph will be located at the lower left. (See Macindoe &

Richards, 2010; Macindoe, 2010; Richards & Wormald, 2009 for details.)

3 Network evolution

The LBD simplex is a convenient representation to compare how social networks

might evolve. In particular, we use the LBD simplex to reveal substantial differences

in the BA algorithm as well as variations in Rule N that arise from choosing

preferential attachments by degree or simply uniform random choices. In Figure 3,

four different trajectories are plotted that use different kinds of preferential choices.

Obvious variables are (1) preferential attachments or not (2) whether neighbors are

selected or not. For these simulations we keep the number of attachments for new

nodes set at 4 for each iteration. A further parameter is the structure of the seed

graph used to initiate the iterations. We have found that this last variable is not a
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Fig. 3. Four different evolutions of social networks constructed using neighbor attachments.

The labels next to the points indicate the number of iterations. UU does not use preferential

degree choices, but PP does. The intermediate trajectory labeled PPUU is a 50–50 mixture

of both. UUx is an example of one iteration of UU which helps to show the range of UU

trajectories. Note that the lower bound of all these evolutions lies near the B = D divider

(dashed line). (Color online)

critical factor for networks evolving past 50 nodes, provided the seed graph has say

less than ten nodes.

All trajectories in Figure 3 invoke one of two variations in Rule N, namely a first

node vj is chosen in G∗, and then additional attachments for vn are to k neighbors of

vj . For trajectory UU, there are no other preferential constraints. In particular, the

first node vj is chosen using a uniform distribution of all nodes in G∗
n−1. Likewise,

the k additional attachments are chosen uniformly over the neighbors of vj , with

k = 3. The resultant locus lies near the border of the Erdős-Rényi random graphs

with the UU trajectory headed toward B = 1 (i.e. high cluster counts).

In contrast, trajectory PP imposes preferential choices favoring the higher node

degrees, both for the choice of the first node vj as well as for the choices among the

neighbors of vj . Again, k is set at 3. This trajectory lies on the opposite side of the

Simplex from the UU locus and heads toward L = 1. Hence mixtures of UU and

PP can span the region of the simplex occupied by social networks. The third locus

in Figure 3 labeled UUPP illustrates a 50–50 mixture where preferential by degree

and uniform choices are made with equal probability for each link. A single run of
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UU, labeled UUx, demonstrates the degree of variation in a typical run. Otherwise

the trajectories are averages of 10 runs.

Note that all the evolutions lie above the B = D divider in the simplex, in

accordance with the empirical results in Figure 2. We have yet to prove this result

formally.

As mentioned, the choice of the (small) seed graph has no impact on the

trajectories for networks larger than about 50 nodes. As the network grows from the

seed, the evolutionary path moves first to the region near L = B = D (l = b = d),

and then departs as illustrated in Figure 3. This is shown in detail in another paper

for “start-up” networks that are initiated at L = 1 (Richards & Wormald, 2009).

To further span the region in the Simplex above B = D and between UU and PP,

we can add non-neighbors to slow down or to truncate the evolution.

Simulations show that even a portion of non-neighbors of 40% of the additional

k node choices, causes the trajectory to fall near or below the B = D divider until the

network grows to 100 or more nodes. Our observations show that these corrupted

networks tend to hover near L = B = D (l = b = d).

In Figure 4 we show the effect of eliminating the neighbor constraint from Rule N.

For reference, we include the BA trajectory, for 200 iterations as well as PP (the latter

with the neighbor constraint in place.) If the neighbor constraint is not invoked,

then PP moves to PP4 and UU moves to UU4. Note that these latter two results lie

well below the B = D divider, largely because nodes that are non-neighbors to the

first choice nodes are now included in the generation process.

4 Relation between algorithm BA and neighbor rule N

The astute reader has already realized that algorithms BA and Rule N are closely

related. After making some slight adjustments to the definitions, we can explicitly

make them both extreme cases of a more general algorithm, as follows.

Let G∗
n−1 be the evolving network after n – 1 iterations. Let vn be the new node to

be linked at the nth iteration to a node vj in G∗
n−1, where vj is chosen preferentially

based on its degree. If the algorithm chooses k uniformly random neighbors of vj in

G∗
n−1 then it is PU, whilst if it chooses preferentially without the neighbor restriction

then it is BA. Now let us expressly permit multiple joins in both cases. That is,

for each choice of a node, the previously chosen nodes are not excluded. Moreover,

let us insist that during an iteration, probabilities are not recomputed; that is, the

degrees of the vertices are used before any edges are added during the one iteration.

To obtain a hybrid version, we introduce a parameter r � k, and force the algorithm

to choose r neighbors uniformly and a further k – r nodes, without the neighbor

restriction, preferentially. Doing this in every iteration, we get a mixture of (versions

of) BA and PU that we call the r-hybrid model. We have the following result on

the distribution of degree of any particular node.

Theorem: Consider the r-hybrid model for some fixed r, 0 � r � k, and a given seed

graph. Letting v be any particular node, the probabilistic distribution of the degree

of v after n iterations does not depend at all on r.

The theorem’s proof is only a minor variation of a proof in Farczadi and Wormald

(2013), where it was shown that the distribution of the degree of a node v is the

https://doi.org/10.1017/nws.2014.24 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2014.24


332 W. Richards and N. Wormald

Fig. 4. Effect of including non-neighbors in evolutions. Trajectory PP4x avoids the neighbor

constraint and permits non-neighbor attachments. For reference, BA and PP are included, as

well as one trial for PU, the latter showing that PU trajectories lie near UU as shown on the

LBD Simplex plot in Figure 3 .The location of the BD divider is indicated by the dashed lie

and points labeled “bd”. (Color online)

same in both BA and PU (though in that case not permitting multiple edges) in a

certain sense that involves scaling the number of iterations. So we just sketch it here.

Given a number, n, of iterations, let p be the probability that the first chosen node

in the next iteration is vj . Then p is precisely the degree of vj divided by the total

degree of all nodes, due to the preferential choice rule that applies in both versions

for the first node. On the other hand, for any of the subsequent links, there are two

possibilities. If it is a link chosen preferentially to any node, then the probability this

link comes to vj is again p. If it is a link chosen to a neighbor of the first-chosen

node, then a short calculation again shows that the probability that this link comes

to vj is again p. Hence, regardless of r, the number of links joining to vj has a

distribution that depends only on p. By induction on n, the value of p is exactly the

same for all r, and the theorem follows.

The above theorem only relates to the degree of any one particular node, showing

that its distribution (and hence expected degree and variance of its degree) is exactly

the same regardless of r. This is true for all n. Another viewpoint is achieved by

considering the joint distribution of all nodes. This can be, and no doubt is, different
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in the models having different values of r. For instance, in the PU model, consider

two adjacent vertices u and v of the seed graph. If u has high degree after n steps,

we would expect it to increase the chances that v does too, since each time u is the

initial vertex chosen in any step, there is a high chance that v is chosen in the second

lot of k vertices. In the BA model, this effect is missing.

The import of the above theorem is to show that the BA-PU mixtures generate

large-scale networks that are correlated, although different. However, this says almost

nothing about their local structures, which will be considered in the next section.

Indeed, an interesting result is that the local structures for PU, UU and PP are very

similar, but quite different from the structure of networks evolved using the BA

algorithm. Hence the global LBD index appears heavily dependent on the choice

of distribution P or U, and less so on the local structure of its components as

influenced by enforcing or ignoring the neighbor constraint.

Although the theorem says nothing about PP and UU, it leads us to the following

slightly imprecise conjecture for social networks using mixtures of the BA and N

algorithms:

Conjecture: All networks of order (size) n generated using mixtures of the BA and

N algorithms will have similar degree distribution.

Admittedly, the conjecture describes an imprecise trend rather than an exact

statement that can be checked.

Extending to empirical networks, we have the following:

Prediction: All social networks of order (size) n will have similar degree distribution.

The degree distribution is of course easy to compute for a given empirical network;

the difficulty would be to find different empirical networks of the same order. See

Table 1 for a list of small social networks.

5 Small scale parameterization

To address the relation between the local (small scale) structure of the networks and

its global (LBD simplex) characterization we define an index for local structures

that captures most of those found by Stoica & Prieur, 2009; Milo, 2002; Palla et al,

2005. Our choice for local structure is the subgraph induced by the nodes adjacent

to a given node. For instance, this could be a complete graph Kn or the degenerate

star Sj . Figure 5 illustrates a range of such graphs for n = 5 and the R∗ index

used to characterize this local (small scale) measure. The measure makes explicit

two extreme forms, namely the complete graph (R∗ = 1) or the star (R∗ = 0).

Definition: the small graph ratio R∗ of a given node v, called the “hub”, is the

number of links joining pairs of nodes that are one link step from v divided by the

maximum possible such links, which is d(d − 1)/2 if v has degree d.

Note that R∗ is the same as the “local value” of the clustering coefficient defined

at eqn. (3.5) of Newman (2003).

In the previous section we considered degree distribution in BA and PU. To

compare small-scale structures, we focus on PP and UU since PU is presumably

intermediate between these. Figure 6 compares the small-scale structure for PP and
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Table 1. From Richards, W. & O. Macindoe (2010) Characteristics of small social networks;

MIT Computer science and artificial intelligence Lab Tech report MIT-CSAIL-TR-2010-033.

(Downloadable from that paper are the references to networks given in the last column.)

Num Graph Vertices/Nodes v e Edges Ref.

1 Seed+ Start-up 6 7 Collaboration 34

2 SmallGroup Start-up (avg) 25 42 Collaboration 34

3 LosAlamos Scientists 30 78 Collaboration 31

4 Karate Club Members 34 78 Friendship 42

5 Enron Employee email 37 50 Email exchange 9

6 LesMiserable Characters∗ 40 105 SceneCoappearance 18

7 HIV Core Group 40 56 Friendship 32

8 Bright Words 54 175 Free associations 34

9 Dolphins Dolphins 62 159 Time in Proximity 22

10 Enron Employee email 79 147 Email exchange 9

11 PolVotes Senate 2009 99 356 Same Votes 19

12 PolBooks Books 105 441 Purchased together 20

13 Adj-Noun Adjectives & Nouns 112 425 Co-occurence in 27

DavidCopperfield

14 SantaFe Scientists 116 174 Collaboration 13

15 Enron Enron Employees 143 623 Email exchange 9

16 JJATT Terrorists 263 998 Known associate 3

17 C.Elegans Neurons 297 2148 Neural connection 40

18 Linux2001 Kernel mailing 302 749 Email exchange 14

list members

19 Linux2008 ditto 447 2122 ditto 14

20 PolBlogs Political Blogs 1490 16715 Blog Hyperlinks 1

“Non-Cognitive”

21 BinaryTree Binary Tree 127 126

22 InfxDisease HIV spread 250 266 transmission 32

23 Football College football 115 613 Match played 13

tournament

24 SmallWorld Ring seed 1000 10∧3

25 Barabasi 2 Multi-scale (2 Attach) 500 982 PrefAttach 5

26 Barabasi 5 Multi-scale (5 Attach) 500 2422 PrefAttach 5

27 Erdős-Rényi Random graph (eP=0.1) 100 524

28 Erdős-Rényi Random graph (eP=0.4) 100 2083

29 BuddedTree Tree + Triangle buds 109 110

30 RandomTree 100 99

UU. To eliminate overlap between data sets, these curves, and others to follow, have

been scaled by number of iterations, i.e. approximate network size (which is indicated

by the label on curves). Although different in detail, there is still a striking similarity

in their R∗ distributions. In other words, although their large-scale LBD values

are at quite different locations in the simplex (See Figure 2), their local structure is

comparable. Both invoke the neighbor constraint. The principal difference is that for

UU the choice of nodes is uniform over the neighbors, whereas for PP the choice is

preferential, favoring higher degree nodes (hence the larger L value). The similarity

in the two R∗ distributions suggests that for less than 200 iterations the difference

is small to first order.

https://doi.org/10.1017/nws.2014.24 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2014.24


Evolution and structure of social networks 335

Fig. 5. Local structures can be characterized by the number of links between nodes in the

rim (i.e. links to the central hub are excluded) to give a ratio R∗ that is the fraction of the

maximum of such links. (See text.)

Fig. 6. Comparison of R∗ distributions for PP and UU. Note the similarity in shape, even

though the trajectories are quite distant in the LBD simplex. See text for a note on how each

curve is scaled.
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Fig. 7. Lower panel: R∗ distribution for two social networks: Linux (16), JJATT (18). Upper

panel: R∗ distribution for algorithm BA (200 iterations) and also a hybrid of rule N and the

BA algorithm (nBA).

In contrast, if we use the BA algorithm, the R∗ pattern is quite different, as shown

in the upper panel of Figure 7.

Furthermore, if the neighbor constraint is ignored, and non-neighbors to the first

choice are chosen, then in both the UU and PP versions, the small scale distributions

shift dramatically toward low R∗ values. (Recall that when the neighbor constraint

is dropped in the PP version, it becomes the BA rule.) In other words, whereas

in Figure 6 there is significant dense clustering with large R∗ values, without the

neighbor constraint the clusters are sparse moving more toward the left of Figure 5

(i.e. “star-like” patterns). Furthermore the LBD values shift below the B = D divider.

Hence with non-neighbor choices, not only does LBD change dramatically, but so

does R∗. (There is also a small average number of triangles per node, namely about

1.5 in contrast to about 6 triangles per node with Rule N in force.) Once again, the

effect of preferential attachments or uniform for the distributions D1 and D2 makes

little difference.

To summarize, the use of Rule N or not is a huge categorical constraint that

dramatically affects small scale structure, just as preferential or uniform node choice

affects global LBD values.
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Fig. 8. Lower panel: R∗ distribution for two Enron email networks: Circles, 79 employees

(10), Squares, 143 employees (15). Upper panel: R∗ distribution for two other networks:

Senate (11), Polbooks (12). Points scale by 100/network size.

The lower panel of Figure 7 and the upper panel of Figure 8 show some R∗
distributions for empirical data. Curve 18 is Linux, with high L values and curve 16

is JJATT (a terrorist network), whereas curve 11 is senate voting and 12 is political

book selections. Curves 10 and 15 are two samples from an Enron network. These

distributions suggest a mix of the simplified, ideal conditions, i.e. Rule N, preferential

vs not, etc. To recreate these distributions we need a mixture of rules as the network

evolves. We can take a step in this direction by mixtures of rules BA and N. Kumar

et al. (2000) proposed a directed graph model related to this in the case of UU. It

uses U to determine the initial node vj to link to, and after that, for each link it

uses a random outlink of vj with probability p, and otherwise it links to any node

chosen using U. All new links are directed outwards from the new node vn.

For example, a simple mixture of rules BA and N (option UU) is shown in the

upper panel of Figure 7 (curve labeled nBA.) Here the BA algorithm is used for

three of the four attachments, reserving one to implement with the neighbor rule.

The bottom panel of Figure 7 shows that a trade-off between BA and rule N are

consistent with empirical data. Note that our “mixture” of BA and rule N labeled
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nBA in the top panel of Figure 7 is similar to empirical network 11. Other networks

are shown similarly in Figure 8.

Our proposal, then, is that most empirical networks use a combination of rule BA

and rule N when evolving (we have no insight as to which option is chosen, UU or

PU.) This makes sense in networks evolving by a social mechanism. An obvious first

choice for an attachment is a friend in G∗ of the new node, and its neighbors. But

another realistic possibility is to choose a node from another clique in G∗ that may

have a second good friend, or simply because members of that clique are engaged

in activities of interest to the agent associated with the new node (Granovetter,

1973). A mixture of BA and neighbor attachments would then be very common. If

geometry is involved, similar effects might occur, based on proximity of nodes to

the one first chosen.

6 Discussion

Our main result is that a simple mixture of the Barabasi-Albert preferential

attachment algorithm (BA) together with Rule N (option UU) that enforces

attachments to neighbors of a first choice (UU) can generate networks with LBD

values that lie in the region of the simplex that is also the location of twenty social

networks we have studied (Figure 2.)

A secondary, disappointing result is that there is no strong correlation between

local structures and the global structure captured by its LBD value. Rather, a

dominant factor in the resultant global structure, for those algorithms we study

here, is whether or not preference of high degree vertices is included, but this has a

much lesser effect on local structure. This failure to find strong correlations between

a small-scale measure and the LBD location was also noted by Macindoe (2010),

using a local LBD index.

To model network evolution, typically we will need a mix of strategies at various

stages in the evolution of the network. One such stage is the completion of “start

up” at about 25 nodes, where L∼B∼D (see Richards & Wormald (2009), Richards

& Macindoe (2010)). Following this initial stage, different factors come into play.

Another stage begins near 100 node or larger networks where the size of the

possible node choices grows (whether neighbors or not). Here one must expect a

high degree of arbitrariness in choice. These stages create enormous flexibility in the

evolutionary process (e.g. Figure 8 lower panel shows that the local structure can

change as the network evolves) and are one of the features that limits our ability to

predict trajectories, but not necessarily our ability to duplicate them (Dunbar, 1992).

A strong positive benefit of BA-N mixtures is that both algorithms are highly

motivated. A new member will favor a friend already in the network, as well as

friends of his first choice. However, it also seems quite likely that a new member might

also explore other cliques, or seek new attachments in areas that look intriguing.

These choices are reflected in the combination of the two algorithms.
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