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Abstract. Stable logics are modal logics characterized by a class of frames closed under relation
preserving images. These logics admit all filtrations. Since many basic modal systems such as K4
and S4 are not stable, we introduce the more general concept of an M-stable logic, where M is an
arbitrary normal modal logic that admits some filtration. Of course, M can be chosen to be K4 or
S4. We give several characterizations of M-stable logics. We prove that there are continuum many
S4-stable logics and continuum many K4-stable logics between K4 and S4. We axiomatize K4-
stable and S4-stable logics by means of stable formulas and discuss the connection between S4-
stable logics and stable superintuitionistic logics. We conclude the article with many examples (and
nonexamples) of stable, K4-stable, and S4-stable logics and provide their axiomatization in terms of
stable rules and formulas.

§1. Introduction. One direction in the study of modal logics is to identify classes of
modal logics that are finitely axiomatizable, have the finite model property (fmp), and are
decidable. To give a few examples:

(i) Bull [10] and Fine [17] proved that every extension of S4.3 has the fmp, is finitely
axiomatizable, and hence decidable;

(ii) Segerberg [32] showed that every logic above K4 of finite depth has the fmp;

(iii) Fine [18] proved that every subframe logic above K4 has the fmp; and

(iv) Zakharyaschev [37] showed that the same holds for cofinal subframe logics above
K4.

One of the most standard techniques for proving the fmp in modal logic is the method
of filtration, which gives rise to yet another important class of modal logics enjoying the
fmp. If a model N is a filtration of a model M, then N is an image of M under a relation
preserving map. We call such maps stable maps.1 Thus, if a modal logic is characterized by
a class of frames closed under images of stable maps, its fmp can be proved via filtration.
Such logics were called stable in [3].
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1 In model theory such maps are called homomorphisms, but we reserve the term “homomorphism”

for operation preserving maps between modal algebras. Ghilardi [20] calls such maps continuous,
but we reserve the term “continuous” for structure preserving maps between topological spaces.
Thus, we follow [3] in calling such maps “stable.”
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Examples of stable logics are the basic modal logic K, the logic T of all reflexive frames,
the logic D of all serial frames, the epistemic logic S5, the logic KMT of the frames where
each point sees a reflexive point, etc. Stable logics enjoy the following strong property:
they admit all filtrations.

There are modal logics that are not stable but still admit particular filtrations. For ex-
ample, the well-known modal systems K4 and S4 admit transitive filtrations, but they do
not admit all filtrations, hence are not stable. This generates a problem of how to deal with
logics that only admit some filtrations. As a solution, we weaken the notion of stability by
parameterizing it over a ground logic. If a modal logic M admits a filtration, we define M-
stable logics as logics above M that are stable over M (meaning that they are characterized
by a class of frames closed under those stable images that validate M). A stable logic is
then simply a K-stable logic. It is our goal to develop the theory of M-stable modal logics.

In many ways stable logics parallel subframe logics. The defining property of subframe
logics is that their classes of frames are closed under subframes. Transitive subframe logics
admit selective filtration and hence have the fmp. They also admit a uniform axiomati-
zation via the so-called subframe formulas [18]. Subframe formulas are obtained from
Zakharyaschev’s canonical formulas [36,37] and subframe rules are obtained from Jeřábek’s
canonical rules [22] by dropping the extra parameter D of closed domains. Similarly, stable
rules are obtained from the stable canonical rules of [3] by dropping the extra parameter
D of stable closed domains. Consequently, every stable logic is axiomatizable by stable
rules. Stable rules are best described by their semantic property. The stable rule of a finite
frame F is refuted on a frame G iff F is an image of G via a stable map. Thus, if a logic
L is axiomatized by the stable rules of finite frames {Fi | i ∈ I }, then it is characterized
by the class of finite frames omitting (not having as stable images) every Fi . This gives a
geometric intuition in analogy with that for subframe formulas (see, e.g., [38]).

Another analogy between (elementary) subframe logics and stable logics arises from
the model-theoretic perspective. It is a well known result of Łoś and Tarski that a first-
order sentence is preserved by submodels iff it is equivalent to a set of universal sentences
(see, e.g., [14, Theorem 3.2.2]). Consequently, if a modal logic L is characterized by a
class of frames that is definable by universal sentences, then L is a subframe logic. On
the other hand, by Lyndon’s theorem, a first-order sentence is preserved by surjective
homomorphisms (stable maps) iff it is equivalent to a set of positive sentences (see, e.g.,
[14, Theorem 3.2.4]). As a result, if a modal logic L is characterized by a class of frames
that is definable by positive sentences, then L is stable. We will use this characterization
to show that many well-known logics above K4 and S4 are K4-stable and S4-stable,
respectively.

There are also essential differences between nontransitive subframe logics and stable
logics. Since the method of filtration works well in the nontransitive case, every stable logic
has the fmp, which in general is not true for subframe logics (see, e.g., [13, Exa. 11.32]).
There even exists a transfinite chain of Kripke-incomplete subframe logics [35]. Stable
logics form a well-behaved class also from a proof-theoretic perspective as every stable
logic enjoys the so-called bounded proof property (the bpp) [7]. Whether all subframe
logics enjoy the bpp is still an open problem.

Our main results include several characterizations of M-stable modal logics. Since logics
above K4 and S4 play an important role in modal logics, we pay special attention to K4-
stable and S4-stable logics. For logics above K4, we can turn every stable rule ρ(F) of
a rooted frame F into a stable formula γ (F), which behaves similarly to ρ(F) on rooted
frames. As a consequence, every K4-stable logic is axiomatizable by stable formulas. The
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converse is not true for logics above K4, but we prove that it is true for logics above S4;
that is, every logic axomatized by S4-stable formulas is S4-stable.

We also investigate the connection between S4-stable logics and stable superintuition-
istic logics (si-logics) studied in [2, 4]. We prove that the intuitionistic fragment ρM of
every S4-stable logic M is a stable si-logic. In fact, given an axiomatization of M via stable
formulas of finite rooted S4-frames {Fi | i ∈ I }, we can obtain an axiomatization of ρM
by the stable intuitionistic formulas of the intuitionistic frames {Fi | i ∈ I }, where Fi is
obtained from Fi by “unfolding” each cluster into a chain. Conversely, stability is preserved
by the least modal companion of a si-logic, and if the stable formulas of {Gi | i ∈ I }
axiomatize a stable si-logic, then the S4-stable formulas of {Gi | i ∈ I } axiomatize its least
modal companion. However, stability is not preserved by the greatest modal companion
of a si-logic. This is in contrast with subframe logics, where both the least and greatest
companions of a subframe si-logic are subframe logics, and the intuitionistic fragment of
every subframe logic above S4 is a subframe si-logic (see, e.g., [13, sec. 9.6]). We explic-
itly use these connections between S4-stable logics and stable si-logics to give concrete
axiomatizations of many well-known K4-stable and S4-stable logics via stable formulas.

The article is organized as follows. In the next section, we recall the necessary back-
ground and central notions from [3]. In §3, we lay out the general theory of M-stable logics
and show that there are continuum many stable logics. In §4, we turn to more specific cases
and discuss M-stable logics, where M is a normal extension of K4. In §5, we discuss the
connection between S4-stable logics and stable si-logics. In the final section, we present
many examples (and nonexamples) of stable, K4-stable, and S4-stable logics and provide
their axiomatizations in terms of stable rules and formulas.

§2. Preliminaries. We assume that the reader is familiar with modal logic. We use
[8,13,23,34] as our main references for modal logic, [11] for universal algebra, [24,30] for
modal consequence relations, and [3,22] for multiconclusion modal consequence relations.

We recall that a modal algebra is a pair A = (A,�)where A is a Boolean algebra and �

is a unary function on A preserving all finite joins. We also recall that a modal space (aka
a descriptive frame) is a pair X = (X, R) where X is a Stone space (compact Hausdorff
zero-dimensional space) and R is a binary relation on X satisfying R[x] := {y ∈ X | x Ry}
is closed for every x ∈ X and R−1[U ] := {x ∈ X | x Ry for some y ∈ U } is clopen for
every clopen U of X . If X is a finite modal space, then the topology is discrete, and we
view X as a finite Kripke frame.

We will often use the duality between modal algebras and modal spaces. The dual modal
space of a modal algebra A = (A,�) is X = (X, R), where X is the Stone space of A (that
is, the points of X are the ultrafilters of A and the topology on X is generated by the basic
open sets ϕ(a) = {x ∈ X | a ∈ x} for all a ∈ A) and x Ry iff (∀a ∈ A)(a ∈ y ⇒ �a ∈ x).
If X = (X, R) is a modal space, then its dual modal algebra is A = (A,�), where A is the
Boolean algebra of clopen subsets of X and �a = R−1[a] for all a ∈ A.

Morphisms between modal algebras are modal algebra homomorphisms, morphisms
between modal spaces are continuous p-morphisms, and the duality extends to morphisms
by taking preimages of the morphisms in question.

We recall (see, e.g., [23, p. 174]) that an element a of a modal algebra A is an opremum if
a �= 1 and for each b �= 1 there is n ∈ ω with �nb ≤ a, where �0b = b, �n+1b = ��nb,
and �nb = ∧

k≤n �
kb. A modal algebra A is subdirectly irreducible iff it has an opremum.

An element x of a modal space X = (X, R) is a root if X = Rω[x] and a topo-root if
Rω[x] is dense in X , where R0[x] = {x}, Rn+1[x] = {y ∈ X | z Ry for some z ∈ Rn[x]},
and Rω[x] = ⋃

n∈ω Rn[x]. We call X rooted if it has a root, and topo-rooted if the set of
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topo-roots is not co-dense (the interior is nonempty). By [33, Theorem 2], a modal algebra
A is subdirectly irreducible iff its dual modal space X is topo-rooted. Therefore, if A is
finite, then A is subdirectly irreducible iff X is rooted [31, Theorem 3.1].

In this article, we will often be interested in maps between modal algebras that are
not full modal algebra homomorphisms but preserve � only “half-way.” Such maps were
studied in [5] under the name of semihomomorphisms and in [20] under the name of
continuous morphisms. We follow [3] in calling them stable homomorphisms.

DEFINITION 2.1. Let A = (A,�) and B = (B,�) be modal algebras.

1. A Boolean homomorphism h : A → B is stable provided �h(a) ≤ h(�a) for all
a ∈ A.

2. We call A a stable subalgebra of B if A is a Boolean subalgebra of B and the
inclusion A ↪→ B is a stable homomorphism.

Dually stable homomorphisms correspond to continuous relation preserving maps (see
[3, Lemma 3.3]).

DEFINITION 2.2.

1. Let X = (X, R) and Y = (Y, R) be modal spaces. A map f : X → Y is called
stable provided it is continuous and x Ry implies f (x)R f (y).

2. We call Y a stable image of X if there is an onto stable map f : X → Y .

A multiconclusion rule is an expression of the form �/�, where � and � are finite sets
of formulas. A modal algebra A = (A,�) validates a rule �/� (in symbols: A |	 �/�)
if for every valuation V : Prop → A, from V (γ ) = 1 for all γ ∈ � it follows that
V (δ) = 1 for some δ ∈ �. Just as formulas correspond to equations, multiconclusion rules
correspond to universal clauses, namely the rule �/� corresponds to the universal clause
∀x̄

∧
γ∈� γ (x̄) → ∨

δ∈� δ(x̄), where x̄ is a set of variables containing a variable for each
propositional letter used in the formulas from � and �.

We recall the stable rules of [3, sec. 7]. Let A = (A,�) be a finite modal algebra. For
every a ∈ A, let pa be a propositional letter such that a �= b implies pa �= pb. The stable
(multiconclusion) rule ρ(A) is defined as �/�, where

� ={pa∨b ↔ pa ∨ pb | a, b ∈ A} ∪
{p¬a ↔ ¬pa | a ∈ A} ∪
{�pa → p�a | a ∈ A}

and

� = {pa | a ∈ A, a �= 1}.
Stable rules generalize the Jankov rules of [22], which in model theory correspond

to diagrams of finite modal algebras [14, p. 68]. Recall that satisfying the diagram of a
structure is equivalent to the structure being isomorphically embeddable [14, Prop. 2.1.8].
On the other hand, refutation of the stable rule of a finite modal algebra A is equivalent to
A being stably embeddable:

PROPOSITION 2.3. [3, Proposition 7.1]. Let A,B be modal algebras with A finite. Then
B �|	 ρ(A) iff there is a stable embedding h : A � B.

Recall that varieties are classes of algebras closed under the operations of taking homo-
morphic images H, subalgebras S, and products P. There is a one-to-one correspondence
between normal modal logics and varieties of modal algebras. If � is set of formulas, then
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we denote by V(�) the variety corresponding to the logic axiomatized by � over K. Just
as formulas axiomatize varieties of algebras, multiconclusion rules axiomatize universal
classes of algebras. These are classes of algebras closed under the operations of taking
isomorphic copies I, subalgebras S, and ultraproducts PU. If K is a class of modal algebras,
then we denote by V(K) the variety generated by K, and by U(K) the universal class
generated by K. It is well known that V(K) = HSP(K) and U(K) = ISPU(K). Note that
U(K) is contained in V(K), but in general the inclusion is proper.

Universal classes of modal algebras correspond to normal modal multiconclusion con-
sequence relations. A normal modal multiconclusion consequence relation is a set S of
rules such that

ϕ/ϕ ∈ S;
ϕ, ϕ → ψ/ψ ∈ S;
ϕ/�ϕ ∈ S;
/ϕ ∈ S for each theorem ϕ ∈ K;
if �/� ∈ S, then �,�′/�,�′ ∈ S;
if �/�, ϕ ∈ S and �, ϕ/� ∈ S, then �/� ∈ S;
if �/� ∈ S and s is a substitution, then s(�)/s(�) ∈ S.

If S is a normal modal multiconclusion consequence relation, then we denote by U(S)
the universal class corresponding to S . As shown in [22, Theorem 2.2], S is complete
with respect to U(S). If K is a class of modal algebras, then S(K) = {�/� | A |	
�/� for every A ∈ K} is a normal modal multiconclusion consequence relation. If R is
a set of rules, then we denote by CR(R) the least normal modal multiconclusion conse-
quence relation containing R. If S = CR(R), then we say that R axiomatizes S .

For a normal modal logic L, we denote by SL the normal modal multiconclusion con-
sequence relation axiomatized by {/ϕ | ϕ ∈ L}. A set of rules R gives rise to the logic
Log(R) = {ϕ | /ϕ ∈ CR(R)}. If L = Log(R), then we say that L is axiomatized by
R. More generally, if R is a set of rules and M is a normal modal logic, then we say
that the logic L = {ϕ | /ϕ ∈ CR(SM ∪ R)} is axiomatized by R over M. We have
V(Log(R)) = V(U(CR(R))) and V({ϕ | /ϕ ∈ CR(SM ∪ R)}) = V(U(CR(SM ∪ R))).

§3. M-stable modal logics. Stable modal logics are modal logics axiomatized by sta-
ble rules [3, sec. 7]. As we pointed out in the introduction, they admit all filtrations (where
admitting filtration is meant in the weak sense, see Definition 3.1(2)). Many logics that
admit filtration do not admit all filtrations—e.g., K4 only admits filtrations that produce
transitive frames—and such logics are not stable. We therefore relativize the concept of
a stable logic to that of an M-stable logic, where M is a normal modal logic admitting
filtration (in the strong sense, see Definition 3.1(3)). Thus, M-stable logics are logics above
M that admit all M-filtrations (in the weak sense). To facilitate the study of M-stable logics,
we give several equivalent descriptions of M-stability. We also collect several observations
on how M-stable logics lie in the lattice of all modal logics. We conclude the section by
showing that there are continuum many (weakly transitive) stable logics.

We recall that an algebraic account of filtrations in modal logic was first given in [27,28]
(see also [25, 26]). For a more recent discussion of filtrations algebraically we refer to
[3, 15, 20]. Here we follow the construction discussed in [3, sec. 4].

DEFINITION 3.1.

1. Suppose A = (A,�) is a modal algebra, V is a valuation on A, and � is a finite
set of formulas closed under subformulas. Let A′ be the Boolean subalgebra of A
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generated by V (�). Then A′ is finite because� is finite. Set D = {V (ϕ) | �ϕ ∈ �}.
Let �′ be a modal operator on A′ and V ′ be a valuation on A′ = (A′,�′) satisfying

• The inclusion A′ ↪→ A is a stable homomorphism;
• V ′(p) = V (p) for all propositional letters p ∈ �;
• �′a = �a for all a ∈ D.

Then (A′, V ′) is called a filtration of (A, V ) through �.

2. A normal modal logic M admits filtration (in the weak sense) if for every nonthe-
orem ϕ of M, there is a filtration (A′, V ′) of a counter-model (A, V ) of ϕ through
some finite set � of formulas containing ϕ and closed under subformulas such that
A′ is an M-algebra.

3. A normal modal logic M admits filtration (in the strong sense) if for every M-
algebra A, every valuation V on A, and every finite set � of formulas closed under
subformulas, there is a filtration (A′, V ′) of (A, V ) through � such that A′ is an
M-algebra.

Our definition of admitting filtration in the weak sense follows [13, p. 142], and admit-
ting filtration in the strong sense follows [20, p. 201]. Clearly the latter is stronger than the
former, but the former is sufficient for proving the fmp. Indeed, by the Filtration Theorem
(see, e.g., [13, Theorem 5.23]), if (A′, V ′) is a filtration of (A, V ) through some �, then
V (ϕ) = V ′(ϕ) for all ϕ ∈ �. It follows that if a normal modal logic M admits filtration in
the weak sense, then M has the fmp. On the other hand, admitting filtration in the strong
sense ensures the finite embeddability property (see Remark 3.4).

DEFINITION 3.2. Let M be a normal modal logic and let L be a normal extension of M.

1. Suppose K and V are two classes of modal algebras with K ⊆ V . We say that K is
V-stable provided for A,B ∈ V , if B ∈ K and there is a stable embedding A � B,
then A ∈ K.

2. Let K be a class of M-algebras. We say that K is M-stable if K is V(M)-stable.
We say that K is finitely M-stable provided for every finite M-algebra A and any
B ∈ K, whenever there is a stable embedding A � B, then A ∈ K.

3. We say that L is M-stable if the variety V(L) is generated by an M-stable class.

PROPOSITION 3.3. If M is a normal modal logic that admits filtration in the strong
sense, then every M-stable logic admits filtration in the weak sense, and hence has the fmp.

Proof. Let L be M-stable. Then V(L) is generated by an M-stable class K. If L �� ϕ,
then there is A ∈ K and a valuation V on A such that A �|	 ϕ. Let Sub(ϕ) be the set of
subformulas of ϕ. Since M admits filtration in the strong sense, there is a finite M-algebra
A′ and a valuation V ′ on A′ such that (A′, V ′) is a filtration of (A, V ) through Sub(ϕ).
Because K is M-stable, A′ ∈ K. Thus, L admits filtration in the weak sense, and hence L
has the fmp. �

Roughly speaking, whenever L is M-stable and M admits filtration in the strong sense,
the fmp of L can be shown with the “same proof” as the fmp for M.

REMARK 3.4. We briefly discuss connection between M-stability and the notion of the
finite embeddability property (fep for short) [19, Sec. 6.5]. The fep is equivalent to the
finite model property for quasi-equations [16, 9], so it is a slightly stronger notion than the
fmp. If a normal modal logic M admits filtration in the strong sense, then the corresponding
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variety of modal algebras has the fep. Every M-stable class of algebras has the fep, but in
general we do not know whether the variety V(L) corresponding to an M-stable logic L has
the fep since by Definition 3.2(3), V(L) is only generated by an M-stable class and may
itself not be an M-stable class. However, if L is a normal extension of K4, then it follows
from [22, Lem. 3.23] that the notions of fmp and fmp for quasi-equations coincide. As
the fmp for quasi-equations is equivalent to the fep, we conclude that the notions of fmp
and fep coincide for normal extensions of K4. Therefore, Proposition 3.3 yields that if L is
K4-stable, then V(L) has the fep.

In what follows, we will mainly be interested in admitting filtration in the strong sense,
and will simply refer to this condition as admitting filtration.

LEMMA 3.5. Let M be a normal modal logic that admits filtration and let K be a finitely
M-stable class of M-algebras.

1. S(K) is axiomatized over SM by the stable rules of finite M-algebras.

2. U(K) = U(Kfin), where Kfin is the class of finite members of K.

Proof. (1). Suppose that K is finitely M-stable. Let A be the set of finite nonisomorphic
M-algebras that do not belong to K and let � = {ρ(A) | A ∈ A}. We show that S(K) is
axiomatized over SM by�. For this, it is sufficient to show that U(K) is exactly the class of
M-algebras satisfying�. First, we show that each member of K satisfies�. If there are B ∈
K and A ∈ A such that B �|	 ρ(A), then by Proposition 2.3, there is a stable embedding
A � B. Since K is finitely M-stable and A is finite, A ∈ K, a contradiction. Because
U(K) is generated by K, it follows that each member of U(K) satisfies �. Conversely,
suppose that an M-algebra B satisfies ρ(A) for each A ∈ A. If B �∈ U(K), then there is a
multiconclusion rule �/� such that K |	 �/� but B �|	 �/�. Let B′ be an M-filtration
of B through Sub(�∪�) with B′ �|	 �/�. Since B′ is a stable subalgebra of B, we have
B �|	 ρ(B′) by Proposition 2.3. As B satisfies ρ(A) for each A ∈ A, we see that B′ ∈ K,
so B′ ∈ U(K). But this contradicts B′ �|	 �/�. Therefore, B ∈ U(K).

(2). The inclusion U(Kfin) ⊆ U(K) is obvious. To see the reverse inclusion, let �/� be
a multiconclusion rule that is refuted in U(K). Then there is A ∈ K that refutes �/�. Let
A′ be an M-filtration of A through Sub(� ∪�). Then A′ refutes �/� and A′ ∈ K since A′
is finite and K is finitely M-stable. Thus, A′ ∈ Kfin, and so U(Kfin) refutes �/�. �

DEFINITION 3.6. Let F = (W, R) be a finite Kripke frame. We call r ∈ W a strong root of
F if r Rw for all w ∈ W .

Note that if r is a strong root, then it is reflexive. In algebraic terms, a strong root
corresponds to an atom a of a finite modal algebra A such that a ≤ �b for all 0 �= b ∈ A.

DEFINITION 3.7.

1. Let F = (W, R) be a finite Kripke frame and let r /∈ W . We set Fr = (W ′, R′)
where W ′ = W ∪ {r} and R′ = R ∪ {(r, w) | w ∈ W ′}. Figuratively speaking, Fr is
obtained by adding a strong root beneath F.

2. We say that a normal modal logic M has the (∗)-property if for each finite M-frame
F we have that Fr is also an M-frame.

If A = (A,�) is the dual algebra of F, then the dual algebra of Fr is the algebra
A′ = (A′,�′), where A′ is the Boolean algebra generated by A and a fresh atom a with
�′a = a and �′b = �b ∨ a for every atom b ∈ A. Consequently, a normal modal logic M
has the (∗)-property if for every finite M-algebra A = (A,�), the algebra A′ = (A′,�′)
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is an M-algebra. Examples of normal modal logics satisfying the (∗)-property are K, D, T,
K4, and S4. On the other hand, the logics KB, S5, and GL do not satisfy the (∗)-property.

For a class K, we let Ksi be the class of subdirectly irreducible members of K.

THEOREM 3.8. Suppose M is a normal modal logic that admits filtration and L is a normal
extension of M. The following are equivalent.

1. L is M-stable.

2. V(L) is generated by a finitely M-stable class.

3. V(L) is generated by an M-stable class of finite M-algebras.

4. L is axiomatizable over M by stable rules of finite M-algebras.

5. V(L) is generated by an M-stable universal class of M-algebras.

Moreover, if M has the (∗)-property, then the above conditions are equivalent to the fol-
lowing ones:

6. V(L) is generated by an M-stable class of finite subdirectly irreducible algebras.

7. V(L) is generated by a V(M)si-stable class.

8. V(L) is generated by a finitely M-stable class of subdirectly irreducible algebras.

Proof. The proof is similar to [3, Theorem 7.6]. The implication (1) ⇒ (2) is trivial
since every M-stable class is finitely M-stable. For the implication (2) ⇒ (3), suppose that
V(L) is generated by a finitely M-stable class K. By Lemma 3.5(2), K and Kfin generate the
same universal class, and hence they generate the same variety. Thus, V(L) is generated by
the M-stable class Kfin of finite modal algebras. The implication (3) ⇒ (2) is obvious. For
the implication (2) ⇒ (4), suppose that V(L) is generated by a finitely M-stable class K. By
Lemma 3.5(1), S(K) is axiomatized over SM by the stable rules of finite M-algebras. Since
the variety V(L) is generated by K, the same rules axiomatize L over M. For the implication
(4) ⇒ (5), suppose that L is axiomatized over M by a set � of stable rules. As validity
of stable rules is preserved by stable embeddings, the universal class U(CR(SM ∪ �)) is
M-stable. Since V(L) = V(U(CR(SM ∪�))) and because U(CR(SM ∪�)) is an M-stable
universal class, we conclude that V(L) is generated by an M-stable universal class. The
implication (5) ⇒ (1) is obvious.

Finally, suppose that M has the (∗)-property. Obviously (6)⇒ (7)⇒ (8)⇒ (2). There-
fore, it is sufficient to prove that (3) implies (6). Suppose K is a stable class of finite
M-algebras that generates V(L). It is sufficient to show that Ksi generates V(L), and for
this, it is sufficient to show that K is contained in the variety generated by Ksi. Suppose
A ∈ K. If A is subdirectly irreducible, then A ∈ Ksi, and there is nothing to prove.
Otherwise A is a subdirect product of its subdirectly irreducible homomorphic images.
Therefore, to conclude that A is in the variety generated by Ksi, it is sufficient to see
that every subdirectly irreducible homomorphic image B of A belongs to this variety.
Let B be a subdirectly irreducible homomorphic image of A. Since A is finite, so is
B. Let X = (X, R) be the dual of A and Y = (Y, R) the dual of B. Since B is
finite and subdirectly irreducible, Y is a finite rooted M-frame. Consider Yr = (Y ′, R′)
(see Definition 3.7(1)). Because M has the (∗)-property, Yr is an M-frame. Since B is
a homomorphic image of A, Y is a generated subframe of X. As A is not subdirectly
irreducible but B is, X is not rooted but Y is. So Y �= X. Define f : X → Y ′ by mapping
the points of Y to themselves and the remaining points of X to r . It is easy to see that f
is an onto stable map. Therefore, there is a stable embedding from the dual algebra B′ of
Yr to A. Since A ∈ K and K is M-stable, we conclude that B′ ∈ K. As Yr is finite and
rooted, B′ is subdirectly irreducible, and hence B′ ∈ Ksi. Now, Y is a generated subframe
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of Yr , so B is a homomorphic image of B′, and hence B belongs to the variety generated
by Ksi, as desired. �

REMARK 3.9. The definition of a normal modal multiconclusion consequence relation
M admitting filtration, the proof that such M has the fmp, the definition of M-stable
multiconclusion consequence relations and an analogue of Theorem 3.8 are proved simi-
larly, so we skip the details. M-stable multiconclusion consequence relations generalize
the stable multiconclusion consequence relations studied in [3].

For a normal modal logic M, we denote by NExtM the sublattice of the lattice of all
normal modal logics consisting of normal extensions of M.

PROPOSITION 3.10. Suppose M, L,N are normal modal logics with M ⊆ L ⊆ N.

1. If N is M-stable, then N is L-stable.

2. The converse of (1) is not true in general, i.e., if N is L-stable, then N may not be
M-stable.

3. If V(L) is a V(M)-stable class, then N is L-stable iff N is M-stable.

4. The M-stable logics form a
∧

-subsemilattice of NExtM.

Proof. (1). Since N is M-stable, V(N) is generated by an M-stable class K. As K is
M-stable, it is obviously L-stable. Thus, N is L-stable.

(2). We will see in §6 that taking M = K, L = K4, and N = S4 provides the desired
example.

(3). One implication follows from (1). For the other, suppose that N is L-stable. Then
V(N) is generated by an L-stable class K. Since V(L) is V(M)-stable, K is also V(M)-
stable. Therefore, N is M-stable.

(4). Suppose {Li | i ∈ I } is a family of M-stable logics. Then every Li is generated by
some M-stable class Ki . Clearly the class

⋃{Ki | i ∈ I } is also M-stable, and generates
V(∧{Li | i ∈ I }). �

PROBLEM 3.11. Suppose M is a normal modal logic that admits filtration. Do the
M-stable logics form a complete sublattice of NExtM? In particular, do the stable logics
form a complete sublattice of NExtK?

REMARK 3.12. For a normal modal multiconclusion consequence relation M, let
NExtM be the sublattice of the lattice of all normal modal multiconclusion consequence
relations consisting of normal extensions of M. If M admits filtration, then the M-stable
multiconclusion consequence relations do form a complete sublattice of NExtM. To see
this, let {Si | i ∈ I } be a family of M-stable multiconclusion consequence relations. Then
each Si is axiomatized over M by a set �i of stable rules of finite M-algebras. But then∨{Si | i ∈ I } is axiomatized by

⋃{�i | i ∈ I }, and hence
∨{Si | i ∈ I } is M-stable.

That
∧{Si | i ∈ I } is M-stable is proved as in Proposition 3.10(4).

The reason that the same argument does not work for M-stable logics is that if each logic
Li is axiomatizable above M by the set of rules �i , it is unclear whether

∨{Li | i ∈ I } is
axiomatizable by

⋃{�i | i ∈ I }. In algebraic terms, if Vi is the variety corresponding to Li

and Ui is the universal class of M-algebras validating �i , then Vi is generated by Ui . But it
is unclear whether

⋂{Vi | i ∈ I } is generated by
⋂{Ui | i ∈ I }.

As we will see in the next section, if M is a normal extension of K4 that admits filtration
and has the (∗)-property, then the M-stable logics do form a complete sublattice of NExtM.
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While it is unclear whether the M-stable logics form a
∨

-subsemilattice of NExtM, we
will show that the tabular M-stable logics do form a

∨
-subsemilattice of NExtM. For a

variety V , let Vsi be the class of subdirectly irreducible members of V .

PROPOSITION 3.13. Let M be a normal modal logic admitting filtration and satisfying
the (∗)-property.

1. If L is a tabular M-stable normal extension of M, then V(L)si is M-stable.

2. The tabular M-stable logics form a
∨

-subsemilattice of NExtM.

Proof. (1). Since L is M-stable, by Theorem 3.8, there is an M-stable class K of subdi-
rectly irreducible algebras that generates V(L). Since L is tabular, we may assume that K is
a finite class of finite subdirectly irreducible algebras. Let B ∈ V(L)si and let C be a stable
subalgebra of B. By Jónsson’s Lemma, B ∈ HS(K), so there is A in S(K) such that B is
a homomorphic image of A. Since C is finite, it is subdirectly irreducible by [3, Prop. 6.4].
Therefore, it is sufficient to show that C is an L-algebra. Let X be the dual of A, let Y be the
dual of B, and let Z be the dual of C. Then Y is a generated subframe of X and Z is a stable
image of Y. Since K is M-stable, so is S(K). Thus, all stable images of X are L-frames.
If X = Y, then Z is a stable image of X, and so Z is an L-frame. If X �= Y, then by the
(∗)-property, we may add a new strong root to Z to obtain an M-frame Z′. As we observed
in the proof of Theorem 3.8, Z′ is a stable image of X. Therefore, Z′ is an L-frame, and
hence so is Z. Thus, C ∈ V(L)si.

(2). Suppose {Li | i ∈ I } is a family of tabular M-stable logics. By (1), V(Li )si is
M-stable for all i ∈ I . Therefore, V(∨{Li | i ∈ I })si = ⋂{V(Li )si | i ∈ I } is M-stable.
Thus,

∨{Li | i ∈ I } is M-stable, and it is clearly tabular. �

REMARK 3.14. The proof of Proposition 3.13 uses essentially that subdirectly irre-
ducible L-algebras are finite, and does not extend directly to nontabular logics.

The next theorem shows that there are infinitely many stable logics.

THEOREM 3.15.

1. For a finite modal algebra A, let Stable(A) be the class of modal algebras that
are isomorphic to stable subalgebras of A, and let Log(Stable(A)) be the logic of
Stable(A). Then Log(Stable(A)) is a stable modal logic.

2. Every extension of S5 is a stable modal logic.

Proof. (1). Clearly Stable(A) is a stable class of finite modal algebras. Now apply
Theorem 3.8.

(2). It is well known that an S5-algebra is subdirectly irreducible iff its dual is a cluster.
It is easy to see that the class of finite clusters is a stable class. Since S5 is the logic of this
class, S5 is a stable logic by Theorem 3.8. It is also well known that for every extension L
of S5 there is n such that L is the logic of m-clusters for m ≤ n. This class is stable by the
same reasoning. Thus, every extension of S5 is stable. �

We conclude this section by showing that there are continuum many stable logics. In fact,
we will show that there are continuum many stable logics above the logic wK4 of weakly
transitive frames, where a frame F = (X, R) is weakly transitive provided x Ry, y Rz, and
x �= z imply x Rz for all x, y, z ∈ X . For our proof we will make use of Jankov formulas
for finite wK4-algebras (see [29] or [1, sec. 7.2]). For a finite subdirectly irreducible
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wK4-algebra A, let χ(A) be the Jankov formula of A. Then for a wK4-algebra B, we
have:

B �|	 χ(A) iff A is a subalgebra of a homomorphic image of B.

Dually, if F is a finite rooted weakly transitive frame and X is an arbitrary weakly transitive
space, then we have

X �|	 χ(F) iff F is a p-morphic image of a generated subframe of X.

We will often not distinguish between modal algebras and their duals. If A is a finite modal
algebra and F is its dual, then we often write ρ(F) instead of ρ(A). As usual, we denote a
reflexive point by and an irreflexive point by .

THEOREM 3.16. There is a continuum of weakly transitive nontransitive stable modal
logics.

Proof. For n ≥ 2 let Cn = (Xn, Rn) be the irreflexive n-point cluster depicted in
Figure 1; that is, Xn = {x1, . . . xn} and Rn = {(xi , x j ) ∈ Xn × Xn | i �= j}.

C2 C3 C4 C5

. . .

Fig. 1

Let N≥2 = {n ∈ N | n ≥ 2}. For I ⊆ N≥2 set,

KI = {X | ∃n ∈ I such that X is a stable image of Cn}.
It is clear that KI is a stable class of modal spaces. Let LI be the logic of KI . Since KI is
stable, LI is a stable modal logic. We show that if I �= J , then LI �= LJ . For this we first
show that n ∈ I iff χ(Cn) /∈ LI . If n ∈ I , then Cn ∈ KI , so Cn |	 LI . Clearly Cn �|	 χ(Cn),
which implies that χ(Cn) �∈ LI . Conversely, suppose that χ(Cn) �∈ LI . Since LI is the
logic of KI , there is X ∈ KI such that X �|	 χ(Cn). Therefore, Cn is a p-morphic image
of a generated subframe of X. But the only generated subframe of X is X, so KI is closed
under generated subframes. Also a p-morphic image of X is a stable image of X, and KI

is closed under stable images. Thus, Cn ∈ KI . If n /∈ I , then there is m ∈ I and an onto
stable map f : Cm � Cn . Since m = |Cm | > |Cn| = n, we see that f must identify at least
two points of Cm . Therefore, there are distinct x, y ∈ Cm with f (x) = f (y). Thus, x Rm y
and f (x)R�n f (y), which is a contradiction because f is stable. Consequently, n ∈ I , and
so n ∈ I iff χ(Cn) /∈ LI . Now, if I �= J , then without loss of generality we may assume
that there is n ∈ I \ J . Therefore, χ(Cn) ∈ LJ \ LI , and hence LI �= LJ . Since each Cn is
weakly transitive and nontransitive, we conclude that {LI | I ⊆ N≥2} is a continual family
of weakly transitive nontransitive stable logics. �

§4. Transitive M-stable logics. We next study M-stability when M is a normal ex-
tension of K4 that admits filtration and has the (∗)-property. In this case we will show
that M-stable logics are axiomatizable by stable formulas. As a corollary we derive that
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the M-stable logics form a complete sublattice of NextM. If in addition M is a normal
extension of S4, then the converse is also true, and the M-stable logics are exactly the
normal extensions of M axiomatizable by stable formulas. At the end of the section we
point out that the results of this section can be further generalized by replacing K4 with
a normal modal logic that has a master modality, admits filtration, and satisfies the (∗)-
property.

Let A = (A,�) be a K4-algebra. As usual, for a ∈ A, we set �+a = a∨�a and �+a =
a ∧�a. Then A+ = (A,�+) is an S4-algebra. Following [28, Def. 1.10], we call A well-
connected if �+a ∧ �+b = 0 implies a = 0 or b = 0. Equivalently, A is well-connected
if �+a ∨ �+b = 1 implies a = 1 or b = 1. Each subdirectly irreducible K4-algebra is
well-connected. To see this, suppose A is subdirectly irreducible and �+a ∨ �+b = 1. If
a, b �= 1, then since A is subdirectly irreducible, it has an opremum c �= 1, so a, b �= 1
implies �+a,�+b ≤ c, so �+a ∨ �+b ≤ c �= 1, a contradiction. Therefore, a = 1 or
b = 1, and hence A is well-connected. While the converse is not true in general, it is true
for finite K4-algebras.

For a class K of K4-algebras, we use the following notation:

• Ksi denotes the subdirectly irreducible members of K;
• Kfsi denotes the finite subdirectly irreducible members of K;
• Kwc denotes the well-connected members of K.

For a K4-space X = (X, R), let R+ be the reflexive closure of R. Then X+ = (X, R+)
is an S4-space. Since in a K4-space Rω = R+, we see that a K4-space is rooted iff there
is x ∈ X such that X = R+[x]. It is well known that a K4-algebra is well-connected iff its
dual K4-space is rooted.

LEMMA 4.1. Suppose A = (A,�A) and B = (B,�B) are K4-algebras. If B is well-
connected and there is a stable embedding h : A → B, then A is well-connected.

Proof. Since h is stable, we see that �Bh(a) ≤ h(�Aa) for all a ∈ A. Therefore,
�+

B h(a) ≤ h(�+
Aa) for all a ∈ A. Now, let a, b ∈ A with �+

Aa ∧ �+
Ab = 0. Then

�+
B h(a) ∧ �+

B h(b) = 0. As B is well-connected, h(a) = 0 or h(b) = 0. Since h is an
embedding, a = 0 or b = 0. Thus, A is well-connected. �

As was shown in [3, sec. 6.2], if A is a finite subdirectly irreducible K4-algebra, then the
stable rule ρ(A) = �/� can be rewritten as a formula.

DEFINITION 4.2. The stable formula of a finite subdirectly irreducible K4-algebra A is
defined as

γ (A) :=
∧

{�+γ | γ ∈ �} →
∨

{�+δ | δ ∈ �}.

If F is a finite rooted K4-frame, then we write γ (F) for the stable formula of the dual
algebra of F.

As follows from [3, Theorem 6.8], for every K4-algebra B, we have B �|	 γ (A) iff
there is a subdirectly irreducible homomorphic image C of B such that A is isomorphic to
a stable subalgebra of C. If B is well-connected, then one implication of this equivalence
can be strengthened.

LEMMA 4.3. Suppose A is a finite subdirectly irreducible K4-algebra and B is a well-
connected K4-algebra. If h : A � B is a stable embedding, then B �|	 γ (A).
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Proof. Let V be a valuation on A such that V (pa) = a, and let V ′ = h ◦ V . As in the
proof of [3, Theorem 6.8], we have that V ′(�+γ ) = 1 for all γ ∈ � and V ′(�+δ) �= 1
for all δ ∈ �. Therefore, V ′(

∧{�+γ | γ ∈ �) = 1, and since B is well-connected,
V ′(

∨{�+δ | δ ∈ �) �= 1. Thus, V ′ witnesses that B �|	 γ (A). �

EXAMPLE 4.4. The converse of Lemma 4.3 is not true in general. Let A and B be the
K4-algebras that are dual to the K4-frames F and G shown below.

F G

Clearly both F,G are rooted and F is a generated subframe of G. So A is a subdirectly
irreducible homomorphic image of B, and hence B �|	 γ (A). On the other hand, F is not a
stable image of G since an onto stable map would send the root of G to the root of F. But
the root of G is reflexive while the root of F is irreflexive, a contradiction. Thus, there does
not exist a stable embedding of A into B.

Of course, the key is that the root of F is irreflexive. The next lemma shows that this is
essential. Note that for finite K4-frames, strong roots from Definition 3.7 are the same as
reflexive roots.

LEMMA 4.5. Let F = (X, R), G = (Y, Q), and G′ = (Y ′, Q′) be finite K4-frames such
that F is a stable image of G and G is a generated subframe of G′.

1. There is a finite K4-frame F′ = (X ′, R′) such that F is a generated subframe of F′,
F′ is a stable image of G′, and the following diagram commutes.

G F

G′ F′

2. If in addition F has a strong root, then F is a stable image of G′ and the following
diagram commutes.

G F

G′

Proof. (1). If G = G′, then there is nothing to show as we can take F′ to be F. Otherwise
we let F′ be obtained by adding a strong root r to F. It is easy to see that F′ is a K4-frame
and that F is a generated subframe of F′. Moreover, the same argument as in the proof
of Theorem 3.8 yields that F′ is a stable image of G′. Furthermore, it follows from the
definition that the diagram commutes.

(2). Let f : Y → X be an onto stable map. Define g : Y ′ → X so that the restriction of
g to Y is f and g maps Y ′ \ Y to the reflexive root r of F (provided Y ′ \ Y �= ∅). Then it
is easy to see that g is an onto stable map, and that the diagram commutes. �
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We can reformulate Lemma 4.5 in algebraic terms as follows.

LEMMA 4.6. Let A, B, and B′ be finite K4-algebras such that there is a stable embed-
ding of A into B and B is a homomorphic image of B′.

1. There is a finite K4-algebra A′ such that A is a homomorphic image of A′, A′ is
isomorphic to a stable subalgebra of B′, and the following diagram commutes.

B A

B′ A′

2. If in addition A has an atom a such that a ≤ �b for all 0 �= b ∈ A, then there is a
stable embedding of A into B′ and the following diagram commutes.

B A

B′

We next build on Theorem 3.8 and obtain several more convenient characterizations
of M-stability when M is a normal extension of K4 that admits filtration and satisfies the
(∗)-property.

THEOREM 4.7. Let M be a normal extension of K4 that admits filtration and has the (∗)-
property. For a normal extension L of M, the following are equivalent.

1. L is M-stable.

2. V(L)wc is M-stable.

3. V(L)si is finitely M-stable.

4. V(L)fsi is M-stable and generates V(L).
Moreover, each M-stable logic is axiomatizable by stable formulas.

Proof. For the implication (1) ⇒ (2), assume that L is M-stable. By Theorem 3.8, V(L)
is generated by an M-stable class K of finite M-algebras.

CLAIM 4.8. For any finite subdirectly irreducible M-algebra A, if A �|	 L, then γ (A) ∈ L.

Proof. It is sufficient to prove that γ (A) �∈ L implies A |	 L. Suppose that γ (A) �∈ L.
Since K generates V(L), there is B ∈ K such that B �|	 γ (A). By [3, Theorem 6.8],
there is a subdirectly irreducible homomorphic image C of B and a stable embedding of
A into C. By Lemma 4.6(1), there is a finite K4-algebra D such that D is isomorphic
to a stable subalgebra of B and A is a homomorphic image of D. Since M has the (∗)-
property, it follows from the proof of Lemma 4.5(1) that D is an M-algebra. As K is M-
stable and B ∈ K, we have that D ∈ K. Because V(L) is closed under homomorphic
images, A ∈ V(L). Therefore, A |	 L. �

Now suppose A,B are M-algebras with B ∈ V(L)wc and there is a stable embedding
of A into B. Since B is well-connected, so is A by Lemma 4.1. If A �|	 L, then A �|	 ϕ
for some ϕ ∈ L. As M admits filtration, there is a finite M-algebra C such that C is a stable
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subalgebra of A and C �|	 ϕ. But then there is a stable embedding of C into B. Since C is
finite and well-connected, it is subdirectly irreducible. By Claim 4.8, γ (C) ∈ L. Because
there is a stable embedding of C into B, it follows from Lemma 4.3 that B �|	 γ (C), which
contradicts to B |	 L. Thus, A |	 L, so A ∈ V(L)wc, and hence V(L)wc is M-stable.

The implication (2) ⇒ (3) follows from the fact that every subdirectly irreducible
K4-algebra is well-connected and that the two notions coincide in the finite case. For
the implication (3) ⇒ (4), observe that if V(L)si is finitely M-stable, then V(L)fsi is M-
stable. By Lemma 3.5(2), V(L)si and V(L)fsi generate the same universal class, and hence
the same variety. Therefore, V(L) is generated by V(L)fsi. The implication (4) ⇒ (1) is
obvious.

Finally, we show that M-stable logics are axiomatizable by stable formulas. Suppose
that L is M-stable. Let A be the set of finite nonisomorphic subdirectly irreducible M-
algebras not belonging to V(L). We claim that L = M + {γ (A) | A ∈ A}. The inclusion
M + {γ (A) : A ∈ A} ⊆ L follows from Claim 4.8. For the reverse inclusion, let V be
the variety corresponding to M + {γ (A) : A ∈ A}. As subdirectly irreducible members
of V generate V , it is sufficient to show that each subdirectly irreducible member of V
belongs to V(L). Let B be a subdirectly irreducible member of V . If B �|	 L, then since M
admits filtration, there is a finite M-algebra B′ such that B′ is a stable subalgebra of B and
B′ �|	 L. Because B is subdirectly irreducible, it is well-connected. Therefore, B′ is well-
connected by Lemma 4.1. Thus, as B′ is finite, it is subdirectly irreducible. So B′ ∈ A.
Now, B �|	 γ (B′) by Lemma 4.3. Consequently, B �∈ V , a contradiction. This yields that
B |	 L, and hence L = M + {γ (A) | A ∈ A}. �

COROLLARY 4.9. If M is a normal extension of K4 that admits filtration and has the
(∗)-property, then the M-stable logics form a complete sublattice of NExtM.

Proof. Let {Li | i ∈ I } be a family of M-stable logics. By Theorem 4.7, each Li

is axiomatized above M by a set �i of stable formulas of finite subdirectly irreducible M-
algebras. But then

∨{Li | i ∈ I } is axiomatized by
⋃{�i | i ∈ I }, and hence

∨{Li | i ∈ I }
is M-stable. That

∧{Li | i ∈ I } is M-stable follows from Proposition 3.10(4). �
In particular, since K4 admits filtration and has the (∗)-property, we obtain

COROLLARY 4.10. Let L be a normal extension of K4. The following are equivalent.

1. L is K4-stable.

2. V(L)wc is K4-stable.

3. V(L)si is finitely K4-stable.

4. V(L)fsi is K4-stable and generates V(L).
Moreover, each K4-stable logic is axiomatizable by stable formulas, and hence the stable
K4-logics form a complete sublattice of NExtK4.

EXAMPLE 4.11. On the other hand, there exist logics above K4 that are axiomatizable
over K4 by stable formulas, but are not K4-stable logics. To see this, consider the K4-
frames F, G, and H shown below.

F H G
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We set L = K4 + γ (F). Clearly H is the only nonsingleton rooted upset of H and F is not
a stable image of H since H has a reflexive root and F has an irreflexive root. Therefore,
H |	 γ (F), and so H |	 L. Next consider the map H → G indicated in the picture above.
It is easy to see that it is a stable map from H onto G. If L were K4-stable, Theorem 4.7
would yield G |	 γ (F). However, G �|	 γ (F) as we already discussed in Example 4.4.
Thus, L is not K4-stable.

REMARK 4.12. It is of interest to study further the class of logics axiomatized by K4-
stable formulas over K4. It is not even clear whether all such logics have the fmp, which
we leave as an open question here.

In Example 4.11 it was essential that the root of F was irreflexive. We next show that
every logic that is axiomatizable over K4 by stable formulas of finite K4-frames with
reflexive roots is K4-stable. In algebraic terms we will show that a logic is K4-stable if
it is axiomatizable over K4 by stable formulas of finite K4-algebras that have an atom
a such that a ≤ �b for each b �= 0. For convenience, we call such algebras strongly
subdirectly irreducible.

PROPOSITION 4.13.

1. Let A be a finite strongly subdirectly irreducible K4-algebra. For a well-connected
K4-algebra B we have B �|	 γ (A) iff there is a stable embedding of A into B.

2. Suppose L = K4 + {γ (Ai ) | i ∈ I }, where each Ai is a finite strongly subdirectly
irreducible K4-algebra. Then L is K4-stable.

Proof. (1). The right to left direction was already proven in Lemma 4.3. For the left to
right direction, let B be a K4-algebra such that B �|	 γ (A). (Note that for this direction
it is not needed that B is well-connected.) Since K4 admits filtration, there is a finite K4-
algebra C that is a stable subalgebra of B and C �|	 γ (A). By [3, Theorem 6.8], there is a
subdirectly irreducible homomorphic image D of C and a stable embedding of A into D.
Since A is strongly subdirectly irreducible, by Lemma 4.6(2), there is a stable embedding
of A into C, and hence a stable embedding of A into B.

(2). It is immediate from (1) that the class of well-connected algebras of L is K4-stable.
Now apply Theorem 4.7. �

Since every finite subdirectly irreducible S4-algebra is strongly subdirectly irreducible,
Proposition 4.13 yields

COROLLARY 4.14. Let A be a finite subdirectly irreducible S4-algebra. For every well-
connected S4-algebra B we have B �|	 γ (A) iff there is a stable embedding of A into B.

This immediately yields that if M is a normal extension of S4 that admits filtration and
has the (∗)-property, then all logics axiomatizable over M by stable formulas of finite sub-
directly irreducible M-algebras are M-stable. Thus, we obtain the following improvement
of Theorem 4.7.

COROLLARY 4.15. Let M be a normal extension of S4 that admits filtration and has
the (∗)-property. For a normal extension L of M, the following are equivalent.

1. L is M-stable.

2. V(L) is generated by a finitely M-stable class.

3. V(L) is generated by an M-stable class of finite M-algebras.

4. L is axiomatizable over M by stable rules of finite M-algebras.
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5. V(L) is generated by an M-stable universal class of M-algebras.

6. V(L)wc is M-stable.

7. V(L)si is finitely M-stable.

8. V(L)fsi is M-stable and generates V(L).
9. L is axiomatizable over M by stable formulas of finite subdirectly irreducible M-

algebras.

In particular, since S4 admits filtration and has the (∗)-property, Corollary 4.15 is true
for S4.

REMARK 4.16. We recall (see, e.g., [34, sec. 5]) that a normal modal logic M has a
master modality if there is a compound-box [m] such that for every M-algebra A and every
a ∈ A we have [m]a ≤ �a for each compound box �. Such logics are also known under
the name of ω-transitive logics. If M is an extension of K4, then �+ acts as a master
modality. If [m] is a master modality of M, then an M-algebra A is well-connected iff
[m]a ∨ [m]b = 1 implies a = 1 or b = 1 for all a, b ∈ A.

Let A be a finite subdirectly irreducible M-algebra. Define the stable formula γ (A) of A
as

γ (A) :=
∧

{[m]γ | γ ∈ �} →
∨

{[m]δ | δ ∈ �},
where �/� is the stable rule of A.

The results of this section generalize to the following: Let M be a normal modal logic
that has a master modality, admits filtration, and satisfies the (∗)-property. For a normal
extension L of M, the following are equivalent.

1. L is M-stable.

2. The well-connected L-algebras are an M-stable class.

3. V(L)si is finitely M-stable.

4. V(L)fsi is M-stable and generates V(L).
Moreover, each M-stable logic is axiomatizable by stable formulas of finite subdirectly
irreducible M-algebras. Furthermore, the same proof as in [22, Lemma 3.23] shows that
M has the fmp iff it has the fmp for quasi-equations. Thus, as discussed in Remark 3.4,
similarly to K4-stable logics, every M-stable logic has the fep.

§5. Connection with stable superintuitionistic logics. In this section we will study
the relationship between S4-stable logics and stable superintuitionistic logics (si-logics).
We will show that the intuitionistic fragment of an S4-stable logic is a stable si-logic, and
that the least modal companion of a stable si-logic is S4-stable. We also translate axioma-
tizations of stable si-logics to axiomatizations of S4-stable logics and vice versa. We then
discuss similar connections between K4-stable logics and S4-stable logics. We summarize
our findings in Table 1. Since there are continuum many stable si-logics, our observations
allow us to show that there are continuum many S4-stable logics, and continuum many
K4-stable logics between K4 and S4.

From now on we will mainly work with frames instead of algebras to utilize their
geometric intuition. We start by recalling a few facts about intuitionistic fragments of
normal extensions of S4 and modal companions of si-logics. We follow the notation of [13,
sec. 9.6]. Let M be a normal extension of S4 and let L be a si-logic. The intuitionistic frag-
ment of M is defined as ρM := {ϕ | t (ϕ) ∈ M}, where t (ϕ) is the Gödel translation of ϕ.
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If L = ρM, then M is called a modal companion of L. It is well known that every si-logic
L has a least modal companion τL = S4 + {t (ϕ) | ϕ ∈ L}.

For an S4-frame F = (X, R) its skeleton ρF = (ρX, ρR) is obtained by modding out
the clusters of F. Clearly ρF is an intuitionistic frame. It is well known (see, e.g., [13,
Lemma 9.67]) that for every S4-frame F, we have F |	 τL iff ρF |	 L, and if F is a partial
order, then F |	 M iff F |	 ρM.

Next we recall some relevant facts from [2, sec. 6] about stable si-logics. Suppose F
and G are finite intuitionistic frames. We call F a stable image of G if there is an order
preserving map from G onto F. If F is rooted, then we denote the stable (intuitionistic)
formula of F by γ (F).2 We have G |	 γ (F) iff F is a stable image of G. A si-logic L is
stable iff L is axiomatizable by stable formulas of some finite rooted frames.

The next theorem shows that stability is preserved by least modal companions, allowing
us to translate axiomatizations of stable si-logics to axiomatizations of their least modal
companions. We will use these results in §6 to axiomatize S4-stable logics. We point out
that the greatest modal companion of a stable si-logic is not necessarily S4-stable. For
instance, the Grzegorczyk logic S4.Grz is the greatest modal companion of IPC, and we
will see in §6 that it is not S4-stable.

THEOREM 5.1.

1. Let F = (X, R) and G = (Y, R) be finite rooted S4-frames. If G is a stable image
of F, then ρG is a stable image of ρF.

2. If L is a stable si-logic, then τL is S4-stable.

3. If L = IPC + {γ (Gi ) | i ∈ I }, then τL = S4 + {γ (Gi ) | i ∈ I }.
Proof. (1). Let f : X → Y be an onto stable map. Since the quotient map πY : Y → ρY

is an onto p-morphism, the composition πY ◦ f : X → ρY is onto and stable. Define
g : ρX → ρY by g(πX (x)) = πY ( f (x)). Because πY ◦ f is stable, g is well defined, and
it is clear that g is onto and stable. Therefore, ρG is a stable image of ρF.

(2). Let L be a stable si-logic. By [2, Theorem 6.8], L has the fmp. Therefore, so does
τL (see, e.g., [13, p. 328]). Thus, τL is the logic of its finite rooted frames. We show that
this class is S4-stable. Let F be a finite rooted τL-frame and G be a finite rooted S4-frame
that is a stable image of F. Since F is a τL-frame, ρF is an L-frame. By (1), ρG is a stable
image of ρF. As L is stable, ρG |	 L. Therefore, G |	 τL, and hence the class of finite
rooted τL-frames is S4-stable. Thus, by Corollary 4.15, τL is an S4-stable logic.

(3). Let M = S4 + {γ (Gi ) | i ∈ I }. By Corollary 4.15 and (2), both τL and M are
S4-stable. Therefore, to see that τL = M, it is sufficient to check that the two logics have
the same finite rooted frames. Let F be a finite rooted S4-frame. If F �|	 τL, then ρF �|	 L,
so Gi is a stable image of ρF for some i ∈ I . Since ρF is a stable image of F, we conclude
that Gi is a stable image of F. Thus, F �|	 γ (Gi ), and hence F �|	 M. Conversely, if F �|	 M,
then Gi is a stable image of F for some i ∈ I . From (1), it follows that ρGi is a stable
image of ρF. Since Gi is partially ordered, Gi ∼= ρGi , implying that Gi is a stable image
of ρF. Thus, ρF �|	 L, and so F �|	 τL. �

Next we will show that stability is preserved by intuitionistic fragments, which will allow
us to translate axiomatizations of S4-stable logics to axiomatizations of their intuitionistic
fragments.

2 Stable formulas in the modal and intuitionistic case, while syntactically different, have similar
semantic behavior. This justifies the same name and notation in both cases. It should always be
clear from the context which formula we are working with.
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For a finite rooted S4-frame F = (X, R), let F = (X, R) be the partially ordered S4-
frame that is obtained from F by unraveling each n-cluster into an n-chain (see Figure 2);
that is, if X = C1 ∪ · · · ∪ Ck is the division of F into clusters, with Ci = {xi

1, . . . , xi
ni

},
then for all x = xi

l and y = x j
m , we have

x Ry iff

{
i = j and l ≥ m or

i �= j and x Ry,

where 1 ≤ i, j ≤ k and 1 ≤ l ≤ ni , 1 ≤ m ≤ n j . Note that xi
ni

is the root of the chain Ci

in F.

THEOREM 5.2.

1. Let F = (X, R) and G = (Y, R) be finite rooted S4-frames, with G being partially
ordered. Then F is a stable image of G iff F is a stable image of G.

2. If M is S4-stable, then ρM is stable.

3. If M = S4 + {γ (Fi ) | i ∈ I }, then ρM = IPC + {γ (Fi ) | i ∈ I }.
Proof. (1). Since F is easily seen to be a stable image of F, the implication from right to

left is obvious. Conversely, suppose that f : G → F is an onto stable map. We transform
f into a stable map f : G → F by shuffling the values of f belonging to some cluster
of F. Let Ci be a cluster of F and let Y ′ = f −1(Ci ). We view Y ′ as a subframe of G, and
define f : Y ′ → Ci by induction on the depth of points in Y ′. The idea is to map the points
of the smallest depth injectively onto the first ni − 1 points of Ci and all the other points
of Y ′ to the root xi

ni
. More precisely, suppose {y1, . . . , ym} ⊆ Y ′ are the points of depth

d and we have mapped all the points of Y ′ of smaller depth injectively onto {xi
1, . . . , xi

l }.
If m ≤ ni − l, then set f (yh) = xi

l+h for all 1 ≤ h ≤ m. If m �≤ ni − l, then define f
as before for all yl with l ≤ m − (ni − l) and map all the other points of Y ′ to xi

ni
. It is

straightforward to check that f is stable.
(2). Since M is S4-stable, it has the fmp. Therefore, so does ρM (see, e.g., [13, p. 328]).

It thus suffices to show that the finite rooted ρM-frames form a stable class. Suppose G is
a stable image of a finite rooted ρM-frame F. From F |	 ρM it follows that F |	 M. Since
M is S4-stable, G |	 M. Consequently, G |	 ρM.

(3). Since M is S4-stable, ρM is stable by (2). Let L = IPC + {γ (Fi ) | i ∈ I }. By [2,
Theorem 6.11], L is stable. Therefore, both ρM and L have the fmp, and hence it suffices
to show that the two logics have the same finite rooted frames. Suppose G is a finite rooted
partially ordered frame. If G �|	 L, then there is i ∈ I such that G �|	 γ (Fi ). Therefore, Fi
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is a stable image of G. By (1), Fi is a stable image of G. Thus, G �|	 γ (Fi ), and so G �|	 M.
Since G is a partially ordered frame, we conclude that G �|	 ρM. Conversely, if G �|	 ρM,
then G �|	 M, and hence G �|	 γ (Fi ) for some i ∈ I . Therefore, Fi is a stable image of G.
By (1), Fi is a stable image of G. Thus, G �|	 γ (Fi ), yielding that G �|	 L. �

COROLLARY 5.3.

1. A si-logic L is stable iff τL is S4-stable.

2. A S4-stable logic is the least modal companion of a si-logic iff it can be axiomatized
by stable formulas of finite rooted partially ordered S4-frames.

Proof. (1). It is well known that L = ρ τL (see, e.g., [13, Theorem 9.57]). Now apply
Theorems 5.1(2) and 5.2(2).

(2). Suppose M is the least modal companion of a si-logic L. Then M = τL, and so L =
ρM. Since M is S4-stable, L is stable by Theorem 5.2(2). Therefore, by [2, Theorem 6.11],
there are finite rooted partially ordered frames {Fi | i ∈ I } such that L = IPC + {γ (Fi ) |
i ∈ I }. Thus, M = S4 + {γ (Fi ) | i ∈ I } by Theorem 5.1(3). Conversely, if M = S4 +
{γ (Fi ) | i ∈ I } for some finite rooted partially ordered S4-frames {Fi | i ∈ I }, then
ρM = IPC+{γ (Fi ) | i ∈ I } by Theorem 5.2(3). Since Fi is partially ordered, Fi = Fi for
all i ∈ I . Therefore, τρM = IPC + {γ (Fi ) | i ∈ I } = M, and hence M is the least modal
companion of ρM. �

Next, we discuss connections between S4-stable and K4-stable logics. For a formula ϕ,
let ϕ+ be obtained from ϕ by replacing each subformula of ϕ of the form �ψ by ψ ∧�ψ .
If L = S4+� is a normal extension of S4, let L+ = K4+�+, where �+ = {ϕ+ | ϕ ∈ �}.
For a K4-space F = (X, R), define the reflexivization of F as F+ = (X, R+), where R+
is the reflexive closure of R. Then F+ is an S4-space and F |	 L+ iff F+ |	 L. Therefore,
L+ is the logic of {F | F+ |	 L} (see, e.g., [13, sec. 3.9]).

LEMMA 5.4.

1. Let F be a finite S4-frame and let G be a K4-space. Then F is a stable image of G
iff F is a stable image of G+.

2. If L = S4+{γ (Fi ) | i ∈ I }, where the Fi are S4-frames, then L+ = K4+{γ (Fi ) |
i ∈ I }.

3. If L is S4-stable, then L+ is K4-stable.

Proof. (1). Immediate since F is reflexive.
(2). By (1), Proposition 4.13(1), and Corollary 4.14, if G is a rooted K4-space, then

G |	 γ (Fi ) iff G+ |	 γ (Fi ). Therefore, G |	 L+ iff G+ |	 L iff G+ |	 {γ (Fi ) | i ∈ I } iff
G |	 {γ (Fi ) | i ∈ I }. Thus, L+ and K4 + {γ (Fi ) | i ∈ I } have the same rooted K4-spaces,
and hence the two logics coincide.

(3). If L is S4-stable, then L is axiomatizable by stable formulas of S4-frames. By (2),
L+ is axiomatized by the same stable formulas. In particular, L+ is axiomatizable by stable
formulas of frames with reflexive roots. Thus, L+ is K4-stable by Proposition 4.13(2). �

For two normal modal logics L and M, let L ∨ M denote the join of these logics in the
lattice of normal modal logics.

LEMMA 5.5. Let L be a normal extension of K4.

1. If S4 ⊆ L, then L is K4-stable iff L is S4-stable.

2. If L is K4-stable, then S4 ∨ L is S4-stable.
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3. If L = K4 + {γ (Fi ) | i ∈ I }, then S4 ∨ L = S4 + {γ (Fi ) | Fi = F+
i }.

4. If L = K4 + {γ (Fi ) | i ∈ I }, then L ⊆ S4 iff each Fi contains an irreflexive point.

Proof. (1). Observe that V(S4) is a V(K4)-stable class and apply Proposition 3.10(3).
(2). By Theorem 4.7, the rooted L-spaces are K4-stable. Therefore, the rooted (S4∨ L)-

spaces are S4-stable. Thus, S4 ∨ L is S4-stable by Corollary 4.15.
(3). Let G be a rooted S4-space. We have G |	 S4 ∨ L iff G |	 L iff G |	 γ (Fi ) for all

i ∈ I . It is obvious that G |	 γ (Fi ) for every Fi that contains an irreflexive point because
no such Fi can be a stable image of a reflexive space. Therefore, G |	 γ (Fi ) for all i ∈ I is
equivalent to G |	 γ (Fi ) for all Fi with Fi = F+

i . Thus, S4∨L = S4+{γ (Fi ) | Fi = F+
i }.

(4). First suppose that each Fi contains an irreflexive point. Then Fi �= F+
i for all i ∈ I .

Therefore, (3) implies that S4 ∨ L = S4, and hence L ⊆ S4. Conversely, suppose that
some Fi is reflexive. Since Fi �|	 L and Fi is an S4-frame, we see that L �⊆ S4. �

In Table 1, we summarize the main results of this section.

Table 1

τ ρ S4 ∨ − (−)+

preserves stability � � � �
reflects stability � - - �
IPC + {γ (Fi )}i∈I S4 + {γ (Fi )}i∈I × × ×
S4 + {γ (Fi )}i∈I × IPC + {γ (Fi )}i∈I × K4 + {γ (Fi )}i∈I

K4 + {γ (Fi )}i∈I × × S4 + {γ (Fi ) | Fi = F+
i } ×

“�” means yes; “-” means no; “×”means not applicable.

• That τ preserves and reflects stability is the content of Corollary 5.3(1).
• That ρ preserves stability follows from Theorem 5.2(3). That ρ does not reflect

stability follows from the fact that IPC is stable, S4.Grz is not S4-stable (see the
next section), and that ρ(S4.Grz) = IPC.

• That S4 ∨ − preserves stability follows from Lemma 5.5(2). It does not reflect
stability because GL ∨ S4 is the inconsistent logic, which is S4-stable, but as we
will see in the next section, GL is not K4-stable.

• That (−)+ preserves stability follows from Lemma 5.4(3). It also reflects stability
because S4 ∨ − preserves stability and for every normal extension M of S4 we
have S4 ∨ M+ = M.

• The axiomatization results follow from Theorems 5.1(3) and 5.2(3) and Lemmas
5.5(3) and 5.4(2).

We conclude this section by showing that there are continuum many K4-stable and
S4-stable logics.

THEOREM 5.6.

1. There are continuum many K4-stable logics above S4.

2. There are continuum many K4-stable logics between K4 and S4.

Proof. (1). By [2, Theorem 6.13], there are continuum many stable si-logics. Since
L �= L′ implies τL �= τL′, this together with Theorem 5.1(2) yields continuum many
S4-stable logics. By Lemma 5.5(1), these logics are also K4-stable. Thus, there are con-
tinuum many K4-stable logics above S4.

https://doi.org/10.1017/S1755020317000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000375


STABLE MODAL LOGICS 457

r

xn+1

xn

xn−1

x3

x2

x1

yn

yn−1

y3

y2

y1

Fn

r

xn+1

xn

xn−1

x3

x2

x1

yn

yn−1

y3

y2

y1

Gn

Fig. 3

(2). Consider the sequence {Fn | n ∈ N≥1}, shown in Figure 3, where N≥1 = {n ∈ N |
n ≥ 1}. By [2, Lemma 6.12], Fn is not a stable image of Fm for n �= m. We slightly modify
the sequence. For n ∈ N≥1, let Gn be the K4-frame that is obtained from Fn by making x1
irreflexive. The proof of [2, Lemma 6.12] shows that Gn is not a stable image of Gm for
n �= m.

For I ⊆ N≥1 let LI = K4 + {γ (Gn) | n ∈ I }. Since each Gn has a reflexive root,
by Proposition 4.13(2), every LI is K4-stable. As each Gn has an irreflexive point, by
Lemma 5.5(4), LI ⊆ S4 for every I ⊆ N≥1. Thus, every LI is a K4-stable logic between
K4 and S4. Finally, if n ∈ I \ J , then γ (Gn) ∈ LJ \LI , so the cardinality of {LI | I ⊆ N≥1}
is that of continuum, completing the proof. �

§6. Examples of stable, K4-stable, and S4-stable logics. In this final section, we
will give many examples (and nonexamples) of stable, K4-stable, and S4-stable logics.
Moreover, we will look at the concept of stability from the model-theoretic perspective,
especially in relation with Lyndon’s theorem.3

As we pointed out in the introduction, stable logics parallel subframe logics. It is well
known (see, e.g., [13, Theorem 11.21]) that a normal extension of K4 is a subframe logic
iff it is the logic of a class of Kripke frames closed under subframes. We start by showing
that a parallel result holds for stable logics, and more generally for M-stable logics when
M admits filtration.

PROPOSITION 6.1. Let L and M be normal modal logics with M admitting filtration.

1. L is stable iff L is the logic of a class of Kripke frames closed under stable images.

2. If M ⊆ L, then L is M-stable iff L is the logic of an M-stable class of Kripke frames.

Proof. We only show (1), the proof of (2) is an easy adaption. The left to right impli-
cation follows from Theorem 3.8. For the right to left implication, suppose L is the logic
of a class K of Kripke frames closed under stable images. We show that the corresponding

3 We are grateful to one of the referees for sharing his/her observations about the connection
between stable logics and Lyndon’s theorem, which led to the results in the first part of this
section.
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class Cm(K) := {Cm(F) | F ∈ K} of complex algebras4 is finitely stable. Let A ∈ Cm(K)
and let B be a finite stable subalgebra of A. Then A = Cm(F) for some F ∈ K and
B = Cm(G) for some finite frame G. Since B is a finite stable subalgebra of A, we see
that G is a finite stable image of F. As K is closed under stable images, G ∈ K, and hence
B ∈ Cm(K). Therefore, L is the logic of a finitely stable class of modal algebras. Thus, L
is stable by Theorem 3.8. �

We recall that a first-order formula is positive if it is built from atomic formulas via
the connectives ∧,∨ and quantifiers ∀, ∃. By Lyndon’s theorem, a consistent first-order
theory is preserved under homomorphisms iff it has a set of positive axioms (see, e.g.,
[14, Theorem 3.2.4]). For Kripke frames, homomorphisms correspond to stable maps.
Therefore, from Lyndon’s theorem and Proposition 6.1 we immediately obtain

COROLLARY 6.2. Suppose L and M are normal modal logics, M admits filtration and
is characterized by a class K of Kripke frames.

1. If L is the logic of a class of frames definable by positive formulas, then L is stable.

2. If L is the logic of a class of frames definable by positive formulas within K, then L
is M-stable.

Recall that a normal modal logic L is elementary if there is a set� of first-order formulas
such that L is the logic of the class of Kripke frames that validate all formulas in �. It is
known (see, e.g., [13, Theorem 11.26]) that a subframe logic L above K4 is elementary iff
L is the logic of a class of Kripke frames axiomatized by universal formulas.

PROBLEM 6.3. Suppose L is a stable logic. Is L elementary iff L is the logic of a class of
frames definable by positive formulas?

In relation to Problem 6.3, we do not even have an example of a stable logic (or a K4-
stable logic or an S4-stable logic) which is not elementary. We point out that there are
well-known examples of nonelementary subframe logics such as GL and S4.Grz. As we
will see in Theorem 6.11, these logics are not stable. Thus, we have the following open
problem.

PROBLEM 6.4. Is every stable logic (K4-stable logic or S4-stable logic) elementary?

Some examples of positive first-order formulas are

reflexivity: ∀x (x Rx);
seriality: ∀x∃y (x Ry);
universality: ∀x∀y (x Ry);
every world sees a reflexive world: ∀x∃y (x Ry ∧ y Ry).

The logics of the corresponding classes of Kripke frames are

T = K + �p → p;
D = K + �p → �p;
S5 = T + (��p → �p)+ (p → ��p);
KMT = K + {� ((�p1 → p1) ∧ · · · ∧ (�pn → pn)) | n ≥ 1}.

4 As usual, the complex algebra of a frame F = (X, R) is the modal algebra Cm(F) =
(℘ (X), R−1); see, e.g., [8, Def. 5.21].
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The logics T,D, and S5 are well known, and KMT is discussed in [21]. Observe that
all T-frames are reflexive and all D-frames are serial. In particular, both logics have the
property that the class of all Kripke frames is first-order definable.5 Since reflexivity and
seriality are expressed by positive formulas, both T and D are stable logics by Corollary 6.2.

The case of S5 is slightly different than that of T and D. On the one hand, having a
universal relation is expressed by a positive first-order formula, so S5 is the logic of a
class of frames definable by a positive formula, and hence S5 is stable. On the other hand,
all S5-frames do not form a stable class because equivalence relations are not preserved
by stable images.

The logic KMT is yet of a different type. As shown in [21], KMT is the logic of the
class of frames in which every world sees a reflexive world. However, not all KMT-frames
satisfy this condition. In fact, it is shown in [21] that the class of all KMT-frames is not
definable by any first-order formula. Still, it is proved in [21] that a Kripke frame is a KMT-
frame iff the successors of any world form a nonfinitely colorable subframe. This class is
closed under stable images, and hence all KMT-frames form a stable class.

By [3, Theorem 8.3], T is axiomatized by the stable rules ρ( ) and ρ( ), and D is
axiomatized by the stable rules ρ( ) and ρ( ). We next give axiomatizations of S5 and

KMT. As in the proof of Theorem 3.16, by Cn we denote the irreflexive n-cluster, and by
C′

n the frame that arises by adding a strong root rn to Cn so that xi Rrn for all 2 ≤ i ≤ n; in
other words, the strong root rn is seen by all elements of C′

n except by x1. Observe that x1
does not see a reflexive world neither in Cn nor in C′

n , and hence � := ∀x∃y (x Ry ∧ y Ry)
is refuted in both Cn and C′

n .

THEOREM 6.5.

1. S5 is axiomatized by � := {ρ( ), ρ( ), ρ( ), ρ( )}.
2. KMT is axiomatized by � := {ρ(Cn) | n ≥ 1} ∪ {ρ(C′

n) | n ≥ 1}.
Proof. (1). First, we show that a finite rooted frame validates � iff it is a (reflexive)

cluster. Since none of the frames , , , and is a cluster, and hence neither is a

stable image of a cluster, every finite cluster validates �. Conversely, suppose that F =
(X, R) is a finite rooted frame that is not a cluster. If F is a singleton, then it must be
irreflexive, so is a stable image of F, and hence F �|	 ρ( ). Suppose that F has at least two
points. If F contains an irreflexive point x , then is a stable image of F as mapping x to
the irreflexive point of and the rest to the reflexive point of is an onto stable map.
Therefore, F �|	 ρ( ). Suppose that F is reflexive. If F contains exactly two points x
and y, then without loss of generality we may assume that x Ry and y R�x . Thus, mapping
x to the root of and y to the other point of is stable and onto, and hence F �|	 ρ( ).

Suppose F has at least three points. Since F is not a cluster, without loss of generality we
may assume that there are x, y ∈ F with x R�y. Then mapping x to the top node, y to the

bottom right node, and all the other points to the bottom left node of provides an onto

stable map. This yields F �|	 ρ( ).
Now, let L be the logic axiomatized over K by �. Since S5 is the logic of finite clusters

and each such validates �, we see that L ⊆ S5. Conversely, by Theorem 3.8, L is the logic

5 Logics axiomatizable by Sahlqvist formulas always have this property.
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of a stable class of finite rooted frames. Each such must be a cluster. Therefore, S5 ⊆ L,
and hence S5 is axiomatized over K by �.

(2). First, we show that a finite frame validates � iff it satisfies the positive formula �.
Suppose that the finite frame F refutes �. Then there are n ≥ 1 and a stable onto map
f : F → Cn or a stable onto map g : F → C′

n . Since Cn and C′
n refute �, we conclude

that F refutes �. For the converse, suppose F refutes �. Then F has a node u1 such that all
successors of u1 are irreflexive. Let u2, . . . , un be the successors of u1. If F consists only
of u1, u2, . . . un , then define f : F → Cn by f (ui ) = xi for all 1 ≤ i ≤ n. If F contains at
least one other node, then define g : F → C′

n by

g(x) =
{

xi if x = ui for 1 ≤ i ≤ n,

rn otherwise.

In both cases, it is easy to see that the defined map is stable and onto. Thus, F refutes �.
Let L be the normal modal logic axiomatized over K by �. It is shown in [21] that KMT

has the fmp and a finite frame is a KMT-frame iff it satisfies �. Therefore, a finite frame
is a KMT-frame iff it validates �. Thus, since both KMT and L have the fmp and have
the same finite frames, the two logics coincide. Consequently, KMT is axiomatized over K
by �. �

We next turn our attention to examples of K4-stable logics. The examples will illustrate
that K4-stability is in a way “more frequent” than stability. Roughly speaking, the reason
is that some first-order properties become positively definable modulo transitivity and
rootedness.

We start by showing that D4 := K4∨D, S4 := K4∨T, and K4B := K4+ p → ��p are
K4-stable logics. That D4 and S4 are K4-stable is easy to see. It is well known that K4B is
the logic of symmetric K4-frames. It is straightforward to see that this class is not preserved
under stable images and hence is not definable by positive formulas. Nevertheless, K4B is
characterized by the stable class of rooted frames satisfying ∀xy (x Ry)∨∀xy (x = y), and
so K4B is a K4-stable logic. Note that the additional condition of transitivity is not needed
since the latter clause implies transitivity.

THEOREM 6.6. The following are axiomatizations of the K4-stable logics D4, S4, and
K4B in terms of stable formulas:

1. D4 = K4 + γ ( );
2. S4 = K4 + γ ( )+ γ ( );
3. K4B = K4 + γ ( ).

Proof. (1). Let X be a K4-space. It is sufficient to show that X |	 �p → �p iff
X |	 γ ( ). If X �|	 �p → �p, then there is x ∈ X such that x R�y for all y ∈ X . Therefore,
{x} is a closed generated subframe of X , and Y = ({x},∅) is a finite rooted K4-frame.
The unique map from Y onto is stable, and so we conclude that X �|	 γ ( ). Conversely,
suppose that X �|	 γ ( ). Then there is a stable map from a topo-rooted closed generated
subframe Y of X onto . This implies that Y is a singleton with no R-successors, and hence
X contains a point with no R-successors. Thus, X �|	 �p → �p.

(2). Let X be a K4-space. It is sufficient to show that X |	 p → �p iff X |	 γ ( ), γ ( ).

Suppose X �|	 γ ( ) or X �|	 γ ( ). Then there is a topo-rooted closed generated subframe Y

of X and a stable map from Y onto or . Observe that under a stable map a preimage of an
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irreflexive point has to be irreflexive. Now both of the latter frames contain an irreflexive
point, so in either case Y contains an irreflexive point. Therefore, so does X. Thus, X is
not reflexive, and so X �|	 p → �p. For the converse, suppose that x is an irreflexive
point of X. Consider the closed generated subframe Y := R+[x] of X, and let Y be the
corresponding K4-space. Clearly x is a unique root of Y. Since x /∈ R[x], there is a clopen
subset of X separating x from R[x]. Therefore, x is an isolated point of Y . Thus, Y is
topo-rooted. If Y = {x}, then the unique map from Y onto is stable, and so X �|	 γ ( ).
Otherwise, mapping x to the root of and the rest of Y to the top point of gives rise to a

stable map, and hence X �|	 γ ( ).

(3). Since K4B is a K4-stable logic, it has the fmp. Also, since K4+γ ( ) is axiomatized

over K4 by the stable formula of a finite rooted K4-frame with a reflexive root, it has
the fmp by Propositions 4.13(2) and 3.3. Therefore, it is sufficient to show that for any
finite rooted K4-frame F = (X, R), we have F |	 p → ��p iff F |	 γ ( ). Suppose

F �|	 p → ��p. Then F is not symmetric, and so there are x, y ∈ X such that x Ry but
y R�x . Define f : F → by mapping R+[y] to the top node of and the rest to the root of

. It is easy to see that f is an onto stable map. Therefore, F �|	 . Conversely, if F �|	 γ ( ),

then since F is rooted, by Proposition 4.13(1), there is a stable map from F onto . Let x

be a root of F and let y ∈ X be such that f (y) is the top point of . Since f is stable, x Ry

but y R�x . Thus, F is not symmetric. This yields that F �|	 p → ��p. �
We next provide axiomatizations of some S4-stable logics. Recall that S4Altn is S4 +

altn , where

altn := �p1 ∨ �(p1 → p2) ∨ · · · ∨ �(p1 ∧ · · · ∧ pn → pn+1).

The S4Altn-frames are the S4-frames such that each point has ≤ n alternatives; that is,

∀xx1 . . . xn+1 (
∧

1≤i≤n+1

x Rxi →
∨

1≤i< j≤n+1

xi = x j ).

Clearly, this formula is not positive. It is not hard to see that this property is not preserved
by stable maps, and hence is not definable by positive formulas. But the rooted S4Altn-
frames are the S4-frames that satisfy the positive formula

∃r∀x (r Rx) ∧ ∀x1 . . . xn+1 (
∨

1≤i< j≤n+1

xi = x j ),

implying that S4Altn is an S4-stable logic.
We already saw that S5 is a stable logic, hence an S4-stable logic. We next axiomatize

S5 and S4Altn over S4 by stable formulas.

PROPOSITION 6.7. The logics S5 and S4Altn are S4-stable. They are axiomatized over
S4 by the following stable formulas:

1. S5 = S4 + γ ( ).

2. S4Altn = S4 + γ ( ·· · ).
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Proof. (1). Since S5 = S4 ∨ K4B, this follows from Lemma 5.5 and Theorem 6.6(3)
connecting S4-stability and K4-stability.

(2). Observe that there is a stable map from a finite rooted S4-frame F onto the (n + 1)-
cluster ·· · iff the cardinality of F is greater than n. The result follows since both S4Altn
and S4 + γ ( ·· · ) have the fmp. �

We next consider the following normal extensions of S4:

S4.2 = S4 + ��p → ��p, the logic of directed S4-frames;
S4.3 = S4 + �(�p → q) ∨ �(�q → p), the logic of upward connected
S4-frames;
S4BWn = S4 + bwn , the logic of S4-frames of width ≤ n, where

bwn :=
n∧

i=0

�pi →
∨

0≤i �= j≤n

�(pi ∧ �p j );

S4BTWn , the logic of S4-frames of top width ≤ n.

The definitions of the first-order properties of S4-frames mentioned above are

(strong) directedness: ∀xuv ((x Ru ∧ x Rv) → ∃y (u Ry ∧ vRy)).
(strong) upward connectedness: ∀xuv ((x Ru ∧ x Rv) → (u Rv ∨ vRu)).

bounded width: ∀yx1 . . . xn+1

(∧
1≤i≤n+1 y Rxi → ∨

1≤i �= j≤n+1 xi Rx j

)
.

bounded top width:

∀yx1 . . . xn+1(
∧

1≤i≤n+1

y Rxi ∧
∧

1≤i≤n+1

∀z(xi Rz → z Rxi ) →
∨

1≤i �= j≤n+1

xi Rx j ).

Clearly, none of these formulas is positive. It is not hard to see that none of the properties
is preserved by stable maps, and hence is not definable by positive formulas. Nevertheless,
these logics are S4-stable. One way to see this is to look at their intuitionistic fragments.

KC = IPC + ¬p ∨ ¬¬p, the logic of weak excluded middle;
LC = IPC + (p → q) ∨ (q → p), the Gödel-Dummett logic;
BWn = IPC + ∨n

i=0(pi → ∨
j �=i p j );

BTWn = IPC + ∧
0≤i≤ j≤n ¬(¬pi ∧ ¬p j ) → ∨n

i=0(¬pi → ∨
j �=i ¬p j ).

We have that S4.2 = τKC, S4.3 = τLC, and more generally, S4BWn = τBWn and
S4BTWn = τBTWn for every n. Theorem 5.1 together with the axiomatizations provided
in [2, Theorem 7.5] then yields:

PROPOSITION 6.8. The logics S4.2 and S4.3 are S4-stable. More generally, S4BWn

and S4BTWn are S4-stable for every n. These logics are axiomatized by the following
stable formulas:

1. S4BWn = S4 + γ ( )+ γ ( ). In particular, S4.3 = S4 + γ ( )+ γ ( ).

2. S4BTWn = S4 + γ ( ). In particular, S4.2 = S4 + γ ( ).

We define K4.2 := S4.2+, K4.3 := S4.3+, K4BWn := (S4BWn)
+, K4BTWn :=

(S4BTWn)
+, and K4Altn := (S4Altn)+. Since for a K4-frame F, we have F |	 L+ iff

F+ |	 L, from the first-order characterizations of the corresponding logics above S4, we
obtain:
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• F is a K4.2-frame iff ∀xuv ((x Ru ∧ x Rv ∧ u �= v) → (∃y (u Ry ∧ vRy)∨ u Rv ∨
vRv)).

• F is a K4.3-frame iff ∀xuv ((x Ru ∧ x Rv ∧ u �= v) → (u Rv ∨ vRu)).
• F is a K4BWn-frame iff the width of F is ≤ n.
• F is a K4BTWn-frame iff the top width of F is ≤ n.
• F is a K4Altn-frame iff

∀xx1 . . . xn+1

⎛
⎝ ∧

1≤i≤n+1

x Rxi →
⎛
⎝ ∨

1≤i< j≤n+1

xi = x j ∨
∨

1≤i≤n+1

xi = x

⎞
⎠

⎞
⎠ .

REMARK 6.9. In [13], the definitions of K4.2 and K4Altn are slightly different. Namely,
K4.2 is defined as K4+dir where dir = �(�p ∧ q) → �(�p ∨ q), and K4Altn is defined
as K4 + altn for n ≥ 1. The first-order condition corresponding to dir is

∀xuv ((x Ru ∧ x Rv ∧ u �= v) → ∃y (u Ry ∧ vRy))

and the first-order condition corresponding to altn is

∀xx1 . . . xn+1 (
∧

1≤i≤n+1

x Rxi →
∨

1≤i< j≤n+1

xi = x j ).

If we define K4.2 and K4Altn as in [13], then it is no longer the case that K4.2 = S4.2+
and K4Altn = (S4Altn)+. Moreover, these logics are not K4-stable. To see that K4+dir is
not K4-stable, observe that the K4-frame validates all these logics but its stable image

refutes dir, yielding that K4+dir is not K4-stable. The same example shows that K4+alt1
is not K4-stable, and that K4 + altn is not K4-stable can be shown similarly. These facts
and Proposition 6.10 below justify our usage of the names K4.2 and K4Altn .

Clearly, none of these formulas is positive. It is not hard to see that none of the properties
is preserved by stable maps, and hence is not definable by positive formulas. In fact, the
classes of transitive frames of the logics just described are not stable. Nevertheless, all
these logics are K4-stable. One way to see this is that in all these cases the classes of their
transitive rooted frames are definable by positive formulas:

• K4.2 is characterized by transitive frames satisfying

∃r∀x (r = x ∨ r Rx) ∧ ∀uv(∃z(u Rz ∧ vRz) ∨ u = v ∨ u Rv ∨ vRu).

• K4.3 is characterized by transitive frames satisfying

∃r∀x (r = x ∨ r Rx) ∧ ∀xy (x = y ∨ x Ry ∨ y Rx).

• K4BWn is characterized by transitive frames satisfying

∃r∀x (r = x ∨ r Rx) ∧ ∀yx1 . . . xn+1

⎛
⎝ ∨

1≤i �= j≤n+1

xi Rx j ∨
∨

1≤i≤n+1

xi = r

⎞
⎠ .

• K4BTWn is characterized by transitive frames satisfying

∃r∀x (r = x ∨ r Rx) ∧ ∃m1, . . .mn∀y
∨

1≤i≤n

(y Rmi ∨ y = mi ) .
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Table 2. Axiomatizations of some K4-stable and S4-stable logics

D4 = K4 + γ ( ) S4 = K4 + γ ( )+ γ ( )

K4B = K4 + γ ( ) S5 = S4 + γ ( )

K4.2 = K4 + γ ( ) S4.2 = S4 + γ ( )

K4.3 = K4 + γ ( )+ γ ( ) S4.3 = S4 + γ ( )+ γ ( )

K4BWn = K4 + γ ( )+ γ ( ) S4BWn = S4 + γ ( )+ γ ( )

K4BTWn = K4 + γ ( ) S4BTWn = S4 + γ ( )

K4Altn = K4 + γ ( ·· · ) S4Altn = S4 + γ ( ·· · )

• K4Altn is characterized by transitive frames satisfying

∃r∀x (r = x ∨ r Rx) ∧ ∀x1 . . . xn+1

⎛
⎝ ∨

1≤i< j≤n+1

xi = x j ∨ xi = r

⎞
⎠ .

Since K4.2 = S4.2+, K4.3 = S4.3+, K4BWn = (S4BWn)
+, K4BTWn =

(S4BTWn)
+, and K4Altn = (S4Altn)+, from Proposition 6.8 and Lemma 5.4(2) we

conclude:

PROPOSITION 6.10.

1. K4BWn = K4 + γ ( )+ γ ( ). In particular, K4.3 = K4 + γ ( )+ γ ( ).

2. K4BTWn = K4 + γ ( ). In particular, K4.2 = K4 + γ ( ).

3. K4Altn = K4 + γ ( ·· · ).

In Table 2, we summarize the axiomatizations of K4-stable and S4-stable logics ob-
tained above.

Finally, as promised, we show that several well-known logics are not stable. We point out
that to prove a given logic L is not stable, it is not sufficient to show that the class of all finite
L-frames is not stable. The difficulty is in proving that L is not characterized by any stable
class of finite L-frames. Consider the following well-known logics (see, e.g., [13, p. 116]):

KB = K + p → ��p, the logic of symmetric frames;
K5 = K + ��p → �p, the logic of Eucliedean frames;
GL = K4 + �(�p → p) → �p, the logic of dually well-founded K4-frames;
S4.Grz = S4 + �(�(p → �p) → p) → p, the logic of Noetherian S4-frames;
K4.1 = K4.1+��p → ��p, the logic of K4-frames with singleton final clusters;
S4.1 = S4 ∨ K4.1, the logic of S4-frames with singleton final clusters.

THEOREM 6.11. None of the logics K4,S4,KB, and K5 is stable. Neither are the logics
GL, S4.Grz, K4.1, and S4.1. In fact, GL and K4.1 are not K4-stable and S4.Grz and
S4.1 are neither K4-stable nor S4-stable.

Proof. We start by showing that K4 is not stable. If K4 were stable, then by Theorem 3.8,
there would exist a stable class K of finite rooted K4-frames whose logic is K4. Consider
the finite rooted frames F,G and an onto stable map G � F shown below.
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G F

Note that G is transitive, but F is not. Since G is a K4-frame and G �|	 γ (G), we see that
K4 �|	 γ (G). Therefore, there is H ∈ K such that H �|	 γ (G). As G has a reflexive root, by
Proposition 4.13(1), G is a stable image of H. Thus, since K is stable, G ∈ K. The same
reasoning yields F ∈ K. But this is a contradiction as F is not transitive. Consequently, K4
is not a stable logic.

A similar reasoning gives that S4 is not a stable logic. We next show that KB is not a
stable logic. If it were, then by Theorem 3.8, there would exist a stable class K of finite
rooted KB-frames whose logic is KB.

CLAIM 6.12. There is F ∈ K containing distinct x, y that are not R-related to each
other.

Proof. Clearly the KB-model

p q

refutes bw1 = �p ∧ �q → �(p ∧ �+q) ∨ �(q ∧ �+ p). Therefore, KB �� bw1. Thus,
there is F ∈ K such that F �|	 bw1. It is easy to see that F has the desired property. �

For such an F = (X, R) define F′ = (X, R′), where R′ = R ∪{(x, y)}. Then the identity
map is a stable map from F onto F′. Since K is stable, F′ ∈ K. But this is a contradiction
as F′ is not symmetric. Thus, KB is not a stable logic.

Next, we show that K5 is not a stable logic. If K5 were stable, then there would be a
stable class K of finite rooted K5-frames whose logic is K5.

CLAIM 6.13. There is F ∈ K containing x, y such that x Ry and x R�x.

Proof. Clearly the K5-model

p

refutes the formula ϕ := p → �p ∨ �⊥. Therefore, K5 �� ϕ. Thus, there is F ∈ K such
that F �|	 ϕ. It is easy to see that F has the desired property. �

For such an F = (X, R) define F′ = (X, R′), where R′ = R ∪{(y, x)}. Then the identity
map is a stable map from F onto F′. Since K is stable, F′ ∈ K. But this is a contradiction
as F′ is not Euclidean because in an Euclidean frame every successor is reflexive. Thus,
K5 is not a stable logic.

Next we show that S4.Grz is not a stable logic. By Proposition 3.10(1), it is sufficient
to show that S4.Grz is not S4-stable. It is easy to see that the map F � G between finite
rooted S4-frames depicted below is stable.
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F G

Note that F is a S4.Grz-frame, while G is not. Therefore, by Corollary 4.15(6), S4.Grz is
not S4-stable. Thus, by Lemma 5.5(1), S4.Grz is not K4-stable.

The same argument yields that S4.1 is not S4-stable. Therefore, by Lemma 5.5(1), S4.1
is not K4-stable. Since S4.1 = S4∨K4.1, Lemma 5.5(2) yields that K4.1 is not K4-stable.
Thus, neither S4.1 nor K4.1 is stable by Proposition 3.10(1).

Finally, we show that GL is not stable. For this, it is sufficient to show that GL is not
K4-stable. It is easy to see that the map depicted below is a stable map from a finite rooted
GL-frame F onto a finite rooted K4-frame G, which is not a GL-frame.

F G

The rest of the argument is the same as in the case of S4.Grz. �
We conclude the article by providing examples that show that the classes of K4-stable

logics, transitive subframe, cofinal subframe, and union-splitting logics (these classes of
logics are discussed in detail in [13, sec. 10.5 and 11.3]) are all different.

Table 3

transitive
subframe

transitive
cofinal

subframe

K4-
stable

S4-
stable

union
K4-splitting

union
S4-splitting

S4.2 - � � � � �
S4.Grz � � - - � �
GL � � - × - ×
τL - - � � � �
K4BTW3 - � � × - ×
S4BTW3 - � � � - -

“�” means the logic belongs to the class; “-” means the logic does not belong to it; “×”means not applicable.

• By Proposition 6.8, S4.2 is S4-stable. Therefore, by Lemma 5.5(1), S4.2 is K4-
stable. It is well known that S4.2 is S4-splitting (see, e.g., [29]). Since S4 is a
union K4-splitting, it follows that S4.2 is a union K4-splitting. Finally, it is well
known that S4.2 is not a subframe logic, but it is a cofinal subframe logic (see,
e.g., [13, Sec. 9.4]).

• By Theorem 6.11, S4.Grz is neither S4-stable nor K4-stable. On the other hand, it
is well known that S4.Grz is a subframe logic (see, e.g., [13, sec. 9.4]). Therefore,
S4.Grz is a cofinal subframe logic. Finally, it is well known that S4.Grz is a union
S4-splitting (see, e.g., [12, Exm. 1.11]). Thus, S4.Grz is a union K4-splitting.
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• By Theorem 6.11, GL is not K4-stable, and it is well known that GL is not a union
K4-splitting (see, e.g., [13, Exe. 9.13]). On the other hand, it is well known that GL
is a subframe logic (see, e.g., [13, sec. 9.4]). Thus, GL is a cofinal subframe logic.

• It was shown in [4] that there is a stable si-logic L which is not a cofinal sub-
frame logic. Therefore, neither is τL. Thus, τL is not a subframe logic. By Theo-
rem 5.1(2), τL is S4-stable. Since L is a tabular logic, it is a union splitting si-logic
(see, e.g., [6, Theorem 3.4.27]). By [13, Corollary 9.64], τL is a union S4-splitting
logic, hence a union K4-splitting logic.

• It is easy to see that neither S4BTW3 nor K4BTW3 is a subframe logic. It follows
from [13, sec. 9.4 and Corollary 9.64] that S4BTW3 is a cofinal subframe logic.
Since K4BTW3 = S4BTW3

+, it follows that K4BTW3 is a cofinal subframe logic.
An adaptation of the proof of [13, Prop. 9.50] shows that K4BTW3 is not a union
K4-splitting logic and S4BTW3 is not a union S4-splitting logic. On the other
hand, by Proposition 6.8(2), S4BTW3 is S4-stable, and by Proposition 6.10(2),
K4BTW3 is K4-stable.
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