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The sampling window method of Hall, Jing, and Lahiri ~1998, Statistica Sinica 8,
1189–1204! is known to consistently estimate the distribution of the sample mean
for a class of long-range dependent processes, generated by transformations of
Gaussian time series+ This paper shows that the same nonparametric subsampling
method is also valid for an entirely different category of long-range dependent
series that are linear with possibly non-Gaussian innovations+ For these strongly
dependent time processes, subsampling confidence intervals allow inference on
the process mean without knowledge of the underlying innovation distribution or
the long-memory parameter+ The finite-sample coverage accuracy of the subsam-
pling method is examined through a numerical study+

1. INTRODUCTION

This paper considers nonparametric distribution estimation for a class of ran-
dom processes that exhibit strong or long-range dependence+ Here we classify
a real-valued stationary time process $Yt %, t � Z as long-range dependent ~LRD!
if its autocovariance function r~k! � Cov~Yt ,Yt�k! can be represented as

r~k! � k�aL1~k!, kr `, (1)

for some 0 � a � 1 and function L1 : ~0,`! r ~0,`! that is slowly varying at
infinity, that is, limxr`L1~lx!0L1~x! � 1 for all l � 0+ Time series satisfying
~1! often find application in astronomy, hydrology, and economics ~Beran, 1994;
Montanari, 2003; Henry and Zaffaroni, 2003!+

For comparison, we note that weakly dependent processes are usually char-
acterized by rapidly decaying, summable covariances ~Doukhan, 1994!+
However, ~1! implies that the sum of covariances (k�1

` r~k! diverges under
long-range dependence+ This feature of strongly dependent data often compli-
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cates standard statistical inference based on the sample mean PYn of a stretch of
observations Y1, + + + ,Yn+ For one reason, the variance of a size n sample mean PYn

decays to zero at a rate that is both slower than O~n�1! and unknown in prac-
tice ~Beran, 1994!+ The usual scaling factor Mn used with independent or
weakly dependent data then fails to produce a limit distribution for PYn under
long-range dependence+ Even if properly standardized, the sample mean can
have normal in addition to nonnormal limit laws across various types of strongly
dependent processes ~Davydov, 1970; Taqqu, 1975!+ As a consequence, statis-
tical approximations of the unknown sampling distribution of PYn are necessary
under long-range dependence, without making stringent assumptions on the
underlying process or the strength of the dependence a, L1 in ~1!+

For weakly dependent data, the moving block bootstrap of Künsch ~1989!
and Liu and Singh ~1992! provides accurate nonparametric estimates of the sam-
ple mean’s distribution+ However, the block bootstrap has been shown to break
down for a class of LRD processes where the asymptotic distribution of PYn can
be nonnormal ~cf+ Lahiri, 1993!+ These processes are obtained through transfor-
mations of certain Gaussian series ~Taqqu, 1975, 1979; Dobrushin and Major,
1979!+ Although the bootstrap rendition of PYn fails for transformed-Gaussian
LRD processes, Hall, Jing, and Lahiri ~1998! have shown that their so-called
sampling window procedure can consistently approximate the distribution of
the normalized sample mean for these same time series+ This procedure is a
subsampling method that modifies data-blocking techniques developed for infer-
ence with weakly dependent ~mixing! data ~Politis and Romano, 1994; Hall
and Jing, 1996!+ With the aid of subsampling variance estimators, Hall et al+
~1998! also developed a Studentized version of the sample mean along with a
consistent, subsample-based estimator of its distribution+

In this paper, we establish the validity of the sampling window method of
Hall et al+ ~1998! for a different category of LRD processes: linear LRD pro-
cesses with an unknown innovation distribution+ The subsampling method is
shown to correctly estimate the distribution of normalized and Studentized ver-
sions of the sample mean under this form of long-range dependence, without
knowledge of the exact dependence strength a or innovation structure+ The
results illustrate that subsampling can be applied to calibrate nonparametric con-
fidence intervals for the mean E~Yt !�m of either a transformed-Gaussian LRD
process ~Hall et al+, 1998! or a linear LRD series+ That is, the same subsam-
pling procedure allows nonparametric interval estimation when applied to two
major examples of strongly dependent processes considered in the literature
~Beran, 1994, Ch+ 3!+

The rest of the paper is organized as follows+ In Section 2, we frame the
process assumptions and some distributional properties of PYn+ Main results are
given in Section 3, where we establish the consistency of subsampling distri-
bution estimation for the sample mean under linear long-range dependence+ In
Section 4, we report a simulation study on the coverage accuracy of a subsam-
pling confidence interval procedure for the LRD process mean m+ A second
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numerical study also considers subsampling estimators for the distribution of
the Studentized sample mean+ In Section 5, we discuss the validity of the sub-
sampling method for weakly dependent linear processes+ Proofs of the main
results are provided in Section 6+

2. PRELIMINARIES

2.1. Process Assumptions

We suppose that the observed data Yn � $Y1, + + + ,Yn% represent a realization from
a stationary, real-valued LRD process $Yt %, t � Z that satisfies the following
assumption+

Assumption L+ For independent identically distributed ~i+i+d+! innovations
$«t %, t � Z with mean E~«t ! � 0 and 0 � E~«t

2! � `, it holds that

Yt � m� (
j�Z

ct�j «j , t � Z,

where E~Yt ! � m � R and the real sequence $cj % , j � Z is square summable
(j�Z cj

2 � ` such that the autocovariance function r~k!� Cov~Yt ,Yt�k! admits
a representation as in ~1!+

Assumption L encompasses two popular models for strong dependence: the
fractional Gaussian processes of Mandelbrot and van Ness ~1968! and the frac-
tional autoregressive integrated moving average ~FARIMA! models of Aden-
stedt ~1974!, Granger and Joyeux ~1980!, and Hosking ~1981!+ For FARIMA
processes in particular, we permit greater distributional flexibility through pos-
sibly non-Gaussian innovations+ Note that a LRD FARIMA~0,d,0! series, d �
~0, 12_ !, admits a casual moving average representation

Yt � m�(
j�0

` G~ j � d !

G~ j � 1!G~d !
«t�j , t � Z, (2)

involving the gamma function G~{!+ More general FARIMA series, for which
~1! holds with a � 1 � 2d and constant L1~{! � C1 � 0, follow from applying
an autoregressive moving average ~ARMA! filter to a process from ~2! ~cf+
Beran, 1994!+

We remark that the results of this paper also hold by stipulating the long-
range dependence through regularity conditions, as in Theorem 2+2 of Hall et al+
~1998!, on the spectral density f of the process $Yt % for which limxr0 f ~x!0
$6x 6a�1L1~106x 6!% � 0 exists finitely+ Under certain conditions, this behavior
of f at the origin is equivalent to ~1! and serves as an alternative description of
long-range dependence ~Bingham, Goldie, and Teugels, 1987!+ However, our
assumptions here on the LRD linear process are fairly mild, requiring i+i+d+ inno-
vations to only have a bounded second moment+
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2.2. Distributional Properties of the Sample Mean

In the following discussion, for any two nonzero real sequences $sn% and $tn% ,
we write sn; tn if limnr` sn0tn � 1+With the proper scaling dn, the asymptotic
distribution of the normalized sample mean is known to be normal for Assump-
tion L processes ~cf+ Davydov, 1970!: as n r `,

n~ PYn �m!0dn
d
&& Z, (3)

where Z represents a standard normal variable and d
&& denotes convergence in

distribution+ However, setting confidence intervals for m, based on PYn and its
large-sample normal distribution, becomes complicated for linear LRD pro-
cesses+ The covariance decay rate in ~1! implies that the variance of PYn con-
verges to 0 as follows:

Var~ PYn ! ; n�aL~n!, (4)

for L~{! � 2$~2 � a!~1 � a!%�1L1~{!, which is slower than the usual O~n�1!
rate associated with weakly dependent data+ Consequently, the correct scaling
dn � $n2�aL~n!%102 ; $Var~n PYn!%

102 for n~ PYn � m!0dn to have a normal limit
depends on the unknown quantities a, L~{! from ~4!+

With additional assumptions on the linear process, unknown quantities in dn

could in principle be estimated directly for interval estimation of m based on a
normal approximation ~3!+ For example, by assuming a constant function L1~{!�
C1 in ~1! ~along with additional regularity conditions on f !, estimates [a, ZC1 of
a,C1 could be obtained through various periodogram-based techniques ~Bar-
det, Lang, Oppenheim, Philippe, Stoev, and Taqqu, 2003!+ However, after sub-
stituting such estimates directly into dn from ~3!, the resulting Studentized mean
Gn � n~ PYn � m!0 Zdn, [a, ZC1

may fail to adequately follow a normal distribution+ To
illustrate, we conducted a small numerical study of the coverage accuracy of
confidence bounds for the mean m of several LRD FARIMA processes, set with
a normal approximation for a Studentized mean Gn+ For these processes, ~1!
holds with a function L1~{! � C1+ We obtained a version Gn by estimating a
and C1 in dn through popular log-periodogram regression ~Geweke and Porter-
Hudak, 1983! using the first n405 Fourier frequencies ~Hurvich, Deo, and Brod-
sky, 1998!+ The coverage probabilities in Table 1 suggest that the normal
distribution may not always appropriately describe the behavior of a Studen-
tized sample mean obtained through such plug-in estimates in ~3!+ ~The LRD
processes in Table 1 involve filtered FARIMA~0,d,0! series, but other simula-
tion results indicate that a plug-in version Gn may produce better confidence
intervals with unfiltered FARIMA~0,d,0! series+! We remark that, with Gauss-
ian LRD processes, Beran ~1989! developed a modified normal distribution for
PYn after Studentization with a periodogram-based estimate of a+ However, the

approach given was globally parametric in requiring the form of the spectral
density f to be known on the entire interval @0,p# , which is a strong assumption+
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Table 1. Coverage probabilities for one-sided 90% lower and upper confidence bounds

Standard Normal Innovations Chi-Square Innovations

n Filter a � 0+1 a � 0+5 a � 0+9 a � 0+1 a � 0+5 a � 0+9

100 1 ~76+1, 76+1! ~95+0, 95+4! ~98+2, 98+1! ~84+3, 80+8! ~97+4, 94+8! ~98+6, 97+5!
2 ~69+1, 72+7! ~81+0, 82+9! ~91+2, 93+9! ~80+9, 73+3! ~82+3, 78+2! ~95+7, 90+1!

400 1 ~83+0, 82+8! ~98+6, 98+6! ~99+8, 99+8! ~92+3, 90+2! ~99+3, 98+9! ~99+9, 100!
2 ~78+1, 79+0! ~84+5, 85+6! ~89+4, 90+0! ~90+5, 88+9! ~87+6, 81+9! ~91+5, 88+7!

900 1 ~85+8, 85+6! ~100, 99+6! ~99+9, 100! ~96+0, 95+9! ~99+9, 99+2! ~100, 100!
2 ~81+6, 81+7! ~86+7, 86+9! ~89+4, 88+4! ~93+8, 93+6! ~90+1, 84+5! ~89+0, 87+4!

Note: Confidence bounds are denoted in parentheses ~{,{!, using the large-sample normal distribution of Gn � n~ PYn � m!0 Zdn, [a, ZC1
+ Computed probabilities are based on 1,000 simula-

tions from a FARIMA process detailed in Section 4+1+

1
0

9
1

https://doi.org/10.1017/S0266466605050541 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0266466605050541


In Section 3, we show that the sampling window method produces consis-
tent, nonparametric estimates of the finite-sample distribution of the sample
mean from strongly dependent linear processes+ Subsampling distribution esti-
mators for PYn can then be used to calibrate nonparametric confidence intervals
for the process mean m+ Under linear long-range dependence, an advantage of
this approach over traditional large-sample theory is that the subsampling con-
fidence intervals may be constructed without making restrictive assumptions
on the behavior of f near zero and without estimating the covariance parameter
a+ Another benefit of the subsampling method is its applicability to other for-
mulations of long-range dependence involving nonlinear processes+ That is, the
subsampling technique has established validity with transformed-Gaussian LRD
series as treated in Hall et al+ ~1998!+ For these series, n~ PYn � m!0dn may have
a nonnormal limit distribution, and a normal approximation for the sample mean
might break down+

3. MAIN RESULTS: SUBSAMPLING DISTRIBUTION ESTIMATION

3.1. Result for the Normalized Sample Mean

We briefly present the subsampling estimator of the sampling distribution of
the normalized sample mean Tn � n~ PYn � m!0dn, as prescribed in Hall et al+
~1998!+ Denote the distribution function of Tn as Fn~x!� P~Tn � x!, x � R+ To
capture the underlying dependence structure, the subsampling method creates
several small-scale replicates of Y1, + + + ,Yn through data blocks or subsamples+
Let 1 � � � n be the block length and denote Bi � ~Yi , + + + ,Yi���1! as the ith
overlapping data block, 1 � i � N � n � � � 1+ Treating each block as a
scaled-down copy of the original time series, define the analog of Tn on each
block Bi as T�i � ~S�i � � PYn!0d�, 1 � i � N, where S�i �(j�i

i���1 Yj represents a
block sum+

The sampling window estimator ZFn~x! of the distribution Fn~x! is given by
ZFn~x! � N�1(i�1

N I $T�i � x% , where I ${% denotes the indicator function+ The
subsampling estimator ZFn is simply the empirical distribution of the subsample
versions T�i of Tn+ Hall et al+ ~1998! establish the consistency of ZFn in estimat-
ing Fn with transformed-Gaussian LRD series+ The following result extends the
consistency of the subsampling estimator ZFn to include a large class of LRD
linear processes+ Let

p
&& denote convergence in probability+

THEOREM 1+ If Assumption L holds and ��1 � n�~1�d!� � o~1! for some
d � ~0,1! , then

sup
x�R

6 ZFn~x!� Fn~x!6
p
&& 0, as nr `+

Note that the correct scaling dn,d� for centered sums n~ PYn � m!, ~S�i � �m!
to have a normal limit in ~3! depends on unknown quantities a, L~{!+ In prac-
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tice, these scaling factors need to be consistently estimated, and ZFn must be
appropriately modified, to set confidence intervals for m+ We next give a mod-
ified subsampling approach for accomplishing this+

3.2. Result for the Studentized Sample Mean

Following the setup in Hall et al+ ~1998!, we first replace dn in Tn with a data-
based construct involving two subsampling variance estimates+ To describe
the estimate of dn, let m1n, m2n � @1, n# denote integers such that for some
u � ~0,1! we have

m1n ; n ~1�u!02, m2n; nu (5)

as n r `, implying further that m1n
2 0m2n ; n holds+ For m � @1, n# , de-

fine Ddm
2 � ~n � m � 1!�1(i�1

n�m�1~Smi � m PYn!
2 where Smi � (j�i

i�m�1 Yj , i � 1+
Here Ddm

2 represents a subsampling variance estimator of Var~Sm1!+ Next de-
fine Zdn

2 � Ddm1n

4 0 Ddm2n

2 with the smoothing parameters m1n,m2n+ We use Zdn
2 as an

estimator of dn
2 to obtain a Studentized version of the sample mean as T1n �

n~ PYn � m!0 Zdn+
To calibrate confidence intervals for m based on T1n, a subsampling estima-

tor ZF1n of the distribution function F1n of T1n can be constructed as follows+ For
each length � block Bi , 1 � i � N, let Zd�i

2 denote the subsample version of
Zdn
2 found by replacing ~Y1, + + + ,Yn! and n with Bi � ~Yi , + + + ,Yi���1! and � in

the definition of Zdn
2+ Analogous to values m1n,m2n used in Zdn

2 , each version
Zd�i
2 requires subsample smoothing parameters m1�,m2� that satisfy ~5! with �

rather than n+ Let T1�, i � ~S�i � � PYn!0 Zd�i , 1 � i � N denote the subsample
replicates of T1n+ The subsampling estimator of F1n is then given by ZF1n~x! �
N�1(i�1

N I $T1�, i � x% , x � R+
We show that the preceding subsampling estimator successfully approxi-

mates the distribution F1n of the Studentized sample mean for long-memory
linear processes+ Hall et al+ ~1998! give an analogous result for transformed-
Gaussian LRD series+

THEOREM 2+ In addition to the conditions of Theorem 1, assume m1n,m2n

satisfy (5) and

L2~x 1�c !0$L~x 2 !L~x 2c !%r 1 as xr ` for any c � 0+ (6)

Then, as nr `: (a) Zdn
20Var~n PYn !

p
&& 1; (b) T1n

d
&& Z, a standard normal vari-

able; (c) supx�R6 ZF1n~x! � F1n~x!6
p
&& 0.

Condition ~6! represents a weakened version of a similar assumption used by
Hall et al+ ~1998, Thm+ 2+5! and implies that the combination of subsampling
variance estimators in Zdn

2 can consistently estimate dn
2 under long-range depen-

dence+ For LRD fractional Gaussian and FARIMA processes, the function L~{!
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is constant in ~4! and so easily satisfies ~6! ~Beran, 1994!+ Examples of other
slowly varying functions that fulfill ~6! include L~x! � EL~ log~x!! : ~1,`! r
~0,`! based on an arbitrary slowly varying EL, such as L~x! � @ log log~x!# c1 ,
c1 � R or L~x! � exp $@ log log~x!# c2 % for 0 � c2 � 1+ However, condition ~6!
is still restrictive in not permitting general slowly varying functions such as
L~x! � log~x!+

In the next section, we outline a procedure for constructing confidence inter-
vals for the mean m based on the subsampling result in Theorem 2+

3.3. Subsampling Confidence Interval Procedure

Let {{} denote the integer part function+ For b � ~0,1!, let [tb, n denote the {Nb}th
order statistic of the N possible subsample versions T1�, i , 1 � i � N, of T1n+
Here [tb, n represents the b-percentile of the subsampling estimator ZF1n taken as
an estimate of the same percentile of F1n+ Using T1n and ZF1n, we set approxi-
mate one-sided lower and upper 100~1 � b!% confidence bounds for m as
L1�b, n � PYn � n�1 Zdn [t1�b, n and U1�b, n � PYn � n�1 Zdn [tb, n, respectively+ These
subsampling bounds have asymptotically correct coverage under Theorem 2,
namely, limnr`P~m � L1�b, n!� limnr`P~m � U1�b, n!� 1 � b+ An approx-
imate two-sided 100~1 � b!% subsampling confidence interval for m is then
~L1�b02, n,U1�b02, n!+

The subsampling confidence intervals for m require the selection of subsam-
ple lengths �,mkn and mk�, k � 1,2+ These are important for the finite-sample
performance of the subsampling method+Although best block sizes are unknown,
we can modify some proposals made in Hall et al+ ~1998!+ In subsampling from
transformed-Gaussian type LRD series, Hall et al+ ~1998! proposed block lengths
� � Cn102 , C � 1,3,6,9+ This size n102 block choice is based on the intuition
that subsamples from LRD series should generally be longer compared to blocks
for weakly dependent data, for which �;Cnd, d � 1

3
_ is usually optimal ~Künsch,

1989; Hall, Horowitz, and Jing, 1995; Hall and Jing, 1996!+ That is, a jump in
the order of appropriate blocks seems reasonable under long-range depen-
dence, analogous to the sharp increase from length � � 1 blocks ~no blocking!
for i+i+d+ data to length � � O~n103! blocks for weakly dependent data+ Plausi-
ble smoothing parameters satisfying ~5! are m1n � {n ~1�u!02} , m2n � {nu} for
u � ~0,1!, and subsample versions mk�, k � 1,2, can be analogously defined
with �+ Hall et al+ ~1998! recommend a value of u near 1 to achieve a smaller
bias for the two subsample variance estimators Ddm1n

2 , Ddm2n

2 combined in Zdn
2+

We performed a simulation study of the subsampling confidence intervals
under linear long-range dependence, investigating various block lengths �+ We
describe the simulation setup and results in Section 4+

4. NUMERICAL STUDIES OF SUBSAMPLING METHOD

Sections 4+1 and 4+2, respectively, describe the design and results of a simula-
tion study to examine the performance of subsampling confidence intervals with
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LRD linear processes+ In Section 4+3, we present two examples of subsampling
distribution estimation, in addition to confidence intervals, for a linear and a
nonlinear LRD time series+

4.1. Data Simulation Design

Let $ EYt %, t � Z represent a FARIMA~0, d,0! series from ~2! based on d �
~1 � a!02 � ~0, 12_ ! and i+i+d+ innovations $«t % , t � Z+

To study the coverage accuracy of the subsampling method, we considered
FARIMA processes Yt � wYt�1 � EYt � q EYt�1, t � Z, constructed by combining
one of the following ARMA filters ~specified by w,q coefficients!, a values,
and innovation distributions:

• w � 0+7, q � �0+3 ~Filter 1!; w � �0+7, q � 0+3 ~Filter 2!; w � q � 0
~Filter 3!;

• a � 0+1,0+5,0+9;
• «t is distributed as standard normal; x1

2 � 1; or t3,

where x1
2 and t3 represent chi-square and t distributions with 1 and 3 degrees of

freedom+ The preceding framework allows for LRD linear processes $Yt % exhib-
iting various decay rates a in ~1! with Gaussian or non-Gaussian innovations+
The non-Gaussian innovations may exhibit skewness ~e+g+, x1

2 � 1! or heavier
tails ~e+g+, t3!+ From each LRD FARIMA model, we generated size n time
stretches Yn � $Y1, + + + ,Yn% as follows+

A sample EYn � $ EY1, + + + , EYn% from a non-Gaussian FARIMA~0,d,0! process
was generated by truncating the moving average expression in ~2! after the first
M � 1,000 terms and then using n � M innovations «t to build an approximate
truncated series ~for details, see Bardet, Lang, Oppenheim, Philippe, and Taqqu,
2003, p+ 590!+ Samples EYn from a Gaussian series were simulated by the circu-
lant embedding method of Wood and Chan ~1994! with FARIMA~0,d,0! covari-
ances ~Beran, 1994!+ Under Filter 3, the desired FARIMA realization is given
by Yn � EYn+ For FARIMA series involving Filters 1 and 2, generating EYt inno-
vations as before in the appropriate ARMA model yielded Yn+ We considered
sample sizes n � 100,400,900+

4.2. Coverage Accuracy of Subsampling Intervals

We report here the coverage accuracy of subsampling confidence intervals for
the LRD process mean m � 0 based on a data set Yn generated as in Sec-
tion 4+1+ In the subsampling procedure of Section 3+3, we used block sizes
� � Cn102 , C � $0+5,1,2% and u � 0+8+ These � lengths are smaller overall
than those considered in Hall et al+ ~1998!, where subsampling intervals per-
formed poorly in numerical studies with overly large C values ~e+g+, 6,9!+
Tables 2 and 3 provide coverage probabilities of lower and upper approximate
90% one-sided confidence intervals appearing, respectively, in parenthetical
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Table 2. Subsampling coverage probabilities for block choices � with u � 0+8

Standard Normal Innovations Chi-Square Innovations

n Filter a � 0+1 a � 0+5 a � 0+9 a � 0+1 a � 0+5 a � 0+9

� � 0+5n102

100 1 ~93+3, 92+1! ~97+2, 96+8! ~98+4, 97+8! ~94+6, 96+8! ~95+3, 98+6! ~97+0, 99+2!
2 ~81+7, 83+4! ~90+3, 90+7! ~92+0, 91+6! ~83+6, 92+3! ~85+0, 94+6! ~89+3, 94+7!
3 ~87+4, 86+2! ~92+4, 92+5! ~95+9, 96+6! ~89+5, 95+4! ~89+8, 97+4! ~93+8, 99+1!

400 1 ~88+2, 91+9! ~94+9, 95+4! ~97+3, 96+4! ~95+0, 96+7! ~94+9, 97+9! ~96+1, 98+3!
2 ~81+2, 80+7! ~87+2, 87+7! ~88+8, 90+5! ~88+1, 92+0! ~88+1, 93+4! ~86+8, 94+3!
3 ~83+7, 82+4! ~90+9, 90+5! ~92+1, 93+5! ~87+7, 92+2! ~90+5, 94+6! ~89+4, 95+6!

900 1 ~90+8, 91+9! ~96+0, 97+9! ~98+5, 97+5! ~96+9, 98+0! ~96+0, 97+9! ~96+3, 99+1!
2 ~86+2, 85+7! ~92+3, 92+3! ~93+0, 92+6! ~93+1, 96+8! ~91+7, 95+3! ~89+4, 96+4!
3 ~89+1, 86+8! ~93+2, 94+0! ~95+9, 94+5! ~94+4, 96+9! ~92+1, 96+9! ~93+4, 97+7!

� � n102

100 1 ~84+8, 83+2! ~91+0, 90+1! ~91+7, 91+7! ~88+3, 89+7! ~90+3, 91+7! ~91+6, 94+9!
2 ~73+5, 74+4! ~81+6, 84+9! ~84+9, 86+7! ~80+2, 85+6! ~80+7, 87+7! ~82+0, 89+0!
3 ~77+0, 75+7! ~85+2, 85+1! ~88+5, 89+1! ~80+0, 87+3! ~85+5, 90+2! ~86+5, 93+1!
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400 1 ~87+1, 84+9! ~95+3, 93+5! ~95+2, 96+0! ~91+7, 95+0! ~92+7, 95+5! ~94+8, 97+4!
2 ~83+1, 80+2! ~89+9, 90+2! ~89+5, 91+8! ~90+2, 91+8! ~88+8, 92+1! ~88+9, 93+0!
3 ~83+3, 82+7! ~89+5, 90+6! ~92+0, 92+4! ~90+8, 91+6! ~91+7, 94+5! ~91+6, 94+6!

900 1 ~87+1, 88+1! ~94+3, 94+0! ~95+3, 96+6! ~95+0, 95+4! ~93+0, 96+4! ~95+6, 97+6!
2 ~86+1, 85+9! ~92+3, 91+2! ~91+2, 91+4! ~92+2, 95+6! ~90+8, 95+5! ~89+7, 94+6!
3 ~85+8, 88+1! ~90+9, 92+9! ~93+1, 95+1! ~93+8, 96+1! ~92+6, 95+1! ~92+6, 95+8!

� � 2n102

100 1 ~75+9, 79+0! ~87+6, 88+6! ~89+9, 89+4! ~81+8, 84+4! ~87+9, 87+2! ~89+7, 91+6!
2 ~72+3, 74+8! ~82+1, 83+6! ~85+5, 85+6! ~77+1, 80+7! ~82+1, 85+6! ~86+9, 85+6!
3 ~74+6, 76+6! ~84+8, 84+1! ~86+8, 87+4! ~79+9, 80+2! ~84+8, 85+7! ~84+8, 90+0!

400 1 ~80+9, 82+1! ~91+2, 89+5! ~92+3, 93+3! ~89+4, 90+4! ~90+4, 90+9! ~93+0, 94+2!
2 ~80+7, 79+8! ~89+2, 88+1! ~89+1, 88+1! ~88+1, 87+9! ~87+3, 88+4! ~88+0, 91+6!
3 ~81+3, 79+3! ~89+6, 86+3! ~91+5, 89+7! ~86+5, 89+1! ~89+1, 92+8! ~90+1, 91+1!

900 1 ~83+4, 82+0! ~91+3, 92+2! ~94+2, 92+6! ~90+1, 93+3! ~91+3, 92+8! ~92+7, 95+6!
2 ~82+2, 80+3! ~88+2, 90+3! ~91+7, 90+9! ~91+1, 93+4! ~90+8, 91+2! ~88+7, 92+1!
3 ~83+4, 82+8! ~89+4, 89+7! ~91+5, 91+5! ~90+3, 92+2! ~88+7, 93+7! ~90+8, 92+1!
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Table 3. Subsampling coverage probabilities for block choices � with u � 0+8 and FARIMA processes generated with
t3-distributed innovations

t-innovations � � 0+5n102 � � n102 � � 2n102

n Filter a � 0+1 a � 0+5 a � 0+9 a � 0+1 a � 0+5 a � 0+9 a � 0+1 a � 0+5 a � 0+9

100 1 ~94+9, 94+6! ~97+4, 97+7! ~98+0, 96+8! ~87+4, 86+9! ~91+6, 90+0! ~92+6, 90+5! ~84+6, 82+4! ~86+3, 87+8! ~87+1, 87+8!
2 ~88+0, 86+8! ~92+1, 89+3! ~91+7, 90+5! ~79+1, 81+9! ~84+0, 84+9! ~84+2, 86+0! ~80+7, 79+4! ~81+8, 81+9! ~85+3, 86+4!
3 ~91+0, 92+5! ~93+6, 94+0! ~96+3, 95+8! ~82+8, 82+3! ~86+4, 85+5! ~89+8, 86+5! ~77+3, 79+8! ~83+7, 85+3! ~86+4, 87+1!

400 1 ~95+1, 94+4! ~96+4, 95+5! ~95+8, 95+9! ~94+1, 93+7! ~93+5, 94+1! ~94+6, 96+2! ~88+5, 88+5! ~92+2, 90+9! ~92+5, 93+2!
2 ~91+0, 89+2! ~86+4, 88+6! ~87+8, 88+2! ~89+1, 90+0! ~91+0, 90+5! ~90+7, 90+1! ~87+2, 87+8! ~89+6, 87+2! ~89+5, 89+1!
3 ~91+8, 89+2! ~92+0, 92+6! ~91+3, 92+2! ~89+8, 91+1! ~91+7, 90+6! ~92+1, 92+5! ~88+5, 89+1! ~88+4, 89+9! ~90+5, 90+4!

900 1 ~98+1, 97+0! ~97+5, 97+5! ~97+6, 98+1! ~95+1, 94+8! ~95+3, 94+3! ~95+3, 96+1! ~91+3, 92+9! ~91+6, 92+0! ~93+8, 93+7!
2 ~94+8, 95+2! ~93+3, 93+5! ~93+3, 92+3! ~94+4, 92+4! ~93+9, 91+7! ~90+5, 92+5! ~91+8, 91+4! ~90+1, 90+1! ~90+1, 90+8!
3 ~95+8, 95+8! ~94+8, 93+9! ~95+8, 94+4! ~94+6, 93+9! ~92+7, 93+2! ~93+4, 93+0! ~89+2, 92+0! ~91+3, 93+0! ~91+2, 92+0!
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pairs ~{,{!+ Table 2 corresponds to FARIMA series with normal and chi-square
innovations+ Table 3 provides results for t-innovations that have unbounded
~third and higher! moments+ All coverage probabilities were approximated by
an average over 1,000 simulation runs for each considered LRD process+

To summarize our numerical findings:

~1! Subsampling coverage accuracy generally improves with increasing sam-
ple size and weaker dependence ~increasing a!+

~2! Overall, the subsampling method seemed to perform similarly across the
innovation processes considered+

~3! Coverage inaccuracy is most apparent under the strongest dependence
a � 0+1, in the form of undercoverage+ Processes under Filter 1 ~large,
positive autoregressive parameter! also produced instances of overcov-
erage, most apparent with the smallest block � � 0+5n102 + To a larger
extent, this latter behavior in coverage probabilities also appeared in
Table 1 with the plug-in approach involving direct estimation of a+

~4! The subsampling method performed reasonably well across the block sizes
� considered+ However, optimal block lengths may depend on the strength
of the underlying long-range dependence; C � 1,2 values appeared best
when a � 0+5,0+9 whereas C � 0+5,1 seemed better for a � 0+1+ These
findings appear consistent with the simulation results in Hall et al+ ~1998!
with subsampling other LRD processes+

~5! Other simulation studies showed that intervals using a normal approxi-
mation for T1n, based on Theorem 2~b!, exhibit extreme undercoverage
and perform worse than intervals based on the subsampling distribution
estimator for T1n+ This is because the finite-sample distribution of T1n

can exhibit heavy tails and may converge slowly to its asymptotic nor-
mal distribution; see also Figure 1+

With subsampling techniques, theoretical investigations of block choices have
received much attention for weakly dependent data, and clearly more research
is needed to determine theoretically optimal block lengths � under long-range
dependence+ The block sizes in the simulation study appear to be effective for
the considered LRD processes, and similar lengths appear to be appropriate for
other types of LRD processes considered in Hall et al+ ~1998!+ Results from
other simulation studies indicate that smaller order block sizes ~e+g+, n103! gen-
erally result in overcoverage under long-range dependence, whereas blocks that
are excessively long ~e+g+, � � 9n102! produce undercoverage+ Compared to �,
the choice of u appears to be less critical, and repeating the study with u� 0+9
as in Hall et al+ ~1998! or u � 0+5,0+7 led to only slight changes overall+

4.3. Distribution Estimates of Studentized Sample Mean

In theory, the nonparametric subsampling estimators can be applied for infer-
ence on the sample mean of different LRD processes, including the linear series

SUBSAMPLING FOR STRONG LINEAR DEPENDENCE 1099

https://doi.org/10.1017/S0266466605050541 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050541


considered here and transformed Gaussian processes in Hall et al+ ~1998!+ Sub-
sampling confidence intervals for m require a good subsample-based approxi-
mation of the distribution of the Studentized sample mean from Section 3+2+
However, the variety of long-range dependence can influence greatly the dis-
tribution of the sample mean, leading to both normal ~e+g+, linear series! and
nonnormal limit laws+ Because the type of LRD time series could be unknown
in practice, we conducted a further numerical study of subsampling distribu-
tion estimators of the Studentized sample mean T1n in situations where T1n has
a normal and a nonnormal limit+

We applied the subsampling method to two LRD series: a mean zero ~linear!
Gaussian process Zt with Var~Zt ! � 1 and spectral density f ~x!, 0 � 6x 6 � p,
given by

f ~x! � l$1 � log log~e � x�1 !%61 � exı 6�0+9, l � 0, ı � M�1,

and a nonlinear, transformed Gaussian Yt � G~Zt ! series, using the third Her-
mite polynomial G~x! � x 3 � 3x+ The covariances Cov~Zt , Zt�k!, k � Z sat-
isfy ~1! with a � 0+1 and nonconstant ~up to a scalar multiple! L~x! �
log log~x!; these covariances can be written as a sum of FARIMA~0,d � 0+45,0!
covariances ~i+e+, DC*0

p cos~kx!61 � exı 6�0+9 dx! plus an additional regularly
varying component+ The process Yt also exhibits slowly decaying covariances
because G~{! has Hermite rank 3 and here 0 � 3a � 1 ~Taqqu, 1975; Beran,
1994!+ Because of the limit law of the sample mean, the asymptotic distribu-
tion of the Studentized sample mean T1n is normal under the Zt process ~e+g+,
Theorem 2! and nonnormal for the nonlinear series Yt ~Taqqu, 1975, 1979;
Hall et al+, 1998!+

For the preceding two series, we can compare the exact distribution F1n~x!
of the subsample-Studentized sample mean T1n and its subsampling estimator
ZF1n~x!+ For each series type, Figure 1 provides the exact distribution F1n of T1n

at sample sizes n � 100,400,900 and u� 0+8+ In each case, the distribution F1n

was calculated through simulation ~using 15,000 runs! and appears as a thick
line in Figure 1+ Using a block length � � n102 , five subsampling estimates ZF1n

of each distribution F1n were computed from five independent size n samples
from $Zt % or $Yt % ; these estimates appear as dotted lines in Figure 1+

In each instance in Figure 1, the finite-sample distribution of T1n exhibits
heavy tails+ This indicates that confidence intervals for the process mean E~Zt !�
0 � E~Yt ! set with T1n and a normal approximation to its distribution would be
inappropriate+ ~As stated previously, a normal approximation of T1n is expected
to break down for LRD series Yt +! However, the subsampling estimates appear
to adequately approximate the exact distribution of the Studentized sample mean
T1n, particularly for larger n+ The coverage probabilities listed in Figure 1 addi-
tionally suggest that the subsampling method, based on T1n and ZF1n, leads to
reasonable confidence intervals of the means of both the linear and nonlinear
LRD processes+
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Figure 1. Subsampling estimates ZF1n ~dotted lines! of the exact distribution F1n ~thick
line! of Studentized sample mean T1n+ Coverage probabilities of 90% one-sided lower
and upper confidence bounds ~LCB,UCB! for the process mean also appear, based on
the subsampling method+
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5. THE SUBSAMPLING METHOD UNDER SHORT-RANGE
DEPENDENCE

We comment briefly on the subsampling method applied to linear time
processes under weak or short-range dependence+ A stationary time series $Yt %,
t � Z can be generally called short-range dependent ~SRD! if the process auto-
covariances decay fast enough to be absolutely summable, (k�1

` 6r~k!6 � `+
Such covariance summability does not hold for LRD processes satisfying ~1!+

For weakly dependent time series fulfilling a mixing condition, subsam-
pling techniques have been developed for inference on the distribution
of a variety of statistics, including the sample mean ~Carlstein, 1986;
Künsch, 1989; Politis and Romano, 1994; Hall and Jing, 1996!+ However,
the sampling window method of this paper applies to linear time processes
that may exhibit either short-range dependence or long-range dependence+ In
particular, we require no mixing assumptions on the process $Yt % under weak
dependence+

THEOREM 3+ Suppose m1n,m2n satisfy (5), ��1 � n�1� � o~1! and Assump-
tion L holds after replacing condition (1) with a condition of weak depen-
dence: (k�1

` 6r~k!6 � ` with (k�Z r~k! � 0. Defining dn
2 [ n(k�Z r~k! , the

convergence results of both Theorem 1 and Theorem 2 remain valid.

With the convention that we define a � 1 and L~{! � (k�Z r~k! � 0 under
short-range dependence, both ~4! and the scaling dn

2 � n2�aL~n! in ~3! are cor-
rect for short-range dependence; that is, (k�Z r~k! � limnr`n Var~ PYn! + The
same subsampling method can applied to distribution estimation of the sample
mean, in addition to interval estimation, under both SRD and LRD classifica-
tions of a linear time series+

6. PROOFS

6.1. Proofs of Main Results

In the following discussion, let sn
2 � n2 Var~ PYn!+ Denote the supremum norm

7g7` � sup $6g~x!6 : x � R% for a function g :R r R and let F denote the
standard normal distribution function+ Unless otherwise specified, limits in order
symbols are taken letting n r `+

We first state a useful result concerning moments of the sample mean PYn

from a LRD linear process+ Lemma 1~a! follows from the proof of Theo-
rem 18+6+5 in Ibragimov and Linnik ~1971! and bounds sums of consecutive
filter coefficients in terms of the standard deviation of n PYn; part ~b! of Lemma 1
corresponds to Lemma 4 of Davydov ~1970!+
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LEMMA 1+ Suppose Assumption L holds. For all n � N,

(a) and for all k � Z,

sn
�1�(

j�1

n

cj�k� � vn � �sn
�1~4 � 2sn

�1! (
j�Z

cj
2�102

+

(b) E$@n~ PYn � m!# 2k% � Ak~sn
2!k for some Ak � 0, if E~6«062k! � ` for a

given k � N.

For the proof of Theorem 1, we define EFn~x! � N�1(i�1
N I $~S�i � �m!0

d� � x%, x � R+ Note that EFn~x! differs from the sampling window estimator
ZFn~x! from Section 3+1 by centering subsample sums with �m rather than � PYn+

We also require the following result for LRD linear processes with bounded
innovations+ For these series, Lemma 2~a! shows that standardized subsample
sums based on well-separated blocks are asymptotically uncorrelated, whereas
Lemma 2~b! establishes the convergence of EFn+We defer the proof of Lemma 2
to Section 6+2+

LEMMA 2+ Suppose the conditions of Theorem 1 hold with bounded inno-
vations, that is, P~6et 6 � B! � 1 for some B � 0. Then, as n r `,

(a) for any nonnegative integers a,b and 0 � e � 1,

max
ne�i�n

6E@~S�1
* !a~S�i

* !b #� E~Z a !{E~Z b !6 � o~1!,

where S�i
* � ~S�i � �m!0s�, i � N, and Z is a standard normal variable.

For a � 0, E~Z a! � ~a � 1!~a � 3! + + + ~1! for even a; 0 otherwise.
(b) E$7 EFn � F7`% r 0.

Proof of Theorem 1+ We note that ~4! and the assumption ��1 � n�1�d� �
o~1! imply

~�2dn
2!0~n2d�

2! ; ~n0�!�a$L~n!0L~�!%� o~1! (7)

because L is positive and x gL~x! r `, x�gL~x! r 0 as x r ` for any g � 0
~Ibragimov and Linnik, 1971, App+ 1!+ We can bound 7 ZFn � Fn7` �
7 ZFn � F7` � 7Fn � F7` and

7 ZFn �F7` � 7 EFn �F7`� sup
x�R

6F~x � e!�F~x!6� 2I $�6 PYn �m60d� � e%,

for each e � 0+ From ~7!, we find P~�6 PYn � m60d� � e!� o~1! by Chebychev’s
inequality using sn

2 ; dn
2 from ~4!+ From the continuity of F, it follows that

7Fn � F7` � o~1! by ~3! and also that supx�R6F~x � e! � F~x!6 r 0 as
e r 0+ Hence, it suffices to show 7 EFn � F7`

p
&& 0 or, equivalently as a result
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of F’s continuity, 6 EFn~x! � F~x!6
p
&& 0 for each x � R+ We will prove

E~6 EFn~x! � F~x!6! � o~1! for x � R+
Let E~«t

2!� t2 � 0+ For each b � N, define variables «t,b � «t I $6«t 6� b%�
E~«t I $6«t 6 � b%! and Yt,b � m � (j�Z ct�j~t«j,b0tb!, where tb

2 � E~«0,b
2 !+ ~We

may assume tb
2 � 0 w+l+o+g+ in the following discussion+! For each n,b, i � N,

write dn,b
2 , S�i,b �(j�i

i���1 Yj,b , Fn,b, and EFn,b to denote the analogs of dn
2 , S�i , Fn

and EFn with respect to Y1,b, + + + ,Yn,b+ Note that both series $Yt % and $Yt,b% involve
the same linear filter with i+i+d+ innovations of mean 0 and variance t2 and
hence have the same covariances; in particular, we may set dn,b

2 � dn
2 for

b, n � N+ For any e � 0, x � R and b, n � N,

E~6 EFn~x!�F~x!6! � $E~6 EFn~x!� EFn,b~x!62 !%102 � E~6 EFn,b~x!�F~x!6!

[ A1n,b~x!� A2n,b~x!+

Letting D�,b � ~S�1,b � S�1!0d�,

A1n,b
2 ~x! �

1

N (i�1

N

E$~I $~S�i � �m!0d� � x%� I $~S�i,b � �m!0d�,b � x%!2 %

� F�~x!� F�,b~x!� 2F�,b~min$x, x � D�,b %!

� 6F�~x!�F~x!6� 37F�,b �F7`

� 2 sup
y�R

6F~ y � e!�F~ y!6� 2P~6D�,b 6 � e!,

where P~6D�,b6 � e! � Var~S�1 � S�1,b !0~e2d�
2!, and we deduce

Var~S�1 � S�1,b ! � s�
2 Var~t�1«0 � tb

�1«0,b !� 2s�
2 $1 � tb

�1t�1E~«0«0,b !%,

by the i+i+d+ property of innovations+ Hence, for any x � R, b � N, and e � 0,

lim sup
nr`

E~6 EFn~x!�F~x!6!

� �2 sup
y�R

6F~ y � e!�F~ y!6� 4e�2$1 � tb
�1t�1E~«0«0,b !%�102

using ~4!, A2n,b~x!� o~1! as nr` by Lemma 2~b!, and 6F�~x!�F~x!6,7F�,b �
F7` � o~1! as n r ` by ~3!+ Because limbr` tb

�1E~«0«0,b ! � t
�1E~«0

2! � t
and supx�R6F~x � e!�F~x!6r 0 as er 0, the proof of Theorem 1 is finished+

�

Proof of Theorem 2+ Let m denote mkn, k � $1,2% , and define Ddmm
2 �

Nm
�1(i�1

Nm ~Smi � mm!2 for Nm � n � m � 1+ Using Hölder’s inequality, ~4!,
and ~7!, we can show that
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E 6 Ddm
2 � Ddmm

2 6

�
1

Nm
(
i�1

Nm

E 6$~Smi � mm!� ~Smi � m PYn !%$~Smi � mm!� ~Smi � m PYn !%6

� 4m@Var~ PYn !#
102 @Var~Sm1!� m2 Var~ PYn !#

102

� O~m2n�2dn
2 � n�1mdm dn !� o~dm

2 !+ (8)

With the truncated variables from the proof of Theorem 1, let Ddmm,b
2 �

Nm
�1(i�1

Nm ~Smi,b � mm!2 with Smi,b � (j�i
m�i�1 Yj,b for i,b � N; again the

processes $Yt % and $Yt, b% have the same covariances for all b � N+ In a
fashion similar to ~8!, we find by Hölder’s inequality,

E 6 Ddmm,b
2 � Ddmm

2 6

� 2$E@~Sm1 � mm!2 #� E@~Sm1,b � mm!2 #%102$E@~Sm1 � Sm1,b !
2 #%102

� 4sm
2 $1 � tb

�1t�1E~«0«0,b !%
102 (9)

using sm
2 � Var~Sm1! � Var~Sm1,b! and Var~Sm1 � Sm1,b! � 2sm

2 $1 �
tb

�1t�1E~«0«0,b !% from before+
Applying Lemma 2~a! and the bound on E$~Sm1,b � mm!4% from Lemma

1~b! with ~4!,

Var~ Ddmm,b
2 ! � sm

4 O�Nm
�2 (

1�i, j�Nm

6Cov$sm
�2~Smi,b � mm!2,sm

�2~Smj,b � mm!2 %6�
� o~dm !,

E~ Ddmm,b
2 ! � Var~Sm1,b !� sm

2; dm
2 , (10)

holds for each b � N+ Then Ddm
2 0dm

2 p
&& 1 follows from using ~8!–~10! to deduce

lim sup
mr`

E� Ddm
2

dm
2

� 1�
� lim sup

mr`

1

dm
2
$E 6 Ddm

2 � Ddmm
2 6� E 6 Ddmm,b

2 � Ddmm
2 6� @E~ Ddmm,b

2 � dm
2 !2 #102 %

� 4$1 � tb
�1t�1E~«0«0,b !%

102, b � N,

and then applying limbr` tb
�1E~«0«0,b ! � t+ Because Zdn

2 � Ddm1n

4 0 Ddm2n

2 and ~5!
and ~6! imply

dm1n

4 0~dm2n

2 dn
2! ; L2~m1n !0$L~m2n !L~n!% ;1,

the convergence Zdn
20dn

2 p
&& 1 now follows+ From this and Theorem 1, we find

the convergence of ZF1n in probability as in Hall et al+ ~1998!+ �
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Proof of Theorem 3+ From Corollary 6+1+1+2 of Fuller ~1996!, we have
limnr`n Var~ PYn! � (k�Z r~k! � 0+ Lemmas 1 and 2 and the same proofs of
Theorems 1 and 2 ~including Lemma 2! apply with the convention that a � 1,
L~{! � (k�Z r~k! � 0 and dn

2 � n(k�Z r~k! under short-range dependence+
The one modification is that ~7! still holds if ��1 � �0n � o~1!+ �

6.2. Proof of Technical Lemma

Proof of Lemma 2~b!+ The result follows from Theorem 2+4 of Hall et al+
~1998! and its proof after verifying that the conditions required are met: the
process $Yt % has all moments finite by assumption; n~ PYn � m!0sn converges to
a ~normal! continuous distribution by ~3! which is uniquely determined by its
moments; ~�2sn

2!0~n2s�
2! � o~1! by ~4! and ~7!; and Lemma 2~a! holds+ �

Proof of Lemma 2~a!+ It suffices to consider only positive a,b � N, because
Lemma 1~b! with ~3! implies that E@~S�1

* !a # r E~Z a! as n r ` for any non-
negative a+

We establish some additional notation+ For i � N, write the standardized
subsample sum S�i

* � (k�Z dk~i !«k using dk~i ! � s�
�1(j�1

� c~i�1!�j�k and set
E~«t

2! � 1 throughout the proof because of standardization; we suppress here
the dependence of dk~i ! on � in our notation+ Write the nonnegative integers as
Z� � $0% � N+ For a,b � N and 1 � m � {~a � b!02} , denote integer vectors
s ~m! � ~s1, + + + , sm!, t ~m! � ~t1, + + + , tm! � ~Z�!

m ; write a set

Ba,b,m � �~s ~m!, t ~m! ! � ~Z� !
m � ~Z� !

m :(
j�1

m

sj � a, (
j�1

m

tj � b, min
1�j�m

~sj � tj !� 2�
and define with i � N,

Ca,b~s
~m!, t ~m! ! � )

j�1

m

E~«0
sj�tj !, Di,a,b~s

~m!, t ~m! !

� (
k1�{{{�km�Z

)
j�1

m

~dkj ~1! !
sj ~dkj ~i ! !

tj,

where indices in the sum (k1�{{{�km�Z extend over integer m-tuples ~k1,
+ + + , km! � Z

m with distinct components kj � kj ' for 1 � j � j ' � m+ We will
later use that

sup
i�N

6Di,a,b~s
~m!, t ~m! !6 � ` (11)

holds for a,b � N, 1 � m � {~a � b!02} , and ~s ~m!, t ~m! ! � Ba,b,m so that
certain sums Di,a,b~s ~m!, t ~m! ! are finitely defined+ We omit the proof of ~11!
here ~in light of showing ~14! to follow, which uses similar arguments!+
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Because the innovations are i+i+d+ with E ~«t ! � 0, it holds that
E~) j�1

a�b «kj
! � 0 for a,b � N and integers ~k1, + + + , ka�b! � Z

a�b unless, for
each 1 � j � a � b, there exists some j ' such that kj � kj ' , implying less than
{~a � b!02} distinct integer values among ~k1, + + + , ka�b!+ Using this and

E@~S�1
* !a~S�i

* !b # � (
~k1, + + + , ka�b !�Z

a�b

E�)
j�1

a

dkj ~1! «kj
{ )

j�a�1

a�b

dkj ~i ! «kj� (12)

for any a,b, i � N, we rewrite ~12! as a sum over collections of integer indices
~k1, + + + , ka�b! with 1 � m � {~a � b!02} distinct values:

(
m�1

{~a�b!02}

(
~W1, + + + ,Wm !

� (
~k1, + + + , ka�b !�Z

a�b

E�)
j�1

a

dkj ~1! «kj
{ )

j�a�1

a�b

dkj ~i ! «kj�
� I $kj � kj ' m j, j ' � Wh %� ,

where the sum (~W1, + + + ,Wm !
is taken over all size m partitions ~W1, + + + ,Wm! of

$1, + + + ,a � b% � �h�1
m Wh + The indicator function I ${% in the bracketed sum in

the preceding expression signifies that, for a given partition ~W1, + + + ,Wm!, we
sum terms in ~12! over integer indices ~k1, + + + , ka�b! � Z

a�b satisfying kj � kj '

if and only if j, j ' � Wh, h � 1, + + + ,m+ We can more concisely write ~12! as

E@~S�1
* !a~S�i

* !b # � (
m�1

{~a�b!02}

(
~W1, + + + ,Wm !

Ca,b~s
~m!, t ~m! !{Di,a,b~s

~m!, t ~m! !, (13)

s ~m! ~W1, + + + ,Wm ! [ s ~m! � ~s1, + + + , sm !, sh �(
j�1

a

I $ j � Wh %,

t ~m! ~W1, + + + ,Wm ! [ t ~m! � ~t1, + + + , tm !,

th � (
j�a�1

a�b

I $ j � Wh %, h � 1, + + + ,m,

in terms of vectors s ~m!, t ~m! � ~Z�!
m as a function of a partition ~W1, + + + ,Wm!+

By the nature of the partitions ~W1, + + + ,Wm!, the vectors ~s ~m!, t ~m! ! in ~13! are
elements of Ba,b,m for some 1 � m � {~a � b!02} ~any set Wh in a partition
~W1, + + + ,Wm! has at least two elements by the restriction m � {~a � b!02} so
that min1�j�m~sj � tj ! � 2 follows!+

To help identify the most important terms in the summand ~13!, we define a
count C~s ~m!, t ~m! !�(j�1

m I $sj � tj � 1% as a function of ~s ~m!, t ~m! ! � ~Z�!
m �

~Z�!
m and also a special indicator function Ia, b~s ~m!, t ~m! ! � I $a, b even,

m � ~a � b!02, C~s ~m!, t ~m! ! � 0% + Now to show Lemma 2~a!, it suffices to
establish for any a,b � N, 1 � m � {~a � b!02} , and ~s ~m!, t ~m! ! � Ba,b,m that
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max
ne�i�n

6Di,a,b~s
~m!, t ~m! !� Ia,b~s

~m!, t ~m! !6 � o~1!+ (14)

If either a or b is odd, so that E~Z a!E~Z b! � 0, Lemma 2~a! follows imme-
diately from ~13! and ~14!+ In the case that a,b are even, we find that the
dominant component in ~13! involves the sum over partitions ~W1, + + + ,Wm! with
m � ~a � b!02 and corresponding ~s ~m!, t ~m! ! that satisfy C~s ~m!, t ~m! ! � 0
or equivalently sj , tj � $0,2% , st � tj � 2 for 1 � j � m � ~a � b!02; in
this instance, Ca,b~s ~m!, t ~m! ! � 1 ~by E~«0

2! � 1! and a size m � ~a � b!02
partition ~W1, + + + ,W~a�b!02! of $1, + + + ,a � b% is formed by a size a02 a partition
of $1, + + + ,a% and a size b02 partition of $a � 1, + + + ,b � a% ; there are exactly
~a � 1!~a � 3! + + + ~1! � ~b � 1!~b � 3! + + + ~1! such partitions possible+ So for
even a,b with m � ~a � b!02, it holds that

(
m�~a�b!02, ~W1, + + + ,Wm !

Ca,b~s
~m!, t ~m! !{Ia,b~s

~m!, t ~m! ! � E~Z a !{E~Z b !,

which with ~13! and ~14! implies that Lemma 2~a! follows for a,b even+
We now focus on proving ~14! by treating two cases: Ia, b~s

~m!, t ~m! ! � 0
or 1+ For i � N, define subsample sum covariances r�~i ! [ Cov~S�1

* ,S�i
* ! �

(j�Z dj~1!{dj~i !+Although we cannot assume that (k�Z6ck6 � ` or (k�Z6dk~i !6 �
` under long-range dependence, it holds that

(
k�Z

dk~i !
2 � Var~S�i

* !� 1, (
k�Z

6dk~i ! 6s � v�
s�2 i � N, s � 2, (15)

by applying Lemma 1~a!+ Similarly, if a, b � N, 1 � m � {~a � b!02} ,
~s ~m!, t ~m! ! � Ba,b,m with min1�j�m max$sj , tj % � 2, then

max
ne�i�n

6Di,a,b~s
~m!, t ~m! !6 � max

ne�i�n
�)

j�1

m

(
k�Z

6dk~1! 6sj 6dk~i ! 6tj� � v�
a�b�2m (16)

follows from ~15!, where v� � o~1!+

Case 1+ Ia, b~s ~m!, t ~m! ! � 0+ We show that ~14! holds with an induction
argument on m+ Consider first the possibility m � 1, for which ~s ~m!, t ~m! ! �
~s1, t1! � ~a,b!+ If C~s ~m!, t ~m! ! � 0 and m � 1, then a � b � 1; in this case,
Di, a, b~s ~m!, t ~m! ! � r�~i !, i � N+ For 0 � e � 1 and large n such that
ne02 � �, the growth rate in ~1! with ~4! gives

max
ne�i�n

6r�~i !6 � s�
�2 max

ne�i�n � (
j, j ' � 1

�

Cov~Yj ,Yi�1�j ' !�
� s�

�2�2 max
ne�i�n

max
6 j 6��
6r~i � j !6

� O~�a0L~�!{6ne� �6�aMn, e !

� O~~n0�!�a$L~n!0L~�!%$Mn, e 0L~n!%!� o~1!,

(17)
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defining Mn, e� sup $L~tn! : e02 � t � 2% and using ~7! with Mn, e0L~n!r 1 by
Taqqu ~1977, Lem+ A1!+ If C~s ~m!, t ~m! ! � 0 and m � 1, then either a � s1 � 1
or b � t1 � 1 for a,b � N, and ~14! follows from ~16! and O~v�

a�b�2m! �
o~1!+

Now assume that, for some T � N, ~14! holds whenever a, b � N with
Ia,b~s ~m!, t ~m! !� 0 and m � min$T,{~a � b!02}% +We let a,b � N, ~s ~m!, t ~m! ! �
Ba,b,m, m � T � 1 � {~a � b!02} with Ia,b~s

~m!, t ~m! ! � 0 in the following dis-
cussion and show that ~14! must hold by the induction assumption+

If C~s ~m!, t ~m! !� 0, then min1�j�m max$sj , tj%� 2 holds and ~14! follows from
~16! and O~v�

a�b�2m!� o~1! because a � b � 2m, which we verify+ If a,b are
even, then m � ~a � b!02 must hold by Ia,b~s

~m!, t ~m! ! � 0; if a or b is odd,
then a � b � 2m follows because ~s ~m!, t ~m! !� Ba,b,m and max1�j�m$sj � tj%� 2
must hold ~the alternative by ~s ~m!, t ~m! ! � Ba, b,m with C~s ~m!, t ~m! ! � 0 is
that sj , tj � $0,2% for 1 � j � m, so that (j�1

m sj � a and (j�1
m tj � b are even, a

contradiction!+
Consider now the possibility that C~s ~m!, t ~m! ! � 0+ Because m � T � 1 � 1

with a,b � 1 necessarily, say ~w+l+o+g+! that components sm � tm � 1 in s ~m! �
~s1, + + + , sm!, t ~m! � ~t1, + + + , tm!+ Using r�~i !�(km�Z dkm~1!

sm {dkm~i !
tm , i � N, we can

algebraically rewrite the sum

Di,a,b~s
~m!, t ~m! !

� (
k1�{{{�km�1�Z

�)
j�1

m�1

dkj ~1!
sj {dkj ~i !

tj �� (
km�Z

dkm~1!
sm {dkm~i !

tm � (
h�1

m�1

dkh~1!
sm {dkh~i !

tm �
� r�~i !{Di,a�1,b�1~s0

~m�1! , t0
~m�1! !� (

j�1

m�1

Di,a,b~sj
~m�1! , tj

~m�1! !, (18)

where ~s0
~m�1! , t0

~m�1! ! � Ba�1,b�1,m�1 for s0
~m�1! � ~s1, + + + , sm�1!, t0

~m�1! �
~t1, + + + , tm�1!, and ~sj

~m�1! , tj
~m�1! ! � Ba,b,m�1 for sj

~m�1! � s0
~m�1! � ej

~m�1! ,
tj
~m�1! � t0

~m�1! � ej
~m�1! , writing the j th coordinate vector ej

~m�1! � ~I $1 � j %,
+ + + , I $m � 1 � j %! � ~Z�!

m�1 , 1 � j � m � 1+ Note that Ia,b~sj
~m�1! , tj

~m�1! ! �
0 for 1 � j � m � 1 because m � 1 � ~a � b!02+ By the induction assumption
on terms Di,a,b~sj

~m�1! , tj
~m�1! !, j � 0, in ~18! along with ~11! and ~17!, we find

that ~14! holds whenever Ia,b~s ~m!, t ~m! ! � 0 with m � T � 1+ This completes
the induction proof and the treatment of Case 1+

Case 2+ Ia, b~s ~m!, t ~m! ! � 1+ Here a, b are even, and the components of
~s ~m!, t ~m! ! satisfy sj � $0,2% , tj � 2 � sj for 1 � j � m � ~a � b!02+ By ~15!,
(k�Z dk~1!

sj {dk~i !
tj � 1 follows for any 1 � j � m � ~a � b!02, i � N+ Using this

and algebra similar to ~18!, we can iteratively write Di,a,b~s ~m!, t ~m! ! as a sum
by parts equal to
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(
k1�{{{�km�1�Z

�)
j�1

m�1

dkj ~1!
sj {dkj ~i !

tj ��1 � (
h�1

m�1

dkh~1!
sm {dkh~i !

tm �
� (

k1�{{{�km�2�Z

�)
j�1

m�2

dkj ~1!
sj {dkj ~i !

tj ��1 � (
h�1

m�2

dkh~1!
sm�1{dkh~i !

tm�1�
� Rm�1, i,a,b~s

~m!, t ~m! !

I

� 1 � (
h�1

m�1

Rh, i,a,b~s
~m!, t ~m! !,

Rh, i,a,b~s
~m!, t ~m! ! � (

k1�{{{�kh�Z

�)
j�1

h

dkj ~1!
sj {dkj ~i !

tj ��(
j�1

h

dkj ~1!
sh�1{dkj ~i !

th�1�,
where 1 � h � m � 1 � ~a � b � 2!02+ With an argument as in ~16!, we find
a uniform bound 6Rh, i,a,b~s ~m!, t ~m! !6 � ~a � b!v�

202 � o~1! for each i � N,
1 � h � m � 1+ Hence, ~14! follows for Case 2+ The proof of Lemma 2~a! is
now complete+ �
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