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Abstract The aim of this paper is to develop analytic techniques to deal with the monotonicity of
certain combinatorial sequences. On the one hand, a criterion for the monotonicity of the function
x
√

f(x) is given, which is a continuous analogue of a result of Wang and Zhu. On the other hand, the
log-behaviour of the functions

θ(x) = x
√

2ζ(x)Γ (x + 1) and F (x) = x

√
Γ (ax + b + 1)

Γ (cx + d + 1)Γ (ex + f + 1)

is considered, where ζ(x) and Γ (x) are the Riemann zeta function and the Euler Gamma function,
respectively. Consequently, the strict log-concavities of the function θ(x) (a conjecture of Chen et al .)
and { n

√
zn} for some combinatorial sequences (including the Bernoulli numbers, the tangent numbers, the

Catalan numbers, the Fuss–Catalan numbers, and the binomial coefficients
(2n

n

)
,
(3n

n

)
,
(4n

n

)
,
(5n

n

)
,
(5n
2n

)
)

are demonstrated. In particular, this contains some results of Chen et al ., and Luca and Stănică. Finally,
by researching the logarithmically complete monotonicity of some functions, the infinite log-monotonicity
of the sequence {

(n0 + ia)!
(k0 + ib)!(k0 + ib̄)!

}
i�0

is proved. This generalizes two results of Chen et al . that both the Catalan numbers (1/(n+1))
(2n

n

)
and

the central binomial coefficients
(2n

n

)
are infinitely log-monotonic, and strengthens one result of Su and

Wang that
(dn
δn

)
is log-convex in n for positive integers d > δ. In addition, the asymptotically infinite

log-monotonicity of derangement numbers is showed. In order to research the stronger properties of the
above functions θ(x) and F (x), the logarithmically complete monotonicity of functions

1
x
√

aζ(x + b)Γ (x + c)
and x

√√√√ρ
n∏

i=1

Γ (x + ai)
Γ (x + bi)

is also obtained, which generalizes the results of Lee and Tepedelenlioǧlu, and Qi and Li.

Keywords: monotonicity; log-convexity; log-concavity; completely monotonic functions;
infinite log-monotonicity
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1. Introduction

Let {zn}n�0 be a sequence of positive numbers. It is called log-concave (respectively,
log-convex ) if zn−1zn+1 � z2

n (respectively, zn−1zn+1 � z2
n) for all n � 1. Clearly, the
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sequence {zn}n�0 is log-concave (respectively, log-convex) if and only if the sequence
{zn+1/zn}n�0 is decreasing (respectively, increasing). Generally speaking, a sequence
will have good behaviour (for example, distribution properties, bounds by inequalities)
if it is log-concave or log-convex. In addition, sequences with log-behaviour arise often
in combinatorics, algebra, geometry, analysis, probability and statistics and have been
extensively investigated (see, for example, [3,10,15,20,23]).

Motivated by a series of conjectures of Sun [17] about the monotonicity of sequences of
the forms { n

√
zn}, and {n+1

√
zn+1/n

√
zn}, where {zn}n�0 is a familiar number-theoretic or

combinatorial sequence, for example, the Bernoulli numbers, the Fibonacci numbers, the
derangement numbers, the tangent numbers, the Euler numbers, the Schröder numbers,
the Motzkin numbers, the Domb numbers, and so on. These conjectures have recently
been investigated by some researchers (see [4,5,8,11,21]). The main aim of this paper
is to develop some analytic techniques to deal with the monotonicity of { n

√
zn} and

{n+1
√

zn+1/n
√

zn} (note that the monotonicity of {n+1
√

zn+1/n
√

zn} is equivalent to the log-
behaviour of { n

√
zn}).

Recently, Wang and Zhu [21] observed sufficient conditions that the log-behaviour of
{zn}n�0 implies the monotonicity of { n

√
zn}n�1. For example, for a positive log-convex

sequence {zn}n�0, if z0 � 1, then the sequence { n
√

zn}n�1 is increasing. Using the analytic
approach of Chen et al . [5], the following continuous analogue can be proved, whose proof
is given in § 2.

Theorem 1.1. Let N be a positive number. If f(x) is a positive increasing log-convex
function for x � N and f(N) � 1, then x

√
f(x) is strictly increasing on (N, ∞).

Remark 1.2. Theorem 1.1 can be applied to the monotonicity of { n
√

zn}n�1 for some
combinatorial sequences {zn}n�0. Some further examples and applications related to
Theorem 1.1 can be found in [5].

Thus, one may ask whether there are some analytic techniques to deal with the log-
behaviour of { n

√
zn}n�1. This is another motivation of this paper. In particular, Conjec-

ture 1.4 in the following following example is still open.

Example 1.3. Recall that the classical Bernoulli numbers are defined by

B0 = 1,

n∑
k=0

(
n + 1

k

)
Bk = 0, n = 1, 2, . . . .

It is well known that B2n+1 = 0, (−1)n−1B2n > 0 for n � 1 and

(−1)n−1B2n =
2(2n)!ζ(2n)

(2π)2n

(see, for example, [6, (6.89)]). In order to show that { n
√

(−1)n−1B2n} is increasing, Chen
et al . [5] introduced the function θ(x) = x

√
2ζ(x)Γ (x + 1), where

ζ(x) =
∑
n�1

1
nx
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is the Riemann zeta function and Γ (x) is the Euler Gamma function. Thus,

n
√

(−1)n−1B2n = θ2(2n)/4π2.

They proved that θ(x) is increasing on (6,∞). In addition, in order to get the log-
concavity of { n

√
(−1)n−1B2n}n�1, they furthermore made the following conjecture.

Conjecture 1.4 (Chen et al . [5]). The function θ(x) = x
√

2ζ(x)Γ (x + 1) is log-
concave on (6,∞).

Using some inequalities of the Riemann zeta function and the Euler Gamma function,
Conjecture 1.4 will almost be confirmed in § 3 (see Theorem 3.3). As applications, the
results of Luca and Stănică [11] on strict log-concavities of { n

√
(−1)n−1B2n}n�1 and

{ n
√

T (n)}n�1 can be verified, where T (n) are the tangent numbers.
In addition, motivated by the strict log-concavities of

n

√(
2n

n

)
and n

√
1

2n + 1

(
2n

n

)

(see [4]), the log-behaviour of the function

F (x) = x

√
Γ (ax + b + 1)

Γ (cx + d + 1)Γ (ex + f + 1)

is considered (see Theorem 3.6). As consequences, for any positive integers p � 2 and
a > c, the strict log-concavities of{

n

√
1

(p − 1)n + 1

(
pn

n

)}
n�2

and
{

n

√(
an

cn

)}
n�30

are obtained (see Corollary 3.7). For more examples, the sequences

{
n

√
1

2n + 1

(
2n

n

)}
n�1

,

{
n

√(
2n

n

)}
n�1

,

{
n

√(
3n

n

)}
n�1

,

{
n

√(
4n

n

)}
n�1

,

{
n

√(
5n

n

)}
n�1

,

{
n

√(
5n

2n

)}
n�1

are strictly log-concave.
To study the conjectures of Sun on the monotonicity of {n+1

√
zn+1/n

√
zn}, Chen et al. [4]

found a connection between the log-behaviour of { n
√

zn}n�1 and that of {zn+1/zn}n�0.
Moreover, they introduced a stronger concept as follows: define an operator R on a
sequence {zn}n�0 by

R{zn}n�0 = {xn}n�0,

where xn = zn+1/zn. The sequence {zn}n�0 is called infinitely log-monotonic if the
sequence Rr{zn}n�0 is log-concave for all positive odd r and is log-convex for all non-
negative even r. In fact, the infinite log-monotonicity is related to the logarithmically
completely monotonic function.

https://doi.org/10.1017/S001309151600016X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151600016X


530 B.-X. Zhu

Recall that a function f(x) is said to be completely monotonic on an interval I if f(x)
has derivatives of all orders on I that alternate successively in sign, that is,

(−1)nf (n)(x) � 0

for all x ∈ I and for all n � 0. If these inequalities are strict for all x ∈ I and for all
n � 0, then f(x) is said to be strictly completely monotonic. A positive function f(x) is
said to be logarithmically completely monotonic on an interval I if log f(x) satisfies

(−1)n[log f(x)]n � 0

for all x ∈ I and for all n � 1. A logarithmically completely monotonic function is
completely monotonic, but the reverse is not necessarily true (see Berg [2]). The reader
is referred to [22] for the properties of completely monotonic functions and to [13] for
a survey of logarithmically completely monotonic functions. In [4], Chen et al . found
the link between logarithmically completely monotonic functions and the infinite log-
monotonicity of combinatorial sequences. Thus, in § 4, the logarithmically complete
monotonicity of some functions related to combinatorial sequences will be considered. As
applications, for non-negative integers n0, k0, k0 and positive integers a, b, b̄, if a � b+ b̄

and −1 � k0 − (n0 + 1)b/a � 0, then the sequence{
(n0 + ia)!

(k0 + ib)!(k0 + ib̄)!

}
i�0

is infinitely log-monotonic. This generalizes two results of Chen et al . [4] that both the
Catalan numbers (1/(n + 1))

(2n
n

)
and the central binomial coefficients

(2n
n

)
are infinitely

log-monotonic, and strengthens one result of Su and Wang [16] that
(
dn
δn

)
is log-convex

in n for positive integers d > δ. In addition, the asymptotically infinite log-monotonicity
of derangement numbers is also demonstrated.

In order to research the stronger properties of the above functions θ(x) and F (x), the
logarithmically complete monotonicity of the functions

1
x
√

aζ(x + b)Γ (x + c)
and x

√√√√ρ

n∏
i=1

Γ (x + ai)
Γ (x + bi)

is also given, which generalizes one result of Lee and Tepedelenlioǧlu about the logarith-
mically complete monotonicity of

x

√
2
√

πΓ (x + 1)
Γ (x + 1/2)

,

and one result of Qi and Li about the logarithmically complete monotonicity of

x

√
aΓ (x + b)
Γ (x + c)

.
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2. Analytic results for the monotonicity of the sequence n
√

zn

This section is devoted to the proof of the analytic result Theorem 1.1.

Proof. Let y = x
√

f(x). Then one can get

y′ =
y

x

(
f ′(x)
f(x)

− log f(x)
x

)
.

In order to show that x
√

f(x) is strictly increasing, it suffices to prove that

f ′(x)
f(x)

− log f(x)
x

> 0 (2.1)

for x � N . Since f(N) � 1 and f(x) is increasing, one can derive that

log f(x)
x

� log f(x) − log f(N)
x

<
log f(x) − log f(N)

x − N
(2.2)

for x � N .
By the mean value theorem, one can obtain

log f(x) − log f(N)
x − N

=
f ′(ξ)
f(ξ)

, (2.3)

where N � ξ � x. On the other hand, it follows from log-convexity of the function f(x)
that

(log f(x))′′ =
(

f ′(x)
f(x)

)′
=

f ′′(x)f(x) − f ′(x)2

f2(x)
� 0, (2.4)

which implies that f ′(x)/f(x) is increasing. Thus, it follows that

f ′(ξ)
f(ξ)

� f ′(x)
f(x)

(2.5)

for x � ξ. Combining (2.2), (2.3) and (2.5), one can obtain (2.1). So x
√

f(x) is increasing.
�

3. Analytic results for the log-behaviour of the sequence n
√

zn

In order to deal with the log-behaviour of the sequence n
√

zn, some analytic methods will
be developed in this section. There are two main results in this section, one being the
proof of Conjecture 1.4 and the other being the log-behaviour of the function F (x).

In the proofs the following known facts are needed. It follows from [1, Theorem 8] that
the function

G0(x) = − log Γ (x) + (x − 1/2) log x − x + log
√

2π +
1

12x
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is strictly completely monotonic on (0,∞). This implies that

log Γ (x) < (x − 1/2) log x − x + log
√

2π +
1

12x
, (3.1)

(log Γ (x))′ > log x − 1
2x

− 1
12x2 , (3.2)

(log Γ (x))′′ <
1
x

+
1

2x2 +
1

6x3 . (3.3)

On the other hand, [1, Theorem 8] also says that the function

F0(x) = log Γ (x) − (x − 1/2) log x + x − log
√

2π

is strictly completely monotonic on (0,∞). So

log Γ (x) > (x − 1/2) log x − x + log
√

2π, (3.4)

(log Γ (x))′ < log x − 1
2x

, (3.5)

(log Γ (x))′′ >
1
x

+
1

2x2 . (3.6)

Thus, by combining these inequalities, one can get the next result, which will be used
repeatedly in the proofs.

Lemma 3.1. Let a > 0. Assume that h(x) = log Γ (x). If b � −1 and ax+ b � 0, then

x3
(

h(ax + b + 1)
x

)′′
� −ax + (2b + 1) log (ax + b + 1) − 3b − 3

2 + log 2π

+
b2 + b + 1/2
ax + b + 1

,

x3
(

h(ax + b + 1)
x

)′′
� −ax + (2b + 1) log (ax + b + 1) − 3b − 3 + log 2π.

Proof. By h(x) = log Γ (x), it is not hard to deduce that(
h(ax + b + 1)

x

)′′
=

a2x2h′′(ax + b + 1) − 2axh′(ax + b + 1) + 2h(ax + b + 1)
x3 .

By (3.1)–(3.3), it follows that

a2x2h′′(ax + b + 1) − 2axh′(ax + b + 1) + 2h(ax + b + 1)

� −ax + (2b + 1) log (ax + b + 1) − 3b − 3
2 + log 2π +

b2 + b + 1/2
ax + b + 1

.

In addition, by (3.4)–(3.6), one can also obtain that

a2x2h′′(ax + b + 1) − 2axh′(ax + b + 1) + 2h(ax + b + 1)

� −ax + (2b + 1) log (ax + b + 1) − 3b − 3 + log 2π.

This completes the proof. �
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In order to prove Conjecture 1.4, the next result will be used.

Lemma 3.2. Let ζ(x) =
∑

n�1 1/nx be the Riemann zeta function. Define a function
η(x) = ζ(x) − 1. The bound η(x) � 3/2x holds for all x � 4.

Proof. Since

η(x) =
1
2x

(
1 +

1
1.5x

+
1
2x

+ · · ·
)

� 1
2x

(
1 +

1
1.5x

+ 2(ζ(x) − 1)
)

� 1
2x

(1 + 1
2 + 2η(x))

for x � 4, one can get η(x) � 3/2x. �

We can obtain a partial result for Conjecture 1.4 as follows.

Theorem 3.3. The function

θ(x) = x
√

2ζ(x)Γ (x + 1)

is log-concave on (7.1,∞).

Proof. In order to show that θ(x) is log-concave on (7.1,∞), it suffices to prove that

(log θ(x))′′ =
(

log 2
x

)′′
+

(
log ζ(x)

x

)′′
+

(
log Γ (x + 1)

x

)′′

=
2 log 2

x3 +
(

log ζ(x)
x

)′′
+

(
log Γ (x + 1)

x

)′′
(3.7)

< 0.

Noting that log x <
√

x for x � 2, one has ζ ′′(x) < η(x − 1) and |ζ ′(x)| < η(x − 0.5). In
addition, it follows from log(x + 1) � x for x > 0 that log(1 + η(x)) � η(x) � 3/2x by
Lemma 3.2. Thus, for x � 7.1, it follows that

x3
(

log ζ(x)
x

)′′
= x2

(
ζ(x)ζ ′′(x) − ζ ′(x)2

ζ(x)2

)
− 2x

ζ ′(x)
ζ(x)

+ 2 log ζ(x)

<
x2ζ ′′(x)

ζ(x)
− 2xζ ′(x)

ζ(x)
+ 2 log ζ(x)

< 2.67, (3.8)

where the final inequality can be obtained by considering the monotonicity of the right-
hand function.

On the other hand, by Lemma 3.1, one can get

x3
(

log Γ (x + 1)
x

)′′
� −x + log (x + 1) − 1 + log 2π +

1
2(x + 1)

< −4.1 (3.9)

for x � 7.1.
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Thus, combining (3.7)–(3.9), one can conclude that

(log θ(x))′′ =
2 log 2

x3 +
(

log ζ(x)
x

)′′
+

(
log Γ (x + 1)

x

)′′

< 0,

as desired. This completes the proof. �

Notice that
n
√

(−1)n−1B2n =
θ2(2n)
4π2 .

Thus, it follows from the strict log-concavity of {θ(2n)}n�4 that { n
√

(−1)n−1B2n}n�4 is
strictly log-concave. In addition, it is easy to check that { n

√
(−1)n−1B2n}n�0 is strictly

log-concave for 1 � n � 4. Thus, the following result is immediate, which was conjectured
by Sun [17, Conjecture 2.15] and has been verified by Luca and Stănică [11] and Chen
et al. [4] by different methods.

Corollary 3.4. The sequence { n
√

(−1)n−1B2n}n�1 is strictly log-concave.

Now consider the tangent numbers [14, A000182]

{T (n)}n�0 = {1, 2, 16, 272, 7936, 353 792, . . . },

which are defined by

tanx =
∑
n�1

T (n)
x2n−1

(2n − 1)!

and are closely related to the Bernoulli numbers:

T (n) = (−1)n−1B2n
(4n − 1)

2n
4n

(see, for example, [6, (6.93)]). So

n
√

T (n) = 4 n
√

(−1)n−1B2n
n
√

4n − 1 n

√
1
2n

.

It is not difficult to verify that both n
√

4n − 1 and n
√

1/2n are log-concave in n (we
leave the details to the reader). The product of log-concave sequences is still log-concave.
Thus the next result, which was conjectured by Sun [17, Conjecture 3.5] and was verified
by Luca and Stănică [11] by a discrete method, is immediate.

Corollary 3.5. The sequence { n
√

T (n)}n�1 is strictly log-concave.

In order to develop analytic techniques to deal with the log-behaviour of { n
√

zn}, in
the following the log-behaviour of a function F (x) related to the Euler Gamma function
will be considered, which can be applied to some interesting binomial coefficients.
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Theorem 3.6. Given real numbers b, d, f and non-negative real numbers a, c, e,
define the function

F (x) = x

√
Γ (ax + b + 1)

Γ (cx + d + 1)Γ (ex + f + 1)
.

(i) If a > c + e, then F (x) is an asymptotically log-concave function.

(ii) Assume that a = c + e. If c � e > 0 and b < d + f + 1/2, then F (x) is an
asymptotically log-concave function. In particular, if c � 1 and b = d = f = 0,
then we have that F (x) is a log-concave function for x � 30; if c � 1, b = d = 0
and f � 1, then F (x) is a log-concave function for x � 2.

(iii) Assume that a = c + e. If c > e = 0 and b < d, then F (x) is an asymptotically
log-concave function.

(iv) If a < c + e, then F (x) is an asymptotically log-convex function.

Proof. Let h(x) = log Γ (x). By Lemma 3.1, one has

(log F (x))′′ =
(

h(ax + b + 1)
x

)′′
−

(
h(cx + d + 1)

x

)′′
−

(
h(ex + f + 1)

x

)′′

< (c + e − a)x + log
(ax + b + 1)(2b+1)

(cx + d + 1)(2d+1)(ex + f + 1)(2f+1) + 3(d + f − b)

+ 9
2 − log 2π +

b2 + b + 1/2
ax + b + 1

. (3.10)

It is easy to prove for a > c + e that

lim
x→+∞

(c + e − a)x + log
(ax + b + 1)(2b+1)

(cx + d + 1)(2d+1)(ex + f + 1)(2f+1) = −∞,

and for a = c + e that

lim
x→+∞

log
(ax + b + 1)(2b+1)

(cx + d + 1)(2d+1)(ex + f + 1)(2f+1) = −∞

if c � e > 0 and b < d + f + 1/2 or c > e = 0 and b < d. Thus, under conditions (i)–(iii),
by (3.10) one can get

lim
x→+∞

(log F (x))′′ = −∞,

implying that F (x) is an asymptotically log-concave function.
Assume that a = c + e and c � e � 1. If b = d = f = 0, then, by (3.10),

(log F (x))′′ < log
(ax + 1)

(cx + 1)(ex + 1)
+ 9

2 − log 2π +
1

2(ax + 1)

< −0.04
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for x � 30. If b = d = 0 and f � 1, then, by (3.10),

(log F (x))′′ < log
(ax + 1)

(cx + 1)(ex + 2)3
+ 9

2 − log 2π +
1

2(ax + 1)

< −0.37

for x � 2.
Finally, since the proof of (iv) is similar to that of (i), it is omitted for brevity. This

completes the proof. �

By Theorem 3.6, the next result is immediate.

Proposition 3.7. Let integers a, b, c, d, f satisfy a > c > 0 and b < d + f + 1/2.
Then the sequence {

n

√
Γ (an + b + 1)

Γ (cn + d + 1)Γ ((a − c)n + f + 1)

}
n�1

is asymptotically log-concave. In particular, { n

√(
an
cn

)
}n�30 and

{
n

√
Γ (an + 1)

Γ (cn + 1)Γ ((a − c)n + f + 1)

}
n�2

are strictly log-concave for f � 1.

For integer p � 2, Fuss–Catalan numbers [7] are given by the formula

Cp(n) =
1

(p − 1)n + 1

(
pn

n

)
=

Γ (pn + 1)
Γ (n + 1)Γ ((p − 1)n + 2)

.

It is well known that the Fuss–Catalan numbers count the number of paths in the integer
lattice Z × Z (with directed vertices from (i, j) to either (i, j + 1) or (i + 1, j)) from the
origin (0, 0) to (n, (p − 1)n) that never go above the diagonal (p − 1)x = y. Su and
Wang [16] showed that {

(
an
bn

)
}n�0 is log-convex for positive integers a > b. Thus, it is

easy to see that {Cp(n)}n�0 is log-convex. Chen et al . [4] proved that

n

√
1

2n + 1

(
2n

n

)
and n

√(
2n

n

)

are strictly log-concave. By verifying the first few terms, one can get the following corol-
lary using Corollary 3.7.

Corollary 3.8. The sequences{
n

√
1

2n + 1

(
2n

n

)}
n�1

,

{
n

√(
2n

n

)}
n�1

,

{
n

√(
3n

n

)}
n�1

,

{
n

√(
4n

n

)}
n�1

,

{
n

√(
5n

n

)}
n�1

,

{
n

√(
5n

2n

)}
n�1

,

{
n

√
Cp(n)

}
n�2

are strictly log-concave for any positive integer p � 2.
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4. Logarithmically completely monotonic functions

Since logarithmically completely monotonic functions have many applications, it is impor-
tant to know which functions have such a property. In particular, Chen et al . [4] found
the connection between logarithmically completely monotonic functions and infinite log-
monotonicity of combinatorial sequences as follows.

Theorem 4.1 (Chen et al . [4]). Assume that a function f(x) is such that [log f(x)]′′

is completely monotonic for x � 1, and an = f(n) for n � 1. Then the sequence {an}n�1

is infinitely log-monotonic.

Thus, it is very interesting to research the logarithmically complete monotonicity of
some functions related to combinatorial sequences, which is the aim of this section.

Many sequences of binomial coefficients share various log-behaviour properties (see,
for example, [16,18,19]). In particular, Su and Wang proved that

(
dn
δn

)
is log-convex in n

for positive integers d > δ. Recently, Chen et al . [4] proved that both the Catalan num-
bers (1/(n + 1))

(2n
n

)
and central binomial coefficients

(2n
n

)
are infinitely log-monotonic.

Motivated by these results, a generalization can be stated as follows.

Theorem 4.2. Let n0, k0, k0 be non-negative integers and let a, b, b̄ be positive
integers. Define the function

G(x) =
Γ (n0 + ax + 1)

Γ (k0 + bx + 1)Γ (k0 + xb̄ + 1)
.

If a � b + b̄ and −1 � k0 − (n0 + 1)b/a � 0, then (log G(x))′′ is a completely monotonic
function for x � 0. In particular,{

(n0 + ia)!
(k0 + ib)!(k0 + ib̄)!

}
i�0

is infinitely log-monotonic.

Proof. By Theorem 4.1, it suffices to show that (log G(x))′′ is a completely monotonic
function for x � 0. Let g(x) = log G(x). So

[g(x)](n) = [log Γ (n0 + ax + 1)](n) − [log Γ (k0 + bx + 1)](n) − [log Γ (k0 + xb̄ + 1)](n)

= (−1)n

∫ ∞

0

tn−1

1 − e−t
[ane−t(n0+ax+1) − bne−t(k0+bx+1) − b̄ne−t(k0+xb̄+1)] dt

= (−1)n

∫ ∞

0
antn−1e−tax

[
e−(n0+1)t

1 − e−t
− e−ta(k0+1)/b

1 − e−at/b
− e−ta(k0+1)/b̄

1 − e−at/b̄

]
dt (4.1)

since

[log Γ (x)](n) = (−1)n

∫ ∞

0

tn−1e−tx

1 − e−t
dt

for x > 0 and n � 2 (see, for example, [12, p. 16]).
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Therefore it follows from a > b > 0 that for further simplification one can define
u = k0 − (n0 + 1)b/a, p = a/b, and q = a/b̄. Clearly, 1/p + 1/q � 1. So one can deduce
that

(−1)n[g(x)](n) =
∫ ∞

0
antn−1e−t(n0+ax+1)h(t, u) dt, (4.2)

where

h(t, u) =
1

1 − e−t
− e−tp(u+1)

1 − e−pt
− euqt

1 − e−qt
.

Furthermore, one can obtain the next claim for −1 � k0 − (n0 + 1)b/a � 0.

Claim 4.3. If −1 � u � 0, then h(t, u) > 0.

Proof of Claim 4.3. It is obvious that h(t, u) is concave in u. Thus, it suffices to
show that h(t, u) > 0 for u = −1 and u = 0. Setting u = 0, since the case u = −1 can be
obtained by switching the roles of p and q, one has

h(t, 0) =
e−t

1 − e−t
− e−tp

1 − e−pt
− e−qt

1 − e−qt
.

Noting for s > 0 that the function

f(s) =
se−s

1 − e−s

strictly decreases in s and 1/p + 1/q � 1, one gets that

h(t, 0) �
(

1
p

+
1
q

)
e−t

1 − e−t
− e−tp

1 − e−pt
− e−qt

1 − e−qt

=
f(t) − f(tp)

tp
+

f(t) − f(tq)
tq

� 0.

This completes the proof of Claim 4.3. �

Thus, by (4.2) and Claim 4.3, one has (−1)n[g(x)](n) > 0, which implies that
(log G(x))′′ is a completely monotonic function. This completes the proof. �

By Theorem 4.2, the following two corollaries are immediate.

Corollary 4.4. Let n0, k0, d, δ be four non-negative integers. Define the sequence

Ci =
(

n0 + id

k0 + iδ

)
, i = 0, 1, 2, . . . .

If d > δ > 0 and −1 � k0 − (n0 + 1)δ/d � 0, then the sequence {Cn}n�0 is infinitely
log-monotonic.
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Corollary 4.5. The Fuss–Catalan sequence {Cp(n)}n�0 is infinitely log-monotonic,
where p � 2 and

Cp(n) =
1

(p − 1)n + 1

(
pn

n

)
.

The derangement number dn is a classical combinatorial number. It is log-convex and
ratio log-concave: see [10] and [5], respectively. Note that {Γ (n)}n�1 is strictly infinitely
log-monotonic (see [4]) and ∣∣∣∣dn − n!

e

∣∣∣∣ � 1
2

(4.3)

for n � 3 (see [8]), from which the following interesting result can be demonstrated.

Theorem 4.6. The sequence of the derangement numbers {dn}n�3 is asymptotically
infinitely log-monotonic.

Proof. From (4.3), one can deduce that

n!
e

− 1
2

� dn � n!
e

+
1
2
,

which implies that
Γ (n + 1) − 3

2 � edn � Γ (n + 1) + 3
2 .

Thus,

e2(dn+1dn−1 − d2
n) � [Γ (n + 2) − 1.5][Γ (n) − 1.5] − [Γ (n + 1) + 1.5]2

> 0

for n � 4, which implies that {dn}n�4 is log-convex. Note that

e4(d3
n+1dn−1 − d3

ndn+2)

� [Γ (n + 2) − 1.5]3[Γ (n) − 1.5] − [Γ (n + 1) + 1.5]3[Γ (n + 3) + 1.5]

> 0

for n � 8, which implies that R{dn}n�8 is log-concave. Because {Γ (n)}n�1 is
strictly infinitely log-monotonic, similarly, it can be proceeded to the higher-order log-
monotonicity. Thus, for any positive integer k, by the sign-preserving property of limits,
one can obtain that there exists a positive N such that the sequence Rr{dn}n�N is log-
concave for positive odd r and is log-convex for positive even r. Thus, the sequence of
the derangement numbers {dn}n�3 is asymptotically infinitely log-monotonic. �

In the following we will continue to give two kinds of logarithmically completely mono-
tonic functions. In order to consider a stronger result for Theorem 3.3, given a, b, c > 0,
define the function

θa,b,c(x) = x
√

aζ(x + b)Γ (x + c).

It is known that the Riemann zeta function ζ(x) is logarithmically completely monotonic
on (1, +∞) and the function [log Γ (x)]

′′
is completely monotonic on (0, +∞) (see [4]).

Based on these results, one can demonstrate the next theorem.

https://doi.org/10.1017/S001309151600016X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151600016X


540 B.-X. Zhu

Theorem 4.7. Let a, b, c be positive real numbers, where b � 1. If aζ(b)Γ (c) � 1, then
the reciprocal of the function θa,b,c(x) is logarithmically completely monotonic on (1,∞).

Proof. Since

log θ−1
a,b,c(x) = − log(aζ(x + b)Γ (x + c))

x
= − log a + log ζ(x + b) + log Γ (x + c)

x
,

in order to show that θ−1
a,b,c(x) is logarithmically completely monotonic on (1,∞), it

suffices to prove that
(−1)n log(n) θ−1

a,b,c(x) � 0

for all n � 1. Note that a known formula is as follows:

(
g(x)
x

)(n)

=
(−1)ng(0)n!

xn+1 + x−n−1
∫ x

0
tng(n+1)(x) dt, (4.4)

which can be easily proved by induction. Thus, one can deduce for n � 1 and x > 1 that

(−1)n log(n) θ−1
a,b,c(x)

=
−n! log aζ(b)Γ (c)

xn+1

+ x−n−1
∫ x

0
tn(−1)n+1[(log ζ(x + b))(n+1) + (log Γ (x + c))(n+1)] dt

� 0

since

log aζ(b)Γ (c) � 0, (−1)n+1(log ζ(x + b))(n+1) � 0, (−1)n+1(log Γ (x + c))(n+1) � 0.

This completes the proof. �

The next result was proved by Alzer [1].

Theorem 4.8 (Alzer [1]). Let there be non-negative sequences 0 � a1 � a2 � a3 �
· · · � an and 0 � b1 � b2 � b3 � · · · � bn. If

∑k
i=1 ai �

∑k
i=1 bi for k = 1, 2, . . . , n, then

the function
n∏

i=1

Γ (x + ai)
Γ (x + bi)

is completely monotonic on (0,∞).

On the other hand, Lee and Tepedelenlioǧlu [9] proved that the function

x

√
2
√

πΓ (x + 1)
Γ (x + 1/2)
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originating from the coding gain is logarithmically completely monotonic on (0,∞). In
addition, Qi and Li [13] considered the logarithmically complete monotonicity of

x

√
aΓ (x + b)
Γ (x + c)

.

In what follows a general result for a kind of logarithmically completely monotonic func-
tion is obtained.

Theorem 4.9. Let 0 � a1 � a2 � a3 � · · · � an, let 0 � b1 � b2 � b3 � · · · � bn, let
ρ > 0, and define the function

χ(x) = x

√√√√ρ

n∏
i=1

Γ (x + ai)
Γ (x + bi)

.

(i) If

ρ
n∏

i=1

Γ (ai)
Γ (bi)

� 1 and
k∑

i=1

ai �
k∑

i=1

bi

for k = 1, 2, . . . , n, then the function χ(x) is logarithmically completely monotonic
on (0,∞).

(ii) If

ρ

n∏
i=1

Γ (ai)
Γ (bi)

� 1 and
k∑

i=1

ai �
k∑

i=1

bi

for k = 1, 2, . . . , n, then the reciprocal of the function χ(x) is logarithmically com-
pletely monotonic on (0,∞).

Proof. Because (ii) can be obtained in a similar way, we only need to prove (i). Define
the function h(x) =

∑n
i=1 log Γ (x + ai) − log Γ (x + bi). Then

log x

√√√√ρ

n∏
i=1

Γ (x + ai)
Γ (x + bi)

=
log ρ

∏n
i=1 Γ (x + ai)/Γ (x + bi)

x
=

log ρ + h(x)
x

.

So it is not hard to get

(−1)k[log χ(x)](k) =
k!(log ρ + h(0))

xk+1 + x−k−1
∫ x

0
tk(−1)kh(k+1)(x) dt. (4.5)

If ρ
∏n

i=1 Γ (ai)/Γ (bi) � 1, then it is clear that

log ρ + h(0) � 0.

In addition, Alzer [1] proved that (−1)kh(k+1)(x) � 0 for k � 0 and x � 0. Thus,

(−1)k[log χ(x)](k) � 0,

that is, χ(x) is logarithmically completely monotonic on (0,∞). This completes the proof.
�
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Remark 4.10. If ρ = 2
√

π, a1 = 1 and b1 = 1/2, then 2
√

πΓ (1)/Γ (1/2) = 2 > 1.
So the function x

√
2
√

πΓ (x + 1)/Γ (x + 1/2) is logarithmically completely monotonic on
(0,∞) (see [9]). In addition, the case in which n = 1 in Theorem 4.9 was proved by Qi
and Li [13]. Thus, the result in Theorem 4.9 is a generalization.
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