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The dissolution process of small (initial (equivalent) radius R0 < 1 mm) long-chain
alcohol (of various types) sessile droplets in water is studied, disentangling diffusive
and convective contributions. The latter can arise for high solubilities of the alcohol,
as the density of the alcohol–water mixture is then considerably less than that of
pure water, giving rise to buoyancy-driven convection. The convective flow around
the droplets is measured, using micro-particle image velocimetry (µPIV) and the
schlieren technique. When non-dimensionalizing the system, we find a universal
Sh ∼ Ra1/4 scaling relation for all alcohols (of different solubilities) and all droplets
in the convective regime. Here Sh is the Sherwood number (dimensionless mass flux)
and Ra is the Rayleigh number (dimensionless density difference between clean and
alcohol-saturated water). This scaling implies the scaling relation τc ∝ R5/4

0 of the
convective dissolution time τc, which is found to agree with experimental data. We
show that in the convective regime the plume Reynolds number (the dimensionless
velocity) of the detaching alcohol-saturated plume follows Rep ∼ Sc−1Ra5/8, which is
confirmed by the µPIV data. Here, Sc is the Schmidt number. The convective regime
exists when Ra> Rat, where Rat = 12 is the transition Ra number as extracted from
the data. For Ra6Rat and smaller, convective transport is progressively overtaken by
diffusion and the above scaling relations break down.

Key words: convection, drops and bubbles, plumes/thermals

1. Introduction
Conventional wisdom says that oil and water do not mix. However, some oily

liquids, e.g. long-chain alcohols, are slightly soluble in water (see table 1). When
a droplet of such an alcohol is placed in a bath of water, it will slowly dissolve,
analogous to the much studied topic of sessile droplet evaporation (Cazabat & Guéna
2010; Erbil 2012; Lohse & Zhang 2015), or the dissolution of small gas bubbles

† Email address for correspondence: d.lohse@utwente.nl
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FIGURE 1. (Colour online) (a) Snapshot of a dissolving long-chain alcohol droplet
(1-hexanol) in water. The dotted black line indicates the location of the silicon substrate,
which mirrors part of the droplet. The footprint radius Rfp and the contact angle θ
are indicated. A movie of the entire dissolution process may be found online in the
supplementary movies available at http://dx.doi.org/10.1017/jfm.2016.158. (b) Evolution of
the aforementioned parameters in time, along with the volume V of the droplet and the
equivalent radius R= (3V/(2π))1/3. All parameters have been normalized by their initial
values: V0 = 750 nl, Rfp,0 = 0.825 mm, R0 = 0.708 mm and θ0 = 72◦.

(Peñas López, Parrales & Rodríguez-Rodríguez 2015). Figure 1 shows an example of
a sessile 1-hexanol droplet in water dissolving in the stick–jump mode (Dietrich et al.
2015; Zhang et al. 2015): unavoidable chemical and geometrical inhomogeneities in
the substrate cause the contact line of the droplet to be pinned during dissolution,
until the contact angle θ has decreased to a critical depinning value, which was
found to be 62◦ ± 2◦. At this point, the contact line depins and the contact angle
quickly increases to a value θ = 66◦± 1◦, resulting in a simultaneous decrease of the
footprint radius Rfp. For the 1-hexanol droplet in figure 1, the dissolution time τ was
approximately 3 h. Considering this long dissolution time, it may seem plausible to
assume that mass transport away from the droplet is governed by diffusion. Equivalent
to the diffusion-driven mass transport from small gas bubbles (Epstein & Plesset 1950)
or small sessile droplets (Popov 2005; Stauber et al. 2014; Lohse & Zhang 2015;
Zhang et al. 2015), the relevant time scale would in this case then be given by

τd = R2
0ρd

2D1c
, (1.1)

where R0 is the initial equivalent radius of the droplet, D is the diffusion constant of
the alcohol in water, ρd is the density of the droplet material, and 1c is the difference
between the saturated concentration cs at the droplet interface and the (undersaturated)
concentration c∞< cs far away from the drop. However, for the 1-hexanol droplet with
an initial radius R0= 0.7 mm, one finds τd≈ 11 h, which is much longer than the 3 h
observed experimentally. In previous work (Dietrich et al. 2015), we hypothesized that
this discrepancy is caused by the neglect of buoyancy-driven convection of the slightly
lighter alcohol–water mixture near the droplet interface. The same idea has been put
forward in the context of slowly growing CO2 bubbles in small supersaturations
(Enríquez et al. 2014) and evaporating droplets (Shahidzadeh-Bonn et al. 2006).
Also in these cases, the rate of mass transport in excess of the diffusion-limited
prediction could be explained by assuming a contribution from buoyancy-driven
convection. On the other hand, even for millimetre-sized droplets, there also seem to
be circumstances under which the diffusive time scale is accurate (Picknett & Bexon
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1977; Gelderblom et al. 2011; Stauber et al. 2014, 2015b). This reflects the existence
of a threshold for convection. However, the details of this threshold remain unclear.
The low velocities and small refractive index differences involved often inhibit direct
observation of the buoyant flow in the surrounding medium. As far as we are aware,
direct visualization attempts of the external flow have only been undertaken in the
context of evaporating droplets, using either schlieren (Kelly-Zion, Batra & Pursell
2013a), infrared spectroscopy (Kelly-Zion et al. 2013b) or interferometry (Dehaeck,
Rednikov & Colinet 2014) techniques, and only very recently by tracing tiny oil
droplets in air (Somasundaram, Anand & Bakshi 2015).

In this work we combine qualitative schlieren imaging with quantitative micro-
particle image velocimetry (µPIV) to directly visualize the concentration field and
flow around slowly dissolving droplets of various types of long-chain alcohols in clean
water. We show that, above a transition solutal Rayleigh number, which corresponds
to the buoyancy of the alcohol–water mixture, which is lighter than the surrounding
clean water, the solute is mainly transported away in a single steady plume above the
droplet. Knowledge of the flow structure allows us to derive scaling laws for both the
dissolution rate and the plume velocity in the convective regime, which are in good
agreement with experiments. Finally, as the droplet shrinks and its Rayleigh number
drops below the transition value, a transition occurs in which convection dies out and
is overtaken by diffusion.

2. Experimental procedure
2.1. Materials and preparation

As shown in table 1, the solubility of long-chain alcohols strongly depends on
their length, while other properties, such as density and diffusion coefficient, are
relatively insensitive to this. By increasing the number of carbon atoms in the chain
from five (pentanol) to eight (octanol), one decreases the solubility (and thereby
the buoyant force of the water–alcohol mixture) by two orders of magnitude. This
makes these alcohols very suitable to study the possible transition between diffusion
and convection. Alcohols with purities of >98 % (Sigma-Aldrich) were used. The
density of the alcohol–water mixture (table 1) was calculated for a mixture at 100 %
saturation, using the molal volume φ0

V at infinite dilution (Høiland & Vikingstad 1976;
Romero et al. 2007). The molal volume φV gives the volume occupied by one mole
of solute in the solvent. The assumption is made that φV is independent of the solute
concentration, which introduces a negligible error in 1ρ of <1 % when compared to
the direct density measurements given by Romero et al. (2007).

A sketch of the experimental set-up is provided in figure 2. All measurements
were conducted in a cubical glass tank of 5 cm × 5 cm × 5 cm. The container was
cleaned using isopropyl alcohol and water, and then filled with 100 ml of clean
water. This water was obtained from a Reference A+ system (Merck Millipore, at
18.2 M� cm) several hours before the measurement and stored in a clean flask
to equilibrate and thus reduce thermal convective currents. After the tank was
filled, a single droplet was dispensed from a glass syringe with a Teflon plunger,
fitted in a motorized syringe pump. The droplet was placed on a hydrophobized
silicon wafer ≈1 cm × 1 cm (P/Boron/(100), Okmetic), placed at the bottom of the
tank. Hydrophobization was achieved by coating the wafer with a self-assembled
monolayer of PFDTS (1H,1H,2H,2H-perfluorodecyltrichlorosilane 97 %, ABCR
GmbH, Karlsruhe, Germany), following the procedure described earlier (Karpitschka
2012). Prior to each experiment, the samples were cleaned by insonication in acetone
for 10 min and dried under a stream of nitrogen. After the droplet was placed on
the substrate, the needle was removed and the tank was closed.
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FIGURE 2. (Colour online) Experimental set-up, showing the glass tank (1), with the
substrate and the droplet in place (not to scale). The droplet was deposited under water
using a syringe (2) fitted in a motorized syringe pump (not drawn). A dichroic mirror
(3) was used to couple the laser beam (4) into the long-distance microscope (5). A
trigger-delay box (6) synchronized the laser pulses with the camera exposure. Parts (3),
(4) and (6) were used in the µPIV measurements only. The assembly used for schlieren,
consists of a positive lens (7) and a knife edge (8), located at the focal point of the lens.
The parallel LED light source (9) was used in all experiments, with the exception of the
PIV measurements.

2.2. Imaging
The droplet was illuminated from one side using a collimated light-emitting diode
(LED) light source (Thorlabs, wavelength λ = 625 nm) and imaged onto a charge-
coupled device (CCD) camera (Pixelfly USB, PCO Germany), with a long-distance
microscope providing a magnification up to 16×. The images were recorded at a rate
of one frame per second (f.p.s.), and post-processed using a Matlab code to extract
the droplet profile with subpixel accuracy (van der Bos et al. 2014). Since all droplets
were smaller than the capillary length (

√
γ /(ρH2O − ρalcohol)g ≈ 2 mm), the droplet

profile could be accurately fitted to a spherical cap to obtain the radius of curvature
and contact angle. With this method, droplets could be traced until V < 0.05V0.

2.3. Schlieren
The concentration gradients developing around the dissolving droplets were
qualitatively visualized using the schlieren technique (Settles 2001). For this, a
positive lens and a knife edge were placed at the camera side of the tank, as shown
in figure 2. After passing through the tank, the parallel light from the LED source
is focused onto the edge of a sharp knife placed perpendicular to the beam. To be
sensitive to both horizontal and vertical concentration gradients, the knife edge was
placed at an angle of 45◦. In the resulting image, solute-rich regions are visible as
local changes in light intensity.

2.4. µPIV measurements
For the µPIV measurements, the water in the tank was seeded with red fluorescent
tracer particles (Fluoro-Max, Thermo Fisher Scientific, 3 µm diameter). A pulsed
green laser, (Nd : YAG, λ= 532 nm) was coupled into the microscope by a dichroic
mirror. The focal plane of the microscope was centred at the droplet. Therefore,
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FIGURE 3. (Colour online) Velocity fields (a,b) and solute concentration fields (c,d)
surrounding droplets of 1-pentanol (a,c) and 1-heptanol (b,d) dissolving in water. The
contrast of the outlined area in (d) has been modified to increase the visibility of the
plume. Note that panels (a,c) and (b,d) represent separate experiments. The dashed line
in (c) indicates where the cross-sectional profiles, shown in figure 5, are taken. The images
were taken approximately 30 s (a), 2 min (c) or 4 min (b,d) after deposition of the
droplet.

only tracer particles in the ≈100 µm thick focal plane were imaged, producing a
two-dimensional velocity field around the symmetry axis of the droplet. The red
light (λ = 612 nm) emitted by the fluorescent particles was recorded by the CCD
camera at 8 f.p.s. A BNC 575 pulse/delay generator was used to synchronize the
laser pulse and the camera exposure. The obtained images were then post-processed
in ImageJ to remove static features and to enhance the contrast. Consecutive image
pairs were analysed with JPIV, using an interrogation window of 32 × 32 pixels,
corresponding to ≈70 µm × 70 µm. The concentration of tracer particles was kept
low to avoid excessive absorption and blurring by out-of-focus particles. Because of
this low particle density, the velocity fields from multiple image pairs were combined
for improved accuracy (Raffel et al. 2007).

3. Visualization results
Figure 3 shows snapshots of the µPIV and schlieren measurements for 1-pentanol

(a,c) and 1-heptanol droplets (b,d). The dissolving 1-pentanol droplet generates a clear
plume originating from its apex, while fresh liquid is drawn in from the sides. The
tip of the plume ends in a vortex ring. As this ring moves away from the droplet
as the experiment proceeds, the effect of the transient flow generated by the vortex
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g

FIGURE 4. (Colour online) Sketch of a sessile droplet dissolving at a rate ṁd and
the convective plume. A concentration boundary layer of thickness δc develops over the
droplet interface; since Sc� 1, the velocity boundary layer has a thickness δv > δc. The
boundary layers merge into plumes with diameters 2δc and 2δv , moving at a vertical
velocity vp. The boundary layer widths δc and δv will change as a function of height,
but are linked via the relation δv/δc ∼

√
Sc (Bejan 1993).

ring diminishes rapidly, leaving behind a single plume (see figures 3c and 11). For
1-heptanol, with its lower solubility, the plume is far less pronounced. The particle
velocities are significantly lower and the contrast of the schlieren image had to be
strongly enhanced to see the plume at all (see figure 3d). The weak 1-heptanol plume
seems to be affected by a small mean flow in the cell, possibly caused by thermal
convection due to changes in room temperature or the illumination. As we will show
later on, this mean flow seems to have little influence on the dissolution behaviour.
Appendix A contains additional µPIV results, including time-resolved velocity fields
around a 1-pentanol droplet, the velocity field around an insoluble sessile droplet, and
the flow around a dissolving sessile droplet placed on a vertical substrate. A movie,
showing the motion of the bulk around the dissolving droplet, is available online in
the supplementary movies.

The two different techniques used in figure 3 reveal that the convective plume
displays two different features, as illustrated in figure 4. Firstly, the schlieren images
visualize the plume-shaped region that contains dissolved alcohol. The concentration
profile is characterized by a width 2δc, which increases as δc ∝

√
Dz/vp, with z the

height above the droplet, and vp the plume flow speed. Secondly, the buoyant force
on the (lighter) water–alcohol mixture results in a flow, as visualized by the µPIV.
The velocity profile of this flow (also drawn in figure 4) is characterized by a width
2δv. The liquid viscosity ν also causes the velocity profile to broaden for increasing
height, namely with the same height dependence as the concentration profile, i.e.
δv ∼

√
νz/vp. Therefore, the ratio ζ between the widths of the concentration and

velocity profiles is fixed, ζ = δv/δc ∼
√

Sc (Bejan 1993), where Sc is the Schmidt
number, Sc≡ ν/D. In the current system, Sc≈ 1200, so δv ≈ 30δc is expected.

To obtain a theoretical description for the velocity and concentration profiles at
Sc = 1200, we solved equations (II.8) and (II.9) in the paper of Fujii (1963), who
described the analogous case of a thermal plume above a heat source. Here, we
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FIGURE 5. (Colour online) (a) Theoretical velocity profile (black) and concentration
profile (pink) for a plume at Sc= 1200. The profiles are axisymmetric around their plume
centre at dimensionless lateral coordinate X̃= 0, as illustrated in the inset, which shows a
zoom around X̃= 0. The observed ratio ζ = δv/δc depends on the definition of the plume
width, as illustrated by the horizontal dashed lines. The anticipated ζ = 30 is recovered
when the plume width is evaluated at a relative amplitude of 0.1. (b) The schlieren signal
(red line), measured at a horizontal cross-section 300 µm above a 1-pentanol droplet
(R0 = 700 µm), represents the derivative of the concentration profile. Therefore, both the
theoretical concentration profile (pink solid curve) and its derivative (red dashed curve) are
plotted, and the derivative is fitted to match the schlieren measurement. (c) The velocity
profile (black circles), also measured at 300 µm above an equally sized 1-pentanol
droplet, and the theoretical velocity profile (black solid line). (d) The velocity profiles at
subsequent times, revealing that both the plume width and velocity decrease. For clarity,
the plots are vertically shifted, with the baselines vp = 0 given as dashed lines. At
t= 3000 s, both droplet and plume have disappeared.

followed the numerical procedure described by Vázquez, Pérez & Castellanos (1996),
and used equation (II.15) in Fujii’s paper as a condition in the solving procedure, to
obtain the velocity and concentration profiles at Sc = 1200, as shown in figure 5(a)
by the black and pink lines, respectively. The lateral coordinate X̃ in the theory is
scaled by

√
Lz, with L = √2πν3/(gβcṁd), where g is the acceleration of gravity,

βc ≡ (∂ρ/∂c)/ρb is the solutal expansion coefficient, and ṁd is the mass loss rate of
the droplet. The high Sc number in the current system results in distinct shapes for
the velocity and concentration profiles. The measured value for ζ therefore depends
on the definition of the plume width, as shown in figure 5(a). The anticipated ζ = 30
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is retrieved when evaluated at a relative amplitude of 0.1, corresponding to the 90 %
boundary layer definition.

To compare our measurements to the theoretical profiles, a cross-sectional intensity
profile was measured in the schlieren image (figure 3c) at a height of 300 µm above
the apex of the droplet (as illustrated by the dashed line in figure 3c). This intensity
profile is plotted as the solid red line in figure 5(b), where we have to keep in mind
that it represents the first derivative of the concentration profile, as it is the result
from a schlieren measurement. To allow for an easy comparison, we plotted the
theoretical concentration profile (pink solid line) from figure 5(a) and its derivative
(red dashed line) in figure 5(b), and fitted the derivative to match the experiment.
From this fit, a conversion factor was obtained to translate the dimensionless lateral
coordinate of the theory to the length scale of the experiment. We executed the same
procedure to obtain the velocity profile from the µPIV data in figure 3(a), again at
300 µm above the droplet. This profile is plotted as the black circles in figure 5(c).
The theoretical velocity profile (black solid line) is superimposed on the measurement,
where the previously found conversion factor was used to match the lateral coordinate.
Comparison of the experimental and theoretical profiles in figure 5(c) reveals that,
while the central part of the plume shows fair agreement with the theoretical profile,
the general shape of the plume is much narrower than expected from theory. The
cause of this discrepancy is not understood as of yet. Possibly the vortex, substrate
and droplet influence the plume shape, and the expected profile can be recovered
when measured at higher distance above the droplet.

As mentioned before, the plume changes over time. To visualize the evolution of
the plume, cross-sections are taken in the µPIV data at subsequent times, at 300 µm
above the 1-pentanol droplet. These cross-sections are plotted in figure 5(d), and
show that the plume properties are linked to the droplet size: both the width and
the maximum velocity of the plume steadily decrease as the droplet shrinks. At
t= 3000 s, the droplet has dissolved completely.

4. Dissolution rate and plume velocity

The µPIV and schlieren images show that the convective flow around small droplets
takes the form of a thin boundary layer over the droplet interface, culminating in
a single plume rising from its apex. A schematic drawing of this flow and the
concentration profile is shown in figure 4. If we assume (1) that at the interface
of the droplet the solute concentration is constant and equal to cs and (2) that the
droplet shrinks sufficiently slowly, then this situation is mathematically equivalent to
the buoyant flow around a hot sphere of constant temperature T and fixed radius R.
The second statement relies on a quasi-steady approximation, and is supported by
the fact that, firstly, τ/(R2

0/D) � 1, reflecting that the time scale of the boundary
layer effects is much smaller than the total dissolution time of the droplet. Secondly,
due to dissolution, the droplet interface moves at a speed Ṙ< 1 µm s−1, from which
we can calculate the Péclet number Pe = ṘR/D� 1, indicating that advective mass
transport due to the motion of the droplet interface is much smaller than the diffusive
mass transport. This, combined with the fact that the measured bulk velocities are
>10 µm s−1� Ṙ, allows us to safely regard the droplet as quasi-steady. In the context
of thermal convection, the flow structure in both the boundary layer and plume are
well known (see e.g. Fujii 1963; Bejan 1993). In this section we recapitulate the
main findings in terms of the dissolution problem and compare them directly to our
observations.
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FIGURE 6. (Colour online) Equivalent radius R = (3V/(2π))1/3 as a function of time
for 1-pentanol droplets (a) and 1-heptanol droplets (b) dissolving in water. The inset in
(a) illustrates how, for each droplet with initial radius R0, the lifetime τ is estimated to
lie between the lower estimate τl at the end of the experiment, and the upper estimate
τu, found by extrapolation using (5.1) (green dashed line). The lifetime τ is plotted
as a function of R0 in panels (c) and (d) for 1-pentanol and 1-heptanol measurements,
respectively. The lines in panels (c) and (d) illustrate the τ ∼R2

0 and τ ∼R5/4
0 relations, as

expected for diffusion and convection, respectively. The vertical line in (d) indicates the
transition Ra number Rat = 12, which marks the transition between convection (Ra> Rat)
and diffusion (Ra< Rat). For 1-pentanol, Rat = 12 corresponds to R= 0.07 mm.

4.1. Dissolution rate

To study the droplet dissolution dynamics as a function of droplet liquid and
size, individual droplets of varying initial volume and alcohol type were imaged
throughout the dissolution process. Since the footprint radius Rfp shows steps due
to the stick–jump mode dissolution (Dietrich et al. 2015; Lohse & Zhang 2015;
Zhang et al. 2015), we define the equivalent radius R ≡ (3V/(2π))1/3 to provide
a continuously decreasing measure for the droplet size. Figure 6 shows R(t) for
1-pentanol (a) and 1-heptanol (b) droplets. From this, the mass loss rate ṁd was
extracted and plotted as a function of R in figure 7 for all six alcohols. Note that,
while ṁ< 0 for a shrinking droplet, we define the droplet mass loss rate as a positive
amount, as it provides a more intuitive measure for the dissolution process. Using
this, figure 7 shows that the measured mass loss rates for the various droplet sizes
and alcohol types span two orders of magnitude. To find a universal description for
the dissolution dynamics, we continue by defining dimensionless numbers, which take
both the droplet size and liquid into account.

In (convective) heat exchange problems, the heat exchange is usually expressed in
terms of the (dimensionless) Nusselt number, which is the ratio of the heat transfer
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FIGURE 7. (Colour online) Rate of mass loss as a function of R for droplets of
different alcohols. The mass loss rates are ordered as a function of alcohol solubility, with
1-pentanol and 1-octanol being the best and least soluble alcohols, respectively.

rate and the rate for pure diffusion. The equivalent for solutal convection is the
Sherwood number,

Sh≡ 〈ṁd〉AR
D1c

, (4.1)

where 〈ṁd〉A is the actual (measured) mass transfer flux (rate per area), averaged over
the droplet surface area A. This mass flux is compared to D1c/R, the mass flux of
pure (steady) diffusion from an equally sized spherical droplet (or a sessile droplet
with θ = 90◦). In the case of pure diffusion from our sessile droplets (45◦ < θ < 75◦),
we expect to find a diffusion-limited Sherwood number 0.9 < Shd < 1.3, the exact
value of which depends on the droplet contact angle, as discussed in appendix B.
For the case of laminar flow at high Sc number, Bejan (1993) provides a complete
and insightful derivation of the momentum equation, showing that the flow can be
described using the Boussinesq approximation of the Navier–Stokes equation. This
approximation assumes a slender boundary layer (i.e. δc � R, which is justified by
figures 3(c) and 3(d), which indeed show a thin boundary layer over the droplet), a
constant pressure over the width of the boundary layer and a limited density difference.
For high Sc numbers, the buoyant force is balanced by viscosity and it can be shown
that δc/R∼Ra−1/4, independent of Sc (Bejan 1993). Here Ra is the Rayleigh number,
which is the ratio of the buoyant force to the damping force,

Ra≡ gβc1cR3

νD
. (4.2)

Taking δc as the typical length scale over which diffusion takes place in the presence
of convection, we find 〈ṁd〉A ∼D1c/δc, so that

Sh∼ R/δc ∼ Ra1/4, (4.3)

again independent of Sc. If we recast the data from figure 7 in terms of the Ra and
Sh numbers, all datasets from the six different alcohols collapse, as shown in figure 8.
This figure also reveals that, for large Ra, the data follow the anticipated Sh∼ Ra1/4

scaling, which is plotted as the dashed line. For small Ra numbers, Sh converges
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FIGURE 8. (Colour online) Sherwood number as a function of Rayleigh number. The plot
shows the mean value and the spread for a total of 70 measurements on droplets with
initial volumes 2 nl 6 V0 6 1200 nl. Since the Ra number depends on both the droplet
size and its material properties, high-Ra droplets are easily made using large droplets of
1-pentanol, whereas low-Ra droplets are best studied using small droplets of the poorly
soluble 1-heptanol and 1-octanol. Equation (4.4) is plotted as the solid black line, using
Rat = 12.1, Shd = 1.2 and n= 1.0.

to a plateau, as expected for diffusion. It is noteworthy that the Sh(Ra) dependence
from Enríquez et al. (2014), who studied the growth of CO2 gas bubbles in slightly
supersaturated water, is almost identical to our figure 8. This indicates that the flow
structures around bubbles and droplets are very similar.

To better understand the transition between the convective and the diffusive
behaviour, and to find the value of the transition Ra number Rat, we fitted a crossover
function of the form

Sh(Ra)= Shd

[
1+

(
Ra
Rat

)n]1/(4n)

(4.4)

to the data. Here n is a fitting parameter that describes the sharpness of the transition.
Equation (4.4) was fitted to the individual datasets of each alcohol, to obtain Rat =
12.1 ± 5.8, Shd = 1.2 ± 0.2 and n = 1.0 ± 0.5. Equation (4.4) is plotted in figure 8,
using the mean values. The fitted curve confirms that, for Ra > Rat ≈ 12, the data
follow the Sh∼ Ra1/4 scaling.

A transition exists around Rat, where the contribution of convective mass transport
gradually decreases. When Ra < Rat, we obtain the diffusive limit Sh ≈ 1.2,
independent of Ra. A convective contribution to the evaporation of water droplets on
mica has been claimed by Shahidzadeh-Bonn et al. (2006), for droplets with radii
of approximately 1 mm, corresponding to Ra = 10. However, they did not directly
measure or visualize a convective flow, and their finding was rebutted by Guéna,
Poulard & Cazabat (2006), who studied the same system and excluded a convective
contribution by flipping the system upside down. This hindered the development
of a convective flow, and no difference in evaporation was reported whether the
droplet was sessile or hanging, demonstrating that no convection developed around
water droplets with radii up to 3 mm. The absence of convection around droplets
with Rayleigh numbers well above the found value of Rat can be explained by
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Shahidzadeh-Bonn et al.’s (2006) choice of the droplet diameter as characteristic
droplet size, leading to an overestimation of the Rayleigh number. Water droplets
fully wet the hydrophilic mica substrate, resulting in a large difference between the
droplet lateral size and its height, and thus to only a seemingly high value of Ra,
when taking the diameter. For the convective problem, it makes a great difference
whether the solute-rich surface is parallel or perpendicular to the direction of gravity.
This is highlighted by the fact that, in the case of a horizontal heated surface, there
exists a critical value for the onset of convection, while this is not the case for a
vertical heated surface, where a smooth transition is to be expected, as we find in the
present case. We therefore believe that the length scale parallel to the direction of
gravity is the more appropriate choice. As a final remark on this issue, we would like
to encourage future work on droplet evaporation to be done in a humidity-controlled
environment, as the density of air changes with humidity, which potentially could
result in a different onset of convection and a different Rayleigh number.

4.2. Plume velocity
Similar to the concentration boundary layer around the droplet, the local velocity and
structure of a convective plume are determined by a competition between buoyant and
viscous stresses. For a thermal plume, this is described by the local thermal Rayleigh
number Ra(z), based on the local temperature difference between the centre of the
plume and the surroundings (see e.g. Fujii 1963; Vázquez et al. 1996). The local
solutal Rayleigh number can be written similarly, based on the local concentration
difference 1c(z),

Ra(z)≡ gβc1c(z)z3

νD
. (4.5)

The plume can be linked to the dissolving droplet, as the transport of solutes inside
the plume must equal the dissolution rate of the droplet,

ṁd ∼ δ2
c1cvp, (4.6)

with vp the central velocity of the plume. Similarly to the previous derivation of the
flow over the droplet interface, where again a slender boundary is assumed (as verified
by figures 3(c) and 3(d)), and R is replaced by the vertical coordinate z, it can be
shown (Fujii 1963; Bejan 1993) that for Sc� 1 the plume width δc behaves as

δc ∼ z (Ra(z))−1/4 ∝ z1/2 (4.7)

and the plume velocity as

vp ∼ D
z
(Ra(z))1/2 =

(
gβcṁd

ν

)1/2

. (4.8)

Substituting these relations into (4.6), we find the relation between 1c and ṁd as
1c∼ ṁd/(Dz), so that (4.5) can also be written as

Ra(z)∼ gβcṁdz2

D2ν
. (4.9)

Again by exploiting the analogy with the thermal case, one finds the following scaling
behaviours for the width of the plume δc(z) and the central velocity vp of a solutal

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

15
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.158


58 E. Dietrich and others

100 101 102 103 104

10–4

10–3

10–2

10–1

100

10–5

Time

FIGURE 9. (Colour online) The plume Reynolds number as a function of Ra number
for three individual 1-pentanol droplets with V0 = 700 nl (red), V0 = 550 nl (green) and
V0 = 140 nl (blue). The expected Re∼ Ra5/8Sc−1 scaling is indeed found when Ra� Rat,
but breaks down when Ra approaches Rat. This marks the onset of the transition region
(located around Rat), in which convective transport is gradually exceeded by diffusive
transport. To obtain the fits to the two measurements, plotted in red and blue, an additional
prefactor of 0.25 (red/green) and 0.1 (blue) was required.

plume with Sc� 1 (Fujii 1963):

δc ∼ z (Ra(z))−1/4 ∝ z1/2 (4.10)

vp ∼ D
z
(Ra(z))1/2 =

(
gβcṁd

ν

)1/2

. (4.11)

Note that vp is independent of z. We use the droplet dimension R to non-
dimensionalize the plume velocity, and define a plume Reynolds number

Rep ≡ vpR
ν
. (4.12)

By using the relation for vp from (4.11) we obtain

Rep ∼
(

gβcṁdR2

ν3

)1/2

, (4.13)

in which we can insert the previously found expression for ṁd to obtain

Rep ∼ Ra5/8Sc−1. (4.14)

To test this scaling, we measure the maximum vertical velocity in the µPIV data at
a height of 300 µm above the droplet, together with the size of the droplet, and use
this to calculate Rep(Ra). The result of this analysis is shown in figure 9. For Ra�
Rat, we find the anticipated Rep ∼ Ra5/8. Note that this scaling breaks down already
around Ra≈ 400� Rat, reflecting the broad transitional regime also observed for the
Sherwood number (figure 8) and as quantified by the value of the fitting parameter
n= 1 in (4.4). For the measurements shown, there seems to be some dependence of
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the scaling prefactor on the initial size of the droplet. The smallest droplet displays a
somewhat lower overall plume velocity than the two larger ones. We are not yet able
to pinpoint the reason for this difference. One possible hypothesis might be that inertia
of the bulk flow plays a role, and that the larger droplets create a stronger convection
that persists throughout the dissolution. However, more work is required to confirm or
rebut this hypothesis.

5. Dissolution time
The convective flow and the related increase in mass transport were described in

the previous section. In this section we proceed by deriving an expression for the
convective droplet dissolution rate and associated dissolution time τc. However, we
start by briefly introducing diffusive dissolution, which we will use later on.

An expression for the diffusive volume loss rate dV/dt has been given by Popov
(2005) in the context of evaporating sessile water droplets. Popov’s solution can be
rewritten to find the rate of change of the droplet, expressed in terms of the previously
introduced equivalent radius R,

dR
dt
=−D1c

2ρR
f (θ)

[
2

2− 3 cos θ + cos3 θ

]1/3

sin θ, (5.1)

where

f (θ)= sin(θ)
1+ cos(θ)

+ 4
∫ ∞

0

1+ cosh(2θε)
sinh(2πε)

tanh[(π− θ)ε] dε (5.2)

is a geometrical shape factor to describe the effect of the impenetrable substrate.
Note that for simplicity we have neglected the intermittent contact line pinning which
was observed in the experiments (Dietrich et al. 2015; Zhang et al. 2015), and (5.1)
describes dissolution in the constant contact angle mode. Integration of (5.1) results
in the dissolution time, with the associated diffusive time scale given by (1.1), i.e. in
particular τd ∝ R2

0.
We can perform a similar calculation for the convective mass exchange, again based

on the cooling sphere analogy. An important difference between the cooling sphere
and our dissolving droplet is that, in the latter case, the radius decreases in time.
However, if the dissolution is slow, we can assume the process to be quasi-static and
neglect this effect. We start by equating the rate of mass loss, ṁd ∼−R2ρ(dR/dt) > 0,
to the rate at which mass is carried away in the convective plume, ṁp=AD1cSh/R∼
AD1cRa1/4/R, with A∝R2 the area of the droplet–bulk interface. From this we obtain

dR
dt
=−a

(
gβc1c5

s D3

νρ4
d R

)1/4

, (5.3)

with a prefactor a of order 1. Separation of variables and integrating R from R= R0
till R= 0, and time from t= 0 till t= τc, gives the dissolution time with the associated
convective time scale τc with

τc = 4
5a

(
νρ4

d R5
0

gβc1c5D3

)1/4

. (5.4)

Therefore, for droplets dissolving in the convection-dominated regime, we expect a
dissolution time τc ∝ R5/4

0 , with a material-dependent prefactor.
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Alcohol 1-Pentanol 1-Hexanol 1-Heptanol 2-Heptanol 3-Heptanol 1-Octanol

a 0.65± 0.05 0.65± 0.05 0.55± 0.05 0.65± 0.05 0.7± 0.05 0.65± 0.05
θ (deg.) 70 70 70 52 45 70

TABLE 2. Value of the dimensionless prefactor a in (5.3) for all alcohol types as
determined from a fit to the data, together with the observed contact angles of these
droplets on the PFDTS-coated substrates in water.

To test this scaling behaviour, we used the R(t) curves in figure 6(a,b) and extracted
the dissolution time from each droplet. Since the droplets could not be measured until
complete dissolution, the actual value of τ had to be estimated. Therefore, we assumed
that the last stage of the dissolution process was diffusion-limited and extrapolated the
droplet evolution by integrating (5.1), using the smallest still measured droplet size of
the experiment as initial value. This extrapolation (illustrated by the green dotted line
in the inset of figure 6(a)) provides the upper bound of τ , whereas the lower bound
is given by the time at which the experiment was terminated. The values for τ thus
obtained are plotted as a function of R0 for 1-pentanol and 1-heptanol in figure 6(c,d),
respectively. For larger droplets we indeed find τ ∝R5/4

0 as expected from (5.4), while
for smaller 1-heptanol droplets τ ∝ R2

0 is found, as expected for pure diffusion. The
vertical line in figure 6(d) indicates Ra= 12, showing that the transition from diffusive
to convective dissolution occurs around Rat, consistent with our findings in § 4.

Now that we have confirmed the τc ∝ R5/4
0 behaviour for large droplets, we finally

test whether (5.1) and (5.3) provide accurate descriptions of the dissolution dynamics
in the diffusive and convective regimes, respectively. Moreover, we can test whether
the transition between these regimes indeed occurs around Rat = 12, as found before.
To this purpose, the curves in figure 6(a,b) are replotted in figure 10(a,b) as a
function of the time t − τ . Figure 10(c) and (d) provide a close-up of the final
stage of dissolution, the outlined parts of panels (a) and (b), respectively. Along
with the experimental data, we plotted the numerical integration of the convective
dissolution model, (5.3), which is the upper black line in all panels. We also
plotted the diffusive dissolution model, (5.1), represented by the lower black line
in each panel. Figure 10(a–d) shows that, for Ra � Rat, (5.3) accurately captures
the droplet dissolution process, reflecting convection-dominated dissolution. The
value for the prefactor a in (5.3) was adjusted for each alcohol to obtain a good
fit in the convective regime. The values used are listed in table 2, along with θ ,
for all alcohols. For Ra ≈ Rat, the overlap between our convective model and the
experiments becomes worse, consistent with the transition from convection-dominated
to diffusion-dominated dissolution. The final stage of dissolution is best observed
in figure 10(c,d). When Ra < Rat, the dissolution is purely diffusive, reflected by
the good overlap between (5.1) and the measurements. The above findings confirm
the applicability of our convective dissolution model when Ra > Rat, and validate
Rat ≈ 12 as the transitional Ra number for the transition from convective to diffusive
dissolution dynamics.

6. Conclusion

Sessile droplets of long-chain alcohols immersed in water are ideally suited to
experimentally study the basic laws of mass transfer around small objects. By
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FIGURE 10. (Colour online) Equivalent radius R = (3V/(2π))1/3 as a function of time
t–τ to complete dissolution for 1-pentanol droplets (a) and 1-heptanol droplets (b).
(c,d) Zooms of the outlined parts of panels (a) and (b), respectively. The upper and lower
black curves in each panel represent the integration of (5.3) and (5.1), respectively. When
Ra> Rat = 12, (5.3) accurately describes the dissolution dynamics. Around Rat, which is
indicated by the horizontal line in each panel, a transition exists, in which convection is
progressively overtaken by diffusion. In the final stage (Ra< Rat), the dissolution is well
described by diffusion, i.e. (5.1). The colour coding for the individual measurements is
the same as in figure 6.

choosing alcohols of different chain lengths, the alcohol’s solubility in water can be
varied by almost two orders of magnitude, while its other properties remain practically
the same. This large range of solubilities allowed us to vary the convective driving
parameter, the Rayleigh number, by over six orders of magnitude, while keeping the
droplets large enough to visualize their shrinkage and the flow around them.

Using a combination of µPIV and schlieren technique, we directly demonstrated
that, above a transition Rayleigh number Rat ≈ 12, a buoyant flow develops around
a dissolving droplet, due to the density differences between the lighter alcohol–water
mixture, as compared to the heavier clean water. By modelling the observed boundary
layer structure at the droplet interface and in the plume, we derived a basic scaling
relation Sh ∼ Ra1/4 for convective mass transport. Using this relation as a starting
point, we derived expressions for the shrinkage rate of the droplet and the velocity
of the plume. In the convective regime, these models are in good agreement with our
data. However, once the droplet dissolves to a size close to Rat, diffusion gradually
overtakes convective mass transport and the convective scaling relations break down.

The observed convection and associated increase in mass transport confirms
earlier work on growing bubbles in supersaturated water (Enríquez et al. 2014)
and evaporating droplets (Kelly-Zion et al. 2013a), indicating that it is a universal
phenomenon. It should be noted that the considerations in this work assume that the
plume is transported away from the substrate, against gravity. In the opposite case
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in which the surface is placed upside down, different effects such as the formation
of a stable stratification layer near the surface will also play an important role.
Also we expect that the prefactor a found in our experiments will be affected by
parameters such as the geometry of the droplet, confinements around the droplet and
the inclination of the substrate.

The value for Rat presented in this work provides an important indication to
determine the dominant transport mechanism in droplet dissolution. In conjunction
with this, the convective dissolution model allows for more accurate predictions of
droplet dissolution times. The demonstrated predictability of the dissolution behaviour
of single sessile droplets on a horizontal substrate invites the testing of the derived
scaling relations and fitting parameters in more complicated situations. For example,
the applicability of the derived scaling relations and measured value for Rat could be
tested in the context of bubble growth or droplet evaporation. Moreover, interesting
changes in the flow profile can be expected, for example, when the orientation or
the wettability of the substrate is changed. Other possible research directions include
placing multiple droplets close together, to study their interaction, or making the
droplets so large (R> λc) that they form a puddle.
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Appendix A. Micro-particle image velocimetry data
The flow structure around the dissolving droplet has been measured using µPIV,

utilizing the procedure and set-up described above. In figure 11, the time evolution
of the velocity field around a dissolving 1-pentanol droplet (V0 = 700 nl) is shown.
Shortly after deposition of the droplet (figure 11a), the data reveal the presence of
a toroidal vortex above the droplet, and a strong narrow plume originating from the
droplet apex. At 600 s into the dissolution process, shown in figure 11(b), the centre
of the vortex is observed to have moved away from the droplet, causing the plume to
slow down and broaden. Figure 11(c) shows the droplet at 2000 s after deposition: the
droplet has shrunk considerably; however, a small plume is still visible, along with a
small mean flow, from right to left. Close to the end of the experiment (t = 2800 s,
figure 11d), the droplet has almost disappeared, as has the plume. A small right-to-left
mean flow is still observable.

To show that the plume is caused by solutal convection, and not simply by
the presence of a spherical object at the interface, the experiment is repeated
using an equally sized droplet of 1-decanol. This alcohol has negligible solubility,
cs = 0.037 g l−1 (Kinoshita et al. 1958). For this droplet, Ra≈ 10, which means that
solutal convection should be absent. The velocity field around this 1-decanol droplet
is shown in figure 12. From this figure, it is clear that the presence of the droplet
does not cause the formation of a plume. A slight mean flow is present, which can be
seen to flow around the droplet. Although not visible in figure 12, it should be noted
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FIGURE 11. (Colour online) Velocity fields in water around a dissolving 1-pentanol
droplet, 30 s after deposition of the droplet (a), and 600 s (b), 2000 s (c) and 2800 s (d)
after deposition.
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FIGURE 12. (Colour online) Velocity fields in water around an insoluble 1-decanol
droplet.

that, in this particular experiment, tracer particles adhered to the droplet interface,
something that did not happen in all other experiments where soluble droplets were
studied.
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FIGURE 13. (Colour online) Velocity fields in water around a dissolving 1-pentanol
droplet, sitting on a vertical wall, measured 300 s after deposition.

Hypothetically, the convection could be induced by surface tension gradients as well,
developing over the droplet–water interface. These gradients would cause Marangoni
convection over the alcohol–water interface (Kostarev, Zuev & Viviani 2004). If this
were the case, the plume would always have the same shape and orientation with
respect to the droplet and substrate, regardless of the direction of gravity. To check
whether this is the case, the substrate with a 1-pentanol droplet in place is mounted
vertically in the centre of the tank. The resulting flow, shown in figure 13, is found to
be mainly parallel to the substrate. Liquid is replenished by inflow from the side and
bottom, creating a large convection roll. The fact that the plume orients in a direction
opposite to gravity, regardless of the orientation of the substrate, confirms that the
convection is buoyancy-driven.

Appendix B. Derivation of the Sherwood number in the diffusion limited case
The Sherwood number has been defined in (4.1). In the diffusion-limited case, the

mass loss rate ṁ can be calculated from the droplet properties and its size. For a
spherical droplet with radius R, floating in an infinite bulk, the steady-state mass loss
is (Epstein & Plesset 1950)

dm
dt
=−4πRD1c, (B 1)

resulting in a Sherwood number of Shd = 1.
For a sessile droplet, the presence of a substrate changes the dissolution, and a

suitable correction factor has to be used (Popov 2005):

dm
dt
=−πRfp D1cf (θ), (B 2)

with

f (θ)= sin(θ)
1+ cos(θ)

+ 4
∫ ∞

0

1+ cosh(2θε)
sinh(2πε)

tanh[(π− θ)ε] dε (B 3)
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FIGURE 14. (Colour online) Diffusion-limited Sherwood number Shd, as a function of
the droplet contact angle θ , calculated using the equivalent radius R (black curve) or the
footprint radius Rfp (red curve), as characteristic length scale. The two curves cross at
θ = 90◦, corresponding to a hemisphere with Rfp = R and Shd = 1. The dotted region
indicates the range of contact angles and experimentally observed values for Shd.

and Rfp the footprint diameter of the droplet. Using goniometry, both Rfp and the
droplet surface area A can be expressed in terms of the volume (and thus the
equivalent radius R = (3V/(2π))1/3) and the contact angle. From this, the Sherwood
number for a sessile droplet with contact angle θ , dissolving purely via diffusion, is
found to be

Shd = f (θ)

sin θ
(

1+ tan2 θ

2

)(
2

2− 3 cos θ + cos3 θ

)1/3 , (B 4)

which indeed depends only on the droplet contact angle. Note that we defined the
mass loss rate as a positive quantity, and dropped the minus sign from (B 2), resulting
in Shd>0. By solving f (θ) numerically, Shd(θ) is plotted as the black line in figure 14.
When θ = 90◦, the droplet has the shape of a hemisphere, and Shd is equal to that of
a free sphere, Shd = 1. When θ > 90◦, the mass transport is reduced (as compared to
that from a free sphere) and hence Shd < 1.

When θ < 90◦, Shd decreases towards zero, which is an implication of the choice of
our characteristic length scale: for practical reasons, the equivalent radius R is chosen
as the characteristic length scale. In the extreme case of dissolution from a flat disk,
θ→ 0, V→ 0, and thus R→ 0, resulting in Shd = 0. This does not provide a proper
physical representation of the actual system, as it would result in zero mass exchange
in the case of complete wetting.

Then an alternative characteristic length scale is the footprint radius Rfp, in which
case Shd is given by the red curve in figure 14. By using Rfp as the characteristic
length scale, Shd for evaporation from a flat disk with radius Rfp, can be calculated
exactly: f (θ = 0)= 4/π (Stauber et al. 2014), which gives Shd = 4/π. However, the
drawback of using Rfp as the length scale appears for θ > 90◦. Especially when θ→
180◦, Rfp→ 0, resulting once again in Shd→ 0.

So what experimental value for Shd is expected? The Sherwood number scales mass
exchange with respect to a diffusive, free and spherical droplet. Hence Shd = 1 when
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θ = 90◦. Owing to the substrate, the mass loss from a surface droplet with θ < 90◦

is larger as compared to the mass exchange from the same segment of a free and
spherical droplet (Hu & Larson 2002). The opposite is true when θ > 90◦ (Stauber,
Wilson & Duffy 2015a). Still, Shd is always of order 1 for practical droplets (10◦ <
θ < 160◦) and independent of droplet size. The detailed dependence, as proposed in
figure 14, could be the subject of future work, where small droplets (ensuring Ra<10)
dissolve on substrates of various wettability.
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