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We propose a prenet (product-based elastic net), a novel penalization method for factor analysis
models. The penalty is based on the product of a pair of elements in each row of the loading matrix. The
prenet not only shrinks some of the factor loadings toward exactly zero but also enhances the simplicity of
the loading matrix, which plays an important role in the interpretation of the common factors. In particular,
with a large amount of prenet penalization, the estimated loadingmatrix possesses a perfect simple structure,
which is known as a desirable structure in terms of the simplicity of the loading matrix. Furthermore, the
perfect simple structure estimation via the proposed penalization turns out to be a generalization of the k-
means clustering of variables. On the other hand, a mild amount of the penalization approximates a loading
matrix estimated by the quartimin rotation, one of the most commonly used oblique rotation techniques.
Simulation studies compare the performance of our proposed penalization with that of existing methods
under a variety of settings. The usefulness of the perfect simple structure estimation via our proposed
procedure is presented through various real data applications.

Key words: multivariate analysis, quartimin rotation, penalized maximum likelihood estimation, perfect
simple structure, sparse estimation.

Factor analysis investigates the correlation structure of high-dimensional observed variables
by the construction of a small number of latent variables called common factors. Factor analysis
can be considered as a soft clustering of variables, in which each factor corresponds to a cluster
and observed variables are categorized into overlapping clusters. For interpretation purposes, it is
desirable for the observed variables to be well-clustered (Yamamoto and Jennrich, 2013) or the
loading matrix to be simple (Thurstone, 1947). In particular, the perfect simple structure (e.g.,
Bernaards and Jennrich, 2003; Jennrich, 2004), wherein each row of the loading matrix has at
most one nonzero element, provides a non-overlapping clustering of variables in the sense that
variables that correspond to nonzero elements of the j th column of the loading matrix belong to
the j th cluster.

Conventionally, the well-clustered or simple structure of the loading matrix is found by rota-
tion techniques. A number of rotation techniques have been proposed in the literature; for example,
quartimin rotation (Carroll, 1953), varimax rotation (Kaiser, 1958), promax rotation (Hendrickson
and White, 1964), simplimax rotation (Kiers, 1994), geomin rotation (Yates, 1987), and compo-
nent loss criterion (Jennrich, 2004, 2006). The literature review of the rotation techniques is
described in Browne 2001. The main purpose of the factor rotation is to get a good solution that is
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as simple as possible. See, e.g., Thurstone (1935), Carroll (1953), Neuhaus and Wrigley (1954),
Kaiser (1974), Bernaards and Jennrich (2003).

The problemwith the rotation technique is that it cannot produce a sufficiently sparse solution
in some cases (Hirose and Yamamoto, 2015), because the loading matrix must be found among
a set of unpenalized maximum likelihood estimates. To obtain sparser solutions than the factor
rotation, we employ a penalization method. It is shown that the penalization is a generalization
of the rotation techniques and can produce sparser solutions than the rotation methods (Hirose
and Yamamoto, 2015). Typically, many researchers use the L1-type penalization, such as the
lasso (Tibshirani, 1996), the adaptive lasso (Zou, 2006), and the minimax concave penalty (MCP)
(Zhang, 2010); for example, Choi et al. (2011), Ning andGeorgiou (2011), Srivastava et al. (2017),
Hirose and Yamamoto (2015), Trendafilov et al. (2017), Hui et al. (2018). The L1 penalization
shrinks some of the parameters toward exactly zero; in other words, parameters that need not to be
modeled are automatically disregarded. Furthermore, the degrees of sparsity are freely adjusted by
changing the value of a regularization parameter. The L1 penalization provides a good estimation
accuracy, such as L1 consistency and model selection consistency in high dimension (e.g., Zhao
and Yu 2007; Wainwright, 2009; Bhlmann and van de Geer, 2011).

As described above, it is important to obtain a “good” loadingmatrix in the sense of simplicity
and thus interpretability in the exploratory factor analysis. Although the L1 penalization achieves
the sparse estimation, the estimated loading matrix is not guaranteed to possess an interpretable
structure. For example, a great amount of penalization leads to a zero matrix, which does not make
sense from an interpretation viewpoint. Thus, the L1 penalization cannot produce an interpretable
loading matrix with a sufficient large regularization parameter. Even if a small value of regular-
ization parameter is selected, the L1 penalization cannot often approximate a true loading matrix
when it is not sufficiently sparse; with the lasso, some of the factor loadings whose true values
are close —but not very close—to zero are estimated as zero values, and this misspecification
can often cause a significant negative effect on the estimation of other factor loadings (Hirose and
Yamamoto, 2014). Therefore, it is important to estimate a loading matrix that is not only sparse
but also interpretable. To achieve this, we need a different type of penalty.

In this study, we propose a prenet (product-based elastic net) penalty, which is based on
the product of a pair of parameters in each row of the loading matrix. A remarkable feature
of the prenet is that a large amount of penalization leads to the perfect simple structure. The
existing L1-type penalization methods do not have that significant property. Furthermore, the
perfect simple structure estimation via the prenet penalty is shown to be a generalization of the
k-means clustering of variables. On the other hand, with a mild amount of prenet penalization,
the estimated loading matrix is approximated by that obtained using the quartimin rotation, a
widely used oblique rotation method. The quartimin criterion can often estimate a non-sparse
loading matrix appropriately, so that the problem of the lasso-type penalization mentioned above
is addressed. We employ the generalized expectation and maximization (EM) algorithm and the
coordinate descent algorithm (e.g., Friedman et al., 2010) to obtain the estimator. The proposed
algorithm monotonically decreases the objective function at each iteration.

In our proposed procedure, the regularization parameter controls the degrees of simplicity;
the larger the regularization parameter is, the simpler the loading matrix is. The advantage of our
proposed procedure is that we can change the degrees of simplicity according to the purpose of the
analysis. This study focus on two different purposes of the analysis: (i) to find a loadingmatrix that
fits the data and also is simple asmuch as possible and (ii) to conduct cluster analysis by estimating
a perfect simple structure. The regularization parameter selection procedure differs depending on
these two purposes. To achieve the purpose (i), we select the regularization parameter by the
Akaike information criterion (AIC; Akaike, 1973; Zou et al., 2007) or the Bayesian information
criterion (BIC; Schwarz, 1978; Zou et al., 2007). The purpose (ii) is attained by setting the
regularization parameter to be infinity.
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We conduct theMonteCarlo simulations to compare the performance of our proposedmethod
with that of L1-type penalization and conventional rotation techniques. The Monte Carlo simu-
lations investigate the performance in terms of both (i) and (ii); investigations of (i) and (ii) are
detailed in Sects. 5.2 and 5.3, respectively. Our proposed method is applied to data from big five
personality traits to study the performance for various sample sizes and impact of the regulariza-
tion parameter on the accuracy. The analysis of big five personality traits aims at purpose (i). We
also present the analyses of fMRI and electricity demand data, intended to purpose both (i) and
(ii), in Section S2 of the supplemental material.

The rest of this article is organized as follows. Section 1 describes the estimation of the factor
analysis model via penalization. In Sect. 2, we introduce the prenet penalty. Section 3 describes
several properties of the prenet penalty, including its relationship with the quartimin criterion.
Section 4 presents an estimation algorithm to obtain the prenet solutions. In Sect. 5, we conduct
a Monte Carlo simulation to investigate the performance of the prenet penalization. Section 6
illustrates the usefulness of our proposed procedure through real data analysis. Extension and
future works are discussed in Sect. 7. Some technical proofs and detail of our algorithm are shown
in “Appendix.” Supplemental materials include further numerical and theoretical investigation,
including numerical analyses of resting-state fMRI and electricity demand data.

1. Estimation of Factor Analysis Model via Penalization

Let X = (X1, . . . , X p)
T be a p-dimensional observed random vector with mean vector 0

and variance–covariance matrix �. The factor analysis model is

X = �F + ε, (1)

where � = (λi j ) is a p ×m loading matrix, F = (F1, . . . , Fm)T is a random vector of common
factors, and ε = (ε1, . . . , εp)

T is a random vector of unique factors. It is assumed that E(F) = 0,
E(ε) = 0, E(FFT ) = �, E(εεT ) = �, and E(FεT ) = O, where � is anm×m factor correla-
tion matrix, and � is a p× p diagonal matrix (i.e., strict factor model). The diagonal elements of
� are referred to as unique variances. Under these assumptions, the variance–covariance matrix
of observed random vector X is � = ���T + �.

In many cases, the orthogonal factor model (i.e.,� = Im) is used but is often oversimplified.
Here, Im is an identity matrix of order m. This paper covers the oblique factor model, which
allows a more realistic estimation of latent factors than the orthogonal factor model in many cases
(e.g., Fabrigar et al., 1999; Sass and Schmitt, 2010; Schmitt and Sass, 2011).

Let x1, . . . , xn be n observations and S = (si j ) be the corresponding sample covariance
matrix. Let θ = (vec(�)T , diag(�)T , vech(�)T )T be a parameter vector, where vech(·) is a
vector that consists of a lower triangular matrix without diagonal elements. We estimate the
model parameter by minimizing the penalized loss function �ρ(θ) expressed as

�ρ(θ) = �(θ) + ρP(�), (2)

where �(θ) is a loss function, P(�) is a penalty function, and ρ > 0 is a regularization parameter.
As a loss function, we adopt the maximum likelihood discrepancy function

�DF(θ) = 1

2

{
tr(�−1S) − log |�−1S| − p

}
, (3)
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where DF is an abbreviation for discrepancy function. Assume that the observations x1, . . . , xn
are drawn from the p-dimensional normal population Np(0,�) with � = ���T + �. The
minimizer of �DF(θ) is the maximum likelihood estimate. It is shown that �DF(θ) ≥ 0 for any θ ,
and �DF(θ) = 0 if and only if ���T + � = S when � and S are positive definite matrices. It
is worth noting that our proposed penalty, described in Sect. 2, can be directly applied to many
other loss functions, including a quadratic loss used for generalized least squares (Jöreskog and
Goldberger, 1971).

When � = Im , the model has a rotational indeterminacy; both � and �T generate the
same covariance matrix �, where T is an arbitrary orthogonal matrix. Thus, when ρ = 0, the
solution that minimizes (2) is not uniquely determined. However, when ρ > 0, the solution may
be uniquely determined except for the sign and permutation of columns of the loading matrix
when an appropriate penalty P(�) is chosen.

2. Prenet Penalty

2.1. Definition

We propose a prenet penalty

P(�) =
p∑

i=1

m−1∑
j=1

∑
k> j

{
γ |λi jλik | + 1

2
(1 − γ )(λi jλik)

2
}

, (4)

where γ ∈ (0, 1] is a tuning parameter. The most significant feature of the prenet penalty is that
it is based on the product of a pair of parameters.

When γ → 0, the prenet penalty is equivalent to the quartimin criterion (Carroll, 1953),
a widely used oblique rotation criterion in factor rotation. As is the case with the quartimin
rotation, the prenet penalty in (4) eliminates the rotational indeterminacy except for the sign and
permutation of columns of the loading matrix and contributes significantly to the estimation of
the simplicity of the loading matrix. The prenet penalty includes products of absolute values of
factor loadings, producing factor loadings that are exactly zero.

2.2. Comparison with the Elastic Net Penalty

The prenet penalty is similar to the elastic net penalty (Zou and Hastie, 2005)

P(�) =
p∑

i=1

m∑
j=1

{
γ |λi j | + 1

2
(1 − γ )λ2i j

}
, (5)

which is a hybrid of the lasso and the ridge penalties. Although the elastic net penalty is similar
to the prenet penalty, there is a fundamental difference between these two penalties; the elastic
net is constructed by the sum of the elements of parameter vector, whereas the prenet is based on
the product of a pair of parameters.

Figure 1 shows the penalty functions of the prenet (P(x, y) = γ |xy| + (1− γ )(xy)2/2) and
the elastic net (P(x, y) = γ (|x | + |y|) + (1 − γ )(x2 + y2)/2) when γ = 0.1, 0.5, 0.9. Clearly,
the prenet penalty is a nonconvex function. A significant difference between the prenet and the
elastic net is that although the prenet penalty becomes zero when either x or y attains zero, the
elastic net penalty becomes zero only when both x = 0 and y = 0. Therefore, for a two-factor
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Prenet

Elastic Net

Figure 1.
Penalty functions of the prenet and the elastic net with various γ .

model, the estimate of either λi1 or λi2 can be zero with the prenet penalization, leading to a
perfect simple structure. On the other hand, the elastic net tends to produce estimates in which
both |λi1| and |λi2| are small.

The penalty functions in Fig. 1 also show that the prenet penalty becomes smooth as γ

decreases. Thus, the value of γ controls the degrees of sparsity; the larger the value of γ , the sparser
the estimate of the loading matrix. With an appropriate value of γ , the prenet penalty enhances
both simplicity and sparsity of the loading matrix. Further investigation into the estimator against
the value of γ is presented in Sect. 5.

3. Properties of the Prenet Penalty

3.1. Perfect Simple Structure

The model (1) does not impose an orthogonal constraint on the loading matrix �. For uncon-
strained �, most existing penalties, such as the lasso, shrink all coefficients toward zero when the
tuning parameter ρ is sufficiently large; we usually obtain �̂ = O when ρ → ∞. However, the
following proposition shows that the prenet penalty does not necessarily shrink all of the elements
toward zero even when ρ is sufficiently large.

Proposition 1. Assume that we use the prenet penalty with γ ∈ (0, 1]. As ρ → ∞, the estimated
loading matrix possesses the perfect simple structure, that is, each row has at most one nonzero
element.

Proof. As ρ → ∞, P(�̂) must satisfy P(�̂) → 0. Otherwise, the second term of (2) diverges.
When P(�̂) = 0, λ̂i j λ̂ik = 0 for any j �= k. Therefore, the i th row of � has at most one nonzero
element. ��
The perfect simple structure is known as a desirable property in the literature in factor analysis
because it is easy to interpret the estimated loading matrix (e.g., Bernaards and Jennrich, 2003).
When ρ is small, the estimated loading matrix can be away from the perfect simple structure but
the goodness of fit to the model is improved.

Remark 1. For ρ → ∞, the consistency of the loading matrix is shown when the true loading
matrix possesses the perfect simple structure. For simplicity, we consider the orthogonal case.
Assume that� = ��T +�, where the true� possesses the perfect simple structure. As n → ∞,
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the sample covariance matrix converges to the true covariance matrix almost surely; thus, the loss

function (3) is minimized when � = �̂�̂
T + �̂. When ρ → ∞, �̂ must be the perfect simple

structure. Therefore, we should consider the following problem:

Find (�̂, �̂) that satisfies

{
� = �̂�̂

T + �̂,

�̂ is perfect simple structure.

The solution to the above problem is �̂ = � except for the sign and permutation of columns of
the loading matrix if an identifiability condition for an orthogonal model (e.g., Theorem 5.1 in
Anderson and Rubin, 1956) is satisfied.

3.2. Relationship with k-Means Clustering of Variables

The perfect simple structure corresponds to variables clustering, that is, variables that corre-
spond to nonzero elements of the j th column of the loading matrix belong to the j th cluster. In
this subsection, we investigate the relationship between the prenet with ρ → ∞ and the k-means
clustering of variables, one of the most popular cluster analyses.

Let X0 be an n × p data matrix. X0 can be expressed as X0 = (x∗
1, . . . , x

∗
p), where x∗

i is
the i th column vector of X0. We consider the problem of the variables clustering of x∗

1, . . . , x
∗
p

by the k-means. Let C j ( j = 1, . . . ,m) be a subset of indices of variables that belong to the j th
cluster. The objective function of the k-means is

m∑
j=1

∑
i∈C j

‖x∗
i − μ j‖2 = (n − 1)

⎛
⎝

p∑
i=1

sii −
m∑
j=1

1

p j

∑
i∈C j

∑
i ′∈C j

sii ′

⎞
⎠ , (6)

where p j = #{C j }, μ j = 1
p j

∑
i∈C j

x∗
i , and recall that sii ′ = x∗T

i x∗
i ′/(n − 1). Let � = (λi j ) be

a p × m indicator variables matrix

λi j =
{
1/

√
p j i ∈ C j ,

0 i /∈ C j .
(7)

Using the fact that �T� = Im , the k-means clustering of variables using (6) is equivalent to
(Ding et al., 2005)

min
�

‖S − ��T ‖2F , subject to (7), (8)

where ‖ · ‖F denotes the Frobenius norm. We consider slightly modifying the condition on � in
(7) to

λi jλik = 0 ( j �= k) and �T� = Im . (9)

The modified k-means problem is then given as

min
�

‖S − ��T ‖2F subject to (9). (10)
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The condition (9) is milder than (7); if � satisfies (7), we obtain (9). The reverse does not always
hold; with (9), the nonzero elements for each column do not have to be equal. Therefore, the
modified k-means in (10) may capture a more complex structure than the original k-means.

Proposition 2. Assume that � = α I p, � = Im, and α is given. Suppose that � satisfies
�T� = Im. The prenet solution with ρ → ∞ is then obtained by (10).

Proof. The proof appears in Appendix A.1. ��
The proposition 2 shows that the prenet solution with ρ → ∞ is a generalization of the problem
(10). As mentioned above, the problem (10) is a generalization of the k-means problem in (8).
Therefore, the perfect simple structure estimation via the prenet is a generalization of the k-
means clustering of variables. We remark that the condition � = α I p in Proposition 2 implies
the probabilistic principal component analysis (probabilistic PCA; Tipping and Bishop, 1999);
the penalized probabilistic PCA via the prenet is also a generalization of the k-means clustering
of variables.

3.3. Relationship with Quartimin Rotation

As described in Sect. 2, the prenet penalty is a generalization of the quartimin criterion
(Carroll, 1953); setting γ → 0 to the prenet penalty in (4) leads to the quartimin criterion

Pqmin(�) =
p∑

i=1

m−1∑
j=1

∑
k> j

(λi jλik)
2.

The quartimin criterion is typically used in the factor rotation. The solution of quartimin
rotation method, say θ̂q , is obtained by two-step procedure. First, we calculate an unpenalized
estimate, denoted by θ̂ . The estimate θ̂ , that satisfies �(θ̂) = min

θ
�(θ), is not unique due to the

rotational indeterminacy. The second step is the minimization of the quartimin criterion with a
restricted parameter space {θ |�(θ) = minθ �(θ)}. Hirose and Yamamoto (2015) showed that the
solution of the quartimin rotation, θ̂q , can be obtained by

min
θ

Pqmin(�), subject to �(θ) = �(θ̂) (11)

under the condition that the unpenalized estimate of loading matrix �̂ is unique if the inde-
terminacy of the rotation in �̂ is excluded. It is not easy to check this condition, but several
necessary conditions of the identifiability for the orthogonal model are provided (e.g., Theorem
5.1 in Anderson and Rubin, 1956.)

Now, we show a basic asymptotic result of the prenet solution, from which we can see
that the prenet solution is a generalization of the quartimin rotation. Let (�, d) be a compact
parameter space with distance d and (	,F ,P) be a probability space. Suppose that for any
(vec(�)T , diag(�)T , vech(�)T )T ∈ � and any T ∈ O(m), we have (vec(�T )T , diag(�)T ,

vech(�)T )T ∈ �, where O(m) is a set of m × m orthonormal matrices. Let X1, . . . , Xn

denote independent Rp-valued random variables with the common population distribution P.
Now, it is required that we can rewrite the empirical loss function and the true loss function as
�(θ) = ∑n

i=1 q(X i ; θ)/n and �∗(θ) = ∫ q(x; θ)P(dx), respectively. Let θ̂ρ denote an arbitrary
measurable prenet estimator which satisfies �(θ̂ρ) + ρP(�̂ρ) = minθ∈� �(θ) + ρP(�).
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Condition 3.1. q(x; θ) fulfills the following conditions:

• For each x ∈ R
p, function q(x; θ) on � is continuous.

• There exists a P-integrable function g(x) such that for all x ∈ R
p and for all θ ∈ �

|q(x; θ)| ≤ g(x).

Since �(θ) is the discrepancy function in Eq. (3), q(x; θ) becomes a logarithm of density function
of normal distribution; in this case, Condition 3.1 is satisfied. The following proposition shows that
the prenet estimator converges almost surely to a true parameter which minimizes the quartimin
criterion when ρ → 0 as n → ∞.

Proposition 3. Assume that Condition 3.1 is satisfied. We denote by �∗
q a set of true solutions of

the following quartimin problem.

min
θ∈�

Pqmin(�) subject to �∗(θ) = min
θ∈�

�∗(θ).

Let ρn (n = 1, 2, . . . ) be a sequence that satisfies ρn > 0 and limn→∞ ρn = 0. Let the prenet
solution with γ → 0 and ρ = ρn be θ̂ρn . Then we obtain

lim
n→∞ d(θ̂ρn ,�

∗
q) = 0 a.s.,

where d(a, B) = infb∈B d(a, b).

Proof. The proof is given in Appendix A.2. ��

Remark 3.1. Proposition 3 uses a set of true solutions �∗
q instead of one true solution θ∗

q . This
is because even if the quartimin solution does not have a rotational indeterminacy, it still has an
indeterminacy with respect to sign and permutation of columns of the loading matrix.

Remark 3.2. The Geomin criterion (Yates, 1987) often produces a loading matrix similar to that
obtained by the Quartimin criterion (Asparouhov and Muthén 2009). For the Geomin criterion,
we add a small number to the loadings to address the identifiability problem (Hattori et al., 2017).
Meanwhile, the prenet does not suffer from such a problem. The detailed discussion is described
in Section S3 in the supplemental material.

4. Algorithm

It is well known that the solutions estimated by the lasso-type penalization methods are not
usually expressed in a closed form because the penalty term includes an indifferentiable function.
As the objective function of the prenet is nonconvex, it is not easy to construct an efficient
algorithm to obtain a global minimum. Here, we use the generalized EM algorithm, in which
the latent factors are considered to be missing values. The complete-data log-likelihood function
is increased with the use of the coordinate descent algorithm (Friedman et al., 2010), which is
commonly used in the lasso-type penalization. Although our proposed algorithm is not guaranteed
to attain the global minimum, our algorithm decreases the objective function at each step. The
update equation of the algorithm and its complexity are presented in Appendix B.
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4.1. Efficient Algorithm for Sufficiently Large ρ

The prenet tends to be multimodal for large ρ as is the case with the k-means algorithm.
Therefore, we prepare many initial values, estimate the solutions for each initial value, and select
a solution that minimizes the penalized loss function. In this case, it seems that we require heavy
computational loads. However, we can construct an efficient algorithm for a sufficiently large ρ.

For sufficiently large ρ, the i th column of loading matrix� has at most one nonzero element,
denoted by λi j . With the EM algorithm, we can easily find the location of the nonzero parameter
when the current value of the parameter is given. Assume that the (i, j)th element of the loading
matrix is nonzero and the (i, k)th elements (k �= j) are zero. Because the penalty function attains
zero for sufficiently large ρ, it is sufficient to minimize the following function.

f (λi j ) = λT
i Aλi − 2λT

i bi = a j jλ
2
i j − 2λi j bi j . (12)

The minimizer is easily obtained by

λ̂i j = bi j/a j j . (13)

Substituting (13) into (12) gives us f (λ̂i j ) = − b2i j
a j j

. Therefore, the index j that minimizes the
function f (λi j ) is

j = argmaxk
b2ik
akk

,

and λi is updated as λ̂i j = bi j/a j j and λ̂ik = 0 for any k �= j .

4.2. Selection of the Maximum Value of ρ

The value ofρmax, which is theminimumvalue ofρ that produces the perfect simple structure,
is easily obtained using �̂ given by (13). Assume that λ̂i j �= 0 and λ̂ik = 0 (k �= j). Using the
update equation of λik in (A.10) and the soft thresholding function in (A.12) of Appendix A, we
show that the regularization parameter ρ must satisfy the following inequality to ensure that λik
is estimated to be zero.

∣∣∣∣∣
bik − akj λ̂i j

akk + ρψi (1 − γ )λ̂2i j

∣∣∣∣∣ ≤
ψi

akk + ρψi (1 − γ )λ̂2i j

ργ |λ̂i j |.

Thus, the value of ρmax is

ρmax = max
i

max
k∈Ci

|bik − akj λ̂i j |
γψi |λ̂i j |

,

where Ci = {k|k �= j, λ̂i j �= 0}.
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4.3. Estimation of the Entire Path of Solutions

The entire path of solutions can be produced with the grid of increasing values {ρ1, . . . , ρK }.
Here, ρK is (5.2), and ρ1 = ρK�

√
γ , where � is a small value such as 0.001. The term

√
γ

allows us to estimate a variety of models even if γ is small.
The entire solution path can be made using a decreasing sequence {ρK . . . , ρ1}, starting with

ρK . The proposed algorithm at ρK does not always converge to the global minimum, so that we
prepare many initial values, estimate solutions for each initial value with the use of the efficient
algorithm described in Sect. 4.1, and select a solution that minimizes the penalized log-likelihood
function. We can use the warm start defined as follows: the solution at ρk−1 is computed using the
solution atρk . Thewarm start leads to improved and smoother objective value surfaces (Mazumder
et al., 2011).

One may use the warm start with increasing ρ; that is, the solution with ρ = 0 is obtained
by the rotation technique with MLE, and then we gradually increase ρ, using the solution from
the previous step. However, the decreasing sequence of ρ has a significant advantage over the
increasing sequence; the decreasing sequence allows the application to the n < p case. With an
increasing order, the solution with ρ = 0 (MLE) is not available, and then the entire solution
cannot be produced. Therefore, we adopt the warm start with decreasing sequence of ρ instead
of an increasing sequence.

Another method to estimate the entire solution is to use the cold start with multiple random
starts. Although the cold start does not always produce a smooth estimate as a function of ρ, it
can sometimes find a better solution than the warm start when the loss function has multiple local
minima. However, the cold start often requires heavier computational loads than the warm start.

When ρ is extremely small, the loss function becomes nearly flat due to rotational indetermi-
nacy. However, in our experience, our proposed algorithm generally produces a smooth and stable
estimate when the warm start is adopted. Even when the cold start is used, the estimate can often
be stable for large sample sizes when ρ is not extremely but sufficiently small, such as ρ = 10−4.
However, when n < p, the maximum likelihood estimate cannot be obtained; therefore, the cold
start often produces an unstable estimate with small ρ.

4.4. Selection of the Regularization Parameter ρ

The estimate of the loading matrix depends on the regularization parameter ρ. As described
in the Introduction, this study focus on two different purposes of the analysis: (i) exploratory
factor analysis and (ii) clustering of variables. When the purpose of the analysis is (ii), we simply
set ρ → ∞ to achieve the perfect simple structure estimation. When the purpose of the analysis
is (i), ρ is selected by the AIC or the BIC (Zou et al., 2007);

AIC = −2n�(θ̂) + 2p0,

BIC = −2n�(θ̂) + p0 log n,

where p0 is the number of nonzero parameters.
Our algorithm sometimes produces a loadingmatrix some of whose columns are zero vectors.

In this case, the number of factors may be smaller than expected. The selection of the number of
factors via the regularization is achieved by taking advantage of the zero columnvectors estimation
(Caner and Han, 2014; Hirose and Yamamoto, 2015).
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5. Monte Carlo Simulations

The performance of our proposed method is investigated through Monte Carlo simula-
tions. The prenet penalization has two different purposes of analysis: clustering of variables
and exploratory factor analysis. In this section, we investigate the performance in terms of both
purposes. The comparison of various exploratory factor analysis methods is described in Sect. 5.2,
and the investigation of clustering of variables is presented in Sect. 5.3.

5.1. Simulation Models

In this simulation study, we use three simulation models as below.
Model (A):

� =

⎛
⎜⎜⎝
0.8 0 0 0
0 0.7 0 0
0 0 0.6 0
0 0 0 0.5

⎞
⎟⎟⎠⊗ 125,

where 125 is a 25-dimensional vector with each element being 1.
Model (B):
The size of the loading matrix of Model (B) is the same as that of Model (A), and the nonzero
factor loadings share the same values. However, all zero elements in Model (A) are replaced by
small random numbers from U (−0.3, 0.3).
Model (C):

� = (�T
1 , �T

2 )T ,

�1 =
⎛
⎝
0.79 0.00 0.00 0.49 0.50 0.00 0.68 0.29 0.66 0.33 0.00 0.00 0.62
0.00 0.77 0.00 0.53 0.00 0.50 0.32 0.66 0.00 0.00 0.62 0.34 −0.64
0.00 0.00 0.76 0.00 0.52 0.48 0.00 0.00 0.34 0.66 0.33 0.62 0.00

⎞
⎠

T

,

�2 =
⎛
⎝

−0.62 0.62 −0.62 0.00 0.00 0.43 0.47 0.00 0.42 0.43 0.00 0.36 0.26
0.64 0.00 0.00 0.67 −0.67 0.58 0.00 0.50 0.57 0.00 0.50 0.38 0.43
0.00 −0.61 0.61 −0.63 0.63 0.00 0.57 0.48 0.00 0.57 0.46 0.38 0.38

⎞
⎠

T

.

The simulation is conducted for both orthogonal and oblique models on (A) and an orthogonal
model on (B) – (C). For Model (A), we write the orthogonal and oblique models as “Model
(A-ORT)” and “Model (A-OBL),” respectively. Here, “ORT” and “OBL” are abbreviations for
“orthogonal” and “oblique,” respectively. The factor correlations for the oblique model are set to
be 0.4. The unique variances are calculated by � = diag(I p − ���T ).

In Model (A), the loading matrix possesses the perfect simple structure. In such cases, the
prenet is expected to perform well because it is able to estimate the perfect simple structure for
large ρ (Proposition 1). Note that p = 100 onModel (A); therefore, maximum likelihood estimate
cannot be available when n < 100.

The loading matrix of Model (B) is close to but not exactly a perfect simple structure. In
this case, the prenet is expected to perform well when both ρ and γ are close to zero, thanks to
Proposition 3. Meanwhile, the lasso would not perform well; a small illustrative example with
intuitive description is presented in Section S1 in supplemental material.

InModel (C), the loadingmatrix is sparse but more complex than the perfect simple structure.
The loading matrix is a rotated centroid solution of the Thurstone’s box problem, reported in
Thurstone (1947).We usedata(ThurstoneBox26) in thefungible package inR to obtain
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the loading matrix. With the original loading matrix, some of the unique variances can be larger
than 1 with � = diag(I p − ��T ); therefore, the elements of the original loading matrix are
multiplied by 0.83. Furthermore, to enhance the sparsity, factor loadings whose absolute values
are less than 0.1 are replaced by 0.

5.2. Accuracy Investigation

The model parameter is estimated by the prenet penalty with γ = 1.0, 0.1, 0.01, the lasso,
the MCP (Zhang, 2010)

ρP(�; ρ; γ ) =
p∑

i=1

m∑
j=1

ρ

∫ |λi j |

0

(
1 − x

ργ

)

+
dx

with γ = 3, and the elastic net with γ = 0.1. The regularization parameter ρ is selected by the
AIC and the BIC. We also compute a limit, lim

ρ→+0
�̂ρ , where �̂ρ is the estimate of the loading

matrix obtainedwith a regularization parameter ρ.We note that lim
ρ→+0

�̂ρ corresponds to the factor

rotation with MLE (Hirose and Yamamoto, 2015). In particular, the estimate with ρ → +0 and
γ → +0 is equivalent to that obtained by the quartimin rotationwithMLE, thanks toProposition 3.
We also conduct rotation techniques withMLE: varimax rotation (Kaiser, 1958) for the orthogonal
model and promax rotation (Hendrickson and White, 1964) for the oblique model. When MLE
cannot be found due to n < p, we conduct the lasso and obtain the approximation of the MLE
with ρ → +0.

The warm start is used for Models (A) and (B). The dimension of these models is p = 100,
and then the warm start is stabler than the cold start for small ρ in our experience. Meanwhile,
we adopt the cold start on Model (C) because Thurstone’s box problem tends to possess multiple
local minima.

In our implementation, the estimate of the elastic net sometimes diverges for the oblique
model. Scharf and Nestler (2019a) reported the same phenomenon. To address this issue, we add
a penalty ζ log |�| to Eq. (2) with ζ = 0.01. This penalty is based on Lee (1981), a conjugate
prior for Wishart distribution from a Bayesian viewpoint. We remark that the prenet does not tend
to suffer from this divergence issue even if ζ = 0 in our experience. This is probably because
the prenet does not shrink all loadings to zero, thanks to Proposition 1. For example, assume that
σ̂i j = λ̂im λ̂ jk φ̂km (k �= m). When the elastic net penalization is adopted, both λ̂im and λ̂ jk are
close to zero with a large ρ. When si j is large, φ̂km must be large to get σi j ≈ si j . Accordingly,
the value of φ̂km can be significantly large; it can be greater than 1. Meanwhile, the prenet may
not suffer from this problem because either λ̂im and λ̂ jk can become large.

For each model, T = 1000 data sets are generated with N (0,���T + �). The number
of observations is n = 50, 100, and 500. To investigate the performance of various penalization
procedures, we compare the root mean squared error (RMSE) over T = 1000 simulations, which
is defined by

RMSE = 1

T

⎛
⎝

T∑
s=1

‖� − �̂
(s)‖2F

pm

⎞
⎠

1/2

,

where �̂
(s)

is the estimate of the loading matrix using the sth dataset. We also compare the rate
of nonzero factor loadings for Models (A) and (B). Because the loading matrix is not identifiable
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Figure 2.
RMSE of factor loadings. The upper and lower bars represent 95th and 5th percentiles, respectively. Here, “ρ → +0”
denotes a limit of the estimate of the factor loadings, lim

ρ→+0
�̂ρ , which corresponds to the factor rotation.

due to permutation and sign of columns, we change the permutation and sign such that RMSE
is minimized. It is not fair to compare the rate of nonzero loadings for ρ → +0, because the
estimated loading matrix cannot become sparse. Thus, we apply the hard-thresholding with a
cutoff value being 0.1, the default of the loadings class in R.

The results for RMSE and the rate of nonzero factor loadings are depicted in Figs. 2 and 3,
respectively. For reference, true positive rate (TPR) and false positive rate (FPR) of the loading
matrix are depicted inFiguresS1.4 andS1.5 in the supplementalmaterial. The rangeof the error bar
indicates 90%confidence interval;we calculate 5%and95%quantiles over 1000 simulation results
and use them as the boundaries of the error bar. We obtain the following empirical observations
from these figures.

Model (A-ORT): The prenet penalization outperforms the existing methods in terms of RMSE
when the regularization parameter is selected by the model selection criteria.
It is also seen that the performance of the prenet is almost independent of γ .
When ρ → +0, all of the estimation procedures yield similar performances.
When the ρ is selected by the model selection criteria, the rate of nonzero
loadings of the prenet is almost 0.25, that is the true rate. Considering the TPR
result in Figure S1.4 in the supplemental material, the prenet with AIC or BIC
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Figure 3.
Rate of nonzero factor loadings. The upper and lower bars represent 95th and 5th percentiles, respectively.Here, “ρ → +0”
denotes a limit of the estimate of the factor loadings, lim

ρ→+0
�̂ρ , which corresponds to the factor rotation.

correctly estimates the true zero/nonzero pattern. Meanwhile, the MCP, elastic
net, and lasso tend to select a denser model than the true one.

Model (A-OBL): The result for the oblique model is similar to that for the orthogonal model,
but the oblique model tends to produce larger RMSEs than the orthogonal
model for most cases. The ρ → +0 produces larger RMSE than that with
the regularization parameter ρ selected by model selection criteria. This is
probably because the loss function becomes flat as ρ → +0. Therefore, the
regularizationmayhelp improve the accuracy.Wenote that the promax rotation,
which corresponds to ρ → +0, turns out to be stable.

Model (B): When n is large, the prenet with small γ and varimax rotation produces small
RMSEs. Because the true values of cross-loadings (small loadings) are close
to but not exactly zero, the L1 type regularization that induces a sparse loading
matrix does not work well. The prenet with γ = 0.01 achieves the sparse
estimation but produces a loadingmatrix that is similar to the quartimin rotation,
resulting in a nonsparse loading matrix. We also observe that the prenet with
BIC sometimes results in too sparse loading matrix when n = 50.

Model (C): For small n, all methods result in large RMSE. For large n, the L1 regularization
methods, including the lasso, MCP, elastic net, and prenet with large γ yield
small RMSE. However, the prenet with small γ and varimax rotation, which
tend to estimate non-sparse loading matrix, produce large RMSE. Indeed, the
average value of loading matrix in the supplemental material shows that the
prenet with small γ is biased. Furthermore, the varimax rotation with true
loading matrix does not approximate the true one. Therefore, when the loading
matrix is sparse but does not have the perfect simple structure, the lasso-type
penalization or prenet with γ = 1 would perform well.
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Figure 4.
Adjusted Rand Index (ARI) of the clustering results.

5.3. Investigation of Clustering via Perfect Simple Structure Estimation

As shown in Proposition 1, our proposed method allows the clustering of variables via the
perfect simple structure estimation. We investigate the clustering accuracy on Model (A); the
true loading matrix has the perfect simple structure, and then we know the true clusters. Figure 4
shows the Adjusted Rand Index (ARI) between true clusters and those obtained by prenet, lasso,
and varimax. The range of the error bar indicates 90% confidence interval; we calculate 5% and
95% quantiles over 1000 simulation results and use them as the boundaries of the error bar.

The clustering via prenet is achieved by perfect simple structure estimation. The lasso and
varimax cannot always estimate the perfect simple structure. Therefore, we estimate the clusters
as follows: for i th row vector of �̂, say λ̂i = (λ̂i1, . . . , λ̂im)T , the i th variable belongs to j th
cluster, where j = arg max

j∈{1,...,m}
(|λ̂i j |). The regularization parameter for the lasso is ρ → +0, which

corresponds to a special case of the component loss criterion (Jennrich, 2004, 2006) with MLE.
The result of Fig. 4 shows that the prenet and varimax result in almost identical ARIs and are

slightly better than the lasso when n = 50 on Model (A-ORT). All methods correctly detect the
true clusters when n = 100 and n = 500. For Model (A-OBL), the prenet performs slightly better
than the varimax when n = 50. As with the orthogonal model, the prenet and varimax correctly
detect the true clusters when n = 100 and n = 500. The lasso performs worse than the other
two methods for small sample sizes, suggesting that the prenet or varimax would be better if the
clustering of variables is the purpose of the analysis.

6. Analysis of Big Five Personality Traits

We apply the prenet penalization to the survey data regarding the big five personality traits
collected from Open Source Psychometrics Project (https://openpsychometrics.org/). Other real
data applications (electricity demand and fMRI data) are described in Section S2 of the supple-
mental material. n = 8582 responders in the US region are asked to assess their own personality
based on 50 questions developed byGoldberg (1992). Each question asks howwell it describes the
statement of the responders on a scale of 1–5. It is well known that the personality is characterized
by five common factors; therefore, we choose m = 5. Several earlier researchers showed that
the loading matrix may not possess the perfect simple structure due to the small cross-loadings
(Marsh et al., 2010, 2013; Booth and Hughes, 2014); therefore, we do not aim at estimating the
perfect simple structure with ρ → ∞ in this analysis. We first interpret the estimated model and
then investigate the performance of the prenet penalization with ρ selected by model selection
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Figure 5.
Heatmaps of the loading matrices on big five personality traits data. Each cell corresponds to the factor loading, and the
depth of color indicates the magnitude of the value of the factor loading.

Table 1.
Factor loadings of four items estimated by the prenet penalization with γ = 0.01. The regularization parameter, ρ, is
selected by the BIC. The cross-loadings whose absolute values are larger than 0.3 are written in bold.

Item F1 F2 F3 F4 F5

A2: Am not interested in other people’s problems. 0.341 −0.062 −0.525 −0.020 0.070
A7: Have a soft heart. −0.317 0.089 0.615 0.008 −0.010
A10: Do not have a good imagination. 0.347 −0.164 −0.375 0.116 0.082
C4: Change my mood a lot. −0.083 0.365 0.033 −0.548 0.022

criteria for various sample sizes. The impact of the regularization parameter on the accuracy is
also studied.

6.1. Interpretation of Latent Factors

We first apply the prenet penalization and the varimax rotation with maximum likelihood
estimate and compare the loading matrices estimated by these two methods. With the prenet
penalization, we choose a regularization parameter using AIC, BIC, and tenfold cross-validation
(CV) with γ = 1. The regularization parameter selected by the AIC and CV is ρ = 7.4 × 10−4,
and that selected by the BIC is ρ = 2.9× 10−3. The heatmaps of the loading matrices are shown
in Fig. 5. The result of Fig. 5 shows that these heatmaps are almost identical; all methods are
able to detect the five personality traits appropriately. We also observe that the result is almost
independent of γ . These similar results may be due to the large sample sizes.

We explore the estimates of cross-loadings whose absolute values are larger than 0.3; it
would be reasonable to regard that these cross-loadings affect the items. There exists four items
that include such large absolute values of cross-loadings, and factor loadings related to these four
items are shown in Table 1.

The loading matrix is estimated by the prenet penalization with γ = 0.01. The regular-
ization parameter ρ is selected by the BIC. The five factors represent “F1: extraversion,” “F2:
neuroticism,” “F3: agreeableness,” “F4: conscientiousness,” and “F5: openness to experience.”
For reference, the complete loading matrix is shown in Tables S2.5 and S2.6 of the supplemental
material.
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Table 2.
The number of times that the absolute values of four cross-loadings exceed 0.3. For regularization methods, ρ is selected
by the BIC.

Prenet (γ = 1) Prenet (γ = 0.01) Lasso MCP Varimax

A2 25 85 35 69 81
A7 10 72 18 45 61
A10 29 90 40 68 80
C4 20 94 49 78 94

The three items,A2,A7, andA10, are affected by “F1: extraversion” and “F3: agreeableness.”
The main and cross-loadings on the same item have opposite signs. We may make a proper
interpretation of the factor loadings. For example, as for the question “A7: Have a soft heart,” it
is easy to imagine some people who have an extraversion cannot be kind. They are interested in
a profit from a person rather than the situation that the person is in now; thus, they can become
selfish to get the profit even if the person’s feelings are hurt. Booth and Hughes (2014) also
reported similar results of such cross-loadings. They mentioned that these cross-loadings were
due to the overlap in content between extraversion and agreeableness.

Furthermore, we perform M = 100 subsampling simulation with n = 500 to investigate
whether these cross-loadings can be found with small sample sizes. We compare the performance
of four estimation methods: the prenet, lasso, MCP, and varimax rotation. For regularization
methods, ρ is selected by the BIC. We set γ = 1 and γ = 0.01 for the prenet and γ = 3 for MCP.

Table 2 shows the number of times that the absolute values of these four cross-loadings
exceed 0.3. The results show that the prenet with γ = 0.01 most frequently identifies these four
cross-loadings among M = 100 simulations.

6.2. RMSE Comparison

We investigate the performance of the prenet in terms of estimation accuracy of the loading
matrix through subsampling simulation. First, the dataset is randomly split into two datasets, X1
and X2, without replacement. The sample sizes of X1 and X2 are n/2 = 4291. The X1 is used
for estimating a loading matrix with large sample sizes; we perform the varimax rotation with
MLE and regard the estimated loading matrix as a true loading matrix, say�true. The true loading
matrix is almost identical to the loadingmatrix obtained by the varimaxwith the entire dataset.We
remark that the true loading matrix is also similar to the Model (B) of the Monte Carlo simulation
described in Sect. 5.1.

The performance is investigated by subsampling the observations from X2 with n = 100 and
n = 500. Figure 6 depicts RMSE and rate of nonzero loadings for n random subsampled data
over 100 simulations. The RMSE is defined as

RMSE = 1

100

⎛
⎝

100∑
s=1

‖�true − �̂
(s)‖2F

pm

⎞
⎠

1/2

,

where �̂
(s)

is the estimate of the loading matrix using the sth subsampled data. We apply the
lasso, MCP with γ = 3, prenet with γ = 1, 0.1, 0.01, and the varimax rotation with MLE. The
regularization parameter ρ is selected by the AIC, BIC, and tenfold CV. We also compute the
loading matrix when ρ → +0, which results in the solution of the factor rotation with MLE.
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Figure 6.
RMSE and rate of nonzero loadings when n = 100 and 500. Here, “ρ → +0” denotes a limit of the estimate of the factor
loadings, lim

ρ→+0
�̂ρ , which corresponds to the factor rotation.

The nonzero pattern of the loading matrix for ρ → +0 is estimated by a hard-thresholdings with
a cutoff value being 0.1. The range of the error bar indicates 90% confidence interval over 100
simulations.

We have the following empirical observations from Fig. 6:

• The smaller the number of observations is, the sparser the solution is. An earlier study
has shown that the model selection criterion can select a parsimonious model with small
sample sizes in general frameworks (Cudeck and Henly, 1991).

• The BIC results in larger RMSE and lower rate of nonzero loadings than other criteria,
especially for small sample sizes. Therefore, the BIC tends to select sparse solutions, and
some of the small nonzero factor loadings are estimated to be zero.

• When the lasso or MCP is applied, the CV results in poor RMSE when n = 100. This is
because the estimated loading matrix is too sparse; it becomes (almost) zero matrix. When
the prenet is applied, such a loading matrix cannot be obtained thanks to Proposition 1.

• With the prenet, small γ tends to estimate a dense loadingmatrix and produce good RMSE.
A similar tendency is found in Model (B) of the Monte Carlo simulation, described in
Sect. 5.2.

6.3. Impact of Tuning Parameters

We investigate the impact of the tuning parameters (ρ, γ ) on the estimation of the loading
matrix. Figure 7 depicts the heatmaps of the loading matrices for various values of tuning param-
eters on the MCP and the prenet penalization. We find the tuning parameters so that the degrees
of sparseness (proportion of nonzero values) of the loading matrix are approximately 20%, 25%,
40%, and 50%. For theMCP, we set γ = ∞ (i.e., the lasso), 5.0, 2.0, and 1.01. For prenet penalty,
the values of gamma are γ = 1.0, 0.5, and 0.01. Each cell describes the elements of the factor
loadings as with Fig. 5.

From Fig. 7, we obtain the empirical observations as follows.
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Figure 7.
Heatmaps of the loading matrices on big five personality traits data for various values of tuning parameters on the MCP
and the prenet penalization.

• With the prenet penalization, the characteristic of five personality traits are appropriately
extracted for any values of tuning parameters, which suggests that the prenet penalization
is relatively robust against the tuning parameters.

• The prenet penalization is able to estimate the perfect simple structure when the degree
of sparseness is 20%. On the other hand, with the MCP, we are not able to estimate the
perfect simple structure even when γ is sufficiently small.

• With the lasso, the number of factors becomes less than five when the degrees of sparsity
are 20% and 25%; the five personality traits are not able to be found. When the value of γ

is not sufficiently large, the MCP produces five factor model.

7. Discussion

We proposed a prenet penalty, which is based on the product of a pair of parameters in
each row of the loading matrix. The prenet aims at the estimation of not only sparsity but also the
simplicity. Indeed, the prenet is a generalization of the quartimin criterion, one of themost popular
oblique techniques for simple structure estimation. Furthermore, the prenet is able to estimate the
perfect simple structure, which gave us a new variables clustering method using factor models.
The clustering of variables opens the door to the application of the factor analysis to a wide variety
of sciences, such as image analysis, neuroscience, marketing, and biosciences.

The prenet penalization has two different purposes of analysis: clustering of variables and
exploratory factor analysis. The way of using the prenet penalization depends on the purpose of
the analysis. When the purpose of the analysis is the clustering of variables, the regularization
parameter is set to be ρ → ∞ to achieve the perfect simple structure estimation. It is shown
that the prenet performs better than the lasso and varimax in terms of clustering accuracy, as
described in Sect. 5.3. Furthermore, the real data analyses in Section S2 in the supplemental
material show the superiority of the prenet over the conventional clustering methods, such as the
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k-means clustering. When the purpose of the analysis is exploratory factor analysis, the perfect
simple structure estimation is not necessarily needed. In this case, the regularization parameter is
selected by the model selection criteria. The numerical results show that the prenet penalization
performs well when an appropriate value of γ is selected.

Over a span of several decades, a number of researchers have developed methods for finding
a simple loading matrix (e.g., Kaiser, 1958; Hendrickson and White, 1964) in the Thurstonian
sense (Thurstone, 1947). As the simple structure is a special case of sparsity, it seems the lasso-
type sparse estimation is more flexible than the prenet. Indeed, the recent trend in the exploratory
factor analysis literature is to find a loadingmatrix that possesses the sparsity rather than simplicity
(Jennrich, 2004, 2006; Trendafilov, 2013; Scharf and Nestler, 2019b, 2019a).

Nevertheless, the lasso-type sparse estimation is not as flexible as expected. As mentioned
in Model (B) in Monte Carlo simulation and Section S1 in the supplemental material, the lasso
cannot often approximate the true loading matrix when the cross-loadings are not exactly but
close to zero. Because some factor loadings are estimated to be exactly zero with the lasso, some
other factor loadings turn out to be excessively large, which causes the difficulty in interpretation.

For this reason, we believe both sparsity and simplicity play important roles in the interpre-
tation. The sparse estimation automatically produces the nonzero pattern of the loading matrix,
which allows us to interpret the latent factors easily. In addition, simplicity is also helpful for the
interpretation, as shown in Thurstone (1947). The prenet penalization is able to achieve simplicity
and sparsity simultaneously. Indeed, a sparse loading matrix is estimated thanks to the penalty
based on the absolute term in

∑
i, j,k |λi jλik |. In addition, simplicity is also achieved because it

generalizes the quartimin criterion that often produces a simple structure (Jennrich and Sampson,
1966). Furthermore, with a large value of the regularization parameter, the loading matrix enjoys
the perfect simple structure. Meanwhile, the existing methods cannot always produce a loading
matrix that is both sparse and simple. For example, the lasso produces a loading matrix that is
sparse but not always simple.

The structural equation modeling (SEM) has been widely used in the social and behavioral
sciences. The SEM covers a wide variety of statistical models, including the factor analysis model
and the regressionmodel.An analyst develops an assumption of causal relationship and determines
whether the assumption is correct or not by testing the hypothesis or evaluating the goodness of
fit indices. Recently, several researchers have proposed regularized structural equation models
(Jacobucci et al., 2016; Huang et al., 2017; Huang, 2018). The analyst set lasso-type penalties to
specific model parameters to conduct an automatic selection of the causal relationship, enhancing
the flexibility in model specification. The application of the prenet to the SEM would be an
interesting future research topic.

The lasso-type regularization extracts only the nonzero pattern of parameters. In some cases,
the analyst needs to detect not only the nonzero pattern of parameters but also a more complex
parameter structure. The penalty must be determined depending on the structure of the parameter.
For example, when the analyst needs to estimate either θ1 or θ2 to be zero, the prenet penalty
would be more useful than the lasso. More generally, when one of θ1, . . . , θk is exactly or close
to zero, we may use the Geomin-type penalty,

∏k
j=1 |θ j |. An application of a penalty that leads

to structured sparsity would further enhance the flexibility of the analysis but beyond the scope
of this research. We would like to take this as a future research topic.

Another interesting extension to the prenet penalization is the clustering of not only variables
but also observations. This method is referred to as biclustering (e.g., Tan and Witten, 2014;
Flynn and Perry, 2020). To achieve this, we may need an entirely new formulation along with an
algorithm to compute the optimal solution. This extension should also be a future research topic.
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Supplemental Materials

Further numerical and theoretical investigationsAnalyses of resting-state fMRI data, electric-
ity demand data, a loading matrix of big five data, and comparison with Geomin criterion.
R-package fanc R-package fanc containing code that performs our proposed algorithm.
Loadings Average of the estimated loading matrices for Monte Carlo simulations in Sect. 5 with
excel files.
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A. Proofs

A.1. Proof of Proposition 2

Because of Proposition 1, with the prenet, λ̂i j λ̂ik = 0 as ρ → ∞. Thus, the prenet solution
satisfies (9) as ρ → ∞. We only need to show that the minimization problem of loss function
�ML(�,�) is equivalent to that of ‖S − ��T ‖2F . The inverse covariance matrix of the observed
variables is expressed as

�−1 = �−1 − �−1�(�T�−1� + Im)−1�T�−1.

Because �T� = Im , we obtain

�−1 = α−1 I p − α−2

α−1 + 1
��T .

The determinant of � can be calculated as

|�| = α p−m(1 + α)m .

Then, the discrepancy function in (3) is expressed as

1

2

{
tr(α−1S) − α−2

α−1 + 1
tr
(
�T S�

)
+ p logα + m log

(
1 + 1

α

)
− log |S| − p

}
.
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Because α is given and ‖S−��T ‖2F = −2tr
(
�T S�

)+C.with constant valueC , we can derive
(10).

A.2. Proof of Proposition 3

Recall that θ̂ is an unpenalized estimator that satisfies �(θ̂) = min
θ∈�

�(θ) and θ̂q is a quartimin

solution obtained by the following problem.

min
θ∈�

Pqmin(�), subject to �(θ) = �(θ̂).

First, we show that

lim
n→∞ d(θ̂q ,�

∗
q) = 0 a.s. (A.1)

From the assumptions, as the same manner of Chapter 6 in Pfanzagl (1994), we can obtain the
following strong consistency.

lim
n→∞ d(θ̂ ,�∗) = 0 and lim

n→∞ d(θ̂ρn ,�∗) = 0 a.s., (A.2)

where �∗ := {θ ∈ � | �∗(θ) = minθ∈� �∗(θ)}. When limn→∞ d(θ̂ ,�∗) = 0, for all ε > 0, by
taking n large enough, we have

‖�̂ − �∗‖F < ε a.s.

for some (vec(�∗)T , diag(�∗)T , vech(�∗)T )T ∈ �∗. From the uniform continuity of Pqmin on
� and the fact that ‖�̂T − �∗T‖F = ‖�̂ − �∗‖F for any T ∈ O(m), we have

sup
T∈O(m)

|Pqmin(�̂T ) − Pqmin(�∗T )| < ε a.s. (A.3)

Write T̂ := argminT∈O(m) Pqmin(�̂T ) and T∗ := argminT∈O(m) Pqmin(�∗T ). We have

Pqmin(�̂T̂ ) − Pqmin(�∗T̂ ) ≤ Pqmin(�̂T̂ ) − Pqmin(�∗T∗) ≤ Pqmin(�̂T∗) − Pqmin(�∗T∗).

From this, it follows that

|Pqmin(�̂T̂ ) − Pqmin(�∗T∗)| ≤ sup
T∈O(m)

|Pqmin(�̂T ) − Pqmin(�∗T )|.

Thus, using (A.3), we obtain (A.1).
Next, as the similar manner of Proposition 15.1 in Foucart and Rauhut (2013), we prove
limn→∞ d(θ̂ρn ,�

∗
q) = 0, a.s. By the definition of θ̂ρn , for any ρn > 0 we have

�(θ̂ρn ) + ρn Pqmin(�̂ρn ) ≤ �(θ̂q) + ρn Pqmin(�̂q) (A.4)
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and

�(θ̂ρn ) ≥ �(θ̂q). (A.5)

Combining (A.1), (A.4), (A.5), we obtain

Pqmin(�̂ρn ) ≤ Pqmin(�̂q) → Pqmin(�
∗
q) a.s.

for some (vec(�∗
q)

T , diag(�∗
q)

T , vech(�∗
q)

T )T ∈ �∗
q . Therefore, we have

lim
n→∞ Pqmin(�̂ρn ) ≤ Pqmin(�

∗
q) a.s.

As shown in (A.2), limn→∞ d(θ̂ρn ,�∗) = 0 a.s., and �∗
q is a minimizer of Pqmin(·) over �∗, so

that the proof is complete.

B. Detail of the Algorithm

B.1. Update Equation of EM Algorithm for Fixed Tuning Parameters

We provide update equations of factor loadings and unique variances when ρ and γ are fixed.
Suppose that �old, �old, and �old are the current values of parameters. The parameter can be
updated by minimizing the negative expectation of the complete-data penalized log-likelihood
function with respect to �, �, and � (e.g., Hirose and Yamamoto, 2014):

Q(�,�,�) =
p∑

i=1

(
logψi + sii − 2λT

i bi + λT
i Aλi

ψi

)
+ log |�| + tr(�−1A)

+ρP(�) + C, (A.6)

where C is a constant and

A = M−1 + M−1�T
old�

−1
oldS�−1

old�oldM−1, (A.7)

bi = M−1�T
old�

−1
oldsi , (A.8)

M = �T
old�

−1
old�old + �−1

old. (A.9)

Here, si is the i th column vector of S.
In practice, minimization of (A.6) is difficult, because the prenet penalty consists of nonconvex
functions. Therefore, we use a coordinate descent algorithm to obtain updated loading matrix
�new. Let λ̃

( j)
i be a (m − 1)-dimensional vector (λ̃i1, λ̃i2, . . . , λ̃i( j−1), λ̃i( j+1), . . . , λ̃im)T . The

parameter λi j can be updated by maximizing (A.6) with the other parameters λ̃
( j)
i and with �

being fixed, that is, we solve the following problem.

λ̃i j = argmin
λi j

1

2ψi

⎧
⎨
⎩a j jλ

2
i j − 2

⎛
⎝bi j −

∑
k �= j

ak j λ̃ik

⎞
⎠ λi j

⎫
⎬
⎭
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+ρ

⎡
⎣
⎧⎨
⎩
1

2
(1 − γ )

∑
k �= j

λ̃2ik

⎫⎬
⎭ λ2i j +

⎛
⎝γ

∑
k �= j

|λ̃ik |
⎞
⎠ |λi j |

⎤
⎦

= argmin
λi j

1

2ψi

⎧⎨
⎩(a j j + β)λ2i j − 2

⎛
⎝bi j −

∑
k �= j

ak j λ̃ik

⎞
⎠ λi j

⎫⎬
⎭+ ρξ |λi j |

= argmin
λi j

1

2

(
λi j − bi j −∑k �= j ak j λ̃ik

a j j + β

)2

+ ψiρξ

a j j + β
|λi j |, (A.10)

where

β = ρψi (1 − γ )
∑
k �= j

λ̃2ik,

ξ = γ
∑
k �= j

|λ̃ik |.

This is equivalent to minimizing the following penalized squared error loss function.

S(θ̃ ) = argmin
θ

{
1

2
(θ − θ̃ )2 + ρ∗|θ |

}
. (A.11)

The solution S(θ̃) can be expressed in a closed form using the soft thresholding function:

S(θ̃) = sgn(θ̃)(|θ̃ | − ρ∗)+, (A.12)

where A+ = max(A, 0).
For given �new, the parameters of unique variances and factor correlations, say �new and �new,
are expressed as

ψnew
i = sii − 2(λnew

i )T bi + (λnewi )T Aλnew
i (i = 1, . . . , p),

�new = arg min
�

{log |�| + tr(�−1A)},

where ψnew
i is the i th diagonal element of �new, and λnew

i is the i th row of �new. The new value
�new may not be expressed in an explicit form, because all of the diagonal elements of� are fixed
by 1. Thus,�new is obtained by the Broyden–Fletcher–Goldfarb–Shanno optimization procedure.

B.2. Algorithm Complexity

The complexity for our proposed algorithm for the orthogonal case is considered. To update�, we
need a matrix A in (A.7). The matrix computation of A requires O(p2m) operation (Zhao et al.,
2007). In the coordinate descent algorithm, we need to compute θ̃ in (A.11) for each step, in which
O(m) operation is required. For simplicity, we consider the case where the number of cycles of
the coordinate descent algorithm is one. We remark that our algorithm converges to the (local)
optima for this case because both EM and coordinate descent algorithms monotonically decrease
the objective function at each iteration. In this case, we need O(m) to update λi j (i = 1, . . . , p;
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j = 1, . . . ,m), and therefore, O(pm2) operation is required to update� in the coordinate descent
algorithm. As a result, the algorithm complexity to update � is O(p2m) + O(pm2) = O(p2m).
For the update of �, we need O(pm2) operation because the computation of (λnew

i )T Aλnew
i in

(A.13) requires O(m2) operation for i = 1, . . . , p. Note that when the unpenalized maximum
likelihood estimation is conducted, the order O(pm) is achieved (Zhao et al., 2007); however,
this order may not be achieved for the prenet penalization.
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