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Abstract

Currently, metabolic disorders are one of the major health problems worldwide, which have
been shown to be related to perinatal nutritional insults, and the autonomic nervous system
and endocrine pancreas are pivotal targets of the malprogramming of metabolic function.
We aimed to assess glucose–insulin homeostasis and the involvement of cholinergic responsive-
ness (vagus nerve activity and insulinotropicmuscarinic response) in pancreatic islet capacity to
secrete insulin in weaned rat offspring whose mothers were undernourished in the first 2 weeks
of the suckling phase. At delivery, dams were fed a low-protein (4% protein, LP group) or a
normal-protein diet (20.5% protein, NP group) during the first 2 weeks of the suckling period.
Litter size was adjusted to six pups per mother, and rats were weaned at 21 days old.Weaned LP
rats presented a lean phenotype (P< 0.01); hypoglycaemia, hypoinsulinaemia and hypolepti-
naemia (P< 0.05); and normal corticosteronaemia (P> 0.05). In addition, milk insulin levels in
mothers of the LP rats were twofold higher than those of mothers of the NP rats (P< 0.001).
Regarding glucose–insulin homeostasis, weaned LP rats were glucose-intolerant (P< 0.01) and
displayed impaired pancreatic islet insulinotropic function (P< 0.05). The M3 subtype of the
muscarinic acetylcholine receptor (M3mAChR) from weaned LP rats was less responsive, and
the superior vagus nerve electrical activity was reduced by 30% (P< 0.01). A low-protein diet in
the suckling period malprogrammes the vagus nerve to low tonus and impairs muscarinic
response in the pancreatic β-cells of weaned rats, which are imprinted to secrete inadequate
insulin amounts from an early age.

Introduction

Several of the metabolic diseases that develop in adulthood have been shown to have their
origins in early life, especially in cases related to nutritional insults, through maternal under-
nutrition,1 maternal obesity2 or early overfeeding,3 or maternal treatment with synthetic
glucocorticoids,4 among other factors, such as chemical exposure,5 that perturb physiological
processes and organ and neuronal circuitry maturation in early development.

One of the serious metabolic disturbances that has as one of its origins maternal food restric-
tion, since both in utero and lactation periods are critical windows for offspring endocrine pan-
creas development and maturation,6 is type 2 diabetes mellitus (T2DM).

The low-protein malprogrammed rat model has long been used to study metabolic dysfunc-
tions that are diagnosed in diabetic patients.7–11 In this rat model, the role of the autonomic
nervous system, especially the cholinergic pathway, in the endocrine pancreas has been reported
to be affected later in life,12 whereas adult rat offspring secreting low amounts of insulin also
present a smaller parasympathetic signalling response in the endocrine pancreatic islets of
Langerhans.13,14 However, whether these features in cholinergic signalling develop throughout
life due to the other metabolic derangements, or whether they are imprinted already in early life,
is not yet elusive. As previously shown, the tonus of the parasympathetic nervous system is
affected in rats malnourished due to a low-protein diet in different ways, hypoactive or hyper-
active, at different ages, which contributes to metabolic dysfunction, including endocrine pan-
creas responses (low or high) and opposing body mass phenotype (lean or obese).14–17
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There are two branches of the autonomic nervous system
controlling glucose homeostasis; while the parasympathetic
nervous system potentiates, the sympathetic nervous system
attenuates insulin secretion by pancreatic β-cells in the islets of
Langerhans.18,19 In light of the developmental origins of health
and disease (DOHaD), to bring to mind that the endocrine pan-
creas in critical developmental stages is influenced by neuroendo-
crine signals such as metabolic hormones and autonomic nervous
system stimuli, connecting them to maternal-environmental
conditions in both pregnancy and nursing periods is important.
Pancreatic autonomic nervous system branching happens in
critical stages when there is rapid cell growth, differentiation
and maturation,20 which points out that these autonomic branches
are critical for pancreatic islet growth and maturation. In this
regard, studies focusing on vagus nerve activity and muscarinic
function in the endocrine pancreas have reported the pivotal role
of cholinergic signalling in influencing the proliferative ability
of pancreatic β-cells and in the maintenance of pancreatic islet
function.21–24

In the literature, studies report that low-protein diet insults,
specifically, in the early suckling phase, trigger metabolic imprinting
in adult rats, resulting in high peripheral insulin sensitivity associated
with functional impairment of the pancreatic islets in the secretion of
insulin11–14; however, none of these studies have focused on early
stages of development. Therefore, we were interested in assessing
glucose–insulin homeostasis and the effects of vagus nerve action
and cholinergic responsiveness in pancreatic islets on insulin secre-
tion ability in weaned rat offspring whose dams were fed a low-
protein diet in the first 2 weeks of the suckling phase.

Material and methods

Maternal dietary manipulation and animal groups

Lactating Wistar rat dams (n= 6 rat dams from each experimental
group) were fed either normal rodent chow containing 20.5%
protein (Nuvital®, Curitiba, PR, Brazil) throughout lactation or
an isocaloric low-protein diet containing 4% protein from delivery
until the 14th day of lactation, returning to a normal diet for the
remaining third part of the lactation period. The diet composition
was the same as that previously published.25 At birth, the litter size
was adjusted to six pups per lactating dam, and rat offspring were
weighed every 2 days during the lactation period. Preferentially,
male pups were used, unless the number of male pups was not
reached; female newborns were kept to normalise the litter size
number to six.14

Themale rat offspring were randomly divided into anNP group
(rat offspring from dams fed a normal-protein diet) and an LP
group (rat offspring from dams fed a low-protein diet for the first
2 weeks of lactation). At 21 days of age, at the end of the light cycle,
the pups were weaned and fasted overnight, and only male rat
offspring were used in the experiments.

Throughout the experimental period, the rats were kept
under controlled conditions of temperature (22 ± 2°C), humidity
(55 ± 5%) and light (07:00–19:00 h), with water and food ad libitum.

Intraperitoneal glucose tolerance test

After overnight fasting (19:00–07:00 h), a glucose load (2 g/kg bw)
was intraperitoneally injected into conscious rat offspring (n= 12
rats from six different litters), and blood samples were collected
immediately before the glucose load (0 min, basal) and at 30, 60,
90 and 120 min. All blood samples were obtained from the tail vein,

and the glucose concentration was determined by a digital glucom-
eter (Accu-Chek® Performa, Roche).

Intraperitoneal insulin tolerance test

Another batch of rats (n= 12 rats from 6 different litters) was
fasted for 6 h and then subjected to an intraperitoneal insulin
tolerance test (ipITT, 1 IU/kg bw). Samples for blood glucose mea-
surements were collected immediately before the insulin injection
(0 min, basal) and at 5, 15, 30 and 45 min after insulin injection.
Thereafter, the rate of glucose tissue uptake or the rate constant
for plasma glucose disappearance (Kitt) was calculated by the
formula 0.693/(t1/2). The plasma glucose half-life was calculated
from the slope of the least-square analysis of the plasma glucose
concentrations during the linear phase of decline.14

Electrophysiological activity of the vagus nerve

After overnight fasting, a batch of weaned rat offspring (n= 20 rats
from 6 different litters) was anaesthetized (thiopental, 45mg/kg bw)
to perform a surgical longitudinal incision on the anterior cervical
region, as previously described.14

Under a dissection microscope, the nerve bundle of the left
vagus superior branch was severed from the carotid artery, close
to the trachea. The nerve trunk was pulled with a fine cotton line,
and a pair of recording silver electrodes (0.6 mm diameter) was
placed under the nerve. The nerve was covered with silicone oil
to prevent dehydration, and the electrode was connected to an elec-
tronic device (Bio-Amplificator, Insight®, Ribeirão Preto, Brazil)
that amplified the electrical signal up to 10,000 times. To exclude
low and high frequencies, recordings in the range 1–80 kHz were
filtered. The neural signal output was acquired by an Insight inter-
face (Insight®), viewed online and stored by personal computer
running software developed by Insight (Insight®). During all data
acquisition, animals were placed in a Faraday cage to avoid any
electromagnetic interference.

The nerve activity was analysed by the number of spikes over
the course of 5 s. All the spikes were characterised by depolariza-
tion that surpassed 0 mV. After the stabilisation of the signal over
the course of 2 min, 20 record frames of 15 s were randomly chosen
from each animal for spike counting. Average numbers of spikes
were used to calculate the rate of nerve firing for each rat.

Pancreatic islet isolation

Pancreatic islets (n= 9 rats from 3 different litters) were isolated by
a collagenase technique as described previously.15 Weaned rat off-
spring were decapitated, and the abdominal wall was opened for
the injection of 3 mL of Hank’s buffered saline solution [HBSS,
(mmol/L): NaCl, 136.9; KCl, 5.4; MgSO4.7H2O, 0.81; Na2HPO4,
0.34; KH2PO4, 0.44; CaCl2.2H2O, 1.26; NaHCO3, 4.16; glucose,
0.06; bovine serum albumin (BSA) 15; and (v/v; 95% O2þ 5%
CO2, mixed)/10 min, pH 7.4] containing (w/v; 0.1% collagenase
type XI plus 5% BSA and 0.6% N-(2-hydroxyethyl-piperazine)-
N 0-(2-ethanesulphonic acid) (HEPES)] (Sigma-Aldrich®, St. Louis,
MO, USA) into the rat’s common bile duct. The pancreas, swollen
with the collagenase solution, was quickly excised and incubated
at 37°C in a glass beaker for 10–12min. The suspension was
then discarded and the pancreas was washed with HBSS in three
continuous washings. The islets were collected with the aid of a
stereomicroscope.
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Pancreatic islet insulin secretion stimulation

To adapt the isolated pancreatic islets to a baseline glucose concen-
tration (5.6 mmol/L), the pancreatic islets (four islets per well) were
pre-incubated for 60 min in 1 mL of normal Krebs–Ringer solution
(composition in mmol/L: NaCl, 115; NaHCO3, 24; KCl, 1.6;
MgCl.6H2O, 1; CaCl2.2H2O, 1; BSA, 15) at pH 7.4 that contained
5.6 mmol/L glucose. This solution was gassed with 95% O2 mixed
with 5% CO2 to maintain pH 7.4.

Increasing glucose concentrations [(mmol/L): 5.6; 8.3; 11.1; 16.7;
20.0 and 24.0] were used to evaluate the glucose-induced insulin
secretion response in pancreatic islets. In addition, the M3 subtype
of the acetylcholine muscarinic receptor (M3mAChR) response in
pancreatic islets was assessed using 4-diphenylacetoxy-N-methylpi-
peridine methiodide (4-DAMP, 100 μmol/L), a selective M3mAChR
antagonist, in the presence of glucose 8.3 mmol/L and acetylcholine
10 μmol/L.

All of the drugs described above for the study of pancreatic islet
function were purchased from Sigma-Aldrich (Sigma-Aldrich®,
St. Louis, MO, USA).

The levels of insulinwere determinedusing a radioimmunoassay26

with a gamma counter (Wizard2 Automatic Gamma Counter, TM-
2470, PerkinElmer®, Shelton, CT,USA). The other reagents usedwere
human insulin as a standard, an anti-rat insulin antibody (Sigma-
Aldrich®, St. Louis, MO, USA) and 125I-labelled recombinant human
insulin (PerkinElmer®, Shelton, CT, USA).

The intra- and interassay coefficients of variation were 12.2%
and 9.8%, respectively, for insulin. The insulin level detection limit
was 1.033 pmol/L.

Measurement of the visceral fat pad stores

At the completion of all experimental procedures, the weaned rat
offspring (n= 25 rats from 6 different litters), after being euthan-
ized, underwent the removal of visceral (retroperitoneal, periepi-
didymal and mesenteric) and subcutaneous (inguinal) white
adipose tissue samples, which were weighed to assess the fat mass
as representative measures of fat pad stores.

Hormone plasma level detection

The plasma levels of corticosterone (catalogue number ADI-900-
097, Enzo® Life Sciences, Plymouth Meeting, PA, USA) and leptin
(catalogue number ADI-900-015A, Enzo® Life Sciences, Plymouth
Meeting, PA, USA) were quantified by commercial ELISA kits
following the manufacturer’s recommendations. The intra- and
interassay coefficients of variation were 7.7% and 9.7%, respec-
tively, for corticosterone and 5.9% and 7.2%, respectively, for
leptin. The hormone level detection limits were 74.46 pmol/L for
corticosterone and 4.20 pmol/L for leptin.

Ethical approval

All experimental protocols were approved by the Ethical Committee
for the Animal Use and Experiments of the State University of
Maringá (CEUA/UEM; process number 8981290814), which
adheres to the Brazilian Federal Law 11.794/2008.

Statistical analyses

The results are given as the mean ± the SEM and were subjected to
Student’s t-test, where P< 0.05 was considered statistically signifi-
cant. Tests were performed using GraphPad Prism version 7.0 for
Windows (GraphPad Software Inc., San Diego, CA, USA).

Results

Body weight composition

At birth, as expected, the body weight of LP rats was similar to that
of NP rats (P> 0.05, n= 25). Throughout lactation, the LP rat body
weight was reduced by 43% (P< 0.001, n= 25, Fig. 1). Weaned LP
rats displayed smaller body weight (41%), naso-anus length (17%),
and retroperitoneal (68%), periepididymal (47%), mesenteric
(25%) and subcutaneous inguinal fat pads (46%) than weaned
NP rats (P< 0.01, n= 25, Table 1).

Biochemical parameters in fasting conditions

In comparison with weaned NP rats, in fasting conditions, weaned
LP rats were hypoglycaemic, hypoinsulinaemic and hypoleptinae-
mic (P< 0.05, n= 8–12, Table 2) without changes in levels of cor-
ticosterone (P> 0.05, n= 8, Table 2). In addition, the levels of
insulin present in the milk sample from LP rat mothers were
increased twofold in relation to the levels of insulin in the milk
sample from NP rat mothers (P< 0.001, n= 6, Table 2).

Fig. 1. Changes in body weight during the suckling phase. Data are given as the
mean ± the SEM of 25 rats from 6 different litters. The inset in the upper right panel
in the figure represents the area under the curve (AUC) of the change in body weight.
***P< 0.001 based on Student’s t-test. NP, rat offspring from the normal-protein-diet
group; LP, rat offspring from the low-protein-diet group.

Table 1. Biometrical parameters from weaned rat offspring of mothers fed a
low-protein diet at the first 2 weeks of lactating period

Biometrical parameters NP LP

Body weight (g) 52.28 ± 0.703 30.78 ± 2.736**

Naso-anus length (cm) 11.43 ± 67.27 9.52 ± 0.061**

Retroperitoneal fat (g/100g bw) 0.266 ± 0.018 0.085 ± 0.007**

Periepididymal fat (g/100g bw) 0.225 ± 0.011 0.119 ± 0.010**

Mesenteric fat (g/100g bw) 0.410 ± 0.026 0.309 ± 0.020*

Subcutaneous inguinal fat (g/100g bw) 0.266 ± 0.018 0.143 ± 0.010**

NP, rat offspring from the normal-protein-diet group; LP, rat offspring from the low-protein-
diet group.
Data are given as mean ± the SEM obtained from 25 weaned rats of the 6 different litters. The
statistical analyses were obtained by Student’s t-test.
*P< 0.01.
**P< 0.001.
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Glucose–insulin homeostasis assessment

As shown in Fig. 2, glucose–insulin homeostasis was altered in
weaned LP rats. The increment of glycaemia displayed in the
LP rat group during the intraperitoneal glucose tolerance test
(ipGTT) was increased by 54% (P< 0.01, n= 12, Fig. 2a). As such,
the area under the curve of glycaemia during the ipITT was 10%
higher in LP rats than in NP rats (P< 0.05, n= 12, Fig. 2b).
Although not significantly different, the rate for plasma glucose
disappearance (Kitt) was 28% smaller in weaned LP rats than in
weaned NP rats (P> 0.05, n= 12, Fig. 2c).

Pancreatic islet function

In relation to the function of pancreatic islets fromweaned NP rats,
under the same conditions, pancreatic islets from LP rats were less

responsive to insulin secretion at all studied glucose concentrations
(P< 0.05, Fig. 3a). Additionally, the insulinotropic effect of acetyl-
choline was 21% smaller in pancreatic islets from LP rats than in
those from NP rats (P< 0.05, Fig. 3b).

In addition, the insulinostatic effect of 4-DAMP (a selective
M3mAChR antagonist) on pancreatic islets from NP rats was
46% that of acetylcholine (P< 0.001, Fig. 3b). On the other hand,
in pancreatic islets from LP rats, the insulinostatic effect of
4-DAMP was not different from that of acetylcholine in the same
pancreatic islets (P> 0.05).

Vagus nerve electrical activity

The electrical activity of the superior vagus nerve from weaned LP
rats was 30% less active than the tonus from vagus nerves of the NP
rats (P< 0.01, n= 20, Fig. 4).

Table 2. Biochemical parameters fromweaned rat offspring frommothers fed a low-protein diet at the first 2 weeks of lactating period

Biochemical parameters NP LP

Fasting plasma glycaemia (mmol/L) 6.88 ± 0.15 5.54 ± 0.20***

Fasting plasma insulinaemia (pmol/L) 198.01 ± 26.61 85.02 ± 9.63*

Fasting plasma leptinaemia (pmol/L) 39.01 ± 7.573 11.62 ± 4.366*

Fasting plasma corticosteronaemia (nmol/L) 1751.01 ± 218.20 1986.01 ± 83.24

Milk insulin (pmol/L) 9.86 ± 1.721 20.02 ± 2.879**

NP, rat offspring from the normal-protein-diet group; LP, rat offspring from the low-protein-diet group.
Data are given asmean ± the SEM of 8–12 samples fromweaned rats of the six different litters and six samples formilk. The statistical analyseswere obtained
by Student’s t-test.
*P< 0.05.
**P< 0.01.
***P< 0.001.

Fig. 2. Plasma glycaemic and insulinaemic homeo-
stasis. Data are given as the mean ± the SEM of 12
rats from 6 different litters. (a) Glycaemia increase
during the intraperitoneal glucose tolerance test
(ipGTT. (b) Glycaemia decrease during the intraperi-
toneal insulin tolerance test (ipITT). The insets in the
upper panels each show the area under the curve
(AUC) of the values that were calculated from the
ipGTT and ipITT. (c) Rate of plasma glucose disap-
pearance per minute during the ipITT (from 5–
30min). *P < 0.05, **P < 0.01, ***P< 0.001 based on
Student’s t-test. NP, rat offspring from the normal-
protein-diet group; LP, rat offspring from the low-pro-
tein-diet group.
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Discussion

The current study describes the endocrine function of pancreatic
islets in the secretion of insulin and the role of the vagus nerve
as a pivotal insulin secretion potentiating branch in male weaned
rat offspring in a well-established early malprogramming rat
model.11,12,27 This malprogrammed rat model has been well char-
acterised by the display, in adulthood, of a weak capacity of pan-
creatic β-cells to secrete insulin and a more prominent insulin
sensitivity in peripheral tissues as long-term consequences.

Interestingly, our data show that male weaned LP rats were
glucose-intolerant, which corroborates the reduced peripheral
insulin sensitivity found herein. Nevertheless, in the current study
regarding glucose–insulin homeostasis, we did not observe a sig-
nificant difference in the values of Kitt, which does not deny the
absence of the characteristic higher peripheral insulin sensitivity,
long reported to be found in this rat model into adulthood.11,12,27

This suggests that insulin resistance, in this LP rat model, turns
into peripheral high insulin sensitivity as a secondary malfunction,
possibly due to metabolic changes such as poor insulin secretion
already established in early stages of life.

Similarly, the levels of adiponectin in blood or milk may be
another parameter impaired in these male weaned LP rats and thus
influence insulin sensitivity, since this rat model displays a lean
phenotype (smaller white fat stores) already in the weaned stage.
Even though we did not quantify adiponectin in plasma or in milk
in the current study, we did find normal adiponectinaemia in this
same rat model (LP rats into adulthood, data not published yet,
P= 0.311, n= 12). Human milk adiponectin levels have been
shown to change in a sex-dependentmanner, where milk from ges-
tational diabetic women presented higher adiponectin in mothers
of female babies than in mothers of male babies.28

In addition, we identified a reduced tonus of the superior vagus
nerve and a decreased insulinotropic response by muscarinic
potentiation and the insulinotropic role of M3mAChR in dysfunc-
tional pancreatic islets frommale weaned LP rats, as depicted in the
schematic in Fig. 5. This study compounds a body of data report-
ing, to our knowledge, for the first time, these metabolic changes in
male weaned rat offspring from malnourished mothers in the first
two-thirds of the lactating period. However, with regard to the
effects of a low-protein diet in pregnancy and/or lactation on
modifying fasting insulinaemia and glucose–insulin homeostasis
in adult rat offspring, it is known to happen in a sex-specific man-
ner.9,29 Additionally, sex dimorphism in regard to human milk
composition has been shown to be associated with maternal and
infant characteristics as well pathophysiological factors.28

Although measurements were performed only 1 week after the
maternal low-protein diet exposure, in the present study, the male
weaned LP rats did not show changes in corticosterone plasma
levels. High levels and/or local action of glucocorticoids in early life
(cortisol30,31 in humans and corticosterone32 in rodents) have been
shown to programme, among other diseases, metabolic malfunction
later in life4,33. Therefore, we did not quantify the pancreatic islet
expression or function of 11 β-hydroxysteroid dehydrogenase
(11 β-HSD) types 1 and 2 to assess the direct effect of glucocorticoids
on pancreatic islet function. This is one of the limitations of our
study, since tissue-specific changes in glucocorticoid metabolism
have been associated with metabolic dysregulation.34

Seeking to answer the hypothesis that a maternal low-protein
diet in the suckling period malprogrammes weaned LP rats to
have pancreatic islets with a weak ability to secrete insulin in
early life, we studied isolated pancreatic islets by assessing their

Fig. 3. Insulin secretion under the insulinotropic effects of glucose and a selective
antagonist for the M3 subtype of the muscarinic acetylcholine receptor (M3mAChR).
(a) Data represent the mean ± the SEM of pancreatic islet insulin release, which
was stimulated by increasing glucose concentrations (5.6, 8.3, 11.1, 16.7, 20.0
and 24.0 mmol/L) or (b) by insulin secretagogue agents (glucose, 8.3 mmol/L, only;
acetylcholine, 10 μmol/L, or 4-DAMP, 100 μmol/L). Pancreatic islets were obtained
from nine rats from three different litters of each experimental group. The statistical
analyses were obtained by Student’s t-test (a) and one-way ANOVA followed by
the Bonferroni test (b). *P < 0.05, **P< 0.01 and ***P < 0.001 for direct comparison
between NP and LP data; ΦΦΦP< 0.001 for comparison between acetylcholine
(10 μmol/L) and glucose (8.3 mmol/L); and ΨΨΨP < 0.001 for comparison between
4-DAMP (100 μmol/L) and acetylcholine (10 μmol/L). NP, rat offspring from
the normal-protein-diet group; LP, rat offspring from the low-protein-diet group;
Glu, glucose; ACh, acetylcholine; 4-DAMP, 4-diphenylacetoxy-N-methylpiperidine
methiodide.

Fig. 4. (a) Electrical activity of the cervical superior vagus nerve. Data represent the
mean ± the SEM of the vagus nerve firing rate obtained from 20 rats from 6 different
litters for each experimental group. (b) Depicts the representative records of each
nerve discharge, which illustrate the data for each experimental group. **P < 0.01
by Student’s t-test. NP, rat offspring from the normal-protein-diet group; LP, rat off-
spring from the low-protein-diet group.
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responsiveness under increasing glucose concentrations and
parasympathetic signalling through acetylcholine and selective
M3mAChR antagonists as insulin secretagogues.

Here, weaned LP rats poorly secreted insulin, already at an early
age, which can take pancreatic islet weakness imprinting over as early
as in the suckling period. These observations are remarkable and sug-
gest a role of maternal nutritional insults in the suckling period and
their negative effects on cholinergic pathways in the endocrine pan-
creas derangement seen in LP rats. Herein, we found that islets from
weaned LP rats were weakly capable of secreting insulin under glu-
cose and cholinergic-insulinotropic effects, and theM3mAChR func-
tion in weaned LP rats was found to be disrupted, as has been shown
in adulthood.12–14 Beyond this, our data suggest that a higher respon-
siveness and/or expression of M2mAChR in the weaning period can
already be detected, as the presence of 4-DAMP in the pancreatic
islets fromweaned LP rats did not reduce insulin secretion anymore
than the presence of the physiological signal acetylcholine. Another
limitation in the present work was that neither the tonus of the sym-
pathetic nervous system nor the sympathetic signalling pathway in
pancreatic islets was studied because their direct influence on pancre-
atic islet function in weaned LP rats cannot be discarded.35,36 In line,
we found that weaned LP rats had less vagus nerve tonus, which can
support pancreatic islet signal weakness contributing to less insulin
secretion.

Thus, weaned LP rats were not only hypoinsulinaemic but also
hypoleptinaemic. These metabolic hormones play important roles
by potentiating neuroendocrine signalling and tissue maturation
and by establishing a healthy function of energy metabolism in
critical stages of life development.37,38 As elegantly demonstrated,
intracerebroventricular leptin exposure in the embryonic brain
permanently programmed reduced cholinergic innervation of
pancreatic β-cells, as well as long-term impairment in glucose
homeostasis.39 Interestingly, the authors showed an embryonic
inhibitory effect of leptin on the growth of cholinergic neurites
in the hindbrain that influences parasympathetic signalling upon
the endocrine function of the pancreas39; in our study, we found
low parasympathetic tonus associated with hypoleptinaemia.

In our study, the intrauterine environment of the rat offspring
was not insulted; any alterations imprinted in the weaned LP rats
were due to changes during the suckling phase, since these dams
were suckling mothers fed a low-protein diet during the first
2 weeks of the nursing period. This highlights the importance of
adequate milk nutrient and metabolic hormone composition.38

Additionally, leptin administered in high doses during the first
2 postnatal weeks was associated with obesity in adulthood,38 while
physiological doses of leptin administered throughout the suckling
period were associated with a lean phenotype and improved insulin
sensitivity.40

Beyond changes in plasma metabolic hormones in weaned LP
rats, insulin levels inmilk frommothers of LP rats were found to be
increased. These findings suggest that this alteration can address
changes in the neuroendocrine circuitry that act by regulating
energy metabolism through cell maturation not only in the hypo-
thalamus but also in the pancreas. However, we do not have a deep
explanation for the high milk insulin content found here; the
function of milk insulin in the newborn, although not totally
established, seems to have a pivotal role in infant functional
development.37 Although the consumption and provision of inap-
propriate foods, such as high-sugar and high-fat diets, exceeding
the ideal nutritional guidelines contribute to the accelerated
increase in obesity (maternal obesity and infant obesity) seen
worldwide, inadequate food intake below the ideal nutritional
guidelines is also a problem that affects people around the world,
affecting hormonemilk composition andmaternal physiology and,
thus, pups’ health.

In fact, our data reinforce the importance of breastfeeding
together with the optimal milk nutrient and hormone composition
for infant health, whichmust be associated with adequate maternal
nutrition, since adequate healthcare for pregnant and lactating
mothers does not happen fully and equally for all people.41

Conclusion

Low tonus of the vagus nerve, early pancreatic islet dysfunction
in response to insulinotropic agents and impaired muscarinic
response to secrete adequate insulin amounts are imprinted in
weaned rat offspring from mothers fed a low-protein diet in the
suckling period. In addition, the low-protein maternal diet in
the suckling period increases milk insulin levels and reduces
plasma levels of critical metabolic hormones, insulin and leptin,
for neuroendocrine circuitry development in weaned rat offspring.
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