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In this article, we use Mellin transforms to derive alternative results for option pricing and

implied volatility estimation when the underlying asset price is governed by jump-diffusion

dynamics. The current well known results are restrictive since the jump is assumed to follow

a predetermined distribution (e.g., lognormal or double exponential). However, the results

we present are general since we do not specify a particular jump-diffusion model within the

derivations. In particular, we construct and derive an exact solution to the option pricing

problem in a general jump-diffusion framework via Mellin transforms. This approach of Mellin

transforms is further extended to derive a Dupire-like partial integro-differential equation,

which ultimately yields an implied volatility estimator for assets subjected to instantaneous

jumps in the price. Numerical simulations are provided to show the accuracy of the estimator.

Key words: Mellin transform, Black–Scholes partial differential equation, jump-diffusion

model, implied volatility estimation, Dupire equation.

1 Introduction

1.1 Option pricing theory

An option is a contract between two parties (known as the holder and the writer) that

gives the holder the right, but not the obligation, to buy/sell an underlying asset from/to

the writer at a mutually agreed price (known as the exercise or strike price) on or before a

specified future date (known as the expiry date). On or before the expiry date, the holder

may “exercise” the option. The right to buy is called a call option whereas the right

to sell is called a put option. Furthermore, a European option can only be exercised at

expiry, whereas an American option can be exercised before or on the expiry date. A well-

known result for determining the European option value is known as the Black–Scholes

formula [6].

It was verified by Merton [45] that one of the fundamental assumptions for the Black–

Scholes model to hold is that the asset price follows a continuous-time, diffusion process

with a continuous sample path. In [47], Merton considered a “jump” stochastic process

for the asset price that allows for the probability for it to change at large magnitudes

irrespective of the time interval between successive observations. The jumps in the asset
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price can be accommodated for by appending an additional source of uncertainty into

the asset price dynamics that models the discontinuity. Moreover, subsequent empirical

studies (e.g., Rosenfeld [55], Jarrow & Rosenfeld [35], Ball & Torous [4], and Brown &

Dybvig [10]) asserted that the asset price process is best resembled by a stochastic process

with a discontinuous sample path. This phenomenon implies that the asset price dynamics

follow a jump-diffusion model.

Merton [47] derived a partial integro-differential equation (or PIDE) to represent a

modified Black–Scholes system that accounts for the inclusion of jumps. A solution was

also reported, which can be viewed as an explicit European option pricing formula in

terms of an infinite series of Black–Scholes prices multiplied by a factor that encapsulates

the behaviour of the jump. Essentially, the Merton model adds the Poisson process

to the Wiener process that governs the asset price. The result is a continuous-time,

stochastic process with stationary increments independent of one another, known as a

Lévy process [50].

The importance of developing such a system extends beyond attempting to capture the

option market’s behaviour at any given point. The need lies within being able to deliver

fundamental explanations to why certain phenomena occur. For example, when one

wishes to estimate the implied volatility surfaces to calibrate the standard Black–Scholes

option values to actual market quotes, the Black–Scholes model where the underlying

asset follows a standard diffusion process assumes the implied volatility surface to be

flat. That is, a constant value during the option’s lifetime and for varying values of the

strike price (options are commonly listed as a function of their strike price). But empirical

observations have shown that these implied volatility surfaces are heavily dependent on

both the strike price and the expiry date (in particular, refer to Heynen [32], Dumas

et al. [25], Rebonato [51], and Cont & Fonseca [18, 19]). As a result, these surfaces

actually form either a “smile” or “skew” depending on the values of the strike and time

to expiry. Dupire [26] developed a technique for computing the local implied volatility

surfaces and showed that the standard Black–Scholes model with an asset under diffusion

dynamics can embody all the distinguishing features of this “smile problem”. However, it

only gives us a tool needed to ensure we recover the required option values. It does not

explain for why these smiles and skews occur. A jump-diffusion model, however, is able

to encapsulate both a justification for these smiles and skews, their increased occurrences

after the 1987 crash (see Andersen and Andreasen [2]), and how the jumps in the asset

price bear some psychological parallel to the potential tentative demeanour of the market

participants [20].

In terms of option valuation in jump-diffusion models, the literature is quite rich (e.g.,

see Amin [3], Kou [39], Kou & Wang [40], Hilliard & Schwartz [34], Carr & Mayo [11],

Feng & Linetsky [28], Cheang & Chiarella [15], and Frontczak [29]) with many resourceful

texts (e.g., see Rogers [54], Kijima [37], Cont & Tankov [20], and Vercer [57]).

Amin [3] developed one of the earliest numerical schemes for pricing options in a

jump-diffusion framework by adapting the binomial model proposed by Cox et al. [22].

The extension is achieved by allowing multiple movements in the asset price at every

discrete time step to simulate the discontinuous jumps, whereas the standard binomial

model allows for only one discrete movement in the asset price at every discrete point in

time. This discrete approach is then compared numerically against the closed-form solution
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provided by Merton [47], with the resultant options values having little differences between

one another.

Further empirical investigations by Kou [39] led to the proposal of a double exponential

jump-diffusion model where the jump intensities are double exponentially distributed. The

author’s empirical studies contradicted the previous assumptions that the underlying

asset’s jump-diffusion model was lognormal. Specifically, the findings showed that the

return distribution of the asset possessed features uncharacteristic of a normal distribution

(i.e., higher peak and heavier asymmetric tails than that of a normal distribution), and

the “volatility smile” observed in the option markets. Despite the normal distribution

being a central mechanism in simulating the asset price process, Kou provided in-depth

explanations for the aforementioned empirical analysis and introduced an updated model.

This model assumed that the jumps in the asset price follow a double exponential

distribution. Analytical solutions for pricing of European call/put options and path-

dependent options in a double exponential jump-diffusion model were derived in [40]

co-authored with Wang. However, limitations of the model were noted by Kou [39] in

regards to hedging difficulties and assumed dependence of the jump increments.

In terms of other numerical implementations, Hilliard and Schwartz [34] introduced a

bivariate tree approach for pricing both European and American derivatives with jumps,

where one factor represents a discrete-time version of the standard continuous asset price

path whilst the second factor models a discrete-time version of the jumps arriving as

a Poisson process. Feng and Linetsky [28] also provided a computational alternative to

pricing options with jumps by introducing a high-order time discretisation scheme to

solve the PIDE in Merton’s article [47]. The authors demonstrated that their method

provides rapid convergence to the solution in comparison to standard implicit-explicit

time discretisation methods, using Kou’s model as a comparative example.

Carr and Mayo [11] also reported a novel numerical implementation for calculating

option prices when the asset is subjected to jump-diffusion dynamics. The authors devised

a method that involves converting the integral term in the PIDE derived by Merton [47]

to a correlation integral. They stated that in many instances this correlation integral

is a solution to an ordinary differential equation (ODE) or partial differential equation

(PDE). Carr and Mayo also argued that solving these associated ODEs and PDEs

substantially reduces computational effort since it effectively bypasses numerical evaluation

of the aforementioned integral. They illustrated their concept by examining both Merton’s

lognormal model and Kou’s double exponential model.

Cheang and Chiarella [15] advocated for amendments to be made to Merton’s original

jump-diffusion model. They argued that the Merton model makes assumptions that lead

to the jump-risk [31] being unpriced and force the distribution of the Poisson jumps to

remain unchanged under a change of measure. The authors stressed the significance of this

since a realistic market that contains assets with jumps is incomplete. Additionally, when

the market price of the jump-risk is accounted for, there exist many equivalent martingale

measures that ultimately produce different prices for options. Hence, they introduced a

Radon–Nikodým derivative process which translates the market measure to an equivalent

martingale measure (EMM) for option valuation. However, the EMM is non-unique in

the presence of jumps; one must choose parameters in the Radon–Nikodým derivative to

establish an EMM to price options. Furthermore, Cheang and Chiarella derived a PIDE
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and thus a general pricing formula which reduces to Merton’s solution [47] as a special

case.

Frontczak [29] adopted a method of solving the PIDE seen in [47] using Mellin

transforms. He proceeded to re-derive Merton’s solution for a European put option

via direct inversion. Frontczak’s approach of directly evaluating of the inverse Mellin

integral (i.e., a complex integral) is where the approach could be improved. Moreover, this

process needs to be repeated for different payoffs, making this procedure computationally

expensive and tedious.

1.2 Implied volatility

For estimating the volatility σ in the standard diffusion model (2.1), there exist two primary

methods. The first scheme involves estimating σ from previous asset price movements.

That is, suppose a model for the behaviour of the asset involving σ is known and the

asset prices for all times up until the present are accessible. Then, σ can be fitted to

this observed data. This method is dubbed historical volatility as σ is approximated using

data of previous asset prices. The second is using all the known parameters, treating the

option value as a function of σ (the option price is one of the known parameter values)

and solving for σ. This approach determines σ implicitly from the Black–Scholes formula

using the option price and the observed parameters, and is referred to as implied volatility.

Aside from option pricing in a jump-diffusion framework, another aim of this article is

to present a novel implied volatility scheme using Mellin transforms.

One of the earliest methods for implied volatility estimation was proposed by Latané

and Rendleman [42], where σ is computed using a technique called weighted implied

standard deviation (WISD). Their idea consisted of obtaining a set of option prices,

approximating the implied volatility using the Black–Scholes formula and calculating a

WISD using a “weight” against the Black–Scholes derived implied volatility. The crux

of the method was to reduce any sampling error. Latané and Rendleman concluded

the WISD approach was superior in comparison to corresponding historical volatility

estimations. Furthermore, the weighting scheme selected provided more weight to options

at-the-money and possessing a longer time to expiry.

Cox and Rubinstein [23] further analysed the weighting scheme proposed by Latané and

Rendleman and stressed the importance of employing data from at-the-money options.

Their justification was because at-the-money options are the most actively and frequently

traded options; thus, the implied volatility obtained using at-the-money option values

would yield a credible estimation as the data used closely simulates actual trading

conditions.

As data from at-the-money options were becoming increasingly appealing to incorporate

in implied volatility estimation, Brenner and Subrahmanyam [8] introduced a simplified

formula for calculating σ. Their article focussed on reducing the complexity of the Black–

Scholes pricing formula by assuming the option was at-the-money and close to expiry.

These assumptions, coupled with using an asymptotic approximation for the cumulative

distribution function (CDF) for a standard normal, resulted in an approximate option

valuation formula where σ could be evaluated explicitly as a time-constant value. This

process allowed one to forego the need to use an iterative procedure to calculate the
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implied volatility (e.g., the Newton–Raphson method), which was a common practice

at the time. The article highlighted that for options close to at-the-money, the value of

the option is comparatively proportional to the value of σ. Furthermore, Brenner and

Subrahmanyam stated that their approximation formula may also be implemented as a

good initial guess for numerical algorithms like the Newton–Raphson method since the

starting seed is essential for improving the likelihood and speed of convergence [44]. The

result of Feinstein [27] is nearly identical to Brenner and Subrahmanyan; however, it was

developed independently. Curtis and Carriker [24] also introduced a closed-form solution

for implied volatility estimation for at-the-money options. It can be shown that under

certain circumstances, the result by Brenner and Subrahmanyam is a special case of Curtis

and Carriker’s formula for σ (see “Final remarks” in [14]).

Despite the resemblance conveyed by at-the-money implied volatility calculations to

true trading circumstances, the aforementioned estimations were ill-suited for evaluating

implied volatility for option moneyness that is not at-the-money. Studies have been

conducted to develop approximations that account for times when the underlying asset

price differs from the exercise price (i.e., in-the-money or out-of-the-money options). A

notable result was published by Corrado and Miller [21], where their approximation

for σ reduces to the Brenner–Subrahmanyam formula for options at-the-money. Their

motivation was primarily to improve the accuracy range of implied volatility estimations to

a wider scope of option moneyness not necessarily at-the-money. The derivation presented

by Corrado and Miller illustrates similarities to that of Brenner and Subrahamyam’s

approach due to both articles incorporating an asymptotic expansion of the CDF for a

standard normal random variable as a gateway to producing simplified approximations.

The numeric generated by the authors’ result exhibited good agreement with the actual

implied volatility via the Black–Scholes formula for options close to and at-the-money.

In addition, their numerical output also demonstrated and confirmed that the use of the

Brenner–Subrahmanyam result was only accurate for at-the-money options.

Chance [13] developed an implied volatility approximation that extended the result by

Brenner and Subrahmanyam. The author’s motivation mimicked that of Corrado and

Miller as they derived an expression σ to accommodate for the strike price bias. Chance’s

formula involved assuming all parameters are known for an at-the-money option, then

first deriving an initial guess for σ using the Brenner–Subrahmanyan formula (i.e., implied

volatility for an at-the-money option). He then demonstrated that the value of an option

not at-the-money is simply an at-the-money option perturbed by a value Δv, which could

be the result of differences in strike price and σ values. The perturbation Δv is then

obtained by second-order Taylor expansions resulting in an equation that is quadratic

in Δσ. Upon computing Δσ via the quadratic formula, the final σ value for an option

not at-the-money is the addition of both σ at-the-money plus Δσ. Chance numerically

verified the result and illustrated its effectiveness for options near at-the-money (no more

than 20% in- or out-of-the-money) and options far from expiry. The significance of this

was also asserted as long-term options were becoming increasingly popular in practice;

however, the author also noted the accuracy decay when the option is closer to expiry.

Furthermore, the model requires extra information including an at-the-money option

value and its associated Greeks (specifically, vega and the partial derivative with respect

to the strike price).
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Bharadia et al. [5] also reported a result that claimed to be a highly simplified volatility

estimation formula, where the primary advantages of the approximation are its simplicity

in form and the fact that it does not require the option to be at-the-money.

Amidst these optimistic results, Chambers and Nawalkha [12] comparatively examined

the implied volatility estimation formulas of Bharadia et al., Corrado and Miller, and

Chance. Chambers and Nawalkha praised the result from Bharadia et al. for being

very condense in form, but also pointed out the inaccuracy (possessing the highest

weighted approximation error amongst the three aforementioned estimates). Chambers

and Nawalkha commended the Corrado–Miller formula in that an at-the-money option

value was not a prerequisite, yet highlighted that the limitation was the square root term

(which could be negative). Furthermore, whether the formula would produce a complex

solution is unknown a priori ; however, the likelihood is minimised substantially for

reasonable parameter values. Chambers and Nawalkha accommodated for the possibility

of a negative argument for the square root term by setting the term to be zero if the case

occurred. It was commented that Corrado and Miller’s model is extremely accurate for

options near at-the-money, but substantial errors are prevalent for options very far from

at-the-money. Corrado and Miller’s formula for σ possessed the second highest weighted

approximation error.

Special attention was devoted to Chance’s estimate in [12] as it produced the

lowest weighted approximation error amongst the three models. The assessment of

Chance’s approximation gave positive mention of accuracy and ease of understand-

ing/implementation. Similar to Corrado and Miller, Chance’s formula yields the highest

accuracy for near at-the-money options, but deteriorates for options significantly far from

at-the-money. This consequently provided the mathematical structure for Chambers and

Nawalkha’s result, developing a simplified extension to Chance’s formula that dramatically

improved the accuracy.

Chambers and Nawalkha attempted to improve the accuracy of Chance’s implied volat-

ility model for options relatively far from at-the-money (where all three formulas suffered

in accuracy). Recall that Chance employed a second-order Taylor series expansion in two

variables as there was justification for both the strike price and volatility to contribute

to the change in option prices. Chambers and Nawalkha adopted a similar approach

by performing a second-order Taylor Series expansion around Δv, but only with respect

to σ. The result was a much simpler quadratic equation in Δσ and, similar to Chance’s

formula, required an initial guess for σ at-the-money (which is computed via Brenner and

Subrahmanyam’s approximation also). Chambers and Nawalkha asserted that the effect

of strike price differences can be encapsulated in the Brenner–Subrahmanyam formula

for σ, thus, requiring only the partial derivative with respect to volatility in the Taylor

series expansion. The weighted approximation error is ultimately the lowest in comparison

to the three models by Chance, Corrado and Miller, and Bharadia et al. Despite this,

Chambers and Nawalkha’s method shares the same detriment to Chance’s formula in

that an option value at-the-money is required to estimate a starting σ value.

From all the schemes presented above, the common hindrance is either the need for ad-

ditional data (e.g., at-the-money option value) or the deterioration of accuracy for options

very far from at-the-money. Li [43] attempted to rectify the need for extra information

and improved reliability for options deep in- or out-of-the-money. By incorporating a
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substitution of variables and Taylor series expansion, Li derived two separate formulas

for σ depending on whether the option was at-the-money or not. The numerical res-

ults provided in Li’s paper demonstrate greater accuracy for σ for both at-the-money

and not-at-the-money scenarios. Interestingly, Li’s approximation for σ not at-the-money

reduces to the Brenner–Subrahmanyan formula under special conditions. Several other

approaches have also been developed over recent years (see Park et al. [49], Choi et

al. [17], Zhang & Man [59], Chen & Xu [16]). For the majority of the aforementioned

cited works, the primary motivation was to develop an analytical approximation for

the implied volatility that possessed benefits over their predecessors. Although many of

the methods were derived from seemingly ad hoc methodologies, the validity of these

analytical results is still valuable as it provides us with a means to evaluate and analyse

the sensitivity of the implied volatility to the other financial parameters. If one took a

standard iterative (e.g., Newton–Raphson) numerical approach to compute the implied

volatility, it may be difficult to gauge how the behaviour this obtained σ value varies with

the other parameters.

1.3 Outline of the article

In this article, we will present alternative results to pricing options and evaluating implied

volatility in jump-diffusion models. Our approach implements Mellin transforms similar

to [29] to derive the necessary results. The structure will be as follows. Section 2 will

provide the preliminary information necessary for the remainder of the article. In Section 3,

we provide the main results (i.e., the derivations). Sections 4–7 will demonstrate specific

cases to the main results, associated verifications and other pertinent analogous relations.

The implied volatility content commences in Section 8, where we begin by deriving a

Dupre-like PIDE. Section 9 will yield the implied volatility formula required. Also in

Section 9, numeric will be analysed and investigated to assess the potential application of

the aforementioned results. Finally, we will present a discussion of the findings followed

by a conclusion with tentative future directions.

2 Preliminaries

2.1 Black–Scholes option pricing framework

For the Black–Scholes framework [6], we assume that the option price depends on the

asset price under any risk-neutral probability measure given by the following stochastic

differential equation (SDE):

dSt
St

= (r(t) − q(t)) dt + σ(t) dWt, (2.1)

where {St : t ∈ [0, T ]} is the asset price process, {Wt : t ∈ [0, T ]} is a Wiener process

with respect to the risk-neutral measure, T > 0 is the expiry, r(t) > 0 is the risk-free

interest rate, q(t) � 0 is the dividend yield, and σ(t) > 0 is the volatility. Here, we assume

that the parameters r, q, and σ are continuous functions of time. It is well known that

the option value is given by Vt = v(St, t), where v = v(x, t) is a function that satisfies the
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following terminal value problem:

∂v

∂t
(x, t) +

1

2
σ(t)2x2 ∂2v

∂x2
(x, t) + (r(t) − q(t))x

∂v

∂x
(x, t) − r(t)v(x, t) = 0, (2.2)

v(x, T ) = φ(x). (2.3)

Equation (2.2) is commonly known as the Black–Scholes PDE and equation (2.3) is the

payoff (i.e., loss or profit at expiry), where φ : [0,∞) → [0,∞). For the European call and

put options, φ(x) = max(x−K, 0) and φ(x) = max(K − x, 0), respectively, where K is the

strike price. Note that at expiry, v(ST , T ) = φ(ST ). It is well known [52,58] that the value

of the European call option is given by

vcall(x, t) = xe−
∫
T
t

q(τ) dτN
(
z1

( x

K
, t, T

))
−Ke−

∫
T
t

r(τ) dτN
(
z2

( x

K
, t, T

))
, (2.4)

and the European put option is

vput(x, t) = Ke−
∫
T
t

r(τ) dτ)N
(
−z2

( x

K
, t, T

))
− xe−

∫
T
t

q(τ) dτN
(
−z1

( x

K
, t, T

))
, (2.5)

where

z1(x, t, u) =
log x +

∫ u

t
(r(τ) − q(τ) + σ(τ)2/2) dτ(∫ u

t
σ(τ)2 dτ

)1/2
, (2.6)

z2(x, t, u) =
log x +

∫ u

t
(r(τ) − q(τ) − σ(τ)2/2) dτ(∫ u

t
σ(τ)2 dτ

)1/2
, (2.7)

and N is the CDF of a standard normal random variable.

2.2 The Black–Scholes kernel and its properties

We will also require the Black–Scholes kernel first introduced by Rodrigo and Mamon

in [52] and then extended upon in [53]. This is defined by

K (x, t, u) =
e−

∫
u
t
r(τ) dτ(∫ u

t
σ(τ)2 dτ

)1/2
N′(z2(x, t, u)), (2.8)

and an alternative form given as

K (x, t, u) =
xe−

∫
u
t
q(τ) dτ(∫ u

t
σ(τ)2 dτ

)1/2
N′(z1(x, t, u)). (2.9)

Furthermore, it was shown [52] that for an arbitrary payoff function φ, the European

option price can be formulated as

v(x, t) =

∫ ∞

0

1

z
K

(x
z
, t, T

)
φ(z) dz. (2.10)
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It can be seen that the option price (2.10) is expressible as a convolution of the Black–

Scholes kernel and the payoff (see the convolution definition in Section 2.5).

2.3 Option pricing under a jump-diffusion model

The asset price process in (2.1) needs to be adjusted when accounting for the possibility

of instantaneous jumps. Under the assumption that the discontinuous jumps arrive as a

Poisson process, the risk-neutral asset price dynamics are given by

dSt
St

= (r(t) − q(t) − κλ)dt + σ(t) dWt + (Y − 1) dNt, (2.11)

where {Wt : t ∈ [0, T ]} is the standard Wiener process as defined earlier, Y is a

nonnegative random variable with Y − 1 denoting the impulse change in the asset price

from St to Y St as a consequence of the jump, κ = �[Y − 1] with �[·] as the expectation

operator, {Nt : t ∈ [0, T ]} is the aforementioned Poisson process with intensity λ, and

dNt =

{
1 with probability λ dt,

0 with probability (1 − λ dt).
(2.12)

Additionally, Wt, Nt, and samples {Y1, Y2, . . .} from Y are assumed to be independent.

In [47], Merton extended (2.2) to ensure the behaviour of the jumps is properly

encapsulated. The result is a PIDE system:

∂v

∂t
(x, t) + (r(t) − q(t) − κλ)x

∂v

∂x
(x, t) − r(t)v(x, t) +

1

2
σ(t)2x2 ∂2v

∂x2
(x, t)

+ λ

∫ ∞

0

(v(xy, t) − v(x, t))f(y) dy = 0,

(2.13)

v(x, T ) = φ(x), (2.14)

where f is the probability density function (PDF) of Y such that
∫∞

0
f(y) dy = 1. A

special case of Merton’s infinite series solution mentioned in Section 1.1 is when Y is

lognormally distributed (i.e., Y ∼ LN(μY , σ
2
Y )). The European option pricing formula was

shown to be

vM(x, t) =

∞∑
n=0

(λ(1 + κ)(T − t))n

n!
e−λ(1+κ)(T−t)vn(x, t), (2.15)

where

vn(x, t) = v(x, t; r, q, σ)|r=rn(t),q=q,σ=σn(t)
,

with

rn(t) = r − κλ +
n log(1 + κ)

T − t
, σn(t)

2 = σ2 +
nσ2

Y

T − t
. (2.16)

That is, v is the European option price due to the Black–Scholes formula with constant

coefficients, and vn is the result of directly substituting rn(t) and σn(t) for r and σ,

respectively, into v.
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2.4 Useful properties of the CDF of a standard normal variable

Several properties of the cumulative normal distribution N and its derivative N′ will also

be required [36, pp. 235–239], namely

N(x) =
1√
2π

∫ x

−∞
e−y2/2 dy, N(−x) = 1 −N(x), N′(x) =

1√
2π

e−x2/2,

N(∞) = 1, N(−∞) = 0.

(2.17)

We will also need the following lemmas.

Lemma 1 For a1, a2 > 0 and b1, b2 ∈ �, we have

∫ ∞

0

1

z
N′(a1 log z + b1)N

′ (a2 log
(
1/z

)
+ b2

)
dz =

1√
a2

1 + a2
2

N′

⎛
⎝a1b2 + a2b1√

a2
1 + a2

2

⎞
⎠ .

Proof See Appendix A. �

Lemma 2 Assume a1, a2 > 0 and b1, b2, a, b ∈ �. Then,

∫ b

a

1

y
N′(a1 log(1/y) + b1) dy =

1

a1

(
N′(a1 log(1/a) + b1) −N′(a1 log(1/b) + b1)

)
,

∫ b

a

N′(a1 log(1/y) + b1) dy =
eb1/a1+1/(2a2

1)

a1

(
N(a1 log(1/a) + b1 + 1/a1)

−N(a1 log(1/b) + b1 + 1/a1)

)
.

Proof See Appendix B. �

2.5 Mellin transform

Suppose that f : [0,∞) → � is such that f = f(x). The Mellin transform f̂ of f at ξ ∈ �
is defined as

f̂(ξ) = M {f} (ξ) =

∫ ∞

0

xξ−1f(x) dx,

provided the integral converges at ξ. Now, we denote the function id by id(x) = x. Then,

for each x ∈ [0,∞), define the functions (id · f′) and (id2 · f′′) by

(id · f′)(x) = xf′(x), (id2 · f′′)(x) = x2f′′(x),

respectively. It can be shown that [48, pp. 362–363]

M {xf′(x)} = cxf′(ξ) = −ξf̂(ξ), M
{
x2f′′(x)

}
= bx2f′′(ξ) = ξ(ξ + 1)f̂(ξ), (2.18)
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assuming that f satisfies

xξf(x)
∣∣∞
0

= 0, xξ+1f′(x)
∣∣∞
0

= 0.

We also recall

M {(f ∗ g)(x)} = ( bf ∗ g)(ξ) = f̂(ξ)ĝ(ξ),

where f ∗ g is the convolution of f and g defined to be

(f ∗ g)(x) =

∫ ∞

0

1

y
f

(
x

y

)
g(y) dy for all x � 0.

In addition to the Mellin transform and its properties, it was shown in [52] that the Mellin

transform of (2.10) is

v̂(ξ, t) = ˆK (ξ, t, T )φ̂(ξ), (2.19)

where ˆK (ξ, t, T ) = e−
∫
T
t

p(ξ,τ) dτ with

p(ξ, τ) = r(τ) +

(
r(τ) − q(τ) − 1

2
σ(τ)2

)
ξ − 1

2
σ(τ)2ξ2. (2.20)

The following lemma will be useful in what follows.

Lemma 3 For a > 0 and b ∈ �, we have

M−1
{
e−bξ/aeξ

2/(2a2)
}

= aN′(a log x + b).

Proof See Appendix C. �

3 Main results

3.1 Alternative option pricing formula where the underlying asset is

subjected to jump-diffusion dynamics

Analogous to [47] and [29], we want to solve the problem (2.13), (2.14). Applying the

Mellin transform of v with respect to x to (2.13), (2.14), we get

∂v̂

∂t
(ξ, t) − (r(t) − q(t) − κλ)ξv̂(ξ, t) − r(t)v̂(ξ, t) +

1

2
σ(t)2ξ(ξ + 1)v̂(ξ, t)

+ λ

∫ ∞

0

xξ−1

(∫ ∞

0

(v(xy, t) − v(x, t))f(y) dy

)
dx = 0, v̂(ξ, T ) = φ̂(ξ).

(3.1)
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For the integral term, reversing the order of integration and using z = xy, we obtain

∫ ∞

0

xξ−1

(∫ ∞

0

(v(xy, t) − v(x, t))f(y) dy

)
dx

=

∫ ∞

0

f(y)

(∫ ∞

0

xξ−1v(xy, t) dx

)
dy −

∫ ∞

0

f(y)

(∫ ∞

0

xξ−1v(x, t) dx

)
dy

=

∫ ∞

0

y−ξf(y)

(∫ ∞

0

zξ−1v(z, t) dz

)
dy −

∫ ∞

0

f(y)v̂(ξ, t) dy

= v̂(ξ, t)(�[Y −ξ] − 1).

Therefore, (3.1) simplifies to

∂v̂

∂t
=

(
pλ(ξ, t) − λ�[Y −ξ]

)
v̂(ξ, t), v̂(ξ, T ) = φ̂(ξ), (3.2)

where pλ is defined to be

pλ(ξ, t) = r(t) + λ +

(
r(t) − q(t) − κλ− 1

2
σ(t)2

)
ξ − 1

2
σ(t)2ξ2. (3.3)

Note that when λ = 0, equation (3.3) simplifies to p0(ξ, t) = p(ξ, t), where p(ξ, t) is given

in (2.20). The solution to (3.2) is

v̂(ξ, t) = eλ(T−t)�[Y −ξ ]e−
∫
T
t

pλ(ξ,τ) dτφ̂(ξ). (3.4)

To proceed, we let vλ = vλ(x, t) be the solution to the Black–Scholes system (2.2), (2.3)

with shifted parameters r(t) → r(t) + λ and q(t) → q(t) + λ + κλ. The payoff function φ

remains unchanged. Using (2.10), we can deduce the analogous formula:

vλ(x, t) =

∫ ∞

0

1

z
Kλ

(x
z
, t, T

)
φ(z) dz, (3.5)

with Kλ being the shifted Black–Scholes kernel given by

Kλ(x, t, u) =
e−

∫
u
t
(r(τ)+λ) dτ

(
∫ u

t
σ(τ)2 dτ)1/2

N′(z2λ(x, t, u)) =
xe−

∫
u
t
(q(τ)+λ+κλ) dτ

(
∫ u

t
σ(τ)2 dτ)1/2

N′(z1λ(x, t, u)), (3.6)

where

z1λ(x, t, u) =
log x +

∫ u

t
(r(τ) − q(τ) − κλ + σ(τ)2/2) dτ(∫ u

t
σ(τ)2 dτ

)1/2
, (3.7)

z2λ(x, t, u) =
log x +

∫ u

t
(r(τ) − q(τ) − κλ− σ(τ)2/2) dτ(∫ u

t
σ(τ)2 dτ

)1/2
. (3.8)

Thus, using (2.19) in (3.4), we get

v̂(ξ, t) = eλ(T−t)�[Y −ξ ]v̂λ(ξ, t). (3.9)
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Now, let J = J (x, t) be a function whose Mellin transform is

Ĵ (ξ, t) = eλ(T−t)�[Y −ξ ]. (3.10)

Then, we can write (3.9) as v̂(ξ, t) = v̂λ(ξ, t)Ĵ (ξ, t), and from the convolution property we

obtain

v(x, t) = (vλ(·, t) ∗ J (·, t))(x) =

∫ ∞

0

1

z
vλ

(x
z
, t
)

J (z, t) dz. (3.11)

3.2 The jump term J

To find J , we can actually bypass the complex integral required for an inverse Mellin

transform. From (3.10), we have

Ĵ (ξ, t) =

∞∑
n=0

(λ(T − t)�[Y −ξ])n

n!
,

and as only the factor that depends on ξ is the one with the expectation, we invert Ĵ to

get

J (x, t) =

∞∑
n=0

(λ(T − t))n

n!
M−1{�[Y −ξ]n}. (3.12)

We now let Fn = Fn(x) be a function such that F̂n(ξ) = �[Y −ξ]n, where n = 0, 1, . . .. We

can rewrite F̂n as

F̂n(ξ) = �[Y −ξ]�[Y −ξ]n−1 (n = 1, 2, . . .),

and from the convolution property, F̂n can be inverted to yield

Fn(x) = M−1{�[Y −ξ]} ∗ M−1{�[Y −ξ]n−1} = M−1{F̂1(ξ)} ∗ M−1{F̂n−1(ξ)}

=

∫ ∞

0

1

z
F1(z)Fn−1

(x
z

)
dz.

Since Fn is recursive, we need the base cases F0 and F1. To find F0, we refer to its Mellin

transform and find that F̂0(ξ) = �[Y −ξ]0 = 1. This can be inverted to give

F0(x) = M−1{1} = δ(x− 1),

where δ is the Dirac delta function.1 To find F1, we know that M {F1(x)} = �[Y −ξ].

From the definition of the expectation, we see that

M {F1(x)} =

∫ ∞

0

y−ξf(y) dy,

1 To see how M−1{1} = δ(x − 1), we simply take the Mellin transform of δ(x − 1) to give

M {δ(x − 1)} =
∫∞

0
xξ−1δ(x − 1) dx. Then, using the property that

∫∞
0

f(x)δ(x − a) dx = f(a) for

a > 0, where f(x) = xξ−1, we obtain M {δ(x− 1)} = 1.
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where f is the PDF of Y . The substitution x = 1/y gives

M {F1(x)} =

∫ ∞

0

xξ−1 1

x
f

(
1

x

)
dx = M

{
1

x
f

(
1

x

)}
;

hence, we get

F1(x) =
1

x
f

(
1

x

)
.

We can then express (3.12) as

J (x, t) =

∞∑
n=0

(λ(T − t))n

n!
Fn(x), (3.13)

with

Fn(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ(x− 1) n = 0,

1

x
f

(
1

x

)
n = 1,

∫ ∞

0

1

z
F1(z)Fn−1

(x
z

)
dz n � 2.

(3.14)

Formula (3.13) for J can then be substituted into (3.11) for computation. Equation (3.11)

gives us the European option pricing formula with a general payoff where the underlying

asset has jumps. The key attributes of (3.11) are as follows:

(1) The formula can be applied to any payoff and any jump (cf. [39, 40, 47]).

(2) The option price can be expressed as the convolution of a standard European option

with shifted parameters and a separate function that encapsulates the behaviour of

the jump.

(3) No complex integrals are required to be computed (cf. [29]).2

Now, we give an alternative expression for (3.11). We have

v(x, t) =

∫ ∞

0

1

z
vλ

(x
z
, t
) ∞∑

n=0

(λ(T − t))n

n!
Fn(z) dz.

Interchanging the summation and integral and using (3.5) for vλ, we obtain

v(x, t) =

∞∑
n=0

(λ(T − t))n

n!

∫ ∞

0

Fn(z)

z

∫ ∞

0

1

y
Kλ

(
x

yz
, t, T

)
φ(y) dy dz.

2 In [29], the option price was given as the Mellin inverse of an integrand that depends on the

payoff. Consequently, this inversion process has to be done every time the payoff is changed. On the

other hand, in our approach, since we are using the Mellin convolution theorem, it is only necessary

to invert the Black–Scholes kernel once, which we have done (refer to (3.15)). Thus, our expression

for the option price only involves real integrals.
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Swapping the order of integration yields

v(x, t) =

∞∑
n=0

(λ(T − t))n

n!

∫ ∞

0

φ(y)

y

∫ ∞

0

1

z
Kλ

(
x

yz
, t, T

)
Fn(z) dz dy.

The innermost integral with respect to z resembles an option whose payoff function is Fn

in accordance to (3.5) and (2.10). We will label this function wn, i.e., let

wn

(
x

y
, t

)
=

∫ ∞

0

1

z
Kλ

(
x

yz
, t, T

)
Fn(z) dz,

and get

v(x, t) =

∞∑
n=0

(λ(T − t))n

n!

∫ ∞

0

φ(y)

y
wn

(
x

y
, t

)
dy

=

∞∑
n=0

(λ(T − t))n

n!
(wn(·, t) ∗ φ) (x)

=

(( ∞∑
n=0

(λ(T − t))n

n!
wn(·, t)

)
∗ φ

)
(x),

(3.15)

where the Mellin convolution theorem was used in the second equality and its distributivity

property in the third line. Note that (2.10) can be expressed as a convolution of the Black–

Scholes kernel and the payoff, namely

v(x, t) = (K (·, t, T ) ∗ φ)(x). (3.16)

This leads to an interpretation for the summation in (3.15) as an analogue of the Black–

Scholes kernel in the case of jump-diffusion dynamics. When there are no jumps (i.e.,

λ = 0), equation (3.15) reduces to (3.16). This idea of representing the option price as

an iterated integral and swapping the order will be useful in Section 4.3 when we show

equality between our solution and Merton’s solution in the case of lognormal jumps.

4 Example: lognormally distributed jumps

We will now derive a specific formula for v when Y is lognormal (i.e., Y ∼ LN(μY , σY )).

It is known [47] that

f(y) =
1

y
√

2πσ2
Y

e−(log y−μY )2/(2σ2
Y ), �[Y −ξ] = e−μY ξ+σ2

Y ξ
2/2. (4.1)

To proceed, we present two ways of deriving the explicit formula: one by the general

recursion formula and the other by using a direct Mellin approach.
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4.1 Result via the general recursion formula

Using (3.14), we obtain F1 for lognormal jumps as

F1(x) =
1√

2πσ2
Y

e−(log x+μY )2/(2σ2
Y ) =

1√
σ2
Y

N′

(
log x + μY√

σ2
Y

)
,

using (2.17) to change the exponential to N′. Similarly, F2 is given by

F2(x) =

∫ ∞

0

1

z
F1(z)F1

(x
z

)
dz =

1

σ2
Y

∫ ∞

0

1

z
N′

(
log z + μY√

σ2
Y

)
N′

(
log(x/z) + μY√

σ2
Y

)
dz.

Using Lemma 1, we choose a1 = a2 = 1/σY and b1 = b2 = μY /σY to simplify the integral

and yield

F2(x) =
1√
2σ2

Y

N′

(
log x + 2μY√

2σ2
Y

)
.

Hence, using an induction argument, we can deduce that

Fn(x) =
1√
nσ2

Y

N′

(
log x + nμY√

nσ2
Y

)
.

The resulting formula for the jump is

J (x, t) = δ(x− 1) +

∞∑
n=1

(λ(T − t))n

n!

1√
nσ2

Y

N′

(
log x + nμY√

nσ2
Y

)
, (4.2)

recalling the definition of F0 from (3.14). Therefore, v is

v(x, t) = vλ(x, t) +

∞∑
n=1

(λ(T − t))n

σY n!
√
n

∫ ∞

0

1

z
N′

(
log z + nμY

σY
√
n

)
vλ

(x
z
, t
)

dz, (4.3)

using a standard property of the Dirac delta function. Note that we can also express (4.3)

as a summation from n = 0, where the 0th term corresponds to vλ(x, t) as can be seen due

to the properties of the Dirac delta function.

4.2 Result using Mellin identities

Substituting the second equation of (4.1) into (3.10), we get

Ĵ (ξ, t) =

∞∑
n=0

(λ(T − t))n

n!
e−nμY ξ+nσ2

Y ξ
2/2.

Inverting Ĵ gives

J (x, t) =

∞∑
n=0

(λ(T − t))n

n!
M−1

{
e−nμY ξ+nσ2

Y ξ
2/2
}
.
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Using Lemma 3, choosing a = 1/(σY
√
n) and b = μY

√
n/σY , we see that

M−1
{
e−nμY ξ+nσ2

Y ξ
2/2
}

=
1√
nσ2

Y

N′

(
log x + nμY√

nσ2
Y

)
.

Then, (3.12) for lognormally distributed jumps is given by

J (x, t) = δ(x− 1) +

∞∑
n=1

(λ(T − t))n

n!

1√
nσ2

Y

N′

(
log x + nμY√

nσ2
Y

)
, (4.4)

which is identical to (4.2). Hence, (3.11) for lognormally distributed jumps is identical to

(4.3), as expected.

4.3 Verification of equality to Merton’s solution

We will now verify that (4.3) is identical to Merton’s option pricing formula in (2.15) for

lognormal jumps and an arbitrary payoff function φ. Note that Merton assumed that r,

q, and σ are constant, so we too will make that assumption. The goal is to show that

v(x, t) = vM(x, t), (4.5)

for constant r, q, and σ. We will start with the left-hand side using (4.3). We first convert

both vλ terms with its integral form (3.5) to get

v(x, t) =

∫ ∞

0

1

y
Kλ

(
x

y
, t, T

)
φ(y) dy

+

∞∑
n=1

(λ(T − t))n

σY n!
√
n

∫ ∞

0

∫ ∞

0

1

z
N′

(
log z + nμY

σY
√
n

)
1

y
Kλ

(
x

yz
, t, T

)
φ(y) dy dz

=

∫ ∞

0

1

y
Kλ

(
x

y
, t, T

)
φ(y) dy

+

∞∑
n=1

(λ(T − t))n

σY n!
√
n

∫ ∞

0

φ(y)

y

∫ ∞

0

1

z
N′

(
log z + nμY

σY
√
n

)
Kλ

(
x

yz
, t, T

)
dz dy.

We then want to evaluate

I =

∫ ∞

0

1

z
N′

(
log z + nμY

σY
√
n

)
N′

(
z2λ

(
x

yz
, t, T

))
dz.

To do this, we substitute the first expression in (3.6) for Kλ. Recalling the form for z2λ

using (3.8), we apply Lemma 1 and we choose

a1 =
1

σY
√
n
, b1 =

nμY

σY
√
n
, a2 =

1

σ
√
T − t

, b2 =
log(x/y) + (r − q − κλ− σ2/2)(T − t)

σ
√
T − t

.
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This simplifies I to be

I =
σY

√
n σ

√
T − t(

nσ2
Y + σ2(T − t)

)1/2
N′ (zn) ,

where

zn =
log(x/y) + nμY + (r − q − κλ− σ2/2)(T − t)(

nσ2
Y + σ2(T − t)

)1/2
.

So far we have

v(x, t) =
e−(r+λ)(T−t)

σ
√
T − t

∫ ∞

0

1

y
N′ (z0)φ(y) dy

+

∞∑
n=1

(λ(T − t))n

n!
· e−(r+λ)(T−t)(

nσ2
Y + σ2(T − t)

)1/2

∫ ∞

0

1

y
N′(zn)φ(y) dy,

where we expand the first Kλ using (3.6) assuming constant r, q, and σ with

z0 =
log(x/y) + (r − q − κλ− σ2/2)(T − t)

σ
√
T − t

= z2λ

(
x

y
, t, T

)
.

This can actually be contracted to

v(x, t) =

∞∑
n=0

(λ(T − t))n

n!
· e−(r+λ)(T−t)(

nσ2
Y + σ2(T − t)

)1/2

∫ ∞

0

1

y
N′(zn)φ(y) dy

by recognising the relation between z0 and zn along with σ
√
T − t and (nσ2

Y +σ2(T−t))1/2.

The integral can also be simplified if we briefly recall from Merton’s solution (2.15) that

vn(x, t) = v(x, t; r, q, σ)|r=rn(t), q=q, σ=σn(t).

From (2.10), this gives

vn(x, t) =

[ ∫ ∞

0

1

y
K

(
x

y
, t, T

)
φ(y) dy

]∣∣∣∣
r=rn(t), q=q, σ=σn(t)

.

Now, recalling the definition for rn(t) and σn(t) from (2.16), we choose (2.8) and get

vn(x, t) =
e−(r−κλ)(T−t)−n log(1+κ)(
nσ2

Y + σ2(T − t)
)1/2

∫ ∞

0

1

y
N′(dn)φ(y) dy,

where

dn =
log(x/y) + [r − κλ + n log(1 + κ)/(T − t) − q − σ2/2 − nσ2

Y /(2(T − t))](T − t)(
nσ2

Y + σ2(T − t)
)1/2

.
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To proceed, we now turn to vM on the right-hand side of (4.5). We first change vn into

its kernel form using (2.8) and the definition of vn, rn(t), σn(t) from Section 2.1 to give

vM(x, t) =

∞∑
n=0

(λ(1 + κ)(T − t))n

n!
· e−λ(1+κ)(T−t) · e

−(r−κλ)(T−t)−n log(1+κ)(
nσ2

Y + σ2(T − t)
)1/2

∫ ∞

0

1

y
N′(dn)φ(y) dy

=

∞∑
n=0

(λ(T − t))n

n!

e−(r+λ)(T−t)(
nσ2

Y + σ2(T − t)
)1/2

∫ ∞

0

1

y
N′(dn)φ(y) dy.

For a lognormal distribution, we have κ = eμY +σ2
Y /2 − 1 which reduces dn to

dn =
log(x/y) + nμY + (r − q − κλ− σ2/2)(T − t)(

nσ2
Y + σ2(T − t)

)1/2
= zn.

Therefore,

vM(x, t) =

∞∑
n=0

(λ(T − t))n

n!
· e−(r+λ)(T−t)(

nσ2
Y + σ2(T − t)

)1/2

∫ ∞

0

1

y
N′(zn)φ(y) dy = v(x, t),

hence, showing equality between (4.3) and (2.15). The integrals containing N′(zn) can

be evaluated using Lemma 2 once the payoff function φ is defined. In practice, many

financial payoffs can be expressed as finite linear combinations of

x �→ 1I (x), x �→ x1I (x),

with 1I is the indicator function defined as

1I (x) =

{
1, x ∈ I,

0, x � I,

where I is an arbitrary interval with endpoints a and b with a < b. This specified

interval can be open, half-closed, or closed. For example, a call option has payoff

φ(x) = max(x−K, 0) which can be formulated as

max(x−K, 0) = x1[K,∞)(x) −K1[K,∞)(x),
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where I is the interval [K,∞). So, the expression would be

v(x, t) =

∞∑
n=0

(λ(T − t))n

n!
· e−(r+λ)(T−t)(

nσ2
Y + σ2(T − t)

)1/2

∫ ∞

0

1

y
N′(zn) max(y −K, 0) dy

=

∞∑
n=0

(λ(T − t))n

n!
· e−(r+λ)(T−t)(

nσ2
Y + σ2(T − t)

)1/2

∫ ∞

K

1

y
N′(zn)(y −K, 0) dy

=

∞∑
n=0

(λ(T − t))n

n!
·
(
xe−(q+λ(1+κ))(T−t)+nμY +nσ2

Y /2 ·

N

(
log(x/K) + nμY + nσ2

Y + (r − q − κλ + σ2/2)(T − t)

(nσ2
Y + σ2(T − t))1/2

)

−Ke−(r+λ)(T−t)N

(
log(x/K) + nμY + (r − q − κλ− σ2/2)(T − t)

(nσ2
Y + σ2(T − t))1/2

))
.

Therefore, the two expressions in Lemma 2 will account for any potential payoff one may

encounter in options pricing.

4.4 Comparison of the jump-diffusion and Black–Scholes models

For completeness, we will present some elementary numerical comparisons between the

option values for when the asset price is governed by a jump-diffusion model and when

it follows the standard diffusion model. We will assume the jumps are lognormally

distributed. The chosen parameters are r = 0.05, q = 0.0, σ = 0.3, T − t = 0.5, K =

100, λ = 0.5, μY = −0.90, σY = 0.45. We will use a European call option and vary S0

between 50 and 500 to investigate the behaviour both in-the-money and out-of-the-money.

Comparing both plots in Figure 1, we see that options in a jump-diffusion framework

possess a higher value than those of the standard diffusion model. This is expected as

there is an extra component of uncertainty governed by the SDE in (2.11).

5 Example: double exponentially distributed jumps

We will also demonstrate how to derive a recursive formula for double exponentially

distributed jumps. A pricing formula does exist [39, 40] for a double exponential jump-

diffusion model, but it is expressed in a way that showing equality to the recursive form

(3.14) is very difficult. Thus, only F1 will be determined since it is all that is required to

generate the other terms.

Suppose Y > 0 is drawn from a double exponential distribution with parameters

ω1 > 0, ω2 > 0, and p, q � 0 such that p+ q = 1. Frontczak [29] gives the corresponding

PDF and expectation as

f(y) = pω1y
−ω1−11{y�1} + qω2y

ω2−11{0<y<1}, �[Y −ξ] =
pω1

ω1 + ξ
+

qω2

ω2 − ξ
,
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Figure 1. Call option profiles using (2.4) and (2.15). The financial parameters are r = 0.05, q = 0.00,

σ = 0.3, T − t = 0.5, K = 100, and S0 ∈ [50, 500]. The lognormal jump parameters are λ = 0.5,

μY = −0.90, and σY = 0.45. (a) Option profiles for Merton’s solution (2.15) with lognormal jumps

and standard Black–Scholes call option (2.4). (b) Difference between (2.15) and (2.4).

where 1I is the indicator function of the interval I . Using (3.14), we get

F1(x) =
1

x

(
pω1

(
1

x

)−ω1−1

1{1/x�1} + qω2

(
1

x

)ω2−1

1{0<1/x<1}

)

= pω1x
ω11{x�1} + qω2x

−ω21{x>1},

(5.1)

and from here we can obtain Fn recursively from (3.14). Using this, we can substitute into

(3.13) and then (3.11) to find the option price.

6 Example: gamma distributed jumps

Whilst a pricing formula for lognormal jumps and double exponential jumps has been

derived in previously, none exists for gamma distributed jumps. We will show a recursive

solution that is still exact and analytic.

Suppose Y ∼ Gamma(αY , βY ), where αY > 0 affects the distribution shape and βY > 0

determines the scale (i.e., how far spread out the distribution is). The associated PDF of

Y is given by [29]

f(y) =
1

Γ (αY )βαY
Y

yαY −1e−y/βY , �[Y −ξ] =
β−ξ
Y Γ (αY − ξ)

Γ (αY )
.

Then, using (3.13), we have

F1(x) =
1

x

1

Γ (αY )βαY
Y

(
1

x

)αY −1

e−1/(xβY ) =
(xβY )−αY

Γ (αY )
e−1/(xβY ), (6.1)

which can then be employed recursively to compute Fn. Similarly, Fn can be substituted

into (3.13) and then (3.11) to find the corresponding option price.
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7 A PIDE analogue of Dupire’s equation

In this section, we will derive a PIDE that is the analogue of Dupire’s equation as

seen in [30]. The Dupire-like PIDE will serve as the platform for computing the implied

volatility of options with jump-diffusion asset dynamics.

7.1 Homogeneity of the solution

First, we assume that the payoff function φ now depends on a parameter x′ > 0 (i.e.,

φ = φ(x; x′)). The motivation for this is that in the case of a European put or call, x′

represents the strike price. Furthermore, we assume that φ is homogeneous of degree one

in x and x′. Note that the put and call payoffs satisfy this assumption. We show that the

option price function v is homogeneous of degree one in x and x′. That is, we want to

show for v = v(x, t; x′) that

v(βx, t; βx′) = βv(x, t; x′) (7.1)

for all β > 0. This equality can be proven via a uniqueness argument as follows. We first

express (2.13) as L v = 0. Now let w = w(x, t; x′) solve the following final value problem:

Lw = 0, w(x, T ; x′) = βφ(x; x′). (7.2)

Next, we define the function v1(x, t; x
′) = βv(x, t; x′), where v is a solution to (2.13), (2.14).

Then,

L v1 = βL v = 0.

For the terminal condition, since v(x, T ; x′) = φ(x; x′), this implies that

v1(x, T ; x′) = βv(x, T ; x′) = βφ(x; x′).

Therefore, v1 satisfies the final value problem (7.2). On the other hand, we now let

v2(x, t, x
′) = v(βx, t; βx′). Computing the derivatives gives

∂v2

∂x
= βD1v, x2 ∂2v2

∂x2
= β2D11v,

where D1 and D11 represent the first and second partial derivatives with respect to the

first argument, respectively. Substituting these into (7.2), we get

L v2 = L v = 0,

and by the homogeneity of φ, the terminal condition is

v2(x, T ; x′) = v
(
βx, T ; βx′

)
= φ(βx; βx′) = βφ(x; x′).

Hence, v2 also satisfies the final value problem (7.2). By uniqueness, we have

v
(
βx, t; βx′

)
= v2(x, t; x

′) = v1(x, t; x
′) = βv(x, t; x′),
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thus, proving the homogeneity property for v and any general payoff φ that is homogen-

eous of degree one in x and x′.

7.2 Derivation of a Dupire-like PIDE via Euler’s theorem on homogeneous functions

The partial derivatives of the Dupire equation [30] are in terms of the strike price K .

Thus, to derive a Dupire-like PIDE, we will require partial derivatives in terms of x′ (the

analogous variable for K). This can be done by invoking Euler’s theorem for homogeneous

functions [38, pp. 317] to v and we get

x
∂v

∂x
+ x′

∂v

∂x′
= v,

since v has been shown to be homogeneous in x and x′ of degree one. By differentiating

the above equation with respect to x and x′, we obtain

x
∂2v

∂x2
= −x′

∂2v

∂x∂x′
, x′

∂2v

∂x′2
= −x

∂2v

∂x′∂x
,

respectively. Hence, it follows that

x2 ∂2v

∂x2
= x′2

∂2v

∂x′2
.

The only term left to account for is the integral in (2.13). Notice that the first integrand

term depends on y; we want to transfer the dependency on y to the third argument (i.e.,

x′). This can be achieved by the homogeneity property in (7.1), and we obtain

v(xy, t; x′) = v

(
xy, t;

x′y

y

)
= yv

(
x, t;

x′

y

)
.

Thus, setting u(x′, t; x) = v(x′, t; x) and replacing all the x derivatives with x′ derivatives

and substituting the above rearrangement for the integrand, we get

∂u

∂t
− (q(t) + κλ)u− (r(t) − q(t) − κλ)x′

∂u

∂x′
+

1

2
σ(t)2x′2

∂2u

∂x′2

+ λ

∫ ∞

0

(
yu

(
x′

y
, t; x

)
− u(x′, t; x)

)
f(y) dy = 0

(7.3)

with

u(x′, T ; x) = φ(x′; x), (7.4)

since u now depends on the variables x′ and t with x as a parameter. Equations (7.3)

and (7.4) together form the Dupire-like PIDE system for options in a jump-diffusion

framework. Note that this reduces to the standard Dupire PDE as seen in [30] in the

absence of jumps (i.e., λ = 0) when φ is either the call or put payoff.
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8 Implied volatility formula

From (7.3) and (7.4), it is possible to now solve the inverse problem of implied volatility

estimation. Throughout the remainder of this section, we will assume that r, q, and σ

are constants. Suppose that we are given u(x′, 0; S0) for all x′ > 0. We wish to derive an

explicit formula for σ in terms of certain integrals of v with respect to x′. The reason for

this is that in practice one can observe different time-zero option prices u1, u2, . . . , um for

varying strike prices K1, K2, . . . , Km, here corresponding to different values of x′. Once

we can extrapolate u for extreme values of x′, we would know the entire time-zero profile

of u.

First, denote by û the Mellin transform of u with respect to x′, i.e.,

û(ξ, t) =

∫ ∞

0

(x′)ξ−1u(x′, t; x) dx′.

We take the Mellin transform of (7.3) and (7.4) with respect to x′ to obtain

∂û

∂t
− Gλ(ξ)û(ξ, t) = 0, û(ξ, T ) = φ̂(ξ), (8.1)

where

Gλ(ξ) = −
(
σ2

2
ξ(ξ + 1) + (r − q − κλ)ξ − (q + κλ) + λ�[Y ξ+1 − 1]

)
. (8.2)

We are left with an ODE in t. Solving (8.1) gives

û(ξ, t) = e−Gλ(ξ)(T−t)φ̂(ξ). (8.3)

We can proceed to isolate σ2 in (8.3) to yield

σ2 =
2

ξ(ξ + 1)

(
ln(û(ξ, t)/φ̂(ξ))

T − t
− (r − q − κλ)ξ + (q + κλ) − λ�[Y ξ+1 − 1]

)
, (8.4)

where we have the flexibility to choose a value of ξ. Theoretically, σ2 should be constant

for any value of ξ and t, provided the Mellin transform of u exists. Furthermore, it should

be emphasised that (8.4) can be applied to any type of payoff and jump. When λ = 0,

(8.4) gives an explicit formula for the implied volatility in the usual diffusion framework.

9 Numerical simulations

This section will contain the numerical results obtained from the implied volatility formula

(8.4) for lognormal jumps. To test the validity of the model, we will require an initial

σ value to generate option prices before solving the inverse problem. The results will

be divided into two sets: the first set will be implementing purely theoretical data; the

second set will be generated using pseudo-market data that attempts to mimic observed

market prices and values. We will now elaborate on how the option prices are obtained.

For definiteness, we will consider a time-zero European call. That is, in (2.4) we set t = 0,
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x = S0, assume r, q, and σ are constant, and view this as a function of K given as

vcall(K) = S0e
−qTN

(
z1

(
S0

K
, 0, T

))
−Ke−rTN

(
z2

(
S0

K
, 0, T

))
, (9.1)

where z1 and z2 are defined as they are in (2.6) and (2.7), respectively.

9.1 Theoretical data for option prices

The Mellin transform is valid in the domain [0,∞). Since this implied volatility scheme

incorporates a Mellin transform with respect to the strike price K = x′ for a fixed x = S0,

we require time-zero option prices for varying K ∈ [0,∞). Numerically, we will use

discrete 200 values of K ∈ [1.0 × 10−6, 8S0] evenly spaced to simulate continuity for the

entire domain K > 0. This will yield 200 call prices. In practice, this is seldom applicable

as many sources for financial data will only list discrete option prices for a finite set of

K values (i.e., much less than 200) and for a fixed asset price S0. Furthermore, it is often

implausible to expect the domain of K to be uniformly spaced. This approach is only

included to illustrate the accuracy of the model assuming a very smooth dataset.

9.2 Pseudo-market data for option prices

As mentioned before, the finite number of discrete option prices may prove insufficient in

exhibiting a continuous behaviour in the option price profile. Hence, we require a method

for approximating the data beyond the option prices provided. The following procedure

will be demonstrated for a call option in the absence of jumps to simplify the calculations.

However, these steps can be adapted when accounting for jumps in the asset dynamics.

We assume that we have a set of call prices v1 > v2 > · · · > vm−1 > vm with

corresponding strike prices K1 < K2 < · · · < Km−1 < Km. It is known from [7] that

the best one-parameter logistic approximation of the standard normal CDF N for all

z ∈ � is given by

N(z) ≈ 1

1 + e−az
, a = 1.702,

where the maximum difference between the approximation and exact expression for N is

less than 0.001 for z ∈ [−4.5, 4.5]. Now, for z < 0 we have

N(z) ≈ eaz

1 + eaz
= eaz(1 − eaz + e2az − · · · ) = eaz − e2az + e3az − · · · .

Hence, we can take N(z) ≈ eaz for z 
 −1. Using this logistic estimation in (9.1), this

approximates to

vcall(K) ≈ S0e
−qT

1 + e−ad1(S0/K,0,T )
− Ke−rT

1 + e−ad2(S0/K,0,T )
=

S0e
−qT

1 + e−ad1
− Ke−rT

1 + e−ad2
,

where d1 and d2 are defined as

d1 = z1

(
S0

K
, 0, T

)
, d2 = z2

(
S0

K
, 0, T

)
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using (2.6) and (2.7), respectively, under the assumption of constant parameters. When

|K| 
 1 we see that d1 � 1 and d2 � 1; hence, vcall(K) ≈ S0e
−qT −Ke−rT . Therefore, we

assume that

vcall(K) = S0e
−qT − βK, 0 < K � K1

for some β > 0. Using K1 to extrapolate, we see from vcall(K1) = v1 that we obtain

β =
S0e

−qT − v1

K1
.

Conversely, when K � 0 we have −d1 � 1 and −d2 � 1. Using N(z) ≈ eaz for −z � 1,

we can simplify N(d1) and N(d2) and approximate (9.1) by

vcall(K) ≈ S0e
−qT ead1 −Ke−rT ead2 .

As d1 = d2 + σ
√
T ,

ead2 = ea(log(S0/K)+(r−q−σ2/2)T)/(σ
√
T) =

(
S0

K

)a/(σ
√
T)

ea(r−q−σ2/2)
√
T/σ.

Similarly,

ead1 = eaσ
√
T ead2 ,

hence, we have

vcall(K) ≈
(
S0e

−qT eaσ
√
T −Ke−rT

)(S0

K

)a/(σ
√
T)

ea(r−q−σ2/2)
√
T/σ.

Therefore, we assume that

vcall(K) =
γ1

Kδ
+

γ2

Kδ−1
, K � Km

for some γ1, γ2, δ > 0. We will need to use Km−1 and Km to extrapolate, but we also require

another data point. For the call option, vcall(K) → 0 as K → ∞, thus we let KL � Km

represent the strike price “near” infinity. We see from vcall(Km−1) = vm−1, v
call(Km) = vm,

and vcall(KL) ≈ 0, and we deduce that

δ =
log

(
vm−1/vm

)
+ log

(
(KL −Km)/(KL −Km−1)

)
log(Km/Km−1)

,

γ2 =
vmK

δ
m

Km −KL

, γ1 = −KLγ2, KL � Km.

Thus, the call option function can be reformulated to become

vcall(K) =

⎧⎪⎪⎨
⎪⎪⎩
S0e

−qT − βK 0 < K � K1,

vj K = Kj, j = 1, . . . , m,
γ1

Kδ + γ2

Kδ−1 K � Km,

(9.2)

where v1, . . . , vm are the observed call prices. A similar process can also be adopted for the
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Figure 2. Call option profiles for K > 0. The parameter values are S0 = 15, T = 0.3, r = 0.03,

q = 0.02, and σ = 0.3. (a) Call prices computed using (9.1) with 200 equally spaced nodes for

K between 10−6 and 8S0. (b) Call prices computed using (9.1) for pseudo-observed Black–Scholes

values and (9.2) to extrapolate.

European call or put with jumps. Figure 2(a) and (b) shows the profile for the call option

with both theoretical and pseudo-market data, respectively.

9.3 Algorithm

The algorithm for computing σ2 for a call option is as follows:

(1) Obtain option data v1, v2, · · · , vm for K1 < K2 < · · · < Km either using theoretical,

pseudo-market or actual market data.

(a) Theoretical data – use (9.1) or (2.15) (with appropriate adjustments to the notation)

and ensure K1, K2, . . . , Km are 200 evenly spaced nodes between 10−6 and 8S0

(adjust if 8S0 < Km).

(b) Pseudo-real or market data – generate v1, v2, . . . , vm using theoretical data or

observed from the market, then use (9.2) (adapt for jumps if necessary) to create

more data points for a smoother profile. For K ≈ 0, use 1.0 × 10−6; for K � 0,

use 8S0 (adjust if 8S0 < Km).

(2) Choose a value of ξ.

(3) Evaluate v̂call(ξ) =
∫∞

0
Kξ−1vcall(K) dK via numerical integration (e.g., Gauss–Lobatto

or Gauss–Kronrod quadrature), where vcall is the entire time-zero option profile.

(4) Substitute the value for v̂call(ξ) into (8.4) and compute σ2.

9.4 Results

We will now report the implied volatility estimations for both theoretical option data and

pseudo-market option prices via extrapolation. The parameter values used are S0 = 15,
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Table 1. Implied volatility estimations and errors for different ξ when σ = 0.15 using pure

theoretical option data from (4.3). Average CPU time is given in seconds

Implied volatility estimation for σ = 0.15

Avg. CPU time: 0.1 s

ξ Estimated σ Absolute error

1.0 0.150001657453424 1.6 × 10−6

1.25 0.149999916945745 8.3 × 10−8

1.5 0.150004007140589 4.0 × 10−6

1.75 0.150000231848765 2.3 × 10−7

2.0 0.150000372512579 3.7 × 10−7

2.25 0.150000519892163 5.1 × 10−7

2.5 0.150000665164591 6.6 × 10−7

2.75 0.150000808303685 8.0 × 10−7

3.0 0.150000949189142 9.4 × 10−7

3.25 0.150001087644665 1.0 × 10−6

3.5 0.150001223391692 1.2 × 10−6

3.75 0.150001355979046 1.3 × 10−6

4.0 0.150001484661131 1.4 × 10−6

4.25 0.150001608185628 1.6 × 10−6

4.5 0.150001724425047 1.7 × 10−6

4.75 0.150001829737164 1.8 × 10−6

5.0 0.150001917853050 1.9 × 10−6

r = 0.05, q = 0.03, and T = 0.025. We will use σ = 0.15 and σ = 0.3 as initial seeds to

generate the corresponding option prices. All simulations will be performed in MATLAB

using a European call option (with and without jumps). The Mellin transform will be

computed using the adaptive Gauss–Kronrod quadrature scheme available in MATLAB.

9.4.1 Theoretical data

For the theoretical data, (4.3) is used to generate 200 European call option prices with

lognormal jumps for K ∈ [1.0 × 10−6, 8S0]. The associated lognormal parameters are

chosen to be λ = 0.10, μY = −0.90, and σY = 0.45. To illustrate the consistency of the

algorithm, several ξ values are selected for the Mellin transform. The domain chosen

is ξ ∈ [1.0, 5.0] in discrete increments of 0.25. Tables 1 and 2 show the numerical

approximations for σ against the true values.

For the theoretical option prices, the implied volatility estimations for σ = 0.15 and

σ = 0.3 prove to be quite accurate with errors in the order of 10−7–10−6. The error

remains relatively consistent for all ξ in the allocated domain, which further highlights

the precision of the algorithm. It can be argued for σ = 0.15 that the absolute error is

increasing as ξ increases; however, this is primarily linked to approximation errors since

the Mellin transform is computed numerically.
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Table 2. Implied volatility estimations and errors for different ξ when σ = 0.3 using pure

theoretical option data from (4.3). Average CPU time is given in seconds

Implied volatility estimation for σ = 0.3

Avg. CPU time: 0.1 s

ξ Estimated σ Absolute error

1.0 0.300000812537166 8.1 × 10−7

1.25 0.300000602264498 6.0 × 10−7

1.5 0.300001642090901 1.6 × 10−6

1.75 0.300000647148822 6.4 × 10−7

2.0 0.300000660419985 6.6 × 10−7

2.25 0.300000671406796 6.7 × 10−7

2.5 0.300000680367558 6.8 × 10−7

2.75 0.300000687348957 6.8 × 10−7

3.0 0.300000692310426 6.9 × 10−7

3.25 0.300000695116983 6.9 × 10−7

3.5 0.300000695475283 6.9 × 10−7

3.75 0.300000692830239 6.9 × 10−7

4.0 0.300000686190937 6.8 × 10−7

4.25 0.300000329275066 3.2 × 10−7

4.5 0.300000337379160 3.3 × 10−7

4.75 0.300000329776874 3.2 × 10−7

5.0 0.300000298131713 2.9 × 10−7

9.4.2 Pseudo-market data

The pseudo-market option prices are computed using (9.1) with 20 discrete values of

K ∈ [5, 25], and then incorporates (9.2) to extrapolate and provide continuity to the data.

Although we are considering a scenario with no jumps (i.e., λ = 0), a similar procedure

may be applied in the case of jumps as seen in the previous section using pure theoretical

data. Note that the discrete domain for K will need to be adjusted accordingly if S0

changes. Tables 3 and 4 list the results for the implied volatility estimation.

Once again, the results are quite satisfactory but the overall absolute error has increased

in order of magnitude in comparison to the estimations yielded by the purely theoretical

dataset. This is mainly attributed to the extrapolating functions in (9.2). Whilst it maintains

the monotonicity of the option profile versus the strike price (e.g., monotonically decreasing

for a European call against strike), the main source of error lies within the “tail” function

(i.e., the approximation for the option price as K → ∞). This will be elaborated upon in

the discussion.

9.4.3 Comparison to other methods

We will now give a comparison of (8.4) against two other formulas for implied volatility

estimation. We first denote vcall to be observed European call price that is required to
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Table 3. Implied volatility estimations and errors for different ξ when σ = 0.15 using (9.1)

to generate pseudo-market data. Average CPU time is given in seconds

Implied volatility estimation for σ = 0.15

Avg. CPU time: 0.002 s

ξ Estimated σ Absolute error

1.0 0.149998728439811 1.2 × 10−6

1.25 0.150027834813882 2.7 × 10−5

1.5 0.150054557535829 5.4 × 10−5

1.75 0.150080609531067 8.0 × 10−5

2.0 0.150106032110318 1.0 × 10−4

2.25 0.150130843920878 1.3 × 10−4

2.5 0.150155063080464 1.5 × 10−4

2.75 0.150178294968951 1.7 × 10−4

3.0 0.150201382384214 2.0 × 10−4

3.25 0.150223926634414 2.2 × 10−4

3.5 0.150245946705591 2.4 × 10−4

3.75 0.150267456617342 2.6 × 10−4

4.0 0.150288471381866 2.8 × 10−4

4.25 0.150309005551112 3.0 × 10−4

4.5 0.150329021452815 3.2 × 10−4

4.75 0.150348633294877 3.4 × 10−4

5.0 0.150367805351298 3.6 × 10−4

Table 4. Implied volatility estimations and errors for different ξ when σ = 0.3 using (9.1)

to generate pseudo-market data. Average CPU time is given in seconds

Implied volatility estimation for σ = 0.3

Avg. CPU time: 0.002 s

ξ Estimated σ Absolute error

1.0 0.300031895572929 3.1 × 10−5

1.25 0.300045257605552 4.5 × 10−5

1.5 0.300058090390309 5.8 × 10−5

1.75 0.300071242016552 7.1 × 10−5

2.0 0.300085040710682 8.5 × 10−5

2.25 0.300099577530501 9.9 × 10−5

2.5 0.300115017586394 1.1 × 10−4

2.75 0.300131558128381 1.3 × 10−4

3.0 0.300149410201347 1.4 × 10−4

3.25 0.300168805884818 1.6 × 10−4

3.5 0.300190000681277 1.9 × 10−4

3.75 0.300213193710094 2.1 × 10−4

4.0 0.300238860932383 2.3 × 10−4

4.25 0.300267261118478 2.6 × 10−4

4.5 0.300298771264214 2.9 × 10−4

4.75 0.300333806724048 3.3 × 10−4

5.0 0.300372824834949 3.7 × 10−4
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compute the implied volatility. We will use the result by Brenner and Subrahmanyam [8]

σ ≈ vcall

S0

√
2π

T
, (9.3)

Corrado and Miller [21]

σ ≈ 1

S0 + K

√
2π

T

⎛
⎝vcall − S0 −K

2
+

√(
vcall − (S0 −K)

2

)2

− (S0 −K)2

π

⎞
⎠ , (9.4)

and a standard Newton’s method approach [33]

σn+1 = σn −
F(σn)

F ′(σn)
, (9.5)

where F is the difference between value of the European call (2.4) at σ = σn and the

observed price vcall, and F ′ is the vega of the European call: the partial derivative of (2.4)

with respect to σ. The analysis will be conducted with 20 discrete strike values K ∈ [5, 25]

and the aforementioned parameters values used to compute the call prices using (9.1).

Table 5 gives the approximations for σ = 0.30.

It is immediately clear that formulas (9.3) and (9.4) are heavily dependent on the value

of K . Brenner and Subrahmanyam’s formula yields plausible approximations when the

option is at-the-money which is exemplified in Table 5. The Corrado–Miller formula

appears to allow more flexibility in the option’s moneyness; however, the Corrado–Miller

formula possesses the possibility for complex solutions as seen by the numerical results.

Both outcomes coincide with the details provided in the introduction; (9.3) is only valid for

options at-the-money and (9.4) is not restricted to at-the-money options but may generate

complex values depending on the moneyness or parameter values (see Chambers and

Nawalkha [12]). Newton’s method (9.5) proved to the most reliable of the three schemes.

But the focus of the article is more on implied volatility estimation in the scenario of a

jump-diffusion model where Newton’s method (or a standard root-finding scheme) would

not be a desirable approach.

10 Discussion and conclusion

The first key result presented in this article was the alternative pricing formula (3.11) for

options in a jump-diffusion model for the underlying asset. There are several advantages

to this new formula. First, (3.11) is applicable to any general payoff and type of jump.

Merton’s formula is applicable for when the jump is drawn from a particular distribution,

namely, the lognormal distribution. On the other hand, Frontczak’s formula is also

applicable to any general payoff and type of jump as in (3.11), but a complex integral has

to be evaluated in Frontczak’s result and reduces to (2.15) for a given payoff and jump.

However, the integrals in (3.11) are all real since the Mellin transform inversion has been

performed unlike in [29] where the inversion was completed via a complex integral.

Equation (3.11) conveniently represents the standard European option value with

shifted parameters and a function which mimics the discontinuous jumps. If multiple
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Table 5. Comparison of implied volatility formulas for σ = 0.3

Implied volatility comparison for σ = 0.30

Equation (9.3) Equation (9.4) Equation (9.5)

BS formula CM formula Newton’s method

K Avg. CPU time: 0.00014 s Avg. CPU time: 0.00020 s Avg. CPU time: 0.00016 s

5.0 3.3255 1.2408–0.6786i 0.2998

6.0 2.9954 1.0653–0.5784i 0.3000

7.0 2.6653 0.9058–0.4873i 0.3000

8.0 2.3353 0.7601–0.4040i 0.3000

9.0 2.0053 0.6266–0.3276i 0.3000

10.0 1.6757 0.5041–0.2567i 0.3000

11.0 1.3492 0.3927–0.1874i 0.3000

12.0 1.0336 0.2957–0.1064i 0.3000

13.0 0.7440 0.3054 0.3000

14.0 0.4984 0.3123 0.3000

15.0 0.3093 0.3093 0.3000

16.0 0.1778 0.3066 0.3000

17.0 0.0949 0.2972 0.3000

18.0 0.0474 0.2494–0.0625i 0.3000

19.0 0.0222 0.3047–0.1337i 0.3000

20.0 0.0099 0.3623–0.1789i 0.3000

21.0 0.0042 0.4195–0.2150i 0.3000

22.0 0.0017 0.4749–0.2466i 0.3000

23.0 0.0007 0.5280–0.2753i 0.3000

24.0 0.0003 0.5785–0.3022i 0.3000

25.0 0.0001 0.6267–0.3275i 0.3000

types of options are to be priced or if the jump dynamics were changed, (3.11) is in

a form whereby any alterations can be easily incorporated since the jump function is

completely separated from any other component of the pricing formula. Additionally, the

general pricing formula in [29] is expressed as a complex integral with the jump dynamics

embedded across multiple terms. In practice, this would be unfavourable as computing

complex integrals is relatively expensive when compared to real integrals.

Examples were given for when the jumps have distributions that are lognormal, double

exponential, and gamma. For lognormal jumps, both [47] and [29] also derived similar

results; Merton’s classical formula (2.15) exploited the properties of expectations, whereas

Frontczak’s formula computed the Mellin inverse via algebraic manipulation and the

Mellin convolution. Equation (4.3) was derived using convolution and direct inversion

that bypasses the complex integral evaluation employed by Frontczak. One approach

used (3.13) to compute the terms recursively whilst the other relied on the properties

of the exponential function which simplified the algebra tremendously. It should be

emphasised that in (4.3), having the jump term isolated from the remainder of the

formula is convenient since it allows for the pricing process to be modular. That is, one

can calculate the necessary jump term before determining the option price at the specified

parameter values. Not only is the separation preferable for computation, it reiterates the
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notion of interchangeability: if the jump dynamics were to change, (3.11) together with

(3.13) would be able to accommodate this efficiently. Although (3.13) is recursive in the

general case, one may obtain some insight into what Fn is by carefully analysing the

distribution of the jump. This could ultimately lead to easier calculations. Consequently,

it is possible to derive pricing formulas for any types of jumps as shown with the double

exponential distribution in (5.1) and the gamma distribution in (6.1). The key is being

able to calculate each term in the sequence F1, F2, . . .. If the integrals associated with Fn

are too complicated to solve analytically, one may resort to numeric to yield approximate

solutions to (3.13). For the double exponential and gamma distributions, we kept the

jump terms in a recursive form to demonstrate the capability of (3.13). However, it is

not clear how to obtain a non-recursive form for Fn for double exponentially and gamma

distributed jumps as we did for the lognormal jumps. There is also interest in finding an

exact solution for Kou’s double exponentially distributed jumps [39, 40] using (3.11) and

(3.13) since recent empirical studies suggest a better model for the asset process involves

the jumps following a double exponential distribution. In particular, it may be of interest

to see whether or not a Mellin transform route would generate a more elegant and

simple solution in lieu of Kou’s original solution, which involves the computation of quite

complicated Hh functions (see [1, pp. 691]). There is also the possibility to extend (3.11)

to price American options in jump-diffusion models; this is current work in progress.

The second main result of this article was the implied volatility formula (8.4) for options

under a jump-diffusion framework. Many estimators already exist for the implied volatility,

but none of these schemes accommodates the possibility of jumps in the asset price. It

should be highlighted that (8.4) also works in the absence of jumps by setting λ = 0.

Both sets of implied volatility results for theoretical and pseudo-market data produced

accurate estimations for the true value of σ as shown in the numerical simulations.

For the theoretical data, the absolute errors remain in the order of 10−7–10−6. The low

order of magnitude for the errors is not surprising as the options price profile exhibits nice

continuity as all the values are evenly distributed between 10−6 and 8S0. It was mentioned

that the error appeared to be marginally increasing for σ = 0.15 for larger values of ξ, but

this is associated with the numeric as the Mellin transform was performed via numerical

integration.

For the pseudo-market data, the implied volatility estimation possessed higher orders for

the absolute error ranging from 10−5 to 10−4. The cause is undoubtedly the extrapolation

functions in (9.2). Both functions manage to capture the profile and monotonicity of the

option prices, but the main problem is their failure to replicate how the standard normal

CDF behaves. Although the logistic approximation in [7] is deemed to be one of the

most accurate, further testing has shown that the approximation (9.2) as K → ∞ does

not actually decay at the same rate as it does in the Black–Scholes formula (9.1). Hence,

it can be inferred that the relatively larger errors are attributed to this subtle artefact in

the extrapolation.

A brief comparison against three other methods was used to gauge the validity and

accuracy of (8.4) under the assumption of constant volatility. Both results by Brenner–

Subrahmanyan (9.3) and Corrado–Miller (9.4) provided acceptable implied volatility

estimations for particular strike prices, but continued to exemplify the drawbacks that are

inherent to their respective models. Brenner and Subrahmanyan’s formula is effectively
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feasible only when the option is at-the-money; Corrado and Miller’s formula permits

marginal freedom in the option’s moneyness but suffers from the potential of complex

solutions which can be unknown a priori. Newton’s method proved to give the most

favourable results out of these three numerical schemes, but these are only applicable for

a standard diffusion case. A major advantage of (8.4) is its independence from the option

moneyness condition, although we are assuming we possess different option prices for

different strikes (which are readily available anyway). Although one could argue that (8.4)

has a slower execution time compared to the other three methods we used to benchmark

against, we justify our scheme’s versatility at being able to counteract the flaws of (9.3) and

(9.4), as well to illustrate the use of the extrapolating functions. We did not demonstrate

the extrapolation procedure for the jump-diffusion case for simplicity, but the extension

should be straightforward.

The implied volatility result could also be potentially modified for American options

in both standard diffusion and jump-diffusion frameworks. The main challenge would

be adapting to the moving boundary problem that exists in the asset price due to the

possibility of exercising the option before the expiry date.

To summarise, we have devised and introduced a new scheme for option pricing when

the asset possesses jump-diffusion dynamics. In particular, we were able to formulate this

new model to fit any type of jump. The consequent result can be computed recursively

within an infinite sum. This was achieved by implementing the properties of the Mellin

transform and the Black–Scholes kernel. We also highlighted how the recursion is handled

when the jump is extracted from a lognormal distribution and also provided some insight

into how the recursion can be computed when the jump is double exponentially and

gamma distributed. Additionally, we derived a Dupire-like PIDE for options in a jump-

diffusion environment and ultimately an implied volatility formula within this framework.

Numerical approximations for implied volatility with and without jumps rival in accuracy

and robustness to two well-known implied volatility results. The analysis and approach

once again incorporated the Mellin transform.
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Appendix A Proof of Lemma 1

To begin, we let I equal

I =

∫ ∞

0

1

z
N′(a1 log z + b1)N

′
(
a2 log

(
1

z

)
+ b2

)
dz.

Setting ρ = a2 log
(
1/z

)
+ b2, the integral becomes

I =
1

a2

∫ ∞

−∞
N′

(
a1b2

a2
+ b1 −

a1

a2
ρ

)
N′(ρ) dρ =

1

a2

∫ ∞

−∞
N′

(
γ − a1

a2
ρ

)
N′(ρ) dρ,

where we write γ = a1b2/a2 + b1. Using (2.17) to replace the N′ terms, we get

I =
1

2πa2

∫ ∞

−∞
e−((γ−a1ρ/a2)2

+ρ2)/2 dρ

=
e−γ2/2e(a1γ)

2/(2(a2
1+a2

2))

2πa2

∫ ∞

−∞
e
−
(
((a2

1+a2
2)/a

2
2)(ρ−(a1a2γ)/(a

2
1+a2

2))
2
)
/2

dρ,

Now setting

ω =

√
a2

1 + a2
2

a2
2

(
u− a1a2γ

a2
1 + a2

2

)
,

we obtain

I =
e−γ2/2e(a1γ)

2/(2(a2
1+a2

2))

2π
√
a2

1 + a2
2

∫ ∞

−∞
e−ω2/2 dω.

To finish off, we use (2.17) to replace the exponential term with N′, integrate, and arrive

at

I =
1√

a2
1 + a2

2

N′

⎛
⎝ γa2√

a2
1 + a2

2

⎞
⎠ =

1√
a2

1 + a2
2

N′

⎛
⎝a1b2 + a2b1√

a2
1 + a2

2

⎞
⎠ ,

where we substituted the expression for γ back in. This completes the proof.

Appendix B Proof of Lemma 2

The proof of the first expression is simple. We denote the left-hand side integral to be I .

By setting u = a1 log(1/y) + b1, we get

I =
1

a1

∫ a1 log(1/a)+b1

a1 log(1/b)+b1

N′(u) du =
1

a1

(
N(a1 log(1/a) + b1) −N(a1 log(1/b) + b1)

)
.
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For the second expression, we perform the exact same step as we did for the first expression

to begin with. We first obtain

I =
eb1/a1

a1

∫ a1 log(1/a)+b1

a1 log(1/b)+b1

N′(u)e−u/a1 du =
eb1/a1

a1

√
2π

∫ a1 log(1/a)+b1

a1 log(1/b)+b1

e−u2/2−u/a1 du,

where we used (2.17) to convert N′ to its integral form. Looking at the power of the

exponential term, we complete the square and arrive at

I =
eb1/a1+1/(2a2

1)

a1

√
2π

∫ a1 log(1/a)+b1

a1 log(1/b)+b1

e−(u+1/a1)
2/2 du =

eb1/a1+1/(2a2
1)

a1

∫ a1 log(1/a)+b1

a1 log(1/b)+b1

N′ (u + 1/a1

)
du

=
eb1/a1+1/(2a2

1)

a1

(
N(a1 log(1/a) + b1 + 1/a1) −N(a1 log(1/b) + b1 + 1/a1)

)
.

This equals the right-hand side of the second expression and concludes the proof.

Appendix C Proof of Lemma 3

To prove the result, the Mellin transform will need to be evaluated directly. Using the

definition of the Mellin transform and (2.17), the left-hand side becomes

M {N′(a log x + b)} =

∫ ∞

0

xξ−1N′(a log x + b) dx =
1√
2π

∫ ∞

0

xξ−1e−(a log x+b)2/2 dx.

Using ω = a log x + b, the integral becomes

M {N′(a log x + b)} =
e−bξ/a

a
√

2π

∫ ∞

−∞
e−ω2/2+ωξ/a dω.

Upon completing the square inside the exponential with respect to ω, this simplifies to

M {N′(a log x + b)} =
e−bξ/aeξ

2/(2a2)

a
√

2π

∫ ∞

−∞
e−(ω−ξ/a)2/2 dω =

e−bξ/aeξ
2/(2a2)

a
,

where we used the standard identity
∫∞
−∞ e−(ω−y)2/2 dω =

√
2π for y ∈ �. This completes

the proof.
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