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We present a depth-integrated equation for the mechanics of generation, propagation
and dissipation of low-frequency hydro-acoustic waves due to sudden bottom
displacement in a weakly compressible ocean overlying a weakly compressible
viscous sediment layer. The model is validated against a full 3D computational
model. Physical properties of these waves are studied and compared with those
for waves over a rigid sea bed, revealing changes in the frequency spectrum and
modal peaks. The resulting model equation can be used for numerical prediction in
large-scale domains, overcoming the computational difficulties of 3D models while
taking into account the role of bottom dissipation on hydro-acoustic wave generation
and propagation.
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1. Introduction

Hydro-acoustic waves generated by tsunamigenic ground motions travel at close
to the speed of sound in water, much faster than the accompanying tsunami gravity
waves. Their detection can therefore provide a component of the warning process
for the following tsunami and are expected to leave a measurable signature on
bottom-pressure records (Hendin & Stiassnie 2013). Several investigations have
been carried out (Nosov 1999; Chierici, Pignagnoli & Embriaco 2010; Stiassnie
2010; Cecioni et al. 2014b) to study the physical characteristics of hydro-acoustic
waves, clarifying that there exists a relationship between these acoustic waves and
the tsunamigenic source. For instance, hydro-acoustic waves helped to identify the
1998 Papua New Guinea tsunami source as a landslide (Synolakis et al. 2002).
Stiassnie (2010) found an analytical expression for the case of a rigid constant
seabed. Later, Kadri & Stiassnie (2012) analysed pressure wave propagation for the
case of a step-like discontinuity. Besides the work on pressure waves resulting from
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tsunamigenic ground motions, Renzi & Dias (2014) have proposed a theory for
hydro-acoustic waves generated by surface pressure disturbances due to storms.

Simulation of hydro-acoustic waves in realistic domains requires the use of
an arbitrary seabed geometry h(x, y, t). Nosov & Kolesov (2007) have used a
three-dimensional (3D) numerical model to study the Tokachi Oki 2003 tsunami
event. Since using a 3D model in a large-scale domain is computationally expensive,
Sammarco et al. (2013) have proposed a hyperbolic mild-slope equation for weakly
compressible fluids. The model was successfully verified against a 3D numerical
model and the analytical solution of Stiassnie (2010), and has subsequently been
used to simulate hydro-acoustic wave fields over real bathymetry for two historical
catastrophic earthquake scenarios in the Mediterranean Sea (Cecioni et al. 2014a).
Abdolali et al. (2015) modelled the Haida Gwaii 2012 tsunami event using the
depth-integrated model and found good agreement with observed data for the gravity
wave (tsunami) mode. However, due to lack of knowledge about spatiotemporal sea
bed deformation and, more importantly, neglecting the role of the underlying sediment
layer, they could not successfully reproduce the hydro-acoustic wavefield.

In this paper, we extend the mild-slope formulation of Sammarco et al. (2013) to
include the effects of dissipation by a viscous, compressible sediment layer. Section 2
provides an overview of results motivating the need to include compressibility effects
in the sediment layer. Section 3 describes the derivation of the depth integrated model
in the mild-slope approximation. Verification of the depth-integrated model is carried
out for constant and varying geometries against a fully 3D model in § 4. Conclusions
are given in § 5.

2. The role of the sediment layer

The role of a porous sea bed in attenuating hydro-acoustic waves has been
investigated by Chierici et al. (2010). They proposed two theoretical solutions for
constant water depth, the first based on compressible sea water and an incompressible
sediment layer using Darcy equations. The second model is based loosely on the
work of Buckingham (1997), who showed that the effect of intergranular stresses in
an unconsolidated sediment plays the role of an apparent viscous dissipation added
to the dissipation associated with the pore water percolation; this model serves as the
basis for the derivation in § 3. Eyov et al. (2013) have investigated the role of an
elastic sea bed on progressive waves and found that the first acoustic mode (n = 1)
is the dominant component of the hydro-acoustic wavefield. Here, we consider the
interaction of a train of hydro-acoustic waves in a water column of depth h(x, y, t)
overlying a sediment layer of thickness a(x, y, t), with hs = h+ a, where hs(x, y, t) is
the total depth. The vertical coordinate, z, is measured positively upwards from the
undisturbed free surface at z= 0, and x and y denote horizontal Cartesian coordinates
as shown in figure 1. The sediment layer causes the damping of hydro-acoustic
waves, lowering the whole energy spectrum and shifting the expected frequency peaks
towards lower values (Chierici et al. 2010). In the absence of viscous behaviour of
the sea bottom, the dominant frequency range in the wave spectrum can be expressed
by a discrete set of normal frequencies fn given by

fn = (2n− 1)
c

4h
, n= 1, 2, 3, . . . (2.1)

where c is the sound speed in water (approximately 1500 m s−1). Introducing the
underlying sediment layer acting together with the water column causes lowering of
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Modelling of damped hydro-acoustic waves
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FIGURE 1. Schematic view of fluid domain.

the spectrum peaks determined from the following transcendental equation (Nosov
et al. 2007):

tan
[

2πγnh
c

]
tan
[

2πγna
cs

]
= ρscs

ρc
, (2.2)

where cs is the sound speed in sediment, ρ and ρs are the densities of water and
sediment respectively, and γn denotes the normal mode frequencies for the damped
case. Note that in the case of a= 0, the set of normal modes described by (2.1) and
(2.2) coincide.

A sample computation is carried out using a full 3D solver in constant depth. The
governing equations within layers and boundary conditions at free surface, interface
and bottom for sample computation are described in § 3. We use h = 2200 m, a =
1000 m, c= 1500 m s−1, cs = 2000 m s−1, ρ = 1000 kg m−3 and ρs = 1850 kg m−3.
The other parameters are for a unit sudden elevation of source area with semi-length
b= 112 km and rise time τ = 1 s. The transient sea bed velocity, ht, with a residual
displacement h0, is a trigonometric function expressed by

ht = h0

2

[
1− cos

(
2π(t− t0)

τ

)]
[H(t− t0)−H(t− t0 − τ)], (2.3)

where H(t) is the Heaviside step function. The results are depicted in figure 2, which
show the bottom pressure P and the corresponding frequency spectrum P̃ at 96 km
from the epicentre. In figure 2(a), the light grey line shows the time series of bottom
pressure from a one-layer compressible water model while the black line shows the
results from a model coupling two layers of compressible water and sediment without
a damping term (µs=0) in the lower layer. In figure 2(b), for the one-layer model, the
frequency peaks coincide with the cutoff frequencies for an ideal impermeable bottom
(f1= 0.17 and f2= 0.51 Hz, . . .) identified by (2.1). For the case of the coupled model,
the spectrum is peaked at γ1= 0.15 and γ1= 0.407 Hz, representing cutoff frequencies
evaluated by (2.2). In order to consider the damping behaviour of the underlying
sediment layer, the bulk viscosity (ranging from 106 up to 1020 Pa s (Van Keken et al.
1993; Kimura 2006)) is fixed at 2× 108 Pa s. The model results are compared with
a one-layer model with an additional partially reflecting boundary condition at the
bottom defined by (2.4)

Φz = 1
c

Kr − 1
Kr + 1

Φt, (2.4)

where Kr is the amplitude reflection coefficient (Brekhovskikh, Lysanov & Lysanov
2003),

Kr = ρscp − ρc
ρscp + ρc

, (2.5)
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FIGURE 2. Bottom-pressure records at a distance of x = 96 km from the epicentre.
Results of a sample computation carried out using a 3D flow solver in a constant
depth, h = 2200 m, a = 1000 m, c = 1500 m s−1, cs = 2000 m s−1, ρ = 1000 kg m−3,
ρs = 1850 kg m−3 for a unit source area with semi-length b = 112 km and rise time
τ = 1 s, showing: (a) time series of a one-layer compressible water model (light
grey) and a coupled model with compressible water and inviscid compressible sediment
(black), µ = 0; (b) the corresponding frequency spectrum to (a); (c) time series of
a one-layer compressible water model with the partially reflecting boundary condition
(2.4) at the bottom (light grey) and a coupled model with compressible water and
viscous compressible sediment, µs= 2× 108 Pa s (black); (d) the corresponding frequency
spectrum to (c). The vertical dashed lines in (b,d) indicate the frequency peaks calculated
by (2.1) and (2.2) in light grey and black respectively.

and cp is the P-wave speed in the bottom. This boundary condition causes decay
of hydro-acoustic waves peaking at the cutoff frequencies (fn) defined by (2.1). In
figure 2(c), the light grey line shows the time series of bottom pressure from the
one-layer compressible model with a damping coefficient. Here, cp = 8000 m s−1 is
selected for computations. Thus, the reflection coefficient takes the value of Kr≈0.816.
It can be seen from the plot that the oscillation lasts for 80 s after the earthquake.
The lower time series is for a two-layer model with a dissipation term in the sediment
(black). The attenuation of hydro-acoustic waves lasts for 500 s. The corresponding
frequency spectra are shown in 2(d). Lowering of the whole energy spectrum in
comparison with panel 2(b) is distinguishable. The comparison shown in figure 2
justifies the mismatch between the calculated spectral peaks for an impermeable
bottom, fn, and the dominant frequencies, γn, observed during the Tokachi Oki 2003
event (Nosov et al. 2007).
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3. The mild-slope equation for damped hydro-acoustic waves

We develop a mild-slope equation based on the eigenfunction structure for the
problem with constant layer depths h and a = hs − h and with no lower layer
damping. We review the governing equations and boundary conditions here and then
derive the damped, two-layer mild-slope model using an approach described in Silva,
Salles & Govaere (2003).

3.1. Governing equations
The linearized weakly compressible wave equation governing the fluid potential
Φ(x, y, z, t) in the water layer is given by

L(Φ)=Φtt − c2∇2Φ = 0; −h+ η2(x, y, t)6 z 6 η1(x, y, t), (3.1a,b)

where ∇2 is the Laplacian in 3D and subscripts on dependent variables denote partial
derivatives. The interfacial displacements η1 and η2 represent the response of the free
surface and the layer interface to hydro-acoustic disturbances. Following Buckingham
(1997) and Chierici et al. (2010), the weakly compressible wave equation for the fluid
potential Q(x, y, z, t) in the viscous sediment layer is given by

Ls(Q)=Qtt − c2
s∇2Q− 2νs(∇2Q)t = 0; −hs 6 z 6−h+ η2(x, y, t) (3.2a,b)

with apparent sediment kinematic viscosity νs. The boundary conditions at the free
surface and bottom are given by{

Φtt + gΦz = 0 at z= 0
Qz +∇hhs · ∇hQ+ hs,t = 0 at z=−hs

(3.3)

where ∇h is the horizontal gradient operator, hs,t is the vertical bottom velocity
representing displacement of the impermeable substrate and g is gravitational
acceleration. Matching conditions at the water–sediment interface z = −h + η2
consist of continuity of pressure and kinematic constraints for each layer. After
linearizing with respect to the pressure perturbation and small interface displacement,
the resulting conditions are{

(R− 1)gη2 =Φt − RQt

Ww =Ws = (−h+ η2)t
at z=−h (3.4)

where R= ρs/ρ. The normal velocities at the interface inside the water column, Ww,
and sediment, Ws, are given by:{

Ww =Φz +∇hh · ∇hΦ

Ws =Qz +∇hh · ∇hQ
at z=−h. (3.5)

3.2. Derivation of the mild-slope equation

A non-dimensionalization of the sediment layer equation yields a parameter ε=ωνs/c2
s

characterizing the size of the damping term relative to the undamped wave
equation, where ω represents angular wave frequency. For the cases considered here,
ε = O(10−1), and we treat the damping effect as a perturbation to the leading-order
inviscid problem. The mild-slope equation is developed using the eigenfunctions for
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the two-layer, inviscid, compressible fluid problem with constant layer thicknesses h
and a=hs−h and a free surface. Retaining damping in the lower layer eigenfunctions,
as in Silva et al. (2003), would eliminate the leading-order damping term in the model
but would involve complex-valued separation constants and resulting complex-valued
model coefficients.

The upper and lower layer potentials may be expanded according to

Φ (x, y, z, t)=
∞∑

n=0

Φn (x, y, z, t)=
∞∑

n=0

ψn (x, y, t)Mn(z) (3.6)

for the water column and

Q (x, y, z, t)=
∞∑

n=0

Qn (x, y, z, t)=
∞∑

n=0

ψn (x, y, t)Nn(z) (3.7)

in the sediment layer. For simple harmonic motion with frequency ω and separation
constant β2 in the vertical, the eigenfunctions Mn(z) and Nn(z) for the upper and lower
layers are given by

Mn = (1− λnTn) cosh (βw,n(h+ z))+ (λn − Tn) sinh (βw,n(h+ z))
(1− λnTn) cosh (βw,nh)+ (λn − Tn) sinh (βw,nh)

, (3.8)

Nn = (λn − Tn) cosh βs,n(hs + z)
αn sinh (βs,na)[(1− λnTn) cosh (βw,nh)+ (λn − Tn) sinh (βw,nh)] , (3.9)

where Tn = tanh (βw,nh), λn = ω2/gβw,n and αn = βs,n/βw,n. The separation constants
βw,n and βs,n for water and sediment layers respectively are given by

β2
w,n = k2

n −
ω2

c2
; β2

s,n = k2
n −

ω2

c2
s

(3.10a,b)

where kn is the wavenumber. The eigenfunctions Mn and Nn form a complete Sturm–
Liouville basis subject to the orthogonality constraint Imn + RKmn = 0; m 6= n, where

Imn =
∫ 0

−h
Mm(z)Mn(z)dz; Kmn =

∫ −h

−hs

Nm(z)Nn(z)dz. (3.11a,b)

Mn and Nn take the following values at the vertical boundaries:Mn = 1, M′n =ω2/g at z= 0
M′n =N ′n at z=−h
N ′n = 0 at z=−hs.

(3.12)

The dispersion relation governing βw,n and βs,n is given by

λ2
n(R+ αnTnT̂n)− λnR(Tn + αnT̂n)+ (R− 1)αnTnT̂n = 0, (3.13)

where T̂n = tanh (βs,na). Equation (3.13) is a quartic system in ω describing a doubly
infinite set of surface waves (with horizontal displacements in phase at the layer
interface) and internal waves (with horizontal displacements 180◦ out of phase). The
real roots of the dispersion relation (n = 0) are responsible for the primary surface
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and internal gravity waves, while the imaginary separation variables for n> 1 describe
both progressive and spatially decaying hydro-acoustic modes. Due to the presence
of damping in the real problem, the internal or interfacial wave modes are expected
to be rapidly damped. If a= 0, then there is no sediment layer and (3.13) reduces to
the classical hydro-acoustic dispersion relation given by λn = tanh (βw,nh).

We multiply the governing equation for each layer by each member of the set of
eigenfunctions and integrate over the layer depth, giving

Im =
∫ 0

−h
MmL(Φ)dz= 0; IIm =

∫ −h

−hs

NmLs(Q)dz= 0. (3.14a,b)

Each expression is manipulated by introducing the expansions (3.6) and (3.7) and
using the Leibniz rule and appropriate boundary conditions. Subsequently, we neglect
second-order terms in the interfacial and substrate slope, staying within the classic
mild-slope framework. The expressions for the two layers become

Im =
∞∑

n=0

{
∇h · [Imn∇hψn] −

([
Imn

c2
+ 1

g

]
ψn,t

)
,t

− Jmnψn

−Mm(−h)[M′n(−h)ψn +Mn(−h)∇hh · ∇hψn]
+ 1

c2
Mm(−h)Mn(−h)htψn,t

}
(3.15)

for the water layer and

IIm =
∞∑

n=0

{
∇h · [Kmn∇hψn] −

(
Kmn

c2
s

ψn,t

)
,t

− Lmnψn − 2ε
ω

c2
s

Kmnψn,t

+Nm(−h)[N ′n(−h)ψn +Nn(−h)∇hh · ∇hψn]
−Nm(−hs)[N ′n(−hs)ψn +Nn(−hs)∇hh · ∇hψn]

− 1
c2

s

[
Nm(−h)Nn(−h)ht −Nm(−hs)Nn(−hs)hs,t

]
ψn,t

}
(3.16)

for the sediment layer, where we have introduced the approximation ∇2Q ≈
(1/c2

s )Qtt ≈ −(ω2/c2
s )Q in the damping term. Here, Jmn and Lmn in (3.15) and

(3.16) are given by

Jmn =
∫ 0

−h
M′m(z)M

′
n(z)dz= ω

2

g
− β2

w,nImn −Mm(−h)M′n(−h)

Lmn =
∫ −h

−hs

N ′m(z)N
′
n(z)dz=−β2

s,nKmn +Nm(−h)N ′n(−h)−Nm(−hs)N ′n(−hs).

 (3.17)

Combining (3.15) and (3.16) according to Im + RIIm = 0, in order to take advantage
of orthogonality within the spatial derivative terms, and making use the interfacial
kinematic and dynamic boundary conditions, we obtain the desired mild-slope
equation

(Im
2 ψm,t)t −∇h · [Im

1 ∇hψm] + [ω2Im
2 − k2

mIm
1 ]ψm + 2Rε

ω

c2
s

Knψm,t =Dm
1 ht +Dm

2 hs,t,

(3.18)
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where we have further introduced the approximation ψn,tt =−ω2ψn; n 6=m in order to
eliminate an apparent coupling of the individual model equations arising in the time
derivatives. Model coefficients are given by

Im
1 = Imm + RKmm, (3.19)

Im
2 =

Imm

c2
+ R

Kmm

c2
s

+ 1
g
, (3.20)

Dm
1 =−[Mm(−h)− RNm(−h)], (3.21)

Dm
2 =−RNm(−hs), (3.22)

where Imm(x, y, t) and Kmm(x, y, t) are given by

Imm =
∫ 0

−h
M2

mdz= h
2Gm

1
[(1− 2λmTm + λ2

m)+ (1− λ2
m)G

m
1 ], (3.23)

Kmm =
∫ −h

−hs

N2
mdz= h(λm − Tm)

2

2α3
mTmT̂m

1+Gm
2

Gm
1

, (3.24)

with Gm
1 = 2βw,mh/sinh (2βw,mh) and Gm

2 = 2βs,ma/sinh (2βs,ma). Equation (3.18) is
the final form of the hyperbolic mild-slope equation for weakly compressible fluid
overlying a sediment viscous layer (MSEDWC). The time dependence of Im

2 in (3.18)
is formally required to obtain a correct energy balance in the time-dependent medium,
but in practice is too weak to affect numerical results noticeably. The elliptic version
for purely harmonic motion is obtained by taking the Fourier transform of (3.18) and
is given by

∇h · [Im
1 ∇hΨm] +

[
k2

mIm
1 − 2iRε

ω

c2
s

Km

]
Ψm =−iωDm

1 H − iωDm
2 Hs, (3.25)

where ψn(x, y, t) = Ψn(x, y)eiωt, h(x, y, t) = H(x, y)eiωt and hs(x, y, t) = Hs(x, y)eiωt.
For specific conditions (3.18) and (3.25) give the same solution as that previously
proposed by other authors; for example: if R= 1 or a= 0, then there is no sediment
layer, and (3.18) and (3.25) reduce to the equation given by Sammarco et al. (2013).

4. Sample computations

Sample computations have been carried out to verify whether the model (3.18)
can be safely applied in place of a more computationally expensive 3D treatment.
We present results for three different domains consisting of vertical sections in x, z
through laterally uniform domains with no y-dependence, the first with a constant
water depth and sediment thickness and the other two with varying water depth and
sediment thickness. Frequency bands of width 1f = 0.02 Hz have been selected to
discretize the forcing spectrum. For the first case, the numerical solvers are applied
on a computational domain 200 km long; given the symmetry of the problem about
the middle of the earthquake (x = 0), computations are undertaken only for half of
the physical domain. The Sommerfeld radiation condition is applied at the open end
of the domain, so that the waves leave the domain freely. At x= 0, a fully reflective
boundary condition is used in order to preserve symmetry. To correctly reproduce
the wavefield, the maximum mesh size is 200 m, for a total of 1000 elements in
the case of the depth-integrated model (3.18) and more than 30 000 elements for the
3D model (3.1) and (3.2). The time step is t = 0.1 s and the computational time to
reproduce 500 s of real-time simulation was approximately 10 min for (3.18) and
approximately 3 h for (3.1) and (3.2); a computer equipped with an i7 3.2 GHz
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FIGURE 3. Results for the free-surface elevation time series at 96 km from the
tsunamigenic source according to the 3D (light grey) and depth-integrated (black) models
in a constant depth, hp = 2200 m, a = 1000 m, c = 1500 m s−1, cs = 2000 m s−1, ρ =
1000 kg m−3, ρs= 1850 kg m−3, for a unit source area with semi-length b= 112 km and
rise time τ = 1 s. (a,c) Time series and (b,d) corresponding spectra with γ1 = ω1/2π =
0.15 Hz. (a,b) µs = 0; (c,d) µs = 2× 108 Pa s.

CPU and 64 GB RAM has been used. The simplified earthquake effect is modelled
as a displacement in the vertical direction of the bottom with duration τ = 1 s and
bottom velocity defined by (2.3); the results are presented in figure 3 in terms of
the free-surface elevation η and the corresponding spectrum η̃. Results are shown
for a virtual surface gauge at x = 96 km over a 112 km semi-fault where water
depth and sediment thickness are hp = 2200 and a = 1000 m respectively. In 3(a,b)
the results relate to the case of inviscid sediment. The 3D model (light grey) and
depth-integrated model (black) are in optimal agreement. The peak frequency is
γ = 0.15 Hz, corresponding to the first cutoff frequency for the coupled system
defined by (2.2). The hydro-acoustic waves remain at the same order as the generated
waves until the end of computations. In 3(c,d), we add the dissipation term into
the equation (µs = 2× 108 Pa s). The generated hydro-acoustic waves are attenuated
gradually during 500 s.

In the second case, a varying sea water depth overlying a varying sedimentary layer
is considered; the domain’s geometry, depicted in the upper plot of figure 4, has a
region of length 220 km with a depth of 2 km in each layer, a region of length
50 km with a sloping bottom, and another region of length 230 km with a constant
water depth of 3.5 km and a sediment thickness of 0.5 km. Over the entire 500 km
domain length, the total depth hs= 4 km. Ground motion occurs in a patch of length
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FIGURE 4. The case of varying sea bottom and sediment thickness with a tsunamigenic
source at the shallower part. (a) The computational domain. (b,d) Time series of
free-surface elevation and (c,e) corresponding spectra at 400 km from the tsunamigenic
source from the 3D (light grey) and depth-integrated models (black), c = 1500 m s−1,
cs = 2000 m s−1, ρ = 1000 kg m−3, ρs = 1850 kg m−3 and µs = 0 for a unit source area
with semi-length b = 15 km and rise time τ = 1 s. (b,c) Impermeable sea bottom; (d,e)
coupled model.

15 km at the left edge of the shallow area, as shown in figure 4(a); it moves vertically
with a bottom velocity and total displacement of 1 m given by (2.3). The maximum
mesh size is again 200 m, for a total of 2500 elements in the case of the depth-
integrated model (3.18) and 130 000 triangular elements for the 3D model ((3.1) and
(3.2)). The time step and discretization of the spectra are the same as in the constant-
depth case. The computational time to reproduce 1000 s of real-time simulation was
approximately 20 min for (3.18) and approximately 5 h for (3.1) and (3.2), using the
same computer as in the previous simulation. The results are presented in figure 4 in
terms of time series of the free-surface elevation η and the corresponding spectra η̃, at
a distance x= 400 km from the moving sea bed area. The two time series are in good
agreement, both in terms of amplitude and modulation of the signal. The comparison
results show that the peak frequency shifts from f1 = 0.1875 Hz for an impermeable
bottom to γ1 = 0.138 Hz for the coupled water and sediment model.

In the third case, model performance has been investigated for the case of an
earthquake on the deeper part of continental shelf in order to reveal the transmission
and reflection properties of the hydro-acoustic wavefield in deep and shallow waters.
The domain is depicted in figure 5(a), where the earthquake occurs in the deeper area
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FIGURE 5. The case of varying sea bottom and sediment thickness with a tsunamigenic
source at the deeper part. (a) The computational domain. (b,d) Time series of free-surface
elevation and (c,e) corresponding spectra at point A, 100 km from the tsunamigenic source
at 3.5 km water depth (black), and point B, 400 km from the tsunamigenic source at 2 km
water depth (light grey), obtained from depth-integrated models. The water and sediment
characteristics are the same as in figure 4. (b,c) Impermeable sea bottom; (d,e) coupled
model.

(3.5 km water depth over a 0.5 km sediment) with the same physical characteristics
for the water, sediment and tsunamigenic source as in the previous cases. The results
are presented in figure 5 in terms of time series of the free-surface elevation η and
the corresponding spectra η̃ at point A, 100 km from the epicentre at 3.5 km water
depth (black), and point B, 400 km from the tsunamigenic source at 2 km water
depth (light grey), obtained from depth-integrated models for an impermeable (b,c)
and a permeable (d,e) sea bottom. It can be seen from the model results that the
hydro-acoustic waves cannot propagate upslope. Hydro-acoustic wave frequencies
lower than the corresponding cutoff frequency of the observatory depth have been
filtered. As a result, the wave amplitudes decreased from point A to B. The waves
reflected from the slope are superimposed on the arriving wave trains and change the
wave packet modulation. This result indicates the importance of deep sea observatories
for hydro-acoustic wave detection (Abdolali et al. 2014).

5. Conclusions

The correct detection of hydro-acoustic waves in a real ocean consisting of a
variable-depth water column overlying a sediment layer could significantly enhance the
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efficiency and promptness of tsunami early warning systems (TEWS). In this regard,
a reasonable numerical model, able to reproduce the main features of hydro-acoustic
waves generated by sudden displacement of the ocean bottom, is necessary. We have
therefore considered a weakly compressible inviscid fluid coupled with a compressible
viscous sedimentary layer in which waves are generated by a moving bottom and then
propagate over a mildly sloped sea bed. Via a proper application of the averaging
technique, we have derived the hyperbolic mild-slope equation for dispersive weakly
compressible fluids (MSEDWC). Solution of the equation allows the description of
all the mechanics in the x, y plane, overcoming at the same time both analytical
and numerical difficulties. Indeed, on the one hand, by expanding in a series of the
vertical eigenfunctions, the MSEDWC can be applied to more complex geometries
beyond the cases of horizontal or piecewise horizontal in the x, z vertical plane, as
treated in the seminal work of Chierici et al. (2010) and Eyov et al. (2013). On
the other hand, because the computational time is one order of magnitude smaller
than for a fully numerical 3D model, systematic applications supporting a TEWS in
regions of geophysical interest will be viable.
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