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We consider binary coherent systems with independent binary components having
equal failure probability q. The system DOWN probability is expressed via its sig-
nature’s combinatorial analogue, the so-called D-spectrum. Using the definition of
the Birnbaum importance measure (BIM), we introduce for each component a new
combinatorial parameter, so-called BIM-spectrum, and develop a simple formula
expressing component BIM via the component BIM-spectrum. Further extension of
this approach allows obtaining a combinatorial representation for the joint reliability
importance (JRI) of two components. To estimate component BIMs and JRIs, there
is no need to know the analytic formula for system reliability. We demonstrate how
our method works using the Monte Carlo approach. We present several examples of
estimating component importance measures in a network when the DOWN state is
defined as the loss of terminal connectivity.

1. INTRODUCTION

It is well known that the so-called component important measures play crucial role in
the optimal reliability design of coherent systems. The use of Birnbaum importance
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measure (BIM) (see Barlow and Proschan [1] and Birnbaum [2]) and the joint reli-
ability importance (JRI) introduced by Hong and Lie in [5] (see also Gao, Cui and
Li [4]) is severely limited by the necessity to have an analytic expression of the system
reliability function via its component reliability values. It turns out that for the case
of the equal component reliability pi ≡ p, it is possible to develop a Monte Carlo
approximations to component BIMs and JRIs using the system combinatorial param-
eter related to the so-called structural signature (Spizzichino and Navarro [7]) and
so-called C-spectrum (Gertsbakh and Shpungin, [3, Chap. 10]). In this article we
present a systematic exposition of the combinatorial approach to finding out the BIMs
and JRIs. The exposition is as follows.

In Section 2 we present the system DOWN probability using Samaniego’s sig-
nature [6] and its combinatorial analogue, the so-called cumulative D-spectrum
(Gertsbakh and Shpungin [3]). In Section 3 we analyze the BIM and its represen-
tation via the pivotal decomposition, and we develop a combinatorial representation
of the BIMs using the so-called component BIM-spectra. We also formulate suffi-
cient conditions guaranteeing that the BIM of component i dominates the BIM of
component j for all q values.

In Section 4 we extend the approach of Section 3 to the combinatorial representa-
tion of JRI and investigate the JRI for a highly reliable system. Section 5 presents the
Taylor series second-order approximation to system reliability via component BIMs
and JRIs.

Section 6 explains how to obtain Monte Carlo approximations to the D-spectra,
the BIMs and JRIs. Finally, Section 7 presents numerical examples.

2. STRUCTURE FUNCTION, SIGNATURE, AND FORMULA
FOR P(DOWN)

Following Barlow and Proschan [1, Chapt. 1], we will consider binary coherent sys-
tems consisting of binary components. It will be assumed that we are given system
structure function [1]

ϕ(x) → {0, 1}, (1)

where x = (x1, x2, . . . , xn) is system state vector, and the xi are binary variables.
It follows from (1) that we know all system path sets K1, K2, . . . , Ka and all system

cut sets C1, C2, . . . , Cb. Denote by C(y) the number of cut sets of size y, y = 1, . . . , n,
and by K(y) the number of path sets of size y, y = 1, . . . , n.

The following is the standard definition of signature by Samaniego [6, p. 21].
Assume that the lifetimes of system’s n components are independent and identically
distributed (i.i.d.) according to the continuous distribution F. The signature s of the
system is an n-dimensional probability vector whose ith element si is equal to the
probability that the ith component failure causes the system to fail. In brief, si =
P(T = Xi:n), where T is the failure time of the system and Xi:n is the ith-order statistic
of the n component failure times.
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From here it follows Samaniego’s principal formula for the cumulative distribu-
tion function (CDF) G(t) of system lifetime T [6, p. 27]:

G(t) = P(T ≤ t) =
n∑

i=1

siP(Xi:n ≤ t), (2)

where P(Xi:n ≤ t) = F(i)(t) is the CDF of the ith order statistic.
After substituting the expression for F(i)(t) into (2), changing the order of

summation and using little algebra, (2) takes the form

G(t) =
n∑

i=1

Si · (F(t))i(1 − F(t))(n−i)n!/(i!(n − i)!), (3)

where

Si =
i∑

j=1

sj

is so called cumulative signature.
By its definition, G(t) is the probability that the system is DOWN at time t, and

F(t) is the probability that component is DOWN at time t. Denote F(t) = q and

Si · n!/(i!(n − i)!) = A(i). (4)

Then (3) takes the form

Q = P(DOWN) =
n∑

x=1

A(x)qx(1 − q)(n−x). (5)

However, from (5) it follows that A(x) must be equal C(x) because the event “the
system is DOWN” means that the system is in one of its failure states, and the measure
of one failure set with x components down and (n − x) up equals qx(1 − q)n−x. It
follows from (4) that the cumulative signature (and the signature itself) is expressed
via the number of cut sets C(x) of size x, which, in turn, is defined by the system
structure function.

In light of the above, it seems logical to use an alternative definition of signature
called structural signature by Spizzichino and Navarro [7], which is equivalent to the
notion of a D-spectrum introduced by Gertsbakh and Shpungin [3]. The D-spectrum
is defined as follows.

Imagine a random permutation π = (xi1 , xi2 , . . . , xin) of component numbers and
assume that all components are up. Start moving along π from left to right and turn
down one component after another. Let fj be the probability that the system will get
DOWN on the jth step of this process (i.e., on turning down the component ij). The
discrete density

f = (f1, f2, . . . , fn)

is called the D-spectrum (D stands for “destruction”). The space of all n! permutations
is supplied by a uniform measure, and each particular π has probability 1/n!. It is easy
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to prove that fi = si. Similarly to the cumulative signature Sj, we define the cumulative
D-spectrum as

F(x) = f1 + · · · + fx.

Let Y be the number of components needed to be turned from up to down to cause
the system get DOWN. Then, obviously, fr = P(Y = r) and

F(x) = P(Y ≤ x).

3. BIRNBAUM IMPORTANCE MEASURE AND ITS COMBINATORIAL
REPRESENTATION

In this section we present a combinatorial interpretation of the so-called BIM [2].
Suppose that a system consists of n independent components and that component i
has reliability pi, i = 1, . . . , n. Let the system reliability be

R = �(p1, p2, . . . , pn).

Component j’s BIM has been originally defined by Birnbaum [2] as

BIMj = ∂�(p1, p2, . . . , pn)

∂pj
. (6)

Taking into account the so-called pivotal decomposition (Barlow and Proschan [1]),

R = �(p1, p2, . . . , pn) = pj · �(p1, p2, . . . , 1j, . . . , pn)

+ (1 − pj)�(p1, p2, . . . , 0j, . . . , pn),

BIMj = �(p1, p2, . . . , 1j, . . . , pn) − �(p1, p2, . . . , 0j, . . . , pn). (7)

In (7), the first term is the reliability of the original system in which component j
is replaced by an absolutely reliable one, and the second term is the reliability of
the original system in which the component j is permanently down. Note also that
both reliability functions �(1j; ·) and �(0j; ·) do not depend on pj. Therefore, the
expression for BIMj remains the same for the case that is of interest to us, namely for
the case of equal component reliability pj ≡ p.

It will be more convenient to use the DOWN probability

G(p1, p2, . . . , pn) = 1 − �(p1, p2, . . . , pn)

and to rewrite (7) as

BIMj = G(p1, p2, . . . , 0j, . . . , pn) − G(p1, p2, . . . , 1j, . . . , pn). (8)

Note that for the case of qj = 1 − pj ≡ q = 1 − p, the pivotal formula for G = 1 −
R = P(DOWN) takes the form

G(p) = Q = G(p, p, . . . , p) = (1 − p) · G(p, . . . , 0j, . . . , p) + p · G(p, . . . , 1j, . . . , p).
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Let us now rewrite (5) in accordance with this pivotal decomposition. For this purpose
we note that

A(x) = A(x; 0j) + A(x; 1j),

where A(x; 0j) is the number of failure sets (cut sets) that

(i) have exactly x down components

(ii) component j is among the down components

and A(x; 1j) is the number of failure sets (cut sets) that

(i) have exactly x down components and

(ii) component j is not among the down components.

Now we can express the DOWN probability as

Q = q ·
n∑

x=1

A(x; 0j)q
x−1(1 − q)(n−x) + (1 − q)

n∑
x=1

A(x; 1j)q
x(1 − q)(n−x−1). (9)

In the second sum, the summation in fact goes up to x = n − 1 since A(n; 1j) = 0.
The crucial observation is that the first sum is nothing but G(p, . . . , 0j, . . . , p)

because the probabilistic measure of the cut set A(x; 0j) equals q(x−1)p(n−x). By a
similar reason, the second sum equals G(p, . . . , 1j, . . . , p).

Let us now connect A(x; 0j) and A(x; 1j) with the cumulative spectrum. Recall-
ing the definition of random variable Y in the end of previous section, we see that
the probability that system is DOWN when x components are down splits into two
probabilities

F(x; 0j) = P((Y ≤ x)
⋂

(component j is down)) (10)

and

F(x; 1j) = F(x) − F(x; 0j) = P((Y ≤ x)
⋂

(component j is up)). (11)

Therefore,

A(x; 0j) = F(x; 0j)
n!

x!(n − x)! , A(x; 1j) = F(x; 1j)
n!

x!(n − x)! . (12)

Collecting all together, we arrive at the expression for BIMj.

Claim 1:

BIMj = n!
[

n∑
x=1

F(x; 0j)q
x−1(1 − q)(n−x)/(x!(n − x)!)

−
n∑

x=1

(F(x) − F(x; 1j))q
x(1 − q)(n−x−1)n!/(x!(n − x)!)

]
. (13)
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We will call the collection F(x; 0j), x = 1, 2, . . . , n, the BIM-spectrum of com-
ponent j. We note that the BIM of a component depends on its BIM-spectrum and on
the q value.

Comparing (13) for i and j �= i, we arrive at the following claim.

Claim 2 [3, p. 145]: If

F(x; 0i) ≥ F(x; 0j) for all x = 1, 2, . . . , n,

then for all q ∈ (0, 1),

BIMi ≥ BIMj. (14)

In words—if the BIM-spectrum of component i dominates the BIM-spectrum of
component j, i is more important than j, regardless of the values of q.

4. JOINT RELIABILITY IMPORTANCE

Joint reliability importance (JRI) for two components have been introduced by Hong
and Lie [5] as a measure of how components interact in determining system reliability.
JRI for components i and j is defined as

JRI(i, j) = ∂2�(p)

∂pi ∂pj
.

Using the pivotal formula [1] and the expression (8) for BIMj, it is easy to obtain the
expression

JRI(i, j) = G(1i, 0j; p) + G(0i, 1j; p) − G(0i, 0j; p) − G(1i, 1j; p), (15)

where G(δi, δj; p) is the probability that the system is DOWN when its component i
is in the state δi and component j is in the state δj; δ(·) = 1(0) if the corresponding
component is in the up or down state, respectively. A similar formula has been derived
by Gao et al. in [4].

Now, we follow the main steps that led to Claim 1. First, we turn to (5) and present
A(x) in the following form:

A(x) = A(x; 1i, 0j) + A(x; 0i, 1j) + A(x; 0i, 0j) + A(x; 1i, 1j). (16)

Here A(x; 1i, 0j) is the number of failure sets (cut sets) that

(i) have exactly x down components

(ii) component i is not among the down components

(iii) component j is among the down components.
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A(x; 0i, 1j) is the number of failure sets (cut sets) that

(i) have exactly x down components

(ii) component i is among the down components

(iii) component j is not among the down components.

A(x; 0i, 0j) is the number of failure sets (cut sets) that

(i) have exactly x down components

(ii) component i is among the down components

(iii) component j is among the down components.

A(x; 1i, 1j) is the number of failure sets (cut sets) that

(i) have exactly x down components

(ii) component i is not among the down components

(iii) component j is not among the down components.

Now, rewrite (5) in accordance with the above representation of A(x):

Q = qp
n∑

x=1

A(x; 1i, 0j)q
x−1p(n−x−1) + qp

n∑
x=1

A(x; 0i, 1j)q
x−1p(n−x−1)

+ q2
n∑

x=1

A(x; 0i, 0j)q
x−2p(n−x) + p2

n∑
x=1

A(x; 1i, 1j)q
xp(n−x−2). (17)

For the sake of symmetry we left x running from 1 to n in all four sums, but
we keep in mind that A(n; 1i, 0j) = A(n; 0i, 1j) = A(1; 0i, 0j) = 0, and A(n; 1i, 1j) =
A(n − 1; 1i, 1j) = 0.

Similarly to the reasoning following (9), we observe that the first
sum in (17) equals G(p, . . . , p, 1i, . . . , 0j, . . . , p), the second sum equals
G(p, . . . , p, 0i, . . . , 1j, . . . , p), the third sum equals G(p, . . . , p, 0i, . . . , 0j, . . . , p), and
the last sum is G(p, . . . , p, 1i, . . . , 1j, . . . , p).

Now, similarly to the previous decomposition of F(x) (10) and (11), we define

F(x; 1i, 0j) = P((Y ≤ x)
⋂

(component i is up)
⋂

(component j is down)),

F(x; 0i, 1j) = P((Y ≤ x)
⋂

(component i is down)
⋂

(component j is up)),

F(x; 0i, 0j) = P((Y ≤ x)
⋂

(component i is down)
⋂

(component j is down)),

and

F(x; 1i, 1j) = P((Y ≤ x)
⋂

(component i is up)
⋂

(component j is up)).
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Now, we can represent

F(x) = F(x; 1i, 0j) + F(x; 0i, 1j) + F(x; 0i, 0j) + F(x; 1i, 1j). (18)

Finally, we conclude that

A(x; 1i, 0j) = F(x; 1i, 0j)
n!

x!(n − x)! ; A(x; 0i, 1j) = F(x; 0i, 1j)
n!

x!(n − x)! ;

A(x; 0i, 0j) = F(x; 0i, 0j)
n!

x!(n − x)! ; A(x; 1i, 1j) = F(x; 1i, 1j)
n!

x!(n − x)! .

(19)

Note that, for example, A(x; 0i, 0j) · (n!/(x!(n − x)!))−1 is the probability that a ran-
domly chosen set of x components from n components is a failure set having x
components and components i and j present in this set, exactly in accord with the
definition of F(x; 0i, 0j).

Collecting all together, we arrive at the following claim.

Claim 3:

JRI(i, j) = n!
[

n∑
x=1

F(x; 1i, 0j)q
x−1p(n−x−1)/(x!(n − x)!)

+
n∑

x=1

F(x; 0i, 1j)q
x−1p(n−x−1)/(x!(n − x)!)

−
n∑

x=1

F(x; 0i, 0j)q
x−2p(n−x)/(x!(n − x)!)

−
n∑

x=1

F(x; 1i, 1j)q
xp(n−x−2)/(x!(n − x)!)

]
. (20)

Unfortunately, rather a complicated form of the JRI makes it not possible to find in a
general form a simple sufficient condition of dominance of JRI(i, j), over JRI(i, s), s �= j,
uniformly with respect to q. There is, however, a possibility to investigate the behavior
of the JRI for small values of q (i.e., for highly reliable systems).

Assume that q → 0. Then pm = (1 − q)m = 1 − qm + o(q). Let xmin ≥ 2 be the
size of the minimal min-cut set in the system. The main contribution to JRI(i, j) will
be made by the terms with the lowest degrees of q (i.e., by the first terms in the sums
of formula (20)). We arrive, therefore, at Claim 4.

Claim 4: The main term in the asymptotic representation of JRI(i, j) as q → 0 is

JRI(i, j) = {[A(xmin; 1i, 0j) + A(xmin; 0i, 1j)]q(xmin−1)

+ A(xmin + 1; 0i, 0j)q
(xmin−1)}(1 + o(1)). (21)
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Let us illustrate this claim by an example considered in Hong and Lie [5]. The article
studies an s-t network with 12 edges and 8 nodes. Consider its JRI(3,12). The network
has one min-cut of minimal size xmin = 2 of edges (11,12) and two cuts of size 3
containing edge 12, namely (3,9,12) and (3,11,12). By (21),

JRI(3,12) = 1 · q − 2 · q + o(q) ≈ −q.

It exactly coincides with the value of JRI(3,12) given in [5] (p. 21, last column of Table
2), which has been computed by an exact enumeration.

5. SECOND-ORDER APPROXIMATIONTO SYSTEM RELIABILITY

Let us return to the reliability function �(p1, p2, . . . , pn) = R(p) of a coherent sys-
tem with independent components. Suppose that we have the possibility to increase
the reliability of components 1 and 2 by �p1 and �p2, respectively. Let us present
the second-order approximation to the reliability of the “reinforced” system via the
Taylor series. The standard expression well known from calculus can be considerably
simplified if we take into account that all second derivatives of type

∂2R

∂2pi
= 0.

It follows directly from (7). Taking this into account and the definitions of BIMj and
JRI(i, j), we can write the Taylor expansion as

R(p1 + �p1, p2 + �p2; p3, . . . , pn)

≈ R(p1, p2, . . . , pn) + BIM1 · �p1 + BIM2 · �p2 + JRI(1,2) · �p1 · �p2. (22)

Several simple recommendations follow from this formula.

1. If a single component is reinforced, the best result is achieved by replacing
component r which has the largest value of BIMr · �pr .

2. If two components i and j are reinforced, all components have the same BIMs,
and �pi, i = 1, 2, . . . , n are the same, then the best choice of the (i, j) pair is
determined by the maximal value of their JRI.

We will illustrate the use of these recommendations in Example 2.

6. MONTE CARLO APPROXIMATIONTOTHE BIM-SPECTRA AND JRI

In [3] we have described a Monte Carlo (MC) algorithm for approximating the system
D-spectrum (signature). It works as follows. To estimate F(x), we simulated M random
permutations π = (i1, i2, . . . , in) of component numbers and imitated a sequential
destruction of components by moving along a permutation from left to right and by
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counting the number Ni of such permutations that the system went DOWN on the ith
step of the destruction process. Afterward, as an MC estimate of F(x) was taken the
quantity

F̂(x) = (N1 + · · · + Nx)/M.

To obtain an MC estimate of F(x; 1j), we modify the above described procedure
and split the sum

∑x
i=1 Ni = M(x) as M(x; 0j) + M(x; 1j), where the first term is the

number of permutations such that the system went DOWN during the first x failures
and component j was among these x components, and the second term equals the
number of permutations where j was missing in the first x components. Then

F̂(x; 0j) = M(x; 0j)/M, F̂(x; 1j) = M(x; 1j)/M.

The MC procedure for approximating the JRI is quite similar. M(x) is split into four
terms:

M(x) = M(x; 0i, 1j) + M(x; 1i, 0j) + M(x; 0i, 0j) + M(x; 1i, 1j)

and

F̂(x; 1i, 0j) = M(x; 1i, 0j)/M, F̂(x; 0i, 1j) = M(x; 0i, 1j)/M,

F̂(x; 0i, 0j) = M(x; 0i, 0j)/M, F̂(x; 1i, 1j) = M(x; 1i, 1j)/M.

7. EXAMPLES

Example 1 (Terminal connectivity of a cubic network): Consider the hypercube H3

network shown in Figure 1. Elements subject to failure are the edges. Nodes 1, 3, and

1

2 3

4

5

6 7

81

2

3

4

5

6

7

8

9

10

11

12

FIGURE 1. H3 network. Nodes 1, 6, and 3 are terminals. First group edges is shown
by bold lines; second group edges is shown by thin lines and third group edges are
shown by dotted lines.
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TABLE 1. Simulated BIM-spectra for Nodes 1, 7,
and 10. M = 10, 000 replications

x F(x; 01) F(x; 07) F(x; 010)

3 0.0041 0.0040 0.0000
4 0.0322 0.0282 0.0112
5 0.1316 0.1209 0.0788
6 0.3476 0.3287 0.2684
7 0.5288 0.5047 0.4652
8 0.6572 0.6387 0.6285
9 0.7463 0.7480 0.7413

10 0.8319 0.8355 0.8344
11 0.9140 0.9185 0.9195
12 1 1 1

6 are terminals. Network failure is defined as the loss of terminal connectivity. The UP
state is therefore the situation when all three terminals are connected to each other.

As follows from Claim 2, for ranking elements by their BIMs, it is sufficient
to compare their BIM-spectra. Table 1 presents the estimated BIM-spectra for three
edges 1, 7, and 10, based on M = 10, 000 Monte Carlo replications. It is seen from
Table 1 that for all x, except for for x = 10, 11, F(x; 01) > F(x; 07) > F(x; 010). The
statistical error for x = 10 in the case of M = 10, 000 replications is of magnitude
±0.010. So, it may be assumed that the violation of domination for x = 10, 11 by
0.004 is due to a random errors.

Therefore, comparing these three edges, we can conclude that edge 1 is the “most
important,” edge 7 is the “second important,” and edge 10 is the less important. We
write it as

1 	 7 	 10.

Analyzing the BIM-spectra of all 12 edges of the network, we arrive at the conclusion
that there are 3 groups of edges ranked by their importance. The first group consists
of equally important edges 1, 4, and 5. In the second group, there are six equally
important edges 2, 3, 6, 7, 9, and 11, and in the third group, the three edges 8, 10, and
12 of equal importance:

{1, 4, 5} 	 {2, 3, 6, 7, 9, 11} 	 {8, 10, 12}.
This ranking has a clear intuitive explanation. Indeed, the edges from the first group
have the common property: One node of each edge is a terminal and the second is
on the distance 1 from two other terminals. In the second group, one node of each
edge is some terminal and the second is on the distance 1 from one terminal node. All
other edges are in the third group. If two components can be reinforced, then it seems
plausible to choose them from the first group and follow the above recommendations
about second derivatives; see Section 4.

For q = 0.35, the probability of terminal connectivity equals R0 = 0.7670. Sup-
pose that we decide to reinforce edges 1 and 4 (first group) by 0.1; that is, their
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reliability will be raised to 0.75 from 1 − q = 0.65. Using the data on BIM-spectra for
edges 1 and 4 and formula (13), we find that for q = 0.35, BIM1 = 0.204 ≈ BIM4 =
0.202. The calculations using (20) show that JRI(1,4) = −0.185. Then using the Taylor
series approximation (22), we find out that the probability R0 will increase by

�R ≈ BIM1 · 0.1 + BIM4 · 0.1 + JRI(1,4) · 0.12 ≈ 0.0388 ≈ 0.04,

which is a 4% increase. This is slightly more accurate result that would have been
obtained without taking into account the JRI(1,4).

Example 2 (a bridge structure): Consider a bridge structure. It has five edges: 1 =
(s, a), 2 = (s, b), 3 = (a, b), 4 = (a, t), and 5 = (b, t). Edges are subject to failure and
system failure is the loss of the s − t connection.

The reliability of the bridge is given by a well-known formula (see, e.g., Barlow
and Proschan [1]):

R = p1p3p5 + p2p3p4 + p2p5 + p1p4 −
5∑

r=1

(
5∏
1

pi

)
/pr + 2

5∏
1

pi.

Assume that all pi = p. It is easy to check that components (1, 2, 4, 5) have the same
BIM values and that (BIM)1 > (BIM)3. Let us take any subset of three components
(e.g., the edges 1, 2, and 5). It is easy to compare their JRIs:

JRI(2,5) = 1 − 3p2 + 2p3 > JRI(1,5) = p − 3p2 + 2p3 > JRI(1, 2) = −3p2 + 2p3.

From here it follows that if one component is reinforced, it is to be taken (if all �pi are
the same) from the group (2, 4, 5). The best choice of a pair of components is (2, 5).
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