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Abstract

The study of many population growth models is complicated by only partial observation
of the underlying stochastic process driving the model. For example, in an epidemic out-
break we might know when individuals show symptoms to a disease and are removed,
but not when individuals are infected. Motivated by the above example and the long-
established approximation of epidemic processes by branching processes, we explore
the number of individuals alive in a time-inhomogeneous branching process with a
general phase-type lifetime distribution given only (partial) information on the times
of deaths of individuals. Deaths are detected independently with a detection probabil-
ity that can vary with time and type. We show that the number of individuals alive
immediately after the kth detected death can be expressed as the mixture of random
variables each of which consists of the sum of k independent zero-modified geometric
distributions. Furthermore, in the case of an Erlang lifetime distribution, we derive an
easy-to-compute mixture of negative binomial distributions as an approximation of the
number of individuals alive immediately after the kth detected death.
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1. Introduction

For many population growth models, both mathematical modelling and statistical infer-
ence are complicated by only partial observation of the underlying stochastic process driving
the model. For example, in epidemic models we might have information on when individuals
show symptoms of the disease and hence are removed from the active population, but rarely
have information on when an individual is infected. Therefore, a question of interest at time
t, say, is, given information on the times at which individuals exhibited symptoms (and were
removed) up to time t, how many infectives are there in the population at time t? This is the
question considered and answered for the Markovian susceptible–infectious–removed (SIR)
epidemic in Ball and Neal [2], where the distribution of the number of infectives was derived
given only information on removal times assuming an exponential infectious period. In [2]
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2 F. BALL AND P. NEAL

a time-inhomogeneous birth–death process was considered as an approximation of the epi-
demic process, with the number of individuals alive in the birth–death process approximating
the number of infectives in the epidemic process; cf. Whittle [11]. In particular, it was shown
that the distribution of the number of individuals alive in a time-inhomogeneous birth–death
process at time t, given the times of deaths of individuals up to and including time t, can be
expressed as a mixture of negative binomial distributions.

The time-inhomogeneous birth–death process assumes that the rate μt at which an individ-
ual dies does not depend on how long the individual has been alive. In the case where μt = γ

(t ∈R), this corresponds to individuals having exponentially distributed lifetimes with mean
duration 1/γ . However, exponentially distributed lifetimes (infectious periods) are unrealistic
in most biological settings. Therefore phase-type distributions, and in particular, the Erlang
distribution, are commonly chosen to model infectious period distributions in SIR epidemic
models; see, for example, Walker et al. [10], Black and Ross [3], and House et al. [5].

In this paper we consider the situation where individuals’ lifetimes are independent and
identically distributed (i.i.d.) according to an arbitrary, but specified, phase-type distribution
L; see, for example, Chapter III of Asmussen [1]. Phase-type distributions are presented in
Section 2, and L can be represented as the distribution of the time to absorption in a continuous-
time Markov chain with J(<∞) transient states and one absorbing state 0. Thus the case
J = 1 corresponds to an exponential distribution. Special cases of the phase-type distribu-
tion include the hyper-exponential distribution (mixture of J(> 1) exponential distributions)
and the Erlang distribution (sum of J i.i.d. exponential distributions). Moreover, the class of
phase-type distributions is dense, so any lifetime distribution on [0,∞) can be approximated
arbitrarily closely by a phase-type distribution and there is essentially no loss of generality in
focussing on phase-type distributions.

We study time-inhomogeneous branching processes where all individuals alive at time t
have birth rate βt. We place no restriction on the form βt can take, and therefore we can use
the branching process model to approximate epidemic models with βt denoting the effective
infection rate at time t. For example, in the modelling of an emerging disease such as Covid-19
in a large population (e.g. a country), the infection rate βt varies over time with the implemen-
tation and relaxation of control measures. We assume that individuals are potentially detected
(observed) at death (removal in an epidemic context). We allow the detection probability to
depend on both the time of death and the individual’s type at death, where, during their life-
time, an individual’s type is defined by the state j (j = 1, 2, . . . , J) of the lifetime Markov chain
to which they belong. In an epidemic context we allow for asymptomatic individuals and more
general under-reporting of infectious cases, which can fluctuate through time to account for
differing levels of surveillance and disease awareness.

Given the times of observed deaths (removals) in the population, we show in Theorem 1 that
the number of individuals alive in the population immediately after the kth detected death, X∗

k
say (k = 1, 2, . . .), can be expressed as the mixture of (k − 1)! random variables, each of which
consists of the sum of k independent zero-modified geometric distributions; see Definition 1.
Computing the mixture of (k − 1)! random variables to obtain X∗

k using Theorem 1 is only
possible for small k. However, under certain conditions it is shown in Corollary 1 that X∗

k can
be expressed as a mixture of k negative binomial distributions, although computing the mixing
weights is non-trivial. In Section 3.5.2, we present an approximation for X∗

k using a mixture
of k negative binomial distributions with a simple-to-compute recursive relationship for X∗

k in
terms of X∗

k−1 and the proportion of individuals of each type at the (k − 1)th detected death in
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The number of individuals alive in a branching process given only times of deaths 3

the spirit of [2, Theorem 3.2]. This approximation is applicable for Erlang lifetime distributions
and is successfully applied in a simulation study in Section 7.

As noted above, the current work extends the results of [2]. Previous work in a similar
vein but for a slightly different model can be found in Trapman and Bootsma [9], Lambert
and Trapman [6], Lefèvre and Picard [7], and Lefèvre et al. [8]. In these papers it is assumed
that each individual, whilst alive, can be detected at a constant rate, δ say. The papers [6, 9]
focus on the distribution of individuals alive at the first detection time, with [6] allowing for
a general lifetime distribution. The papers [7, 8] restrict attention to Markovian models but
allow for epidemic dynamics and multiple births, and they study the size of the population at
the jth detection (j ≥ 1). Probability generating functions are also a key tool in [7, 8] and in
themselves provide no insight as to the distribution of the size of the population (number of
infectives) at a given detection time.

The remainder of the paper is structured as follows. In Section 2 we define the time-
inhomogeneous phase-type branching process model. In Section 3, we present the main results
(Theorem 1 and the approximation of Section 3.5.2), along with an overview of the exploration
process (Section 3.2) between two time points t and t + τ , which plays an important role in
identifying how the population evolves between detected deaths. We also introduce key nota-
tion (Section 3.3). In Section 4 we present a more detailed analysis of the exploration process,
including the computation of the key quantities required for Theorem 1. In Section 5 we prove
the main result, Theorem 1. In Section 6 we use results from the proof of Theorem 1 to establish
the approximation given in Section 3.5.2. Finally, in Section 7 we illustrate the approximation
given in Section 3.5.2 through a numerical example. Further examples are provided in the
supplementary material.

2. Phase-type branching process model

In this section we define the phase-type branching process model considered in this paper.
We consider a time-inhomogeneous branching process where the birth rate, βt, depends on
t but all individuals have i.i.d. lifetimes distributed according to a phase-type distribution
L. Examples of L include the exponential, hyper-exponential (mixture of exponentials), and
Erlang distributions. We begin by considering the relationship between L and an associated
Markov process.

Consider a Markov process with J transient states, labelled 1, 2, . . . , J, and an absorbing
state, labelled state 0. For j = 1, 2, . . . , J, let χj be the probability that the Markov process
starts at time 0 in state j with

∑J
i=1 χi = 1. The Markov process moves between the states

1, 2, . . . , J according to a sub-stochastic transition-rate matrix �= (λij). That is, for all j =
1, 2, . . . , J, we have

∑
i �=j λji ≤ −λjj, with strict inequality for at least one j. For t ≥ 0, let

P(t) = exp(t�), (2.1)

so Pij(t) is the probability that if the Markov process starts in state i at time 0 then it is in state
j at time t. Since the states 1, 2, . . . , J are transient, we have that P(t) → 0J×J (J × J matrix
of zeros) as t → ∞. The probability the Markov process has entered state 0 (absorption) by
time t given that it starts in state i is Pi0(t) = 1 −∑J

j=1 Pij(t). The distribution of the time to
absorption, L, is a phase-type distribution with cumulative distribution function

P(L ≤ t) =
J∑

i=1

χiPi0(t) = 1 −
J∑

i=1

χi

J∑
j=1

Pij(t) (t ≥ 0) (2.2)

and P(L ≤ t) = 0 (t< 0).
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4 F. BALL AND P. NEAL

Let us turn to the branching process. Suppose that there is one initial individual in the
population. We define time 0 to be the time at which the first detected death occurs in the
population, so the initial individual enters the population sometime before time 0. Note that it
is possible for the branching process to die out without any deaths being detected. However,
we are interested in situations where at least one death is detected. We assume that there are J
types of individual in the population, corresponding to the J states of the Markov process with
transition matrix � to which L is associated. Therefore, for t, τ > 0, an individual of type j at
time t has probability Pjl(τ ) of being an individual of type l at time t + τ .

For all t ∈R, let βt denote the birth rate at time t. We assume that there exists α1 > 0
such that βt = α1 (t ≤ 0). That is, there is a constant, positive birth rate up to and including
the time of the first detected death. At time t, we assume that all individuals alive, irrespec-
tive of their type, give birth to new individuals at rate βt. Similarly, for j = 1, 2, . . . , J and
t ∈R, let dt,j denote the probability that an individual of type j who dies at time t is detected
with dt = (dt,1, dt,2, . . . , dt,J). Therefore we allow the probability of a death being detected
to depend on type, although it should be noted that, for l = 1, 2, . . . , J, dt,l is only required
if γl > 0, where γl = −∑J

i=1 λli is the death rate of a type-l individual. We require at least
one j = 1, 2, . . . , J, such that dt,jγj > 0 to ensure that some deaths are detected. The proofs
presented in this paper do not extend to the case where the birth rate is type-dependent.
For j = 1, 2, . . . , J, we assume that there exists 0 ≤ εj ≤ 1 such that dt,j = εj (t ≤ 0). That
is, there is a constant probability of detecting a death of a type-j individual up to, and
including, the first detected death. The assumptions of time-homogeneity in the branching
process and its observation process prior to the first detected death are in agreement with
[2, Theorems 3.1 and 3.2] and ensure that the number of individuals alive immediately
following the first detected death follows a geometric distribution.

Given the number of individuals of each type, the above time-inhomogeneous phase-type
branching process is a Markov process. For t ∈R and j = 1, 2, . . . , J, let Yj(t) denote the num-
ber of individuals of type j in the population at time t, and let Y(t) = (Y1(t), Y2(t), . . . , YJ(t))
and Y∗(t) =∑J

j=1 Yj(t). Let S0 denote the (unknown) time at which the initial individual
enters the population, with Y(S0) denoting the initial state of the population at time S0. Then
P(Y(S0) = ej) = χj (j = 1, 2, . . . , J), where ej is a vector of length J in which the jth element is
equal to 1 and all other elements are 0. For t> S0, the phase-type branching process satisfies

P(Y(t + h) = y + v|Y(t) = y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[∑J
l=1 yl

]
βtχjh + o(h), v = ej,

yjγjh + o(h), v = −ej,

ylλljh + o(h), v = ej − el (l �= j),

1 −∑J
l=1 yl(βt − λll)h + o(h), v = 0,

(2.3)

where all other events occur with probability o(h). The events in (2.3) correspond to the birth
of a type-j individual, the death of a type-j individual, the transition of an individual from type
l to type j, and nothing happening.

Suppose that there exists α > 0 such that βt = α for all t ∈R. Then we have a time-
homogeneous branching process where individuals have i.i.d. lifetimes distributed according
to L and reproduce during their lifetime at the points of a homogeneous Poisson point process
with rate α. Moreover, if there exists ε = (ε1, ε2, . . . , εJ) such that dt = ε, for all t ∈R, then
the observation process of the branching process is also time-homogeneous.

Similar to [2], the motivation for the phase-type branching process model is as an approx-
imation for SIR epidemic models. Consider a SIR epidemic in a population of size N with

https://doi.org/10.1017/apr.2024.65 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.65
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one initial infective, with infection rate at time t given by αt (that is, we allow for a time-
inhomogeneous infection rate), and with individuals having infectious periods that are i.i.d.
according to L. At time t, if we can estimate the proportion of the population that is suscep-
tible, st, the dynamics of the SIR epidemic can be approximated by a phase-type branching
process with birth rate βt = αtst, the rate at which infectious contacts are made with suscepti-
ble individuals. The assumption that, prior to the first detected death, the birth (infection) rate
and detection probabilities are constant is not unreasonable, at least from an epidemic perspec-
tive. For example, until a disease is detected it is unlikely that any control measures will be put
in place. In the supplementary material we discuss the scenario where the time at which the
initial individual is born (infected) is known and results similar to those obtained in Theorem
1 can be derived without restrictions on βt or dt (t< 0).

3. Main results

3.1. Introduction

In this section, we present the main results of the paper. In Theorem 1, presented in
Section 3.4, we derive the distribution of the number of individuals of each type immediately
following the kth detected death for k = 1, 2, . . .. The distribution obtained in Theorem 1 is a
mixture of (k − 1)! components, so is impractical for calculating the distribution of the number
of individuals of each type for moderate k. However, it is informative about the distribution of
the total number of individuals alive immediately following the kth detected death, which can
be expressed as sums of zero-modified geometric random variables; see Definition 1 below.

Definition 1. Suppose that X is a non-negative discrete random variable with probability mass
function

P(X = 0) = a,

P(X = x) = (1 − a)(1 − b)x−1b (x = 1, 2, . . . ),

for some 0 ≤ a, b ≤ 1. Then we say that X has a zero-modified geometric distribution.

In Section 3.2 we present an overview of the exploration process; technical details of, and
results for, the exploration process are presented in Section 4. This is followed in Section 3.3
by the introduction of the key notation required to state Theorem 1. The notation is defined
in a similar manner to that of [2, Section 3], to allow for comparisons where appropriate. In
Section 3.5 we provide an approximation for the distribution of the number of individuals of
each type immediately following the kth detected death which consists of only k components.

3.2. Overview of exploration process

A key component in understanding the dynamics of a branching process through partial
observation of its death process is to study the behaviour of the branching process between
two given time points t and t + τ (t ∈R, τ > 0). In particular, we consider the cases where
(i) there are no detected deaths in the interval (t, t + τ ], and (ii) the first detected death after
time t is at time t + τ . In this section we focus on (i) and use an approach similar to that of
[6, Section 2] to explore the branching process between two time points from a single progen-
itor. Note that if we have multiple individuals alive at time t then the branching processes
evolving from each individual are independent. In Section 4 we present a more technical
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6 F. BALL AND P. NEAL

description of the exploration process, along with the methodology for calculating the key
quantities required for Theorem 1.

Consider a single progenitor of type j, say, at time t. For τ > 0, we start with the forward
exploration process from time t to time t + τ . Specifically, we are interested in the probability
of the joint event that there is at least one individual alive at time t + τ and there are no detected
deaths in the interval (t, t + τ ], and also in the probability of the joint event that there are no
individuals alive at time t + τ and no detected deaths in the interval (t, t + τ ]. The forward
exploration process is as follows. If the progenitor is still alive at time t + τ we identify the
type of the progenitor at time t + τ . If the progenitor dies, undetected, at time t + u say, we
then explore back in time through the progenitor’s life from time t + u to reveal offspring.
For each offspring revealed, we check whether they or one of their descendants is alive at
time t + τ . Otherwise we continue to explore the progenitor’s life history to reveal any other
offspring born earlier in time and study their descendants. The exploration ends in one of three
ways; (i) an individual alive at time t + τ , whose type is identified, (ii) the exploration process
being exhausted with no individuals alive at time t + τ , or (iii) a death being detected. For
l = 1, 2, . . . , J, let pjl(t, 0, τ ) be the probability that the forward exploration process results in
an individual of type l alive at time t + τ with no detected deaths along the way, given that we
start from a progenitor of type j. Similarly, let qj(t, 0, τ ) be the probability of the branching
process going extinct, with no detected deaths, by time t + τ given a progenitor of type j. For
0< u< τ , we give definitions of pjl(t, u, τ ) and qj(t, u, τ ) in (4.1) and (4.2), respectively, in
Section 4.2.

In Figure 1A, we present a successful realisation of the forward exploration process which
results in an individual alive at time t + τ with no detected deaths. In the event of the for-
ward exploration process being successful, there is an unexplored path from time t to t + τ ,
consisting of a single individual alive at each timepoint, along which births can occur. The
set of individuals comprising the path may consist of only the progenitor or of the progenitor
and some of their descendants. The path presented in Figure 1A consists of the progenitor’s
lifetime from t to t + v and the lifetime of a child of the progenitor from t + v to t + τ . Given
the existence of an unexplored path from time t to t + τ , we initiate the backward exploration
process, which consists of successive i.i.d. cycles until we encounter a failure. The backward
exploration process takes the unexplored path from time t to t + τ and starting at time t + τ

explores back in time to reveal the births of individuals. Each time we reveal an individual we
check whether or not they, or one of their descendants, is alive at time t + τ , and whether there
are any detected deaths by time t + τ of the revealed individual or their offspring. If we reveal
an individual alive at time t + τ , without encountering any detected deaths, then the current
cycle of the exploration process is over and has been successful. An example of the outcome
of a successful cycle in the backward exploration process is given in Figure 1B. A cycle fails
if either it reveals a death in the interval (t, t + τ ] or the exploration process hits time t without
revealing any additional individuals alive at time t + τ . For l = 1, 2, . . . , J, let ψl(t; τ ) be the
probability that a cycle is successful and results in an individual of type l alive at time t + τ .
Similarly, let ζ (t; τ ) be the probability that a cycle results in failure, with the exploration pro-
cess hitting time t without revealing any additional individuals alive at time t + τ . A formal
construction of ψl(t; τ ) and ζ (t; τ ) is given in Section 4.2; see (4.5) and (4.6), respectively.
An example of a realisation of the full exploration process with no detected deaths is given in
Figure 1C.
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(A) (B)

(C)

FIGURE 1. Exploration process from time t to t + τ in three stages, A–C, with one progenitor. Horizontal
dotted lines denote start (t) and end (t + τ ) points. Vertical lines denote lifetimes of individuals, with
black lines denoting explored lifetimes (births revealed) and grey lines denoting unexplored lifetimes.
Black squares denote births, with horizontal dashed lines identifying parent–child. Open circles denote
undetected deaths. Note that individuals are revealed in the exploration process from left to right.

3.3. Key notation

The description of the exploration process points towards the role of zero-modified geomet-
ric random variables in the branching process. Conditional on no detected deaths, the forward
exploration process reveals whether there is no individual or at least one individual alive at
time t + τ . If there is at least one individual alive we consider the backward process which
consists of i.i.d. cycles with binary outcomes (success means an additional individual added to
those alive in the branching process at time t + τ ; failure means there are no more individuals
to add to the branching process at time t + τ ). Therefore we start our summary of key notation
with a simple yet useful lemma concerning zero-modified geometric random variables.

Lemma 1. For 0< q< 1 and A ≥ −(1 − q), a random variable X with probability generating
function

E
[
sX]= 1 + As

1 + A
× q

1 − (1 − q)s

(
0 ≤ s<

1

1 − q

)

is a zero-modified geometric random variable with probability mass function given by
P(X = 0) = q/(1 + A) and P(X = k) = [1 − q/(1 + A)](1 − q)k−1q (k = 1, 2, . . . ).

Proof. The result follows trivially from properties of probability generating functions. �
In Lemma 1, for A = 0, A< 0, and A> 0, X corresponds to a Geom(q) random variable, a

mixture of a Geom(q) random variable and a point mass at 0, and a sum of a Geom(q) and an
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8 F. BALL AND P. NEAL

independent Bernoulli random variable, Bin(1, A/(1 + A)), respectively, where G ∼ Geom(q)
has probability mass function P(G = k) = (1 − q)kq (k = 0, 1, . . .).

For k = 2, 3, . . ., let Tk denote the inter-arrival time from the (k − 1)th to the kth detected
death, with the convention that Tk = ∞ if fewer than k detected deaths occur. Also, let Sk =∑k

j=2 Tj denote the time of the kth detected death, with S1 = 0. Let T2:k = (T2, T3, . . . , Tk).

Let tk and sk =∑k
j=2 tj (k = 2, 3, . . . ) denote the observed inter-arrival time from the (k − 1)th

to the kth detected death and the time of the kth detected death, respectively. For k = 1, 2, . . .
and j = 1, 2, . . . , J, let Xj

k denote the number of individuals alive of type j immediately after

the kth detected death, with X∗
k =∑J

j=1 Xj
k denoting the total number of individuals alive. Let

Xk = (X1
k , X2

k , . . . , XJ
k ). We observe that, for k = 2, 3, . . .,

{Xk|T2:k = t2:k} = {Y(sk)|T2:k = t2:k},
with X1 = Y(0).

As noted in Section 2, we assume that prior to the first detected death the branching pro-
cess (and its observation process) is time-homogeneous with birth rate α1 and death detection
probabilities ε. For t ≥ 0, let ψ̄j(t) =ψj(−t; t), where ψj(·;·), defined in Section 3.2, is the prob-
ability that the backward exploration process is successful and reveals an individual of type j.
Let ψ̄(t) =∑J

j=1 ψ̄j(t) and set π0 = 1 − ψ̄(∞). For j = 1, 2, . . . , J, let η0
j = ψ̄j(∞)/ψ̄(∞), the

probability that an individual alive at the first detected death is of type j. The distribution of X1
is defined in terms of π0 and η0 = (η0

1, η
0
2, . . . , η

0
J ), and in Lemma 6 we show that

X∗
1 ∼ Geom(π0),

X1|X∗
1 = x ∼ Multinomial(x, η0).

For n ∈N and q ∈ [0, 1]J with
∑J

i=1 qi = 1, Y ∼ Multinomial(n, q) denotes a multinomial
distribution with J categories and n trials, having probability mass function

P(Y = y) = n!∏J
j=1 yj!

J∏
j=1

q
yj
j

⎛
⎝yj ≥ 0 (j = 1, 2, . . . , J);

J∑
j=1

yj = n

⎞
⎠ .

The distribution of the number of individuals alive of each type at time t ≥ 0 is determined
by πt and ηt, which are updated from the initial conditions π0 and η0 as follows. Let ψ(t; τ ) =∑J

j=1 ψj(t; τ ), and recall that ζ (t; τ ) is the probability that a cycle of the backward exploration
process reveals no further individuals in the branching process at time t + τ . For the forward
exploration process (see Section 3.2), from a type-j progenitor, the probability of having at
least one individual alive at time t + τ and the individual being of type l is pjl(t, 0, τ ), and the
probability of having no individuals alive at time t + τ with no detected deaths is qj(t, 0, τ ).
For t, τ ≥ 0, we set

πt+τ = 1 −ψ(t; τ ) − (1 − πt)ζ (t; τ )
∑J

i=1
∑J

j=1 η
t
ipij(t, 0, τ )

1 − (1 − πt)
∑J

i=1 η
t
iqi(t, 0, τ )

(3.1)

(cf. [2, (3.8) and (3.25)]), and for j = 1, 2, . . . , J,

ηt+τ
j = ψj(t; τ )

1 − πt+τ
+ (1 − πt)ζ (t; τ )

∑J
i=1 η

t
ipij(t, 0, τ )

[1 − πt+τ ]
[
1 − (1 − πt)

∑J
i=1 η

t
iqi(t, 0, τ )

] (3.2)
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= ψj(t; τ ) + φj(t; τ )

1 − πt+τ
, say. (3.3)

The distribution of Xk|T2:k = t2:k is given in Theorem 1 in terms of random variables
W(t, a) which are now defined. For a, b ∈R

J , a> b (a ≥ b) if and only if aj > bj (aj ≥ bj) (j =
1, 2, . . . , J). For t ≥ 0 and a>−(1 − πt)ηt, let W(t, a) = (W1(t, a),W2(t, a), . . . ,WJ(t, a))
denote a J-dimensional random variable with, for θ ∈ [0, 1]J , probability generating function

ϕ(θ ; t, a) =E

⎡
⎣ J∏

j=1

θ
Wj(t,a)
j

⎤
⎦

= 1 +∑J
j=1 ajθj

1 +∑J
j=1 aj

× πt

1 − (1 − πt)
∑J

j=1 η
t
jθj

. (3.4)

Let W∗(t, a) =∑J
j=1 Wj(t, a), the sum of the components of W(t, a). Then it follows immedi-

ately from (3.4) that, for 0 ≤ ϑ ≤ 1,

E

[
ϑW∗(t,a)

]
= 1 + ϑ

∑J
j=1 aj

1 +∑J
j=1 aj

× πt

1 − (1 − πt)ϑ
,

and since
∑J

j=1 aj >
∑J

j=1{−(1 − πt)ηt
j} = −(1 − πt), by Lemma 1 W∗(t, a) is a zero-

modified geometric random variable. Throughout the following we assume that, for t ≥ 0,
a>−(1 − πt)ηt.

In the special case a = 0, it follows immediately that

W∗(t, 0) ∼ Geom(πt), (3.5)

W(t, 0)|W∗(t, 0) = n ∼ Multinomial(n, ηt). (3.6)

Hence, X1
D= W(0, 0).

In determining the distribution of Xk|T2:k = t2:k from the {W(t, a)} random variables, we
need to update the values of a in an iterative manner. The key relationships are defined in
Lemma 2.

Lemma 2. For t, τ ≥ 0 and a ∈R
J, let b(t, τ ; a), c(t, τ ; a) ∈R

J satisfy, for i = 1, 2, . . . , J,

bi(t, τ ; a) = −ψi(t; τ ) +∑J
h=1 ah

[
ζ (t; τ )phi(t, 0, τ ) −ψi(t; τ )qh(t, 0, τ )

]
1 +∑J

h=1 ahqh(t, 0, τ )
(3.7)

and

ci(t, τ ; a) =
(1 − πt+τ )

∑J
j=1 dt+τ,jγj

[
bi(t, τ ; a)ηt+τ

j − bj(t, τ ; a)ηt+τ
i

]
∑J

j=1 dt+τ,jγj

[
(1 − πt+τ )ηt+τ

j + bj(t, τ ; a)
] . (3.8)

Then provided a>−(1 − πt)ηt, we have

b(t, τ ; a), c(t, τ ; a)>−(1 − πt+τ )ηt+τ . (3.9)

Proof. The proof of (3.9) is given in Appendix A. �

https://doi.org/10.1017/apr.2024.65 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.65


10 F. BALL AND P. NEAL

The coefficients bi(t, τ ; a) and ci(t, τ ; a) defined in (3.7) and (3.8), respectively, arise from
the two cases noted in Section 3.2: (i) there are no detected deaths in the interval (t, t + τ ], and
(ii) the first detected death after time t is at time t + τ .

For t ∈R, τ ≥ 0, and a ∈R
J , let Ẽa

t,τ be the event that there are no detected deaths in the
interval (t, t + τ ] given that the number of individuals of each type in the branching process at
time t is distributed according to W(t, a). Similarly, let D̃a

t,τ be the event that the first detected
death after time t is at time t + τ , given that the number of individuals of each type in the
branching process at time t is distributed according to W(t, a). Let

UE(t, τ ; a) = P
(
Ẽa

t,τ

)
, (3.10)

UD(t, τ ; a) = − ∂

∂τ
UE(t, τ ; a). (3.11)

Hence, UD(t, τ ; a) is the probability density function for the time until the next detected
death after time t. We obtain expressions for UE(t, τ ; a) and UD(t, τ ; a) in (5.17) and (5.27),
respectively.

3.4. Statement and discussion of Theorem 1

We are now in position to state Theorem 1.

Theorem 1 (a) For k = 1, X1
D= W(0, 0).

(b) For k = 1, 2, . . . and m = 1, 2, . . . ,Mk( = (k − 1)!), suppose that

{Xk|T2:k = t2:k} D=
k∑

l=1

Wml
(
sk, ak

ml

)
(3.12)

with probability wk
m, where {Wml(sk, ak

ml)} are mutually independent and ak
ml >−(1 − πsk )ηsk .

Then

{Xk+1|T2:k+1 = t2:k+1} D=
k+1∑
l=1

Wvl
(
sk+1, ak+1

vl

)
(3.13)

with probability wk+1
v (v = 1, 2, . . . ,Mk+1( = k!)), where, for m = 1, 2, . . . ,Mk and i =

1, 2, . . . , k,

wk+1
(m−1)k+i =

wk
mUD

(
sk, tk+1; ak

mi

)∏
l �=i UE

(
sk, tk+1; ak

ml

)
∑Mk

u=1

∑k
j=1 wk

uUD
(
sk, tk+1; ak

uj

)∏
l �=j UE

(
sk, tk+1; ak

ul

) , (3.14)

ak+1
(mk+i)i = ck

mi, ak+1
(mk+i)j = bk

mj (j �= i), ak+1
(mk+i)(k+1) = 0. (3.15)

Here we employ the shorthand notation bk
ml

(= b
(
sk, tk+1; ak

ml

))
and ck

ml

(= c
(
sk, tk+1; ak

ml

))
.

Furthermore,
{
Wvl

(
sk+1, ak+1

vl

)}
are mutually independent and ak+1

vl >−(
1 − πsk+1

)
ηsk+1 .

For 0< τ < tk+1, it is straightforward to show that if Xk|T2:k = t2:k satisfies (3.12), then,
for m = 1, 2, . . . ,Mk,

{Y(sk + τ )|T2:k = t2:k} D=
k∑

l=1

Wml
(
sk + τ, b

(
sk, τ ; ak

ml

))
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with probability

w̃k
m = wk

m
∏k

l=1 UE
(
sk, τ ; ak

ml

)
∑Mk

u=1 wk
u
∏k

l=1 UE
(
sk, τ ; ak

ul

) .

An immediate consequence of Theorem 1 is that X∗
k |T2:k = t2:k is the sum of k independent

zero-modified geometric random variables. If the components of the {ak
ml} are all less than

or equal to 0, we can instead express X∗
k |T2:k = t2:k as a random sum of Rk i.i.d. Geom(πsk )

random variables, where Rk has support on {1, 2, . . . , k}.
Corollary 1. For k = 1, 2, . . ., suppose that the distribution of Xk|T2:k = t2:k satisfies the
mixture distribution given in Theorem 1(b) with, for all l = 1, 2, . . . , k,

−(
1 − πsk

)
ηsk < ak

ml ≤ 0. (3.16)

For m = 1, 2, . . . ,Mk and l = 1, 2, . . . , k, let

Ak
ml =

J∑
i=1

ak
mli and Qk

ml =
1 − πsk + Ak

ml(
1 − πsk

)(
1 + Ak

ml

) ,
so −(1 − πsk )< Ak

ml ≤ 0 and 0 ≤ Qk
ml ≤ 1.

Let G1(sk),G2(sk), . . . ,Gk(sk) be i.i.d. according to Geom(πsk ). Then

X∗
k |T2:k = t2:k ∼

R∗
k∑

i=1

Gi(sk) = NegBin
(
R∗

k , πsk

)
,

where R∗
k has support {1, 2, . . . , k}, and for i = 1, 2, . . . , k, Vk,i is the set of vectors of length

k consisting of i ones and k − i zeros, with

P
(
R∗

k = i
)=

Mk∑
m=1

ωk
m

∑
v∈Vk,i

k∏
l=1

(
Qk

ml

)vl
[
1 − Qk

ml

]1−vl . (3.17)

Proof. From Lemma 1 it is straightforward to show that, for ak
ml satisfying (3.16),

W∗(sk; ak
ml) ∼

{
Geom(πsk ) with probability Qk

ml,

0 with probability 1 − Qk
ml.

(3.18)

From (3.15), for m = 1, 2, . . . , k, ak
mk = 0, so Qk

mk = 1 and P
(
R∗

k = 0
)= 0. The corollary then

follows from (3.18). �
Corollary 1 is similar to [2, Theorems 3.1 and 3.2] in deriving the total size of the branch-

ing process immediately after the kth death as a mixture of negative binomial distributions.
The main difference between Corollary 1 and the theorems in [2] is that the probability
mass function of R∗

k given by (3.17) is computationally intensive to compute for moderate
k, whereas, in [2], R∗

k is closely related to a binomial distribution, which makes computing
its probability mass function much quicker. These observations motivate the following deriva-
tion of an approximation of Xk|T2:k = t2:k, which provides an approximation for (3.17) and a
multinomial approximation for the number of individuals of each type.
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3.5. Approximation to the distribution of Xk|T2:k = t2:k

This section is structured as follows. In Section 3.5.1 we present the additional notation nec-
essary for the approximation. We state the approximation in Section 3.5.2, with the justification
for the approximation given in Section 3.5.3.

3.5.1. Notation. In order to construct the approximation we require the following additional
notation. For t, τ ≥ 0, let Ct;τ

(= (
C1

t;τ ,C2
t;τ , . . . ,CJ

t;τ

))= c(t, τ ; 0). Setting a = 0 in Lemma
2, from (3.7) we obtain bi(t, τ ; 0) = −ψi(t; τ ) (i = 1, 2, . . . , J). It then follows from (3.8) and
(3.3) that

Ci
t;τ =

(1 − πt+τ )
∑J

j=1 dt+τ,jγj

[
ψj(t; τ )ηt+τ

i −ψi(t; τ )ηt+τ
j

]
∑J

j=1 dt+τ,jγjφj(t; τ )
. (3.19)

Hence,

C∗
t;τ =

J∑
i=1

Ci
t;τ =

(1 − πt+τ )
∑J

j=1 dt+τ,jγj

[
ψj(t; τ ) −ψ(t; τ )ηt+τ

j

]
∑J

j=1 dt+τ,jγjφj(t; τ )
.

Let

h̃(t; τ ) = 1 + πt+τC∗
t:τ

(1 − πt+τ )(1 + C∗
t:τ )

= 1 − πt+τ + C∗
t:τ

(1 − πt+τ )(1 + C∗
t:τ )

. (3.20)

Then, provided that C∗
t;τ is non-positive, we have from (3.9) that −(1 − πt+τ )<C∗

t;τ ≤ 0, and

hence 0 ≤ h̃(t; τ ) ≤ 1 is a valid probability.
It is difficult to make general statements concerning the form of C∗

t;τ , although in the fully
detected, time-homogeneous case, where βt = α and dt = 1 (t ∈R), we can show that C∗

t;τ ≤ 0
when the lifetime L follows an Erlang distribution (i.e. Gamma(J, Jμ) with J ≥ 2) and C∗

t;τ ≥ 0
when L is a mixture of J( ≥ 2) exponential distributions. Moreover, in the fully detected, time-
homogeneous case, it can be shown that {X∗

2 |T2 = τ } is stochastically decreasing in τ for an
Erlang distribution and stochastically increasing in τ for a mixture of exponential distribu-
tions. The proofs are straightforward but somewhat tedious, and are therefore given in the
supplementary material.

For k = 1, 2, . . . and t, τ ≥ 0, let Mk(t; τ ) be the k × k matrix with (i,j)th element

[Mk(sk; τ )]i,j =
{

i
(i−1

j−1

) { πskφ(sk; tk+1)
πsk+1 (1−πsk+1 )L(sk,τ )

}j−1 { πskψ(sk; tk+1)
(1−πsk+1 )L(sk,τ )

}i−j
for j ≤ i,

0 otherwise,

(3.21)

where φ(sk; tk+1) =∑J
j=1 φj(sk; tk+1) and

L(sk, τ ) = 1 − (1 − πsk )
J∑

i=1

η
sk
i qi(sk, 0, τ ). (3.22)

We define M1
k(t; τ ) and M2

k(t; τ ) to be k × (k + 1) matrices constructed from Mk(t; τ ) by
the addition of a column of zeros before (after) Mk(t; τ ) in M1

k(t; τ ) (M2
k(t; τ )). The matrix
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Mk(sk; τ ) is of a similar form to the matrices defined in [2]. (3.9) and the equation between
(3.26) and (3.27) in Theorem 3.2, and is used to derive an approximation for the probability
mass function of R∗

k .

For t ≥ 0 and q ∈ [0, 1]J such that
∑J

i=1 qi = 1, let Ŵ(t; q) be the J-dimensional random
variable with

Ŵ∗(t; q)

⎛
⎝=

J∑
j=1

Ŵj(t; q)

⎞
⎠∼ Geom(πt), (3.23)

Ŵ(t; q)|Ŵ∗(t; q) = n ∼ Multinomial(n, q). (3.24)

The relationship between the random variables Ŵ(t; q) and W(t; a) is that, for t ≥ 0,

Ŵ(t; ηt)
D= W(t; 0). (3.25)

Therefore it follows from Theorem 1(a) that X1
D= Ŵ(0; η0), which is the starting point for the

approximation presented in Section 3.5.2.

3.5.2. Statement of approximation. Suppose that for all t, τ ≥ 0, Ci
t; τ ≤ 0 (i = 1, 2, . . . , J).

Set X̂1 = X1
D= W(0; 0) ≡ Ŵ(0; η0).

For k ≥ 2, we approximate Xk|T2:k = t2:k by X̂k|T2:k = t2:k satisfying

{
X̂k|T2:k = t2:k

}
D=

R̂k∑
i=1

Ŵi
(
sk; ζ̂

k)
, (3.26)

where R̂k has support {1, 2, . . . , k} with R̂1 ≡ 1 and probability mass function given by (3.27),

ζ̂
k

is given by (3.29) with
∑J

j=1 ζ̂
k
j = 1, and Ŵ1(sk; ζ̂

k
), Ŵ2(sk; ζ̂

k
), . . . are i.i.d. according to

Ŵ(t; ζ̂
k
) defined by (3.23) and (3.24).

Let P̂m
k = P(R̂k = m) (k = 1, 2, . . . ;m = 1, 2, . . . , k) and P̂k = (P̂1

k, P̂2
k, . . . , P̂k

k). Then P̂ =
(1) and P̂k+1 can be obtained recursively using

P̂k+1 = 1

Kk
P̂k

[
h̃(sk; tk+1)M1

k(sk; tk+1) + {
1 − h̃(sk; tk+1)

}
M2

k(sk; tk+1)
]
, (3.27)

where M1
k(sk; tk+1) and M2

k(sk; tk+1) are defined after (3.21) and

Kk =
k∑

m=1

m

[
π̂k(1 −ψ(sk; τ ))

π̂k+1

]m−1

P̂m
k

= P̂k

[
h̃(sk; tk+1)M1

k(sk; tk+1) + {
1 − h̃(sk; tk+1)

}
M2

k(sk; tk+1)
]
·1�

k . (3.28)

For k = 1, 2, . . ., let νk =E[R̂k|T2:k = t2:k]. Set ηsk = ζ̂
k

and compute ψ(sk; tk+1) =
(ψ1(sk; tk+1), ψ2(sk; tk+1), . . . , ψJ(sk; tk+1)) and ηsk+1 using (3.2) with t = sk and τ = tk+1.
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For k = 1, 2, . . . and j = 1, 2, . . . , J, set

ζ̂ k+1
j = (νk + 1)ηsk+1

j
1 − πsk+1

πsk+1

− (νk − 1)
ψj(sk; tk+1)

1 −ψ(sk; tk+1)
+ Cj

sk;tk+1

1 + C∗
sk;tk+1

×
[

(νk + 1)
1 − πsk+1

πsk+1

− (νk − 1)
ψ(sk; tk+1)

1 −ψ(sk; tk+1)
+ C∗

sk;tk+1

1 + C∗
sk;tk+1

]−1

.

(3.29)

For j = 1, 2, . . . , J, the marginal distribution of X̂j
k, satisfies

X̂j
k|T2:k = t2:k ∼ NegBin

(
R̂k,

πsk

πsk + ζ̂
j
k − πsk ζ̂

j
k

)
. (3.30)

3.5.3. Justification of approximation. From Section 3.5.2, we note that X̂∗
k |T2:k = t2:k takes an

almost identical form to the distribution of the number of individuals alive in a birth–death
process immediately after the kth detected death given in [2, Theorem 3.2, (3.28)]. The only
difference is that in the phase-type distribution case, R̂k can take the value 1 for any k. The
recursive equation for the probability mass function for R̂k given in (3.27), and utilising (3.21),
is similar to [2, Lemma 4.5, (4.17)] and is derived along similar lines.

The approximation in Section 3.5.2 works as follows. If {Xk|T2:k = t2:k} D= {X̂k|T2:k = t2:k},
then {

X∗
k+1|T2:k+1 = t2:k+1

} D= {
X̂∗

k+1|T2:k+1 = t2:k+1
}

with ζ̂
k+1 =

(
ζ̂ k+1

1 , ζ̂ k+1
2 , . . . , ζ̂ k+1

k+1

)
satisfying

E
[
Xj

k+1|T2:k+1 = t2:k+1
]= ζ̂ k+1

j E
[
X∗

k+1|T2:k+1 = t2:k+1
](=E

[
X̂j

k+1|T2:k+1 = t2:k+1
])

.

Details of the proof of the above are provided in Section 6.

4. Exploration process

4.1. Introduction

In this section we show how the key probabilities from the exploration process for
Theorem 1 can be computed. We use an approach similar to that of [6, Section 2] to explore the
branching process between two time points from a single progenitor. Note that the branching
processes studied in [6] are referred to as splitting trees; see Geiger and Kersting [4]. There are
minor modifications to the exploration process and analysis in [6, Section 2] to take account
of the time-inhomogeneous birth rate and detection probability, differences in the detection
process, and the phase-type lifetime distribution. The phase-type lifetime distribution enables
us to obtain more explicit results than those presented in [6, Section 2].

In Section 4.2 we define in (4.1)–(4.4) the probabilities of the exploration process. These
probabilities are expressed in terms of systems of ordinary differential equations (ODEs) in
Lemma 3, which enable analytical solutions in some important special cases; see Sections 4.3
(all deaths detected) and 4.4 (a piecewise time-homogeneous branching process).
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+

FIGURE 2. The JCCP associated with the branching process in Figure 1C. The open circles
denote potential detected deaths which in the given realisation of the branching process are all
undetected.

4.2. Exploration process equations

To obtain the key probabilities of the exploration process, it is helpful to use the jump
chronological contour process (JCCP) of the branching process, as defined in [6], but with
a time shift t in the starting time and time-dependent birth rate, βt+u. Let X (t,τ ) denote the
JCCP, started with one unique progenitor at time t, truncated up to height (time) t + τ of
the birth process. The JCCP is associated with the exploration process between times t and
t + τ as follows. The process X (t,τ ) starts at t + (L̃ ∧ τ ), where L̃ is the residual lifetime, after
time t, of the single progenitor. The JCCP has its own timescale and explores backward in
time at rate 1 until it encounters a birth in the branching (exploration) process, at which point
the JCCP jumps. If a jump occurs in the process X (t,τ ) at position t + v (0< v< τ ), then
the process jumps to (t + v + L) ∧ (t + τ ), where L is the length of the lifetime of the indi-
vidual born at time t + v. That is, the JCCP jumps to whichever occurs first, the end of the
individual’s lifetime or time t + τ . The process X (t,τ ) terminates when it reaches time t, corre-
sponding to the exploration process being over, so X (t,τ ) remains within the interval [t, t + τ ].
The JCCP associated with the realisation of the branching process in Figure 1C is given in
Figure 2.

For x ∈R, let σx = σ{x} denote the first hitting time of x by X (t,τ ). Let σ = σt ∧ σt+τ , the
first time the process hits either endpoint of the interval, corresponding to either the exploration
process being over or an individual being identified as alive at time t + τ . Two useful quantities
associated with the JCCP at time σ are D(σ ), the number of detected deaths in [0, σ ], and J(σ ),
the type of the individual at time σ , when σ = σt+τ .

We are now in position to define the probabilities of the exploration process required to
obtain pij(t, 0, τ ), qi(t, 0, τ ), ψj(t; τ ), and ζ (t; τ ) as described in Section 3.2.

For t ∈R, 0 ≤ u ≤ τ , and i, j = 1, 2, . . . , J, let

pij(t, u, τ ) = Pu,i(σt+τ < σt, J(σ ) = j,D(σ ) = 0) (4.1)

and

qi(t, u, τ ) = Pu,i(σt <σt+τ ,D(σ ) = 0), (4.2)

where Pu,i denotes the probability conditional upon L̃ ≥ u and the progenitor being of type
i at time t + u. The equations (4.1) and (4.2) are associated with the forward exploration
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process, and the special case u = 0 yields the pij(t, 0, τ ) and qi(t, 0, τ ) required for
Theorem 1.

For t ∈R, 0 ≤ u ≤ τ , and j = 1, 2, . . . , J, let

pj(t, u, τ ) = Pu
(
σt+τ < σt, J(σ ) = j,D(σ ) = 0

)
(4.3)

and

q(t, u, τ ) = Pu
(
σt <σt+τ ,D(σ ) = 0

)
, (4.4)

where Pu denotes probability conditional upon L̃ = u and the death of the progenitor being
unobserved.

In contrast to (4.1), the probabilities in (4.3) are obtained by starting at time t + u and
exploring backward in time for births which deliver an undetected pathway to an individual of
type j alive at time t + τ . Since an individual’s type at birth does not depend on the type of their
parent, we do not need to specify the type of the progenitor in (4.3) and (4.4). Then ψj(t; τ )
(j = 1, 2, . . . , J) and ζ (t : τ ) can be defined as special cases of (4.3) and (4.4), respectively,
with

ψj(t; τ ) = lim
u↑τ pj(t, u, τ ), (4.5)

the probability that a cycle of the backward exploration process is successful and produces an
individual of type j at time t + τ , and

ζ (t; τ ) = lim
u↑τ q(t, u, τ ), (4.6)

the probability that a cycle of the backward exploration process reveals no further individuals
alive at time t + τ with no detected deaths.

The main reason for giving the probabilities of the exploration process in the form of (4.1)–
(4.4) is that we can express the probabilities via systems of ODEs. These ODEs can be solved
exactly in terms of matrix exponentials in some special cases (see, for example, Section 4.4),
or otherwise solved numerically in an efficient manner using an ODE solver.

Lemma 3. Fix t ∈R and τ > 0.

For j = 1, 2, . . . , J, let p·j(t, u, τ ) = (p1j(t, u, τ ), p2j(t, u, τ ), . . . , pJj(t, u, τ )).
Then {(p·j(t, u, τ ), pj(t, u, τ ));0 ≤ u ≤ τ } solves the system of J + 1 ODEs with

p′
ij(t, u, τ ) = −

J∑
l=1

λilplj(t, u, τ ) − γi(1 − dt+u,i)pj(t, u, τ ), (4.7)

p′
j(t, u, τ ) = βt+u

{
J∑

l=1

χlplj(t, u, τ ) − pj(t, u, τ )

}
, (4.8)

and boundary conditions p·j(t, τ, τ ) = ej and pj(t, 0, τ ) = 0.
Similarly, let q(t, u, τ ) = (q1(t, u, τ ), q2(t, u, τ ), . . . , qJ(t, u, τ )).
Then {(q(t, u, τ ), q(t, u, τ )); 0 ≤ u ≤ τ } solves the system of J + 1 ODEs with

q′
i(t, u, τ ) = −

J∑
l=1

λilql(t, u, τ ) − γi(1 − dt+u,i)q(t, u, τ ), (4.9)

https://doi.org/10.1017/apr.2024.65 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.65


The number of individuals alive in a branching process given only times of deaths 17

q′(t, u, τ ) = βt+u

{
J∑

l=1

χlql(t, u, τ ) − q(t, u, τ )

}
, (4.10)

with boundary conditions q(t, τ, τ ) = 0 and q(t, 0, τ ) = 1.

Proof. Fix j = 1, 2, . . . , J. The boundary conditions p·j(t, τ, τ ) = ej and pj(t, 0, τ ) = 0
follow immediately from the construction of the JCCP.

For i = 1, 2, . . . , J, conditioning on the time the progenitor remains in state i, we have

pij(t, u, τ ) = exp
(
λii[τ − u]

)
δij +

∫ τ

u
−λii exp

(
λii[z − u]

)

×
⎧⎨
⎩
∑
l �=i

λil

−λii
plj(t, z, τ ) + γi

−λii
(1 − dt+z,i)pj(t, z, τ )

⎫⎬
⎭ dz, (4.11)

where δij denotes the Kronecker delta with δij = 1 if i = j and δij = 0 otherwise. Differentiating
(4.11) with respect to u and substituting in pij(t, u, τ ), we have that

p′
ij(t, u, τ ) = −λii exp

(
λii[τ − u]

)
δij − λii

∫ τ

u
−λii exp

(
λii[z − u]

)

×
⎧⎨
⎩
∑
l �=i

λil

−λii
plj(t, z, τ ) + γi

−λii
(1 − dt+z,i)pj(t, z, τ )

⎫⎬
⎭ dz

−
∑
l �=i

λilplj(t, u, τ ) − γi(1 − dt+u,i)pj(t, u, τ )

= −
J∑

l=1

λilplj(t, u, τ ) − γi(1 − dt+u,i)pj(t, u, τ ), (4.12)

which agrees with (4.7).
Similarly, by conditioning on the time of the first birth when exploring back from u, we

have

pj(t, u, τ ) =
∫ u

0
exp

(
−
∫ u

z
βt+s ds

)
βt+z

J∑
l=1

χlplj(t, z, τ ) dz. (4.13)

Differentiating (4.13) with respect to u yields

p′
j(t, u, τ ) = βt+u

J∑
l=1

χlplj(t, u, τ ) −
∫ u

0
βt+u exp

(
−
∫ u

z
βt+s ds

)
βt+z

J∑
l=1

χlplj(t, z, τ ) dz

= βt+u

{
J∑

l=1

χlplj(t, u, τ ) − pj(t, u, τ )

}
,

which agrees with (4.8).
Turning to {(q(t, u, τ ), q(t, u, τ )); 0 ≤ u ≤ τ }, we see that the boundary conditions

q(t, τ, τ ) = 0 and q(t, 0, τ ) = 1 follow immediately from the construction of the JCCP.
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For i = 1, 2, . . . , J, conditioning on the time the progenitor remains in state i, we have

qi(t, u, τ ) =
∫ τ

u
−λii exp

(
λii[z − u]

)

×
⎧⎨
⎩
∑
l �=i

λil

−λii
ql(t, z, τ ) + γi

−λii
(1 − dt+z,i)q(t, z, τ )

⎫⎬
⎭ dz.

By an argument similar to the derivation of (4.12), it is straightforward to show that q′
i(t, u, τ )

satisfies (4.9). Also, we have that

q(t, u, τ ) =
∫ u

0
exp

(
−
∫ u

z
βt+s ds

)
βt+z

J∑
l=1

χlql(t, z, τ )dz,

from which it is straightforward to show that q′(t, u, τ ) satisfies (4.10), completing the proof
of the lemma. �

4.3. All deaths detected

The first special case we consider is the one in which all deaths are detected, dt+u = 1
(0 ≤ u ≤ τ ). In this case pij(t, u, τ ) = Pij(τ − u), qi(t, u, τ ) = 0, and in (4.3) and (4.4) the con-
ditioning event in Pu has probability 0. However, the exploration process is simpler if all deaths
are detected, since any individual born in the process will either be alive at time t + τ or have
been detected at their time of death. We can slightly modify the definitions of ψj(t; τ ) and
ζ (t; τ ) given in (4.5) and (4.6), respectively, and provide expressions for these quantities.

Let ψj(t; τ ) be the probability that the backward exploration process from time t + τ to time
t reveals a birth with the individual who is born being alive at time t + τ and of type j. Then,
conditioning on the time of the birth and the type of individual at birth, we have by the theorem
of total probability that

ψj(t; τ ) =
∫ t+τ

t
βu exp

(
−
∫ t+τ

u
βs ds

) [
J∑

i=1

χiPij(t + τ − u)

]
du. (4.14)

Similarly, let ζ (t; τ ) be the probability that the backward exploration process from time t + τ

to time t reveals no births. Then we simply have that

ζ (t; τ ) = exp

(
−
∫ t+τ

t
βs ds

)
. (4.15)

4.4. Time-homogeneous equations

An important special case is when the branching process and its observation process are
time-homogeneous on the interval (t, t + τ ] with βt+u = α and dt+u = ε (0 ≤ u ≤ τ ). In this
case, explicit solutions to the systems of ODEs given in Lemma 3 exist, and since we assume
that the branching process is time-homogeneous prior to the first detected death, we utilise
the explicit solution in deriving the size of the branching process at the first detected death in
Lemma 6.
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For α, τ > 0 and 0 ≤ ε ≤ 1, let � ( =�(α, ε)) and � ( =�(α, ε, τ )) denote the (J + 1) ×
(J + 1) matrices given by

� ( =�(α, ε)) =
(
� ρT

−αχ α

)
, (4.16)

and

� ( =�(α, ε, τ )) = exp[τ�] , (4.17)

where ρ = ([1 − ε1]γ1, [1 − ε2]γ2, . . . , [1 − εJ]γJ) and χ = (χ1, χ2, . . . , χJ) are row vectors
of length J. Note that for j = 1, 2, . . . , J, ρj = [1 − εj]γj is the rate at which a type-j individual
dies undetected. In Lemma 4, we show that p·j(t, 0, τ ), qj(t, 0, τ ), ψj(t; τ ) (j = 1, 2, . . . , J),
and ζ (t; τ ) can be obtained from � given in (4.17).

Lemma 4. Fix t ∈R and τ > 0. For a branching process with βt+u = α and dt+u = ε (0 ≤ u ≤
τ ), we have that ζ (t; τ ) =�−1

J+1,J+1, ψj(t; τ ) = −�J+1,j/�J+1,J+1,

p·j(t, 0, τ ) =�1:J,j +ψj(t; τ )�1:J,J+1, (4.18)

and

q(t, 0, τ ) = ζ (t; τ )�1:J,J+1. (4.19)

Proof. For i, j = 1, 2, . . . , J and 0 ≤ u ≤ τ , let p̃ij(t, u, τ ) = pij(t, τ − u, τ ), p̃j(t, u, τ ) =
pj(t, τ − u, τ ), q̃j(t, u, τ ) = qj(t, τ − u, τ ), and q̃(t, u, τ ) = q(t, τ − u, τ ) with p̃·j(t, u, τ ) =
p·j(t, τ − u, τ ) and q̃(t, u, τ ) = q(t, τ − u, τ ). Thus the tilde probabilities are time-reversed
versions of the probabilities defined in (4.1)–(4.4), starting at time t + τ when u = 0 and
finishing at time t when u = τ .

Using (4.7) and (4.8), it is straightforward to show that

p̃′
ij(t, u, τ ) = −p′

ij(t, τ − u, τ ) =
J∑

l=1

λilp̃lj(t, u, τ ) + [1 − εi]γip̃j(t, u, τ ), (4.20)

p̃′
j(t, u, τ ) = −p′

j(t, τ − u, τ ) = −α
J∑

l=1

χlp̃lj(t, u, τ ) + αp̃j(t, u, τ ), (4.21)

with boundary conditions p̃·j(t, 0, τ ) = ej and p̃j(t, τ, τ ) = 0. Therefore, for j = 1, 2, . . . , J, the
system of J + 1 ODEs {p̃·j(t, u, τ ), p̃j(t, u, τ )} has J initial conditions and one final boundary
condition. Similarly, using (4.9) and (4.10), we have a system of J + 1 ODEs satisfying

q̃′
i(t, u, τ ) = −q′

i(t, τ − u, τ ) =
J∑

l=1

λilq̃l(t, u, τ ) + [1 − εi]γiq̃(t, u, τ ), (4.22)

q̃′(t, u, τ ) = −q′(t, τ − u, τ ) = −α
J∑

l=1

χlq̃l(t, u, τ ) + αq̃(t, u, τ ), (4.23)

with initial conditions q̃(t, 0, τ ) = 0 and final boundary condition q̃(t, τ, τ ) = 1.
From (4.5) and (4.6) we have thatψj(t; τ ) = limu↓0 p̃j(t, u, τ ) and ζ (t; τ ) = limu↓0 q̃(t, u, τ ).

Therefore it follows from (4.20)–(4.23) and (4.17) that
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(
p̃·j(t, τ, τ )

0

)
=�

(
ej

p̃j(t, 0, τ )

)
=�

(
ej

ψj(t; τ )

)
(j = 1, 2, . . . , J) (4.24)

and (
q̃(t, τ, τ )

1

)
=�

(
0

q̃(t, 0, τ )

)
=�

(
0

ζ (t; τ )

)
. (4.25)

The lemma follows immediately from (4.24) and (4.25). �

5. Proof of Theorem 1

The outline of the proof of Theorem 1 is as follows. A key step is to study the distribution
of the number of individuals alive at time t + τ , and their types, conditioning on the number
of individuals of each type alive in the population at time t. As noted in Section 4, we focus
on two scenarios: (i) no detected deaths in the time interval (t, t + τ ], and (ii) precisely one
detected death in the time interval (t, t + τ ], at time t + τ . The probability generating functions
of the required distributions are given in Lemma 5 and Corollary 2. This enables us to show in
Lemma 6 that X1 = W(0, 0), provided that the branching process and its observation process
are time-homogeneous before the first detected death. This provides the initial conditions, X1,
for Theorem 1. Thus X∗

1 ∼ Geom(π0), which complements results in [6, 9], where individuals
have independent exponential clocks for detection. In Lemmas 7 and 8, we establish the dis-
tribution of the number of individuals alive at time t + τ in the two scenarios, given that the
number of individuals alive at time t follows a W(t, a) distribution defined by its probability
generating function (3.4). Then, given that Xk|T2:k = t2:k is the mixture of sums of k indepen-
dent W(sk, ·) random variables, it is straightforward to conclude the proof of Theorem 1 using
induction and Lemmas 7 and 8.

Suppose that the κth detected death occurs at time t. The precise value of κ is not important
in the following arguments. Let Ey

t;τ be the event that there are no detected deaths in the interval
(t, t + τ ) given that Y(t) = y. Similarly, let Dy

t,τ be the event that the first detected death in the
interval (t, t + τ ] is at time t + τ given that Y(t) = y. Then for t, τ ≥ 0, θ = (θ1, θ2, . . . , θJ) ∈
[0, 1]J , and y = (y1, y2, . . . , yJ) ∈Z

J+, let

HE(θ ; t, τ ; y) =E

⎡
⎣ J∏

j=1

θ
Yj(t+τ )
j 1{Ey

t;τ }

∣∣∣∣∣∣Y(t) = y

⎤
⎦

and

HD(θ ; t, τ ; y) =E

⎡
⎣ J∏

j=1

θ
Xκ+1,j
j

∣∣∣∣∣∣Xκ = y, Tκ+1 = τ

⎤
⎦ fTκ+1 (τ |Xκ = y).

Note that fTκ+1 (τ |Xκ = y) satisfies

fTκ+1 (τ |Xκ = y) = HD(1; t, τ ; y). (5.1)

Lemma 5. For any τ > 0, θ = (θ1, θ2, . . . , θJ) ∈ [0, 1]J, and y = (y1, y2, . . . , yJ) ∈Z
J+,

HE(θ ; t, τ ; y) =
J∏

i=1

(
qi(t, 0, τ ) + ζ (t, τ )

[∑J
j=1 pij(t, 0, τ )θj

]
1 −∑J

j=1 ψj(t; τ )θj

)yi

. (5.2)
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Proof. For i = 1, 2, . . . , J, let ei denote the vector of length J in which the ith entry is 1 and
all other entries are equal to 0. Since the branching process evolves independently from each
of the y individuals alive in the population at time 0, we have that

HE(θ ; t, τ ; y) =
J∏

i=1

HE(θ ; t, τ ; ei)
yi . (5.3)

Using the exploration process described in Section 4, the joint probability of the number
of individuals alive at time t + τ from a single progenitor of type i at time t, Ŷ∗

i (t; τ ), and the
event of no detected deaths in the interval (t, t + τ ], denoted by Êi

t,τ , are given by

P
(
Ŷ∗

i (t; τ ) = 0, Êi
t,τ

)= qi(t, 0, τ ),

P
(
Ŷ∗

i (t, τ ) = n, Êi
t,τ

)=
⎡
⎣ J∑

j=1

pij(t, 0, τ )

⎤
⎦ψ(t; τ )n−1ζ (t; τ ) (n = 1, 2, . . . ).

Note that if all deaths are detected then qi(t, 0, τ ) = 0.
Given that Ŷ∗

i (t, τ ) = n> 0, there is a single individual, either the progenitor or its descen-
dant derived from the forward pathway, whose probability of being of type l at time t + τ is
pij(t, 0, τ )/

∑J
l=1 pil(t, 0, τ ). By the strong Markov property, each of the other n − 1 individ-

uals alive at time t + τ are independently of type j with probability ψj(t; τ )/ψ(t; τ ). It is then
straightforward to show that

HE(θ ; t, τ ; ei) = qi(t, 0, τ ) +
∞∑

n=1

ζ (t; τ )

⎡
⎣ J∑

j=1

pij(t, 0, τ )θj

⎤
⎦
⎡
⎣ J∑

j=1

ψj(t; τ )θj

⎤
⎦

n−1

= qi(t, 0, τ ) +
ζ (t; τ )

[∑J
j=1 pij(t, 0, τ )θj

]
1 −∑J

j=1 ψj(t; τ )θj
. (5.4)

Finally, (5.2) follows from substituting (5.4) into (5.3). �
We now derive the relationship between HD(θ ; t, τ ; y) and HE(θ ; t, τ ; y). Recall that, for i =

1, 2, . . . , J, dt,i denotes the probability that a death of a type-i individual at time t is detected.

Corollary 2. For any t, τ > 0, θ = (θ1, θ2, . . . , θJ) ∈ [0, 1]J, and y = (y1, y2, . . . , yJ) ∈Z
J+,

HD(θ ; t, τ ; y) =
J∑

i=1

dt+τ,iγi
∂

∂θi
HE(θ ; t, τ ; y). (5.5)

Proof. The proof follows arguments similar to those used for [2, Lemma 4.4]. Let f i
Tκ+1

(·)
denote the joint density of Tκ+1 and the (κ + 1)th detected death being of type i. Hence, for
t ≥ 0, fTκ+1 (t) =∑J

i=1 f i
Tκ+1

(t).
We observe that

f (Xκ+1 = x, Tκ+1 = τ |Xκ = y)

= lim
σ↑τ

J∑
i=1

f i
Tκ+1

(τ |Y(t + σ ) = x + ei, Tκ+1 >σ )
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× P (Y(t + σ ) = x + ei, Tκ+1 >σ |Y(t) = y)

=
J∑

i=1

dt+τ,iγi(xi + 1)P (Y(t + τ ) = x + ei, Tκ+1 > τ |Y(t) = y) .

Therefore, letting v(i) = x + ei, we have that

HD(θ ; t, τ ; y) =
J∑

i=1

dt+τ,iγi

∑
x

(xi + 1)
J∏

j=1

θ
xj
j P (Y(t + τ ) = x + ei, Tκ+1 > τ |Y(t) = Xκ = y)

=
J∑

i=1

dt+τ,iγi

∑
v(i)

v(i)
i θ

v(i)
i −1

i

J∏
j �=i

θ
v(i)

j
j P

(
Y(t + τ ) = v(j), Tκ+1 > τ |Y(t) = Xκ = y

)

=
J∑

i=1

dt+τ,iγi
∂

∂θi
HE(θ ; t, τ ; y),

as required. �
Suppose that we let X0 denote the state of the population when the initial individual enters

the population. For i = 1, 2, . . . , J, P(X0 = ei) = χi. We can use Lemma 5 and Corollary 2 to
obtain X1 by integrating over T1, the inter-arrival time from the initial individual entering the
population to the first detected death.

Lemma 6. Given a single initial individual who starts in type l with probability χl, the joint
probability generating function of X1 is given by

E

⎡
⎣ J∏

j=1

θ
Xj

1
j

∣∣∣∣∣∣ T1 <∞
⎤
⎦= π0

1 − (1 − π0)
∑J

j=1 η
0
j θj

. (5.6)

Therefore, X1 ∼ W(0, 0) as defined in (3.5) and (3.6), so

X∗
1 =

J∑
j=1

Xj
1 ∼ Geom(π0),

{X1|X∗
1 = x∗} ∼ Multinomial

(
x∗, η0

)
,

where η0 = (η0
1, η

0
2, . . . , η

0
J ), and for j = 1, 2, . . . , J, Xj

1 ∼ Geom
(
π0/{π0 + η0

j − η0
j π0}

)
.

Proof. By conditioning upon T1 and the type of the initial individual, we have, for any
θ ∈ [0, 1]J , that

E

⎡
⎣ J∏

j=1

θ
Xj

1
j

∣∣∣∣∣∣ T1 <∞
⎤
⎦=

∑J
i=1 χi

∫∞
0 HD(θ ; − t, t; ei) dt∑J

i=1 χi
∫∞

0 HD(1; − t, t; ei) dt
. (5.7)

Using dt = ε (t ≤ 0), we have that

J∑
i=1

χi

∫ ∞

0
HD(θ ; − t, t; ei) dt =

J∑
j=1

γjεj
∂

∂θj

{
J∑

i=1

χi

∫ ∞

0
HE(θ ; − t, t; ei) dt

}
. (5.8)
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Since the branching (and detection) process is time-homogeneous prior to the first detected
death at time t = 0, it follows from Lemma 5 and Section 4 that

HE(θ ; − t, t; ei) = qi(−t, 0, t) + ζ̄ (t)
[∑J

j=1 pij(−t, 0, t)θj
]

1 −∑J
j=1 ψ̄j(t)θj

, (5.9)

where ζ̄ (t) = ζ (−t; t) and ψ̄j(t) =ψj(−t; t); cf. Section 4.2.
Let �̄=�(α1, ε) and �̄(t) =�(α1, ε, t) (t ≥ 0), where �(·, ·) and �(·, ·, ·) are defined in

(4.16) and (4.17), respectively. Then

d

dt
�̄(t) = �̄�̄(t).

Hence, for i, j = 1, 2, . . . , J + 1,

d

dt
�̄ij(t) =

J+1∑
l=1

�̄il�̄lj(t). (5.10)

It follows from Lemma 4 that ψ̄j(t) = −�̄J+1,j(t)/�̄J+1,J+1(t) and ζ̄ (t) = 1/�̄J+1,J+1(t).
Therefore, from (5.10), we have that

d

dt
ψ̄j(t) = −�̄J+1,J+1(t)

∑J+1
l=1 �̄J+1,l�̄l,j(t) + �̄J+1,j(t)

∑J+1
l=1 �̄J+1,l�̄l,J+1(t)

�̄J+1,J+1(t)2

= −
(∑J+1

l=1 �̄J+1,l
[
�J+1,J+1(t)�l,j(t) −�J+1,j(t)�l,J+1(t)

]
�̄J+1,J+1(t)2

)
. (5.11)

From (4.18), plj(−t, 0, t) = �̄lj(t) + ψ̄j(t)�̄l,J+1(t) (j, l = 1, 2, . . . , J). Then, since the sum on
the right-hand side of (5.11) is 0 for l = J + 1 and �̄J+1,l = −α1χl (l = 1, 2, . . . , J), we have
that

d

dt
ψ̄j(t) = α1ζ̄ (t)

J∑
l=1

χlplj(−t, 0, t). (5.12)

Therefore, substituting (5.9) and (5.12) into the integral on the right-hand side of (5.8), we
have that

J∑
i=1

χi

∫ ∞

0
HE(θ ; − t, t; ei) dt

=
J∑

i=1

χi

∫ ∞

0

{
qi(−t, 0, t) + ζ̄ (t)

[∑J
j=1 pij(−t, 0, t)θj

]
1 −∑J

j=1 ψ̄j(t)θj

}
dt

=
∫ ∞

0

{
J∑

i=1

χiqi(−t, 0, t)

}
dt +

∫ ∞

0

ζ̄ (t)
∑J

j=1 θj

[∑J
i=1 χipij(−t, 0, t)

]
1 −∑J

j=1 θjψ̄j(t)
dt

= K + 1

α1

∫ ∞

0

d
dt

∑J
j=1 θjψ̄j(t)

1 −∑J
j=1 θjψ̄j(t)

dt, (5.13)
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where K =∑J
i=1 χi

∫∞
0 qi(−t, 0, t) dt does not depend on θ .

Applying a change of variable z =∑J
j=1 θjψ̄j(t) in (5.13) and noting that ψ̄j(∞) = (1 −

π0)η0
j , we have that

J∑
i=1

χi

∫ ∞

0
HE(θ ; − t, t; ei) dt = K + 1

α1

∫ ∑J
j=1 θj(1−π0)η0

j

0

1

1 − z
dz

= K − 1

α1
log

⎛
⎝1 − (1 − π0)

J∑
j=1

θjη
0
j

⎞
⎠ . (5.14)

Substituting (5.14) into (5.8) and taking partial derivatives yields

J∑
i=1

χi

∫ ∞

0
HD(θ ; − t, t; ei) dt =

∑J
i=1 γiεi(1 − π0)η0

i

α1
(
1 − (1 − π0)

∑J
j=1 η

0
j θj

) . (5.15)

It follows from (5.15) and (5.7) that

E

⎡
⎣ J∏

j=1

θ
Xj

1
j

∣∣∣∣∣∣ T1 <∞
⎤
⎦=

∑J
i=1 γiεi(1 − π0)η0

i

α1
(
1 − (1 − π0)

∑J
j=1 η

0
j θj

) × α1π0∑J
i=1 γiεi(1 − π0)η0

i

= π0

1 − (1 − π0)
∑J

j=1 η
0
j θj
,

as required.
The distributions of X∗

1 , X1|X∗
1 , and Xj

1 can all be obtained straightforwardly from (5.6). �
The assumption that the birth rate and detection probabilities are constant prior to the first

detected death are required in Lemma 6 to show that X1 ∼ W(0, 0). In the supplementary
material we show that the distribution of X1 can also be obtained in the case where the birth
time of the initial individual, S0, is known and equal to −t0, say.

We proceed by studying the dynamics of a branching process from time t onwards with

Xκ = Y(t) = W(t, a). (5.16)

Remember that (5.16) implies that X∗
κ = Y∗(t) = W∗(t; a) is a zero-modified geometric random

variable with success probability πt. In Lemma 7 we consider the distribution of Y(t + τ ) given
that there are no detected deaths in the interval (t, t + τ ], the event Ẽa

t;τ defined in Section 3,
and in Lemma 8 we consider the distribution of Xκ+1 given that Tκ+1 = τ .

In the first instance, Lemmas 7 and 8 are useful in the case t = 0( = s1) and τ = t2( = s2),
with X1 = Y(0) = W(0, 0), where we consider the behaviour of the branching process between
the first and second detected death and at the second detected death.

Lemma 7. For t ≥ 0 and a>−(1 − πt)ηt, suppose that Y(t) ∼ W(t, a). In addition, for τ ≥ 0,
let b( = b(t, τ ; a)) satisfy (3.7).

Then UE(t, τ ; a) = P(Ẽa
t;τ ) (see (3.10)) satisfies

UE(t, τ ; a) =
πt ×

[
1 +∑J

i=1 aiqi(t, 0, τ )
]
×
[
1 +∑J

j=1 bj

]
πt+τ ×

[
1 − (1 − πt)

∑J
i=1 η

t
iqi(t, 0, τ )

]
×
[
1 +∑J

j=1 aj

] , (5.17)
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E [HE(θ ; t, τ ; W(t, a))] = UE(t, τ ; a)ϕ(θ ; t + τ, b), (5.18)

and

E

⎡
⎣ J∏

j=1

θ
Yj(t+τ )
j

∣∣∣∣∣∣ Ẽa
t;τ ,Y(t) ∼ W(t, a)

⎤
⎦= ϕ(θ ; t + τ, b). (5.19)

Thus, {Y(t + τ )|Ẽa
t;τ ,Y(t) ∼ W(t, a)} ∼ W(t + τ, b).

Proof. For t, τ ≥ 0 and θ ∈ [0, 1]J , let

ξi(θ ; t, τ ) = qi(t, 0, τ ) + ζ (t; τ )
∑J

j=1 pij(t, 0, τ )θj

1 −∑J
j=1 ψj(t; τ )θj

.

Therefore it follows from Lemma 5 and (3.4) that, for θ ∈ [0, 1]J ,

E [HE(θ ; t, τ ; W(t, a))] =E

⎡
⎣ J∏

j=1

ξj(θ ; t, τ )Wj(t,a)

⎤
⎦

= 1 +∑J
i=1 aiξi(θ ; t, τ )

1 +∑J
i=1 ai

× πt

1 − (1 − πt)
∑J

j=1 η
t
jξj(θ ; t, τ )

. (5.20)

Note that

1 +∑J
i=1 aiξi(θ ; t, τ )

1 − (1 − πt)
∑J

i=1 η
t
iξi(θ ; t, τ )

=
1 −∑J

i=1 ψi(t; τ )θi +∑J
i=1 ai

(
qi(t, 0, τ )[1 −∑J

j=1 ψj(t; τ )θj] + ζ (t; τ )
[∑J

j=1 θjpij(t, 0, τ )
])

1 −∑J
i=1 ψi(t; τ )θi − (1 − πt)

∑J
i=1 η

t
i

(
qi(t, 0, τ )[1 −∑J

j=1 ψj(t; τ )θj] + ζ (t; τ )
[∑J

j=1 θjpij(t, 0, τ )
]) .

(5.21)

Using (3.2), we have that the denominator in (5.21) satisfies⎡
⎣1 − (1 − πt)

J∑
j=1

ηt
jqj(t, 0, τ )

⎤
⎦{

1 −
J∑

i=1

θi

[
ψi(t; τ ) + (1 − πt)ζ (t; τ )

∑J
j=1 η

t
jpji(t, 0, τ )

1 − (1 − πt)
∑J

j=1 η
t
jqj(t, 0, τ )

]}

=
⎡
⎣1 − (1 − πt)

J∑
j=1

ηt
jqj(t, 0, τ )

⎤
⎦×

[
1 − (1 − πt+τ )

J∑
l=1

θlη
t+τ
l

]
. (5.22)

Thus, substituting (5.22) into (5.21) and using (3.7) yields

1 +∑J
i=1 aiξi(θ ; t, τ )

1 − (1 − πt)
∑J

i=1 η
t
iξi(θ ; t, τ )

=
1 +∑J

i=1 aiqi(t, 0, τ ) +∑J
j=1 θj

[
−ψj(t; τ )

{
1 +∑J

i=1 aiqi(t, 0, τ )
}

+ ζ (t; τ )
∑J

i=1 aipij(t, 0, τ )
]

[
1 − (1 − πt)

∑J
j=1 η

t
jqj(t, 0, τ )

]
×
[
1 − (1 − πt+τ )

∑J
l=1 θlη

t+τ
l

] .

=
[
1 +∑J

i=1 aiqi(t, 0, τ )
]
×
[
1 +∑J

j=1 bjθj

]
[
1 − (1 − πt)

∑J
j=1 η

t
jqj(t, 0, τ )

]
×
[
1 − (1 − πt+τ )

∑J
l=1 θlη

t+τ
l

] . (5.23)

Then (5.18) follows from (5.20) and (5.23) by straightforward algebraic manipulation.
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By setting θ = 1 in (5.18), we obtain (5.17).
Finally, (5.19) follows immediately from

ϕ(θ ; t + τ, b)UE(t, τ ; a) =E [HE(θ ; t, τ ; W(t, a))]

=E

⎡
⎣ J∏

j=1

θ
Yj(t+τ )
j 1{Ẽa

t,τ }

∣∣∣∣∣∣Y(t) ∼ W(t, a)

⎤
⎦

=E

⎡
⎣ J∏

j=1

θ
Yj(t+τ )
j

∣∣∣∣∣∣ Ẽa
t,τ ,Y(t) ∼ W(t, a)

⎤
⎦ P

(
Ẽa

t,τ |Y(t) ∼ W(t, a)
)

=E

⎡
⎣ J∏

j=1

θ
Yj(t+τ )
j

∣∣∣∣∣∣ Ẽa
t,τ ,Y(t) ∼ W(t, a)

⎤
⎦UE(t, τ ; a). �

The following observations, which are consequences of Lemma 7, prove useful in the
derivation of the approximation in Section 3.5.2. For t ≥ 0, let Gt ∼ Geom(πt). Then if
Y(t) ∼ W(t, 0), we have that Y∗(t) ∼ Gt. As noted prior to (3.19), bi(t, τ ; 0) = −ψi(t; τ ) (i =
1, 2, . . . , J), so it follows from (5.19) that, for 0 ≤ ϑ ≤ 1,

E

[
ϑY∗(t+τ )

∣∣∣ Ẽ0
t;τ ,Y(t) ∼ W(t; 0)

]
= 1 −ψ(t; τ )ϑ

1 −ψ(t; τ )
× πt+τ

1 − (1 − πt+τ )ϑ
. (5.24)

Since 0<ψ(t; τ )< 1 − πt+τ , (see (3.1)) it follows from (5.24) and Lemma 1 that

{
Y∗(t + τ )

∣∣ EY(t)
t,τ , Y∗(t) ∼ Gt

}
∼
{

Gt+τ with probability h(t; τ ),

0 with probability 1 − h(t; τ ),
(5.25)

where, for t, τ ≥ 0,

h(t; τ ) = 1 − πt+τ −ψ(t; τ )

(1 − πt+τ )(1 −ψ(t; τ ))
. (5.26)

We turn to the distribution of Xκ+1 given that Xκ ∼ W(t, a). Recall from (3.11) that
UD(t, τ ; a) = − ∂

∂τ
UE(t, τ ; a), where UE(t, τ ; a) is defined in (3.10) and derived in (5.17).

Lemma 8. For some κ = 1, 2, . . ., suppose that sκ = t with Xκ ∼ W(t, a). For τ ≥ 0, let b ( =
b(t, τ ; a)) and c ( = c(t, τ ; a)) satisfy (3.7) and (3.8). Then

fTκ+1 (τ |Sκ = t,Xκ ∼ W(t, a) )

=
UE(t, τ ; a)

∑J
j=1 dt+τ,jγj

[
bjπt+τ + (1 − πt+τ )ηt+τ

j (1 +∑J
i=1 bi)

]
πt+τ (1 +∑J

i=1 bi)

= − ∂

∂τ
UE(t, τ ; a) = UD(t, τ ; a), (5.27)

and

E

⎡
⎣ J∏

j=1

θ
Xj
κ+1

j

∣∣∣∣∣∣ Tκ+1 = τ,Xκ ∼ W(t, a)

⎤
⎦= ϕ(t + τ, 0)ϕ(t + τ, c). (5.28)
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Thus,

{
Xκ+1|Sκ = t, Tκ+1 = τ,Xκ ∼ W(t, a)

}∼ W(t + τ, c) + W(t + τ, 0), (5.29)

where W(t + τ, c) and W(t + τ, 0) are independent random variables.

Proof. For θ ∈ [0, 1]J , it follows from Corollary 2, (5.5), and Lemma 7, (5.18), that

E [HD(θ ; t, τ ; W(t, a))] =
J∑

j=1

γjdt+τ,j
∂

∂θj
E [HE(θ ; t, τ ; W(t, a))]

=
J∑

j=1

γjdt+τ,jUE(t, τ ; a)
∂

∂θj
ϕ(t + τ ; b). (5.30)

The partial derivative of ϕ(t + τ ; b) with respect to θj (j = 1, 2, . . . , J) is given by

∂

∂θj
ϕ(t + τ ; b) = πt+τ

1 +∑J
i=1 bi

×
bj

[
1 − (1 − πt+τ )

∑J
l=1 θlη

t+τ
l

]
+ (1 − πt+τ )ηt+τ

j

(
1 +∑J

i=1 biθi

)
[
1 − (1 − πt+τ )

∑J
l=1 θlη

t+τ
l

]2
. (5.31)

By setting θ = 1 in (5.31) and using (5.1) and (5.30), we obtain (5.27).
Since

E

⎡
⎣ J∏

j=1

θ
Xj
κ+1

j

∣∣∣∣∣∣ Tκ+1 = τ,Xκ ∼ W(t, a)

⎤
⎦= E [HD(θ ; t, τ ; W(t, a))]

fTκ+1 (τ |Sκ = t,Xκ ∼ W(t, a) )

(cf. (5.1)), it follows that

E

⎡
⎣ J∏

j=1

θ
Xj
κ+1

j

∣∣∣∣∣∣ Tκ+1 = τ,Xκ ∼ W(t, a)

⎤
⎦

= π2
t+τ[

1 − (1 − πt+τ )
∑J

l=1 θlη
t+τ
l

]2

×
∑J

j=1 dt+τ,jγj

(
bj

[
1 − (1 − πt+τ )

∑J
l=1 θlη

t+τ
l

]
+ (1 − πt+τ )ηt+τ

j

(
1 +∑J

i=1 biθi

))
∑J

j=1 dt+τ,jγj

[
bjπt+τ + (1 − πt+τ )ηt+τ

j (1 +∑J
i=1 bi)

] .

(5.32)

https://doi.org/10.1017/apr.2024.65 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.65


28 F. BALL AND P. NEAL

The second fraction on the right-hand side of (5.32) simplifies to∑J
j=1 dt+τ,jγj

(
bj

[
1 − (1 − πt+τ )

∑J
l=1 θlη

t+τ
l

]
+ (1 − πt+τ )ηt+τ

j

(
1 +∑J

i=1 biθi

))
∑J

j=1 dt+τ,jγj

[
bjπt+τ + (1 − πt+τ )ηt+τ

j (1 +∑J
i=1 bi)

]

=
∑J

j=1 dt+τ,jγj

[
(1 − πt+τ )ηt+τ

j + bj

]
+∑J

l=1 θl(1 − πt+τ )
∑J

j=1 dt+τ,jγj

(
blη

t+τ
j − bjη

t+τ
l

)
∑J

j=1 dt+τ,jγj

[
(1 − πt+τ )ηt+τ

j + bj

]
+∑J

l=1 (1 − πt+τ )
∑J

j=1 dt+τ,jγj

(
blη

t+τ
j − bjη

t+τ
l

)

=
(∑J

j=1 dt+τ,jγj

[
(1 − πt+τ )ηt+τ

j + bj

])
×
(

1 +∑J
l=1 clθl

)
(∑J

j=1 dt+τ,jγj

[
(1 − πt+τ )ηt+τ

j + bj

])
×
(

1 +∑J
l=1 cl

) = 1 +∑J
l=1 clθl

1 +∑J
l=1 cl

. (5.33)

Since c>−(1 − πt+τ )ηt+τ , we can combine (5.32) and (5.33) to obtain (5.28), completing the
proof of the lemma. �

The following observations, which are consequences of Lemma 8, prove useful in the
derivation of Section 3.5.2. The distribution of the size of the population immediately fol-
lowing the (κ + 1)th detected death, given that we have Xκ ∼ W(sκ ; 0), depends on the sign of

C∗
sκ ;tκ+1

=
J∑

i=1

Ci
sκ ;tκ+1

,

where Ci
sκ ;tκ+1

(i = 1, 2, . . . , J) are given by (3.19). In particular, it follows from (5.29) and
Lemma 1 that if C∗

sκ ;tκ+1
≤ 0 with sκ+1 = sκ + tκ+1, then

{
X∗
κ+1

∣∣Xκ ∼ W(sk; 0)
}∼

{
G1

sκ+1
+ G2

sκ+1
with probability h̃(sκ , tκ+1),

Gsκ+1 with probability 1 − h̃(sκ , tκ+1),
(5.34)

where h̃(sκ , tκ+1) is defined in (3.20) and G1
sk+1

and G2
sk+1

are i.i.d. copies of Gsk+1 .
We are now in position to prove Theorem 1.

Proof of Theorem 1 The theorem is proved by induction.
By Lemma 6, we have that X1 ∼ W(0, 0), and by Lemma 8, we have that X2|T2 = t2 ∼

W(s2,C0;t2 ) + W(s2, 0), where the components of C0;t2 are given by (3.19) and W(s2,C0;t2 )
and W(s2, 0) are independent.

For k = 2, 3, . . ., we have that Xk|T2:k = t2:k satisfies (3.12). Therefore suppose that
Xk|T2:k = t2:k ∼∑k

l=1 Wml(sk; ak
ml) for some m = 1, 2, . . . ,Mk( = (k − 1)!) and note that this

occurs with probability wk
m. We say that the population immediately after the kth detected death

consists of k independent family groups, where the number of individuals of each type in the
lth family group is given by Wml(sk; ak

ml). Note that a family group can contain 0 individuals.
Each family group evolves independently with births of new individuals, individuals chang-
ing type, and deaths of individuals. Given that the first detected death after time sk is at time
sk+1 = sk + tk+1, one of the family groups is responsible for the death, whilst the other k − 1
family groups do not experience a detected death in the interval (sk, sk+1]. Hence, it follows
that the joint probability density for Tk+1 = tk+1 and the ith family group being responsible for
the death is

UD(sk, tk+1; ak
mi)

∏
l �=i

UE(sk, tk+1; ak
ml). (5.35)
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Since Xk|T2:k = t2:k is a mixture of
{∑k

l=1 Wml(sk; aml)
}

with weights wk
m, we have that

fTk+1 (tk+1|Sk = sk,Xk) =
Mk∑

m=1

wk
m

k∑
i=1

UD
(
sk, tk+1; ak

mi

)∏
l �=i

UE
(
sk, tk+1; ak

ml

)
. (5.36)

It follows from (5.35) and (5.36) that, given Tk+1 = tk+1, the probability of the detected death
coming from the ith family group in the mth mixture distribution is wk+1

mk+i as defined in (3.14).
Given that the ith family group in the mth mixture distribution is responsible for the

(k + 1)th detected death at time sk+1, we have k + 1 family groups at time sk+1. The k − 1
family groups not responsible for the detected deaths will have evolved by Lemma 7 into
family groups having different distributions. Specifically, the lth family group (l �= i) which
had numbers of individuals of each type distributed according to W(sk, ak

ml) will have, given
no detected death in (sk, sk+1], numbers of individuals of each type distributed according to
W(sk+1, bk

ml). By Lemma 8, we can split the family group i, in which the detected death occurs
at sk+1, into two independent family groups, with the numbers of individuals of each type in
the two family groups distributed according to W(sk+1, ck

ml) and W(sk+1, 0), respectively. The
labellings of {ak+1

(mk+i)j} given in (3.15) follow.
Hence, (3.13) is proved and the theorem follows. �

The description of family groups given in Theorem 1 differs from the description in [2,
Theorem 3.2]. In [2], the number of family groups immediately after the kth detected death
is random with support {2, 3, . . . , k} for k ≥ 2, and its distribution is dependent on the times
of the detected deaths. The size of each family group is i.i.d. according to Geom(πsk ). In
Theorem 1, there are k family groups immediately after the kth detected death, with the sizes
of the family groups being independent but not identically distributed, and their distributions
depending on the times of the detected deaths.

It is possible to obtain a result similar to Theorem 1 if the time S0 at which the first individual
is born is known and is equal to −t0, say; the details are provided in the supplementary material.
In that case it can be shown using Corollary 2 and (5.2) that the distribution of X1 is the sum of
two independent zero-modified geometric random variables with π0 = 1 −ψ(−t0;t0); cf. the
discussion after the proof of [2, Theorem 3.1]. The distribution of X2:k|T2:k = t2:k can then be
obtained as above, except that it consists of a mixture of k! random variables, each consisting
of k + 1 independent zero-modified geometric random variables.

6. Derivation of the approximation in Section 3.5.2

In this section we construct the approximation X̂k and X̂∗
k =∑k

i=1 X̂j
k to Xk and X∗

k ,

where X̂∗
k is a mixture of negative binomial distributions and X̂k|X∗

k follows a multinomial

distribution. As stated in Section 3.5.2, we set X̂1 = X1 ∼ Ŵ(0; η0).
For k = 1, 2, . . ., we outline the construction of X̂∗

k+1|T2:k+1 = t2:k+1 and X̂k+1|T2:k+1 =
t2:k+1 given that X̂k|T2:k = t2:k ∼∑R̂k

i=1 Ŵi
(
sk; ζ̂

k)
, where R̂k has support {1, 2, . . . , k},

P̂m
k = P

(
R̂k = m

)
(k = 1, 2, . . . ; m = 1, 2, . . . , k), and the Ŵi

(
sk; ζ̂

k)
are i.i.d. according to

Ŵ
(
sk; ζ̂

k)
given by (3.23) and (3.24). That is,

X̂∗
k |T2:k = t2:k ∼ NegBin

(
R̂k, πsk

)
, (6.1)

X̂k|X̂∗
k = x∗,T2:k = t2:k ∼ Multinomial

(
x∗, ζ̂ k)

. (6.2)
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Let X̃k+1|T2:k+1 = t2:k+1 denote the distribution of the number of individuals alive of
each type immediately after the (k + 1)th detected death, given that immediately after the
kth detected death, at time sk, the distribution of the number of individuals alive of each
type is given by X̂k|T2:k = t2:k defined in (6.1) and (6.2). We obtain the distribution of
X̃k+1|T2:k+1 = t2:k+1 using minor modifications of Lemmas 7 and 8, by arguments along
similar lines to those used in the proof of Theorem 1 and [2, Section 4].

Suppose that R̂k = j for some j = 1, 2, . . . , k. Then at time sk, the population consists of
j i.i.d. family groups, where the number of individuals of each type within a family group is

distributed according to Ŵ
(
sk; ζ̂

k)
. (As in the proof of Theorem 1, a family group may contain

no individuals.) One of these j family groups will be responsible for the next detected death
in the population, at time sk+1, and the distribution of the number of individuals alive in that

family group and their types are obtained from Lemma 8 by setting a = 0 and ηsk = ζ̂
k
. The

other j − 1 family groups will not experience a detected death in the interval (sk, sk+1], and
the distribution of the number of individuals alive in these family groups and their types are

obtained by setting a = 0 and ηsk = ζ̂
k

in Lemma 7.
For each of the family groups which do not experience a detected death in the interval

(sk, sk+1], the distribution of the number of individuals alive at time sk+1 is given by (5.25)
with t = sk and τ = tk+1, a mixture distribution of Gsk+1 with probability h(sk; tk+1) and a point
mass at 0 with probability 1 − h(sk; tk+1), where h(t; τ ) is defined in (5.26). Similarly, for the
family group which does experience the death, the distribution of the number of individuals
alive at time sk+1, immediately after the death, is, by (5.34), a mixture of the sum of two inde-
pendent copies of Gsk+1 with probability h̃(sk; tk+1) and Gsk+1 with probability 1 − h̃(sk; tk+1).
Hence,

X̃∗
k+1 =

J∑
j=1

Xj
k+1

∣∣∣∣∣∣ R̂k = l, Tk+1 = tt+1 ∼ NegBin
(
R̃k+1, πsk+1

)
,

where

R̃k+1|R̂k = l, Tk+1 = tk+1 ∼ 1 + Bin(1, h̃(sk; tk+1)) + Bin(l − 1, h(sk; tk+1)) (6.3)

and the two binomial random variables are independent. We observe that (6.3) is similar to [2,
(4.15)], and hence, we follow [2, Lemma 4.5] in the derivation of the probability mass function
of {R̃k+1|R̂k = l, Tk+1 = tk+1}.

Remember that we set ηsk = ζ̂
k

and L(sk, τ ) is defined in (3.22). Therefore, from (5.17) and
(5.27), with a = 0 and noting from (3.7) that bi(t, τ ; 0) = −ψi(t : τ ), we have, for τ ≥ 0, that

UE(sk, τ ; 0) = πsk (1 −ψ(sk;τ ))

πsk+τL(sk, τ )
, (6.4)

and (also using (3.3))

UD(sk, τ ; 0)

=
πsk

[∑J
j=1 dsk+τ,jγjφj(sk;τ ) + (1 − πsk+τ )

∑J
j=1 dsk+τ,jγj

(
ψj(sk;τ ) − η

sk+τ
j ψ(sk;τ )

)]
π2

sk+τL(sk, τ )
.

(6.5)
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Therefore, it follows from (6.4) and (6.5) that the probability density function of Tk+1, given
X̂k satisfies (3.26), is

f̂Tk+1 (τ |T2:k = t2:k, R̂k = m) = m

[
πsk (1 −ψ(sk; τ ))

πsk+1 L(sk, τ )

]m−1

UD(sk, τ ; 0) (τ ≥ 0). (6.6)

We use (6.3) and (6.6) to derive P̃j
k+1 = P(R̃k+1 = j|T2:k+1 = t2:k+1), which is given by

P̃j
k+1 = P(R̃k+1 = j|T2:k+1 = t2:k+1)

=
k∑

l=1

P(R̂k+1 = j, R̂k = l|T2:k+1 = t2:k+1)

=
k∑

l=1

P(R̂k+1 = j|R̂k = l, Tk+1 = tk+1)f̂Tk+1 (tk+1|T2:k = t2:k, R̂k = l)P̂l
k

f̂Tk+1 (tk+1|T2:k = t2:k)
. (6.7)

Using (6.6), we have that the denominator in (6.7) is given by

f̂Tk+1 (tk+1|T2:k = t2:k) =
k∑

m=1

f̂Tk+1 (tk+1|T2:k = t2:k, R̂k = m)P̂m
k

=
k∑

m=1

m

[
πsk (1 −ψ(sk; tk+1))

πsk+1 L(sk, tk+1)

]m−1

UD(sk, tk+1; 0)P̂m
k

= UD(sk, tk+1; 0)
k∑

m=1

m

[
πsk (1 −ψ(sk; tk+1))

πsk+1 L(sk, tk+1)

]m−1

P̂m
k . (6.8)

Similarly, the numerator in (6.7) is given by

k∑
l=1

P(R̂k+1 = j|R̂k = l, Tk+1 = tk+1)f̂Tk+1 (tk+1|T2:k = t2:k, R̂k = l)P̂l
k

=
k∑

l=1

[
h̃(sk; tk+1)

(
l − 1

j − 2

)
h(sk; tk+1)j−2{1 − h(sk; tk+1)}l+1−j

+
{

1 − h̃(sk; tk+1)
} (l − 1

j − 1

)
h(sk; tk+1)j−1{1 − h(sk; tk+1)}l−j

]

× l

[
πsk (1 −ψ(sk; tk+1))

πsk+1 L(sk, tk+1)

]l−1

UD(sk, tk+1; 0)P̂l
k. (6.9)

We note that the term UD(sk, tk+1; 0) appears both in the numerator, (6.9), and the denominator,
(6.8), and hence cancels in the calculation of P̃j

k+1.
Using (5.26) and (3.3), summed over j, we have

h(sk; tk+1)
πsk (1 −ψ(sk; tk+1))

πsk+1 L(sk, tk+1)
= πskφ(sk; tk+1)

πsk+1 (1 − πsk+1 )L(sk, tk+1)
,
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where φ(sk; tk+1) =∑J
j=1 φj(sk; tk+1), and

(1 − h(sk; tk+1))
πsk (1 −ψ(sk; tk+1))

πsk+1 L(sk, tk+1)
= πskψ(sk; tk+1)

(1 − πsk+1 )L(sk, tk+1)
.

It then follows from (6.7), by (6.8) and (6.9), given P̂
k
, that P̃

k+1 =
(

P̃1
k+1, P̃2

k+1, . . . , P̃k+1
k+1

)
satisfies

P̃k+1 = 1

Kk
P̂k

[
h̃(sk; tk+1)M1

k(sk; tk+1) + {1 − h̃(sk; tk+1)}M2
k(sk; tk+1)

]
, (6.10)

where Kk is the normalising constant given by (3.28). We note that the right-hand side

of (6.10) is identical to the right-hand side of (3.27), and hence
{
X̃∗

k+1|T2:k+1 = t2:k+1
} D={

X̂∗
k+1|T2:k+1 = t2:k+1

}
.

We complete the construction of X̂k+1 by deriving ζ̂
k+1

. For j = 1, 2, . . . , J, we set

ζ̂ k+1
j = E[X̃j

k+1|T2:k+1 = t2:k+1]

E[X̃∗
k+1|T2:k+1 = t2:k+1]

(6.11)

and show that ζ̂ k+1
j satisfies (3.29).

Suppose that R̂k = l, i.e. there are l family groups immediately after the kth detected
death. We have that l − 1 of these family groups will not produce the (k + 1)th detected
death. For these family groups, by Lemma 7, the distribution of the number of individuals
of each type alive immediately after the (k + 1)th detected death at time sk+1 is given by
W(sk+1; −ψ(sk, tk+1)). By differentiating (3.4) with respect to θj and setting θ = 1, we have,
for ã ∈R

J , that

E[Wj(sk+1; ã)] = ∂

∂θj

[
1 +∑J

i=1 θiãi

1 +∑J
i=1 ãi

× πsk+1

1 − (1 − πsk+1 )
∑J

l=1 θlη
sk+1
l

]∣∣∣∣∣
θ=1

=
[

ãjπsk+1

(1 +∑J
i=1 ãi)(1 − (1 − πsk+1 )

∑J
l=1 θlη

sk+1
l )

+1 +∑J
i=1 θiãi

1 +∑J
i=1 ãi

× η
sk+1
j πsk+1 (−1)2(1 − πsk+1 )

[1 − (1 − πsk+1 )
∑J

l=1 θlη
sk+1
l ]2

]∣∣∣∣∣
θ=1

= η
sk+1
j

1 − πsk+1

πsk+1

+ ãj

1 +∑J
i=1 ãi

. (6.12)

Hence, it follows that

E[Wj(sk+1; −ψ(sk, tk+1))] = η
sk+1
j

1 − πsk+1

πsk+1

− ψj(sk; tk+1)

1 −ψ(sk; tk+1)
. (6.13)

Similarly, we can derive the expected number of individuals of type j immediately after the
(k + 1)th detected death at time sk+1 in the family group which experienced the death, using
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(5.29) in Lemma 8 with c = Csk;tk+1 defined in (3.19). By (6.12), it follows that

E[Wj(sk+1; 0)] +E[Wj(sk+1; Csk;tk+1 )] = 2ηsk+1
j

1 − πsk+1

πsk+1

+ Cj
sk,tk+1

1 + C∗
sk,tk+1

. (6.14)

It follows from (6.13), (6.14), and νk =E[R̂k|T2:k = t2:k] that

E[X̃j
k+1|T2:k+1 = t2:k+1] = (νk + 1)ηsk+1

j
1 − πsk+1

πsk+1

− (νk − 1)
ψj(sk; tk+1)

1 −ψ(sk; tk+1)
+ Cj

sk;tk+1

1 + C∗
sk;tk+1

.

(6.15)

By summing (6.15) over j, we have that

E[X̃∗
k+1|T2:k+1 = t2:k+1] = (νk + 1)

1 − πsk+1

πsk+1

− (νk − 1)
ψ(sk; tk+1)

1 −ψ(sk; tk+1)
+ C∗

sk;tk+1

1 + C∗
sk;tk+1

,

(6.16)

and (3.29) follows immediately from inserting (6.15) and (6.16) into (6.11).

7. Numerical results

In this section we demonstrate the usefulness of the approximate distribution given in
Section 3.5.2 using an example parameter set with time-changing parameters, birth rate, and
probability of detecting a death. We simulated branching processes with L ∼ Gamma(3, 3) up
until the 500th detected death. For k = 1, 2, . . . , 500, let αk and εk denote the birth rate and the
probability of detecting the death of a type-3 individual, respectively, between the (k − 1)th and
kth detected death. (Since γ1 = γ2 = 0 it suffices to state the probability of detecting a death
of type-3 individuals.) The birth rate and detection probability change after every 100 detected
deaths, with (αk, εk) = (2.5, 0.3), (α100+k, ε100+k) = (1.5, 0.4), (α200+k, ε200+k) = (1.0, 0.5),
(α300+k, ε300+k) = (0.6, 0.6), and (α400+k, ε400+k) = (0.4, 0.7) (k = 1, 2, . . . , 100). Thus the
birth rate is decreasing over time, with the branching process going from being supercritical
to subcritical with the detection probability increasing. (Note that since E[L] = 1, the basic
reproduction number is equal to the birth rate.) In Figure 3, we plot the number of individuals
alive, of each type and the total number, immediately after a detected death against the number
of detected deaths from a single realisation of the branching process, along with the median
(X̂j

k, j = 1, 2, 3; X̂∗
k ) of the approximate distribution derived in Section 3.5.2. We also include

the 5% and 95% quantiles of the approximate distribution, denoted by lk and uk, with [lk, uk]
shaded for k = 1, 2, . . . , 500. Throughout, we observe good agreement between the median of
the approximate distribution and the actual number of individuals alive of each type.

We now turn to assessing the performance of the approximate distribution based on 100
realisations of the branching process described above. For i = 1, 2, . . . , 100, let ti

2:500 denote
the inter-arrival times of the detected deaths in simulation i, and let xi,k,j (k = 1, 2, . . . , 500;j =
1, 2, 3, ∗) denote the number of individuals of type j alive (with xi,k,∗ =∑3

j=1 xi,k,j) immedi-
ately after the kth detected death in the ith simulation. (Note that we include only simulations
which reach at least 500 detected deaths.) For i = 1, 2, . . . , 100, k = 1, 2, . . . , 500, and j =
1, 2, 3, ∗, let

ui,k,j = 0.5[P(X̂j
k < xi,k,j|T2:k = ti

2:k) + P(X̂j
k ≤ xi,k,j|T2:k = ti

2:k)], (7.1)
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FIGURE 3. Number of individuals alive (solid line) and median of approximate distribution X̂z
k|t2:k

(z = ∗, 1, 2, 3) (dashed line) up to the 500th detected death with L ∼ Gamma(3, 3), (αk, εk) =
(2.5, 0.3), (α100+k, ε100+k) = (1.5, 0.4), (α200+k, ε200+k) = (1.0, 0.5), (α300+k, ε300+k) = (0.6, 0.6), and
(α400+k, ε400+k) = (0.4, 0.7) (k = 1, 2, . . . , 100). The shaded area represents the probability mass
between the 5% and 95% quantiles of X̂z

k|t2:k. Top left: total size of the population. Top right: num-
ber of Type 1 individuals. Bottom left: number of Type 2 individuals. Bottom right: number of Type 3
individuals.

Total number alive Number alive of Type 1

Number alive of Type 2 Number alive of Type 3

FIGURE 4. P–P plots based on 100 simulations of the ordered quantiles of ũ·,500,j (j = ∗, 1, 2, 3), where
L ∼ Gamma(3, 3), (αk, εk) = (2.5, 0.3), (α100+k, ε100+k) = (1.5, 0.4), (α200+k, ε200+k) = (1.0, 0.5),
(α300+k, ε300+k) = (0.6, 0.6), and (α400+k, ε400+k) = (0.4, 0.7) (k = 1, 2, . . . , 100). Top left: total
number of individuals alive. Top right: number of Type 1 individuals alive. Bottom left: number of Type
2 individuals alive. Bottom right: number of Type 3 individuals alive.
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the midpoint of the left- and right-hand limits of the cumulative distribution function of
X̂j

k|T2:k = ti
2:k evaluated at xi,k,j. Let u·,k,j = (u1,500,j, u2,k,j, . . . , u100,k,j), and let ũi,k,j denote

the ith-smallest element of u·,k,j with ũ·,k,j = (ũ1,500,j, ũ2,k,j, . . . , ũ100,k,j). Under Section 3.5.2,
the order statistics ũ·,k,j are distributed according to the order statistics of U ∼ U(0, 1). In
Figure 4, we present P–P plots for ũ·,500,j (j = 1, 2, 3, ∗) against the quantiles of U ∼ U(0, 1).
The P–P plots demonstrate excellent performance of the approximate distribution for num-
ber of each type alive and the total number alive after the 500th detected death, with similar
performance observed for other values of k.

In the supplementary material two more examples are provided, including an epidemic
example where the birth rate in the branching process is adjusted to take account of the
expected number of non-susceptible individuals in the population in a similar manner to [2,
Section 7]. The results of the supplementary material suggest that the approximate distribution
tends to become worse as the number of phases in the Erlang distribution increases and the
more dramatic the changes in parameters, especially the detection probability.

Appendix A. Proof of Lemma 2.

Note from (3.7) that for i = 1, 2, . . . , J, bi ( = bi(t, τ ; a))>−(1 − πt+τ )ηt+τ
i is equivalent

to

−ψi(t; τ ) +
J∑

h=1

ah
[
ζ (t; τ )phi(t, 0, τ ) −ψi(t; τ )qh(t, 0, τ )

]

>−(1 − πt+τ )ηt+τ
i

[
1 +

J∑
h=1

ahqh(t, 0, τ )

]
. (A.1)

By (3.3), φi(t; τ ) = (1 − πt+τ )ηt+τ
i −ψi(t; τ ), so we have that (A.1) is equivalent to

φi(t; τ )>
J∑

h=1

ah
[−ζ (t; τ )phi(t, 0, τ ) − φi(t; τ )qh(t, 0, τ )

]
. (A.2)

Since −ζ (t; τ )phi(t, 0, τ ) − φi(t; τ )qh(t, 0, τ )< 0 (h = 1, 2, . . . , J) and ah >−(1 − πt)ηt
h, we

have that
J∑

h=1

ah
[−ζ (t; τ )phi(t, 0, τ ) − φi(t; τ )qh(t, 0, τ )

]

<

J∑
h=1

[−(1 − πt)η
t
h

] [−ζ (t; τ )phi(t, 0, τ ) − φi(t; τ )qh(t, 0, τ )
]

= (1 − πt)ζ (t; τ )
J∑

h=1

ηt
hphi(t, 0, τ ) + φi(t; τ )(1 − πt)

J∑
h=1

ηt
hqh(t, 0, τ ). (A.3)

Using (3.2) and (3.3), it is straightforward to show that the right-hand side of (A.3) is equal to
φi(t; τ ). Therefore (A.2), and consequently bi >−(1 − πt+τ )ηt+τ

i (i = 1, 2, . . . , J), both hold.
Given that bj >−(1 − πt+τ )ηt+τ

j (j = 1, 2, . . . , J), the denominator in (3.8) is positive.

Using (3.8), a little algebra shows that for i = 1, 2, . . . , J, the inequality ci >−(1 − πt+τ )ηt+τ
i

is equivalent to
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(
bi + (1 − πt+τ )ηt+τ

i

) J∑
j=1

dt+τ,jγjη
t+τ
j > 0,

which clearly holds.
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