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Growth of vortical disturbances entrained in the
entrance region of a circular pipe
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The development and growth of unsteady three-dimensional vortical disturbances
entrained in the entry region of a circular pipe is investigated by asymptotic and numerical
methods for Reynolds numbers between 1000 and 10 000, based on the pipe radius and the
bulk velocity. Near the pipe mouth, composite asymptotic solutions describe the dynamics
of the oncoming disturbances, revealing how these disturbances are altered by the viscous
layer attached to the pipe wall. The perturbation velocity profiles near the pipe mouth
are employed as rigorous initial conditions for the boundary-region equations, which
describe the flow in the limit of low frequency and large Reynolds number. The disturbance
flow is initially primarily present within the base-flow boundary layer in the form of
streamwise-elongated vortical structures, i.e. the streamwise velocity component displays
an intense algebraic growth, while the cross-flow velocity components decay. Farther
downstream the disturbance flow occupies the whole pipe, although the base flow is mostly
inviscid in the core. The transient growth and subsequent viscous decay are confined in
the entrance region, i.e. where the base flow has not reached the fully developed Poiseuille
profile. Increasing the Reynolds number and decreasing the frequency causes more intense
perturbations, whereas small azimuthal wavelengths and radial characteristic length scales
intensify the viscous dissipation of the disturbance. The azimuthal wavelength that causes
the maximum growth is found. The velocity profiles are compared successfully with
available experimental data and the theoretical results are helpful to interpret the only
direct numerical dataset of a disturbed pipe-entry flow.
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1. Introduction

The problem of the stability and transition to turbulence of pipe flows has witnessed
immense interest in the scientific and engineering communities since the famous
experimental work of Reynolds (1883). Flows through pipes are central to countless
engineering applications, primarily because one must predict the occurrence of transition
to turbulence as the majority of gas, oil, water and air pipe flows are turbulent even
at moderate Reynolds numbers. While fluids engineers are mostly concerned with an
accurate computation of the pressure gradient required for propelling the fluid through
pipes, physicists and mathematicians have also been attracted by the fascinating physical
phenomena observed in these flows and by the exceptional difficulties related to the
theoretical analysis of these confined flows.

It is still not clear how a laminar pipe flow becomes unstable and evolves to turbulence.
The first theoretical challenge is that numerical and theoretical studies have consistently
reported that the Poiseuille laminar flow is always stable to small perturbations at every
Reynolds number when the problem is investigated using classical stability theory (Drazin
& Reid 2004). This result has therefore led researchers to analyse the dynamics of
finite-amplitude disturbances and alternative routes to turbulence.

Research studies on pipe flows have mainly focussed on the dynamics of the fully
developed laminar flow, while a limited number of investigations have reported results
on the entrance problem, that is, where the laminar base flow evolves from the pipe
mouth. Along the entrance region, the flow depends on the streamwise coordinate and the
pressure gradient is unknown a priori, thus posing additional challenges to its analysis.
Our main objectives are, therefore, to investigate how vortical disturbances superimposed
on the oncoming base flow at the pipe entrance are influenced by the pipe confinement,
and how they are convected and evolve downstream through the pipe along the entrance
region, prior to the flow breakdown to turbulence. We have devoted particular attention
to the flow specification at the pipe mouth because a realistic source of perturbation is
fundamental as a first step towards a full understanding of the pipe-flow transition to
turbulence. We have considered the pipe wall to be smooth, rigid and stationary, and
therefore we have neglected two other realistic sources of disturbances, i.e. wall roughness
and wall vibrations.

In the following, we first discuss the most relevant studies of stability and transition in
pipe flows and then we present our research objectives and the structure of the paper.

1.1. Stability of fully developed pipe flows: small perturbations
Motivated by the impact of the pioneering experiments by Reynolds (1883), Rayleigh
(1892) conducted the first stability analysis of a cylindrical flow in the inviscid regime,
finding only stable perturbations. The first viscous stability study was carried out years
later by Sexl (1927), who showed flow stability in the limits of small and large Reynolds
numbers. Several studies in the past century, such as Pekeris (1948), Corcos & Sellars
(1959), Gill (1965), Lessen, Sadler & Liu (1968), Crowder & Dalton (1971) and Salwen,
Cotton & Grosch (1980), have established that the fully developed Poiseuille pipe flow is
stable to infinitesimal disturbances according to classical stability theory even at very large
Reynolds number. It was therefore a natural step to analyse other mechanisms of instability,
such as transiently growing disturbances. Bergström (1993), Schmid & Henningson
(1994), O’Sullivan & Breuer (1994), Mayer & Reshotko (1997), Trefethen, Trefethen &
Schmid (1999) and Meseguer (2003) studied the transient problem in time, while Reshotko
& Tumin (2001) focussed on the spatial transient evolution of the disturbances. The results
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Vortical disturbances entrained in the pipe entrance region

of Mayer & Reshotko (1997) are of note as they compare favourably with the experimental
results by Kaskel (1961). These studies concur that small perturbations superimposed
on the fully developed Poiseuille flow can grow algebraically in time or space and then
decay because of viscous effects. The reader is referred to § 3.2 in Kerswell (2005) for
an exhaustive discussion of stability studies of small perturbations superimposed on the
Poiseuille flow.

Alongside the theoretical advancements, pipe-flow experimental campaigns followed
the work of Reynolds (1883), as summarized in § 3.1 of Kerswell (2005). Fox, Lessen
& Bhat (1968) experimentally tested the stability of small perturbations introduced in
the fully developed region and reported that the flow became unstable for Reynolds
numbers larger than approximately 2000 (based on the pipe diameter), i.e. comparable
with the results found by Reynolds (1883), although no comparison was carried out
because the perturbations of Reynolds (1883)’s experiments were at the pipe inlet. Other
experimental campaigns, e.g. Draad, Kuiken & Nieuwstadt (1998), demonstrated that the
transition Reynolds number could be increased significantly by reducing the amplitude of
the perturbations.

1.2. Stability and transition of fully developed pipe flows: finite-amplitude perturbations
As linearized dynamics only provided a limited understanding of the fully developed
pipe-flow transition problem, considerable effort has been devoted to the nonlinear
behaviour of perturbations. The dynamics of finite amplitude disturbances in the limit
of high Reynolds number was first studied by Davey & Nguyen (1971) via weakly
nonlinear theory. The equilibrium perturbation amplitude above which disturbances grow
was predicted and the most unstable disturbance was found to be near the pipe axis.
These results were contradicted by Itoh (1977), who discovered no equilibrium states by a
similar approach. Davey (1978) further analysed these studies and concluded that neither
centre-mode results were reliable, although maintained that equilibrium states did exist.
Smith & Bodonyi (1982) indeed found neutral disturbances of finite amplitude by utilizing
nonlinear critical layer theory. Patera & Orszag (1981), using direct numerical simulations,
did not find any axisymmetric equilibrium states and concluded that the weakly nonlinear
approach can lead to invalid results.

Nonlinear travelling waves were first discovered numerically by Faisst & Eckhardt
(2003) and Wedin & Kerswell (2004), thus paving the way for the use of dynamical
systems in the study of pipe-flow transition (Duguet, Willis & Kerswell 2008; Hof et al.
2008; Avila, Willis & Hof 2010; Avila et al. 2013). Section 4 in Kerswell (2005) discusses
the main results on these travelling waves. Their existence was confirmed in the water
pipe-flow experiments of Hof et al. (2004, 2005).

Other useful papers that thoroughly discuss experimental, numerical and theoretical
advances related to the pipe-flow problem in the nonlinear regime are those by Avila
et al. (2011), Eckhardt et al. (2007), Eckhardt (2009) and Mullin (2011). The review paper
by Eckhardt (2007) offers an interesting list of open problems related to the pipe-flow
nonlinear breakdown to turbulence.

1.3. Stability and transition of pipe-entrance flows
As Reynolds (1883) recognized that the perturbance dynamics from the pipe inlet played
a key role in the flow breakdown to turbulence, researchers have turned their attention
to the stability of the pipe entrance flow. The main conclusion is that the pipe entrance
flow is linearly unstable according to classical stability theory (Tatsumi 1952; Huang &
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Chen 1974a,b; Smith & Bodonyi 1980; Garg 1981; Gupta & Garg 1981; da Silva & Moss
1994), although there is still controversy about the exact form of the neutral curve, inside
which Tollmien–Schlichting (TS) waves appear. The results by Gupta & Garg (1981) and
da Silva & Moss (1994) show good agreement for most of the downstream locations and
Reynolds numbers, from which it has been concluded that the entrance flow is linearly
stable for Reynolds numbers smaller than approximately 10 000, based on the pipe radius
and bulk velocity. Much lower critical Reynolds numbers have been reported by the
experimental study of Sarpkaya (1975), probably because of the finite size of the induced
perturbation, and by the numerical investigation of Sahu & Govindarajan (2007). Duck
(2005, 2006) used asymptotic and numerical methods to study the algebraic growth of
disturbances near the pipe mouth, in the form of the so-called Luchini mode (Luchini
1996), located within the boundary layer attached to the pipe wall.

Wygnanski & Champagne (1973)’s experimental study focussed on the initial growth
of perturbations generated at the pipe mouth, with the objective of understanding how
these disturbances seeded turbulent puffs and slugs farther downstream. More laboratory
data have been reported by Zanoun, Kito & Egbers (2009) in an attempt to quantitatively
correlate the location and features of the transitional flow with the intensity of the inlet
perturbations. The direct numerical simulations by Wu et al. (2015) and Wu, Moin &
Adrian (2020) showed how localized perturbations imposed at the pipe entrance evolved
downstream and led to the breakdown to turbulence. At the pipe inlet, the Poiseuille
parabolic velocity profile was chosen as the base profile in most of the cases, and the
uniform plug flow was selected in one case.

To the best of the authors’ knowledge, no theoretical studies exist on the entrainment
of velocity and pressure perturbations at the pipe inlet, in an attempt to analyse how these
disturbances evolve and grow downstream inside the confined space.

1.4. Objectives and structure of the paper
We aim to analyse the response of the entrance incompressible pipe flow to vortical
disturbances convected by the inlet flow. The main motivation arose from the absence
of theoretical results on the dynamics of pipe entrance flows perturbed by disturbances
that can be created and measured in a laboratory, despite the central role played by these
perturbations as harbingers of instability and transition, as recognized since the pioneering
work of Reynolds (1883). We consider flows at Reynolds numbers for which the entrance
pipe flow is stable according to classical stability theory, i.e. TS waves do not occur,
although experimental results have shown these flows to transition to turbulence.

We adopt the reasonable assumptions of large Reynolds number and of velocity
disturbances of small amplitude and low frequency. The last assumption is based on
the observation that streamwise-stretched low-frequency perturbations are the most likely
to penetrate viscous layers and amplify downstream to cause transition (Matsubara &
Alfredsson 2001). We are particularly interested in explaining how the disturbances are
altered as they enter the pipe confinement and experience the increasing base-flow pressure
gradient, how they penetrate into the boundary layer attached to the pipe wall, and how
they amplify inside the pipe as the base flow becomes fully developed. We report how
the perturbation dynamics depends on the flow parameters, such as the Reynolds number,
the frequency, and the wavelengths of the prescribed disturbance. We carry out visual and
data-based comparisons with experimental data of Wygnanski & Champagne (1973), and
interpret results from the direct numerical simulation study of Wu et al. (2015) on a pipe
flow perturbed by inlet disturbances.
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Our mathematical approach and numerical results are a starting point for the
understanding of the relationship between the transitional Reynolds number and the
role of inlet vortical perturbations in laminar-to-turbulent transition in pipe flows. We
have restricted the analysis to the linearized dynamics under the assumption of small
perturbations and we are currently extending our study to the nonlinear case.

In § 2, the scaling and assumptions are presented, together with the governing equations
and the numerical procedures. The initial flow development is studied in § 3 and the results
of the downstream flow dynamics are discussed in § 4. The conclusions of our study are
presented in § 5.

2. Scaling and equations of motion

We first present the asymptotic scaling in § 2.1 and the equations of motion in § 2.2.
In § 2.3 we discuss how linear stability results are useful to extract the locations in the
entrance pipe-flow region where exponentially growing waves may occur. The numerical
procedures are discussed in the supplementary material S1 available at https://doi.org/10.
1017/jfm.2021.1005.

2.1. Scaling and asymptotic regions
We consider the pressure-driven incompressible flow at the entrance of a pipe with circular
cross-section. Dimensional quantities are hereafter indicated by the superscript ∗. The
oncoming flow approaching the pipe entrance is assumed to be uniform, of velocity U∗∞
and aligned with the pipe axis. The pipe wall is assumed to be infinitely thin so that, similar
to the case of uniform flow approaching a thin flat wall, the oncoming flow is undisturbed
at leading order. In a laboratory, the upstream geometry and the finite thickness of the pipe
wall may alter the uniformity of the oncoming flow. Our inlet flow, therefore, is a simplified
version of that utilized by O. Reynolds in his seminal study (Reynolds 1883), where the
pipe entrance was bell shaped. As the oncoming flow enters the pipe, a boundary layer
develops on the pipe wall. The thickness of this viscous layer increases downstream until
the pipe flow becomes fully viscous and attains the classical Poiseuille parabolic profile.

The flow is conveniently represented in a cylindrical coordinate system, where the
coordinates x∗, r∗ and θ are the streamwise direction, the radial direction and the azimuthal
angle, respectively. The centreline of the pipe is at r∗ = 0 and the pipe wall is located at
r∗ = R∗, where R∗ is the pipe radius. Lengths are scaled by a reference length λ∗, specified
below. Velocities are normalized by U∗∞, the pressure is scaled by ρ∗U∗2∞ , where ρ∗ is the
density of the fluid, and the time is scaled by λ∗/U∗∞ (quantities without any symbols are
non-dimensional).

Superimposed on the oncoming streamwise flow {U∗∞, 0, 0} are gust-type vortical
fluctuations advected by the base flow. In a technological or industrial system, these
oncoming disturbances could be due to upstream vibrations or structural imperfections,
and in a laboratory setting they could be generated by vibrating ribbons or rigid grids
located near the pipe entrance, where the wavelengths and frequencies could be controlled
accurately, as could the location of generation.

We first consider a region around the pipe axis where velocity fluctuations are
not influenced by the pipe wall, either by the no-penetration condition on the radial
velocity disturbance or by the no-slip condition on the streamwise and azimuthal
velocity components. At these locations sufficiently near x = 0 and sufficiently far away
from the pipe wall, the velocity fluctuations can be expressed mathematically as a
Fourier–Bessel series, where the Fourier expansions pertain to time, x and θ , while the
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Bessel expansion is used along the radial coordinate. As it is assumed that the amplitude
of the perturbation is asymptotically smaller than U∗∞, the perturbation dynamics is linear.
A single Fourier–Bessel coefficient of the full-spectrum series expansion is thus
considered, as follows:

u = {1, 0, 0} + ε

{
û∞

x,mnJm(r̄),
û∞

r,mnJm(r̄)

r̄
,
−iû∞

θ,mnJ′
m(r̄)

ξmn

}
ei[kx(x−t)+mθ ] + c.c., (2.1)

where Jm is the Bessel function of the first kind of order m, E = ei[kx(x−t)+mθ ], ε � 1 is the
amplitude of the gust, r̄ = ξmnr/2R, ξmn are the zeros of the Bessel function, i.e. the real
numbers that satisfy Jm(ξmn) = 0, c.c. stands for the complex conjugate, and the prime
indicates the first derivative with respect to r̄. In the most general case, the quantities
{û∞

x,jmn, û∞
r,jmn, û∞

θ,jmn} = O(1) are complex. The inviscid velocity field (2.1) satisfies the
Euler equations and is generated at a circle of radius 2R, centred at the pipe centreline and
located in the plane (r, θ) at a small distance upstream of the pipe mouth at x = 0. The
scaling of the radial direction by 2R is used instead of R to avoid the unrealistic scenario
of vanishing streamwise and radial velocity components at r = R where the disturbance is
generated.

The reference length is λ∗ = θgR∗ (λ∗/R∗ = O(1)), that is, the circumferential
wavelength of the gust at r∗ = R∗, where θg is the azimuthal angle corresponding to
the wavelength λ∗. As in the flat-plate case of Leib, Wundrow & Goldstein (1999)
where the spanwise wavelength is used, the azimuthal wavelength λ∗ at r∗ = R∗ is
chosen because downstream it becomes comparable with the boundary layer thickness
and the pipe radius. If θg = π/2, the wavelength λ∗ spans a quarter of the circumference
of the pipe. An obvious constraint is that the maximum λ∗ coincides with the pipe
circumference. The coefficient m = 2πR ∈ N denotes the number of wavelengths λ∗
around the circumference (we restrict ourselves to cases for which m /= 0 because we are
interested in three-dimensional disturbances). The radial velocity is never singular at the
centreline despite Jm being divided by r̄ because, given Jm(r̄) ∼ (r̄/2)m/Γ (m + 1) for
r̄ � 1 (where Γ is the gamma function), the radial average û∞

r,0n is zero.
The focus is on low-frequency (i.e. long wavelength) disturbances with a streamwise

wavenumber kx = 2πλ∗/λ∗x � 1, where λ∗x is the streamwise wavelength of the gust, as
these perturbations are most likely to penetrate a boundary layer and generate laminar
streaks (Matsubara & Alfredsson 2001). As the convected gust is transported passively by
the uniform base flow, the pressure fluctuations are negligible at leading order in kx � 1
(refer to Goldstein (1978, (2.3)) and Leib et al. (1999, (3.2))). Equation (2.1) satisfies the
continuity equation as the term emerging from ∂u/∂x is O(kx) � 1, i.e.

ξmnû∞
r,mn + mû∞

θ,mn = O(kx). (2.2)

Without losing generality, m > 0 is taken. The continuity equation also determines the
r̄−1 dependence for the radial velocity and the dependence on the derivative of the Bessel
function and the coefficient −i/ξmn for the the azimuthal velocity.

The Reynolds number is Reλ = U∗∞λ∗/ν∗ � 1. Inside the pipe, the disturbances evolve
downstream on a length scale that is comparable with the streamwise gust wavelength.
A distinguished scaling is thus kx = O(Re−1

λ ) or x̄ = kxx = 2πx∗/λ∗x = O(1). The
disparity between the streamwise and azimuthal scales implies that disturbances of
amplitude O(ε) may generate streamwise velocity perturbations with an amplitude of
O(ε/kx) in the viscous layers. These amplitudes are assumed to be much smaller than U∗∞,
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εu∞

RδR

No dP/dx
influence

Mild dP/dx
influence

I

II
III

II
III

IV

VI

V

r

x

Fully developed

Poiseuille flowFull dP/dx
influence

Figure 1. Asymptotic regions of the pipe flow (not in scale). The boundary-layer thickness δR is defined in
§ 4.1.

which translates to ε/kx � 1 or εReλ � 1 and implies that the Navier–Stokes equations
may be linearized.

Vortical disturbances analogous to those defined in (2.1) have been found in other
cylindrical flows, i.e. the instability modes of a rotating pipe flow also have the streamwise
velocity component proportional to Jm and the radial velocity proportional to Jm/r (Pedley
1969). A similar choice for the oncoming disturbance was employed for the flat-plate
boundary-layer cases studied by Ricco, Luo & Wu (2011) and Marensi, Ricco & Wu
(2017), who prescribed the vorticity fluctuations as a pair of gusts with equal and opposite
spanwise wavenumbers. Disturbances (2.1) are physically realistic because they may be
generated, for example, by a grid at the entry of the pipe, as a circular analogue to
the vibrating wires used in the receptivity studies by Dietz (1999) and Borodulin et al.
(2021a,b) for two- and three-dimensional free stream vortical disturbances, respectively.

As shown in figure 1, the domain is divided into six asymptotic regions. The effect of the
base-flow streamwise pressure gradient is negligible in regions I, II and III, mild in region
IV, and fully influential in region V. In region VI, the base flow is fully developed. In region
I, at x = O(1), the base and the perturbation flows are inviscid and rapid distortion theory
applies (Goldstein 1978). A velocity potential is used and the wall is taken into account
through the no-penetration condition on the radial velocity component. In the viscous
region II, δ∗/λ∗ � 1, where δ∗ is the boundary-layer thickness. Regions I and II are
studied in § 3.2.1. Region III occurs where δ∗/λ∗ = O(1) and x̄ = O(1) and it is governed
by the linearized unsteady boundary-region equations (Leib et al. 1999). In region IV,
which is in the pipe core and surrounded by region III, the base flow is inviscid and the
perturbation flow is viscous. Regions III and IV are discussed in § 3.2.2. In region V the
base flow is not self-similar because of the unknown pressure gradient. The streamwise
base-flow velocity at the pipe axis increases with x and the base flow is non-parallel as
the radial velocity plays a key role. The latter vanishes farther downstream in region VI,
where the parabolic Poiseuille profile occurs.

2.2. Governing equations and boundary conditions
The flow field is governed by the continuity and Navier–Stokes equations,

∇ · u = 0, (2.3)

∂u
∂t

+ (u · ∇)u = −∇p + 1
Reλ

∇2u, (2.4)

where u = {ux, ur, uθ }. The velocity u and the pressure p are expressed as the
superposition of the base flow and the perturbation flow, i.e. {u, p} = {Ū(x̄, r), P̄(x̄)} +
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{u′, p′}, where

{Ū(x̄, r), P̄(x̄)} = {U(x̄, r), kxV(x̄, r), 0,P(x̄)}, (2.5)

{u′, p′} = {u′, v′,w′, p′} = ε

⎛
⎜⎝

ūx,0(x̄, r)
ūr,0(x̄, r)
ūθ,0(x̄, r)
p̄0(x̄, r)

⎞
⎟⎠ ei(mθ−kxt) + c.c. (2.6)

and

{ūx,0, ūr,0} = {ū(0)x , kxū(0)r } +
{

im
kx

ūx, imūr

}
, (2.7a)

ūθ,0 = − ikx

m
ū(0)θ + ūθ , (2.7b)

p̄0 = kx

Reλ
p̄(0) + im

Reλ
p̄. (2.7c)

The notation in (2.6)–(2.7) is as close as possible to the flat-plate case by Leib et al. (1999)
for ease of understanding. The main difference between ūr and ū(0)r and the corresponding
components in (4.1) on page 176 of Leib et al. (1999) is the missing factor (2x̄)1/2 in (2.6),
which arises in Leib et al. (1999)’s case because of the Blasius-similarity scaling.

By substituting (2.5)–(2.6) into (2.3)–(2.4) and collecting the terms of O(1), one obtains
the base-flow boundary-layer equations (Hornbeck 1964),

∂U
∂ x̄

+ V
r

+ ∂V
∂r

= 0, (2.8)

U
∂U
∂ x̄

+ V
∂U
∂r

= −dP
dx̄

+ 1
F

(
1
r
∂U
∂r

+ ∂2U
∂r2

)
, (2.9)

∂P
∂r

= 0, (2.10)

for kx,Re−1
λ � 1 and F = kxReλ = O(1). As P is unknown, (2.8)–(2.9) are solved

together with the mass conservation law,
∫ R

0 Ur dr = R2/2, found by averaging across a
pipe cross-section. Equations (2.8) and (2.9) are subject to the no-slip and no-penetration
conditions at the pipe wall, U = V = 0 at r = R, and to the symmetry conditions at the
axis, ∂U/∂r = V = 0 at r = 0. As p′ at the wall is unknown, we eliminate the pressure
from (2.3)–(2.4) (Kim, Moin & Moser 1987) to obtain the perturbation-flow equations,

V̂ūr + V̂r
∂ ūr

∂r
+ V̂rr

∂2ūr

∂r2 + V̂rrr
∂3ūr

∂r3 + V̂rrrr
∂4ūr

∂r4 + V̂x
∂ ūr

∂ x̄
+ V̂xr

∂2ūr

∂ x̄∂r
+ V̂xrr

∂3ūr

∂ x̄∂r2

+Ûūx + Ûr
∂ ūx

∂r
+ Ûrr

∂2ūx

∂r2 + Ûx
∂ ūx

∂ x̄
+ Ûxr

∂2ūx

∂ x̄∂r
+ Ûxrr

∂3ūx

∂ x̄∂r2 = 0, (2.11)(
−i + m2

Fr2 + ∂U
∂ x̄

)
ūx +

(
V − 1

Fr

)
∂ ūx

∂r
+ U

∂ ūx

∂ x̄
− 1

F
∂2ūx

∂r2 + ∂U
∂r

ūr = 0. (2.12)
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Vortical disturbances entrained in the pipe entrance region

The coefficients of (2.11) are

V̂ =
(

1
m2 − 1

) (
i − ∂V

∂r
+ 1 − m2

Fr2

)
+ 2r

m2
∂2U
∂r∂ x̄

+ r2

m2
∂3U
∂r2∂ x̄

, (2.13)

V̂r = 3ir
m2 − 3r

m2
∂V
∂r

− 1
Frm2 − 2

Fr
+ V − 4V

m2 + r2

m2
∂2U
∂r∂ x̄

, (2.14)

V̂rr = 1
m2

(
ir2 − 5rV − r2 ∂V

∂r
− 2m2

F + 5
F

)
(2.15)

V̂rrr = 1
m2

(
6r
F − r2V

)
, (2.16)

V̂rrrr = r2

Fm2 , (2.17)

V̂x = U − U
m2 + r

m2
∂U
∂r

+ r2

m2
∂2U
∂r2 , (2.18)

V̂xr = −3rU
m2 , (2.19)

V̂xrr = −r2U
m2 , (2.20)

Û = ∂V
∂ x̄

+ 2r
m2
∂2U
∂ x̄2 + r2

m2
∂3U
∂ x̄2∂r

, (2.21)

Ûx = − 2
Fr

+ 6r
m2
∂U
∂ x̄

+ 2r2

m2
∂2U
∂ x̄∂r

, (2.22)

Ûr = r
m2
∂V
∂ x̄
, (2.23)

Ûrr = r2

m2
∂V
∂ x̄
, (2.24)

Ûxr = 2
m2

(
1
F − 2rV − r2 ∂V

∂r

)
, (2.25)

Ûxrr = 2r
m2F . (2.26)

The boxed terms in (2.13)–(2.15) pertain to the unsteadiness and are asymptotically
smaller than the other terms in the low-frequency limit F � 1. The procedure to
obtain (2.11)–(2.12) is given in the supplementary material S2. Equations (2.11) and
(2.12) are also satisfied by {ū(0)x , ū(0)r }. At the start of the analysis, (2.12) is the radial
vorticity equation, but it reduces to the x-momentum equation because the leading-order
contribution to the radial vorticity is given by ūx due to kx � 1. Equations (2.11) and (2.12)
are subject to

ūx = ūr = ∂ ūr

∂r
= 0 (2.27)
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at r = R because of the no-slip condition at the pipe wall and the continuity equation
(S2.5). The boundary conditions at r = 0 are

m = 1 : ūx = 0, ū′
r = 0, ū′

θ = 0, (2.28)

m = 2 : ūx = 0, ūr = 0, ūθ = 0, (2.29)

m > 2 : ūx = 0, ūr = 0, ū′
r = 0, (2.30)

where the prime here indicates the derivative with respect to r. For m = 1, (2.11)–(2.12)
are solved together with the continuity equation (S2.5) because ūθ appears in (2.28).
For m = 2, this complication is avoided by using ū′′

r = 0 instead of the last condition
in (2.29). The behaviour of the perturbation flow near the pipe axis and the derivation of
the boundary conditions is further discussed in the supplementary material S3. The same
boundary conditions are found for ū(0)x , ū(0)r , ū(0)θ . The azimuthal velocity component ūθ
and the pressure p̄ are computed a posteriori from the continuity equation (S2.5) and the
azimuthal momentum equation (S2.8).

The base-flow equations (2.8)–(2.9) and the perturbation (2.11)–(2.12) are parabolic and
thus the specification of the appropriate initial conditions is of crucial importance. We
have devoted great attention to the formulation of physically meaningful initial conditions
for both the base flow and the perturbation flow. The initial base-flow velocity profile
has usually been assumed uniform (Hornbeck 1964). We instead take into account the
interaction between the oncoming flow and the pipe wall by deriving an asymptotic
solution composed of the Blasius flow near the walls (inner solution) and the inviscid
flow in the pipe core, distorted by the developing boundary layers (outer solution). The
supplementary material S4 discusses the conditions under which the curvature effects can
be neglected near the wall. The small-x base-flow asymptotic initial condition used to solve
the base-flow equations (2.8)–(2.9) is described in § 3.1.

Perturbation inflow conditions for open boundary-layer computations are often specified
as the continuous spectrum of the Orr–Sommerfeld equations (Jacobs & Durbin 2001;
Brandt, Schlatter & Henningson 2004) or by selecting optimal perturbations, as those
obtained for the flat-plate case by Andersson, Berggren & Henningson (1999) and Luchini
(2000). As inflow conditions, Buffat et al. (2014) imposed optimal disturbances within one
of the boundary layers near the entrance of a channel, while perturbations were absent in
the inviscid core.

We prescribe initial conditions that are superposed on the inviscid core flow and match
the oncoming vortical disturbances at x̄ = 0, given in (2.1). Like the base flow, these initial
conditions are expressed as asymptotic composite solutions of a viscous inner solution
within the boundary layer and an outer solution where the base flow is inviscid in the
pipe core because we are interested in their entrainment of vortical disturbances that
occupy the entire cross-plane near the pipe mouth. The initial condition is not imposed
at x̄ = 0 because the radial base-flow velocity is singular there and because the flow field
is governed by the full Navier–Stokes equations in the immediate surroundings of the inlet.
Therefore, the initial conditions are imposed at a location 0 < x̄0 � 1.

Section 3.2 presents results for the development of the perturbation flow at small-x̄
locations where the base-flow pressure gradient is negligible. These flow fields are small-x̄
asymptotic solutions of the flow in region V and can therefore be used as initial conditions
to solve equations (2.11)–(2.12) along the pipe, where the base-flow streamwise pressure
gradient is fully influential.
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Vortical disturbances entrained in the pipe entrance region
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of TS waves
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Figure 2. The blue line and red circles confine the unstable area according to classical stability theory, i.e.
where TS waves start to grow, computed by Gupta & Garg (1981) and da Silva & Moss (1994), respectively.
The black (axisymmetric disturbances) and white (non-axisymmetric disturbances) circles represent the
experimental neutral points measured by Sarpkaya (1975). The solid black line denotes the end location of
the entry pipe-flow region, according to our definition based on the second derivative of the base velocity at
the centreline, discussed in § 4.1. The grey area illustrates the range of Reynolds numbers for the flows studied.

2.3. Critical streamwise location for linear stability
As we are interested in the spatial transient growth of vortical disturbances in the entrance
region, a first step is to report, as a function of the Reynolds number, the streamwise
locations where TS waves appear. Figure 2 shows the neutral stability locations xc/R as a
function of the Reynolds number ReR = RReλ = U∗∞R∗/ν∗ computed by Gupta & Garg
(1981) (blue line) and da Silva & Moss (1994) (red circles). The entrance flow is linearly
stable for ReR < 11 000 and the unstable region has a finite extent along the x direction
as the flow is always linearly stable when it reaches the fully developed condition. We
also show the experimental neutral points by Sarpkaya (1975), measured by introducing
disturbances at fixed locations on the pipe wall by electromagnetic excitation. da Silva &
Moss (1994) claimed that the disagreement may be due to the finite amplitude of Sarpkaya
(1975)’s perturbations, which cannot be captured by the linear stability theory. We focus
on Reynolds numbers in the range 1000 < ReR < 10 000 (marked by the light grey area in
figure 2), i.e. small enough for TS waves not to appear and large enough for algebraically
growing perturbations or transition to turbulence to have been observed in experimental
studies.

3. Initial flow development

In this section we discuss the theoretical and numerical results of the base and perturbation
flows near the pipe entrance, where the effect of the pipe confinement is important,
but the influence of the base-flow pressure gradient is negligible at leading order.
This mathematical analysis is relevant because, through the asymptotic formulation, the
physical flow features near the entrance are revealed and the flow evolution farther
downstream inside the pipe can be computed. As explained at the end of § 2, the results
obtained in this section will indeed specify the appropriate initial conditions for the
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computation of the base and the perturbation flows in region V, where the dynamics is
fully influenced by the streamwise pressure gradient.

3.1. Initial base flow in regions I and II
The initial base-flow solution is constructed according to the method of matched
asymptotic expansions. The outer solution is the inviscid base flow in the core of the
pipe, while the inner solution is the viscous flow attached to the pipe wall. The composite
solution reads

Ū = Ūout + Ū in − Ūcom, (3.1)

where the subscripts in, out and com stand for inner, outer and common, respectively, and
Ū is defined in (2.5). The common part is defined as

Ūcom = lim
r→R

Ūout = lim
η→∞ ±Ū in, (3.2)

where

η = (R − r)
(

Reλ
2x

)1/2

= O(1) (3.3)

is the scaled radial coordinate of the inner solution and in (3.2) the plus sign applies
to the streamwise velocity and the minus sign applies to the radial velocity because the
coordinates r and η point in opposite directions.

For the flow in the entrance region of a channel, the inner solution near the inlet
corresponds to the Blasius flow as the Reynolds number is large (Wilson 1970; Rubin,
Khosla & Saari 1977; Duck 2005; Buffat et al. 2014). We also benefit from the Blasius
solution in the pipe-flow case as we have proved in the supplementary material S4 that
the curvature effects are negligible near the wall. The inner flow therefore satisfies the
self-similar Blasius equation

F′′′ + FF′′ = 0, (3.4)

where the prime indicates differentiation with respect to η. The boundary conditions for
(3.4) are F(0) = 0, F′(0) = 0 and F′ → 1 as η → ∞. The inner base flow reads

Ūin = F′, V̄in = ηF′ − F
(2xReλ)1/2

. (3.5)

As Reλ � 1, the base-flow viscous effects are negligible in the pipe core near the entrance,
which is consistent with the use of the boundary-layer approximation of the Navier–Stokes
equations. In the pipe core, the axisymmetric outer flow is described by the inviscid Stokes
stream function ψ ,

ψ(x, r) = r2

2
+ Re−1/2

λ ψ2(x, r), (3.6)

i.e. Ūout = r−1∂ψ/∂r and V̄out = −r−1∂ψ/∂x. The leading-order term r2/2 in (3.6)
represents the uniform streamwise flow. The second-order stream function ψ2, which
defines the flow due to the pipe confinement and to the Blasius boundary layer developing
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Vortical disturbances entrained in the pipe entrance region

on the pipe wall, satisfies

∂2ψ2

∂x2 + ∂2ψ2

∂r2 − 1
r
∂ψ2

∂r
= 0, (3.7)

subject to

ψ2 = βR
√

2x at r = R, x > 0, (3.8a)

ψ2 = 0 at r = R, x < 0, (3.8b)

ψ2 = 0 at r = 0, (3.8c)

where β = limη→∞(η − F) = 1.217 . . . . The inviscid base flow in the pipe core is
irrotational and therefore the governing equation (3.7) is obtained by setting the azimuthal
vorticity component to zero. Equation (3.7) is not the Laplace equation because of the
negative sign of the last term (Panton 2013). The boundary condition (3.8a) is obtained by
asymptotic matching, i.e. the radial component of the outer velocity must match the outer
limit of the base-flow wall-normal velocity of the Blasius boundary layer,

V̄com = lim
r→R

V̄out = −1

RRe1/2
λ

∂ψ2

∂x

∣∣∣∣
r=R

= − lim
η→∞ V̄in

= lim
η→∞

F − ηF′

(2xReλ)1/2
= −β
(2xReλ)1/2

, (3.9)

where the minus sign in front of the η-limit is due to the inner and outer velocity
components pointing towards opposite directions. It follows that

ψ2(x) = βR
∫
(2x)−1/2 dx = βR

√
2x, (3.10)

at r = R for x > 0. The boundary condition (3.8b) is obtained as follows. The base flow is
uniform and streamwise only as x → −∞ and, as it is not influenced by the presence of
the pipe, no wall-normal base-flow velocity occurs as x → −∞. Also, the horizontal line
r = R for x < 0 is a streamline with stagnation point at x = 0−, r = R and no wall-normal
base-flow velocity occurs along it because the base flow approaches the pipe wall parallel
to it. Therefore, V̄out = 0 at r = R for x < 0, i.e. ∂ψ/∂x = ∂ψ2/∂x = 0. As we choose
ψ2 = 0 as x → −∞, by integrating ∂ψ2/∂x = 0 from x → −∞ for r = R, it follows that
ψ2 = 0 along r = R for x < 0. The boundary condition (3.8c) follows from V̄out = 0 along
the pipe axis at any x due to the flow axial symmetry.

The solution to (3.7) together with the boundary conditions (3.8) is found by use of the
complex Fourier transform along x. The solution reads

ψ2(x, r) = − rβi1/2

2
√

2π

∫ +∞+iγ

−∞+iγ

I1(ζ r) eiζx

I1(ζR)ζ 3/2 dζ, (3.11)

where I1 is the modified Bessel function of the first kind and γ ∈ R < 0.
The supplementary material S5 presents the derivation of (3.11) (Dettman 1965).
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The composite solution of the streamwise velocity U is

U(x, r) = Ū = F′(η(x, r))− βi1/2

2
√

2πRe1/2
λ

∫ +∞+iγ

−∞+iγ

eiζx

ζ 1/2I1(ζR)

[
I1(ζ r)
ζ r

+ I′
1(ζ r)

]
dζ

+ βi1/2

2
√

2πRe1/2
λ

∫ +∞+iγ

−∞+iγ

eiζx

ζ 1/2

[
I′
1(ζR)

I1(ζR)
+ 1
ζR

]
dζ. (3.12)

The composite solution of the radial velocity V , defined in (2.5), is

V(x, r) = k−1
x V̄ = ηF′(η(x, r))− F(η(x, r))

kx(2xReλ)1/2

+ βi3/2

2
√

2πkxRe1/2
λ

∫ +∞+iγ

−∞+iγ

I1(ζ r) eiζx

I1(ζR)ζ 1/2 dζ + β

kx(2xReλ)1/2
. (3.13)

Figure 3 shows the inner and outer solutions, their common parts, and the composite
solutions for the base flow for Reλ = 500 and 2000 at x = 0.04. The composite base-flow
streamwise velocity, depicted in figure 3(a,b), agrees well with the inner Blasius solution
across the pipe radius as the acceleration in the pipe core is still small at this x location. The
increase of inviscid streamwise velocity balances the decrease within the viscous region
to conserve the mass flow rate. The displacement effect of the Blasius boundary layers,
given by (3.9), causes a small streamwise pressure gradient related to the dependence of
the displacement stream function ψ2 on the x coordinate. This small pressure gradient
is negligible at leading order in the boundary layer. The inviscid streamwise velocity is
larger than unity near the wall because it accelerates along x to conserve the mass flow
rate as the radial velocity decreases from its boundary-layer blowing value as the pipe axis
is approached. This acceleration gives rise to the local near-wall peak in the Ū profile, also
reported in Durst et al. (2005) for entry-pipe flow and in Sparrow, Lin & Lundgren (1964),
Panton (2013) and Alizard et al. (2018) for entry-channel flows. The peak occurs because
the inviscid streamwise velocity is larger than the viscous streamwise velocity deficit of
the boundary layer.

The base-flow radial velocity, shown in figure 3(c,d), agrees well with the viscous
solution only in the proximity of the wall, while the two fail to overlap in the inviscid core,
where the composite profile coincides with the outer solution. The composite solution
shows a distinct near-wall peak that moves closer to the wall and decreases in intensity as
the Reynolds number increases. The velocity is not exactly zero at the wall. This small slip
velocity decreases as O(Re−1/2

λ ) and induces a viscous layer at the next order, which is not
computed.

3.2. Initial perturbation flow
The precise flow specification at the pipe entrance is relevant as our interest lies in the
mathematical description of the inlet profiles to start the computations and to understand
how the vortical disturbances are entrained in the pipe mouth and how they evolve in the
entrance region. The initial perturbation flow, fully influenced by the confinement of the
pipe and only mildly by the base-flow streamwise pressure, is studied in this section via
matched asymptotic expansions. Asymptotic composite solutions are derived for regions I
and II in § 3.2.1. The flow in regions III and IV is discussed in § 3.2.2.
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Figure 3. Composite solutions for the base-flow streamwise velocity Ū (a,b) and radial velocity V̄ (c,d) at
x = 0.04 for R = 1 and two Reynolds numbers.

3.2.1. Perturbation flow in regions I and II
In region I the base flow is uniform and inviscid, the perturbation flow is inviscid, and
x̄ � 1 with F = O(1). The flow field can thus be adequately described by rapid distortion
theory (Goldstein 1978). The velocity is expressed as

uout = î + ε[u(1)(x̄, r)+ kxu(1)1 (x̄, r)] ei(mθ−kxt) + c.c.

= î + ε(u∞ + ∇φ + kx∇φ1)+ c.c. (3.14)

The velocity u(1) is due to the interaction of the free stream gust (2.1) with the pipe wall,
while u(1)1 is generated by the wall-normal boundary-layer perturbation velocity via ∇φ1.
The perturbation potential φ satisfies the Laplace equation

1
r
∂

∂r

(
r
∂φ

∂r

)
+ 1

r2
∂2φ

∂θ2 + ∂2φ

∂x2 = 0, (3.15)

subject to

φ finite at r = 0, (3.16a)

∂φ

∂r
+ u∞r = 0 at r = R, x > 0, (3.16b)
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where u∞r(r = R) = [2û∞
r,mnJm(ξmn/2)/ξmn] exp[ikx(x − t)+ imθ ] is the gust radial

velocity found from (2.1) as the pipe wall is approached. Expression (3.16b) is the
no-penetration boundary condition at the wall for the radial velocity. To solve (3.15) in
the infinite strip −∞ < x < ∞, 0 ≤ r ≤ R, one needs a boundary condition at r = R for
x < 0, which is unknown. However, the interest here is in the solution at x � 1, which can
be found by separation of variables. In this limit, it is found that φ = φ̂(r) exp[ikx(x − t)+
imθ ], where φ̂(r) satisfies the modified Bessel equation

r2 d2φ̂

dr2 + r
dφ̂
dr

− (m2 + k2
xr2)φ̂ = 0. (3.17)

In the limit kx � 1, the solution is

φ = −2Rû∞
r,mn

mξmn
Jm

(
ξmn

2

) ( r
R

)m
e[ikx(x−t)+imθ ], (3.18)

which is not singular when m = 0 because û∞
r,0n = 0. Details of the derivation to obtain

(3.18) are found in the supplementary material S6. The velocity components of u(1) =
{u(1)x , u(1)r , u(1)θ } in (3.14) are

u(1)x (x̄, r) = u∞x + ∂φ

∂x
= −2ikxRû∞

r,mn

mξmn
Jm

(
ξmn

2

)( r
R

)m
eix̄

+ û∞
x,mnJm

(
ξmnr
2R

)
eix̄, (3.19)

u(1)r (x̄, r) = u∞r + ∂φ

∂r
= −2eix̄û∞

r,mn

ξmn

[
Jm

(
ξmn

2

) ( r
R

)m−1 − R
r

Jm

(
ξmnr
2R

)]
, (3.20)

u(1)θ (x̄, r) = u∞θ + 1
r
∂φ

∂θ
= −2iû∞

r,mn

ξmn
Jm

(
ξmn

2

)( r
R

)m−1
eix̄

− iû∞
θ,mn

ξmn
J′

m

(
ξmnr
2R

)
eix̄. (3.21)

Using (2.6) and (2.7), the leading-order streamwise and radial velocities in region I are

ūx,out = 0, (3.22a)

ūr,out = − iu(1)r

m
= 2ieix̄û∞

r,mn

mξmn

[
Jm

(
ξmn

2

) ( r
R

)m−1 − R
r

Jm

(
ξmnr
2R

)]
. (3.22b)

The leading-order azimuthal velocity ūθ,out = u(1)θ is given by (3.21) because of (2.7b).
As the pipe wall is approached, ūθ,out drives the inner flow in the viscous region II,
where the azimuthal viscous diffusion effects do not play a leading role. As proved
by the scaling in the supplementary material S4, the flow in region II is described by
the unsteady boundary-layer equations in Cartesian coordinates because the curvature
effects are negligible near the wall. The inner solution for the radial velocity is
ūθ,in = ūθ,comF′(η), found by use of (4.13) in Leib et al. (1999), where the common part
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ūθ,com is

ūθ,com(x̄) = ūθ,out(r = R) = − ieix̄

ξmn

[
2û∞

r,mnJm

(
ξmn

2

)
+ û∞

θ,mnJ′
m

(
ξmn

2

)]
. (3.23)

The composite azimuthal velocity ūθ is

ūθ = −2iû∞
r,mn

ξmn
Jm

(
ξmn

2

)( r
R

)m−1
eix̄ − iû∞

θ,mn

ξmn
J′

m

(
ξmnr
2R

)
eix̄ + ūθ,com(F′ − 1). (3.24)

The solution (3.24) is not needed for the numerical computation in region V because ūθ
is absent from (2.11) and (2.12). However, the computation of ūθ,com is essential because
it determines the amplitude of the inner streamwise and radial velocities. The streamwise
velocity component in region II is ūx,in = ūθ,comx̄ηF′′/(2R). The x̄ηF′′/2 dependence is
found using (4.13) in Leib et al. (1999), and the amplitude ūθ,com is obtained by converting
the continuity equation from cylindrical to Cartesian coordinates and by taking the limit
r → R. As ūx,out = 0, the composite streamwise velocity ūx is

ūx = ūθ,com
x̄ηF′′

2R
. (3.25)

The asymptotic approach is clearly an invaluable tool as the amplitude of the streamwise
perturbation velocity is uniquely linked to the oncoming free stream flow characteristics
through ūθ,com, given in (3.23). Had the perturbation been prescribed within the boundary
layer without relating to the oncoming fluctuations, the streak amplitude should have been
assigned arbitrarily.

The composite radial velocity ūr is found by first summing the outer solution (3.22)
and the inner solution obtained by multiplying the region-II wall-normal velocity (4.13)
in Leib et al. (1999) by the amplitude ūθ,com and by (2x̄)1/2 on using (4.1) in Leib et al.
(1999). The common part, i.e. the large-η limit of the region-II solution, is then subtracted.
The common part also emerges from the second-order term of the Taylor expansion of
the outer solution (3.22) as r → R, while the leading-order term vanishes because of the
no-penetration condition (3.16b). The composite radial velocity ūr is

ūr = 2ieix̄û∞
r,mn

mξmn

[
Jm

(
ξmn

2

) ( r
R

)m−1 − R
r

Jm

(
ξmnr
2R

)]
︸ ︷︷ ︸

outer solution

− ūθ,com

4R

(
2x̄
F

)1/2

(η2F′′ − 3ηF′ − F)︸ ︷︷ ︸
inner solution

− ūθ,com

R

(
2x̄
F

)1/2

η︸ ︷︷ ︸
common part

. (3.26)

The initial conditions for {ū(0)x , ū(0)r , ū(0)θ }, defined in (2.7), are also found through a
composite solution. The solution for the streamwise velocity ū(0)x is found by combining
the outer solution (3.19) and the inner solution given by (4.13) in Leib et al. (1999), valid
for F = O(1) and x̄ � 1. The composite streamwise velocity ū(0)x is

ū(0)x = û∞
x,mnJm

(
ξmnr
2R

)
eix̄ + û∞

x,mnJm

(
ξmn

2

)
eix̄

[
(ηF′)′ + F′

2
− 1

]
. (3.27)

The first term in (3.19) can be neglected because it is O(kx). The inner solution for the
radial velocity ū(0)r is found by (4.13) in Leib et al. (1999), which is also valid for F = O(1)
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and x̄ � 1. It reads

ū(0)r,in = − û∞
x,mnJm(ξmn/2)

2(2x̄F)1/2 [η(ηF′)′ − F]. (3.28)

Physically this perturbation velocity represents a radial blowing/suction effect, an unsteady
analogue to the one experienced by the base-flow Blasius boundary layer. In the Blasius
case, the base wall-normal velocity is generated by the free stream uniform U∗∞, while
ū(0)r,out is driven by ū(0)x,out. The transpiration velocity induces the inviscid velocity field u(1)1
in (3.14) and the associated radial pressure gradient. The velocity potential φ1 satisfies

∇2φ1 = 0, (3.29)

subject to

φ1 finite at r = 0, (3.30a)

∂φ1

∂r
= lim
η→∞ ū(0)r,in = −β û∞

x,mnJm(ξmn/2)
2(2x̄F)1/2 eimθ−ikxt at r = R, x > 0. (3.30b)

Similar to the problem of solving (3.15), (3.29) cannot be solved in the infinite strip −∞ <

x < ∞, 0≤ r ≤ R because the boundary condition at r = R for x < 0 is unknown. In our
region of interest, x � 1, the second derivative of φ1 with respect to x is asymptotically
smaller than the other derivatives as long as kx � x̄ � 1 because of the (2x̄)−1/2 behaviour
of the boundary conditions (3.30b). By separating the variables and expressing φ1 =
φ̂1(r) exp(imθ − ikxt)/(2x̄)1/2, equation (3.29) simplifies to the Euler differential equation.
The solution is

φ̂1 = −β û∞
x,mnJm(ξmn/2)rm

2 mRm−1F1/2 . (3.31)

The composite radial velocity ū(0)r reads

ū(0)r = − û∞
x,mnJm(ξmn/2)

2(2x̄F)1/2
{
η(ηF′)′ − F + β

[( r
R

)m−1 − 1
]}
. (3.32)

It is verified that kxū(0)r is asymptotically smaller than imūr and ū(0)x where kx/Reλ � x̄ �
1, as required by the expansion (2.7). Differently from the leading-order components where
ūθ,out is needed to determine the amplitude of {ūx,in, ūr,in}, it is not necessary to compute
ū(0)θ,out as we have already found {ū(0)x , ū(0)r } to start the integration of the boundary-region
equations (2.11) and (2.11).

Figures 4–7 show velocity profiles for different m and n values. The flow parameters
have been chosen as representative of the most significant cases, i.e. azimuthal
wavelengths at r = R and characteristic radial length scale comparable with the radius,
Reynolds number with a middle value in the range of interest given in figure 2, and
sufficiently small x̄ for the asymptotic solutions to be valid.

In figures 4 and 5, increasing n causes the velocity profiles that are directly driven by the
free stream forcing (2.1), i.e. ūr, ūθ and ū(0)x , to have a more intense modulation along the
radial coordinate because the Bessel-function zeros ξmn, which appear in the argument of
the Bessel functions in (2.1), increase in amplitude. The zeros ξmn can thus be interpreted
as analogous to wall-normal wavenumbers in the Cartesian geometry. Figures 4(c,d) and
6(c,d) show how the inner profiles (region II) and the outer profiles (region I) of the
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Figure 4. Real parts of composite velocities ūx, ūr, ūθ in regions I and II for different n values and m = 3,
x̄ = 0.018, Reλ = 4712, kx = 0.37, R = 0.812. In this figure and in figure 6, panel (d) shows a zoomed view
of the asymptotic matching of the inner solution (dashed grey line) and the outer solution (dashed red line) of
Re(ūθ ).
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Figure 5. Real parts of composite velocities ū(0)x , ū(0)r in regions I and II for different n values and m = 3,
x̄ = 0.018, Reλ = 4712, kx = 0.37, R = 0.812.

azimuthal velocities combine to create the composite profiles valid at any radial location.
Figure 8 shows contour plots of the composite velocity components and the pressure at a
fixed time instant in a cross-plane near the pipe mouth.

The composite solutions (3.25)–(3.27) and (3.32) for ūx, ūr, ū(0)x and ū(0)r in regions I
and II are used as initial conditions for the computation in regions V and VI.
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Figure 6. Real parts of composite velocities ūx, ūr, ūθ in regions I and II for different m values and n = 2,
x̄ = 0.018, Reλ = 4712, kx = 0.37, R = 0.812.
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Figure 7. Real parts of composite velocities ū(0)x , ū(0)r in regions I and II for different m values and n = 2,
x̄ = 0.018, Reλ = 4712, kx = 0.37, R = 0.812.

3.2.2. Perturbation flow in regions III and IV
The outer expressions (3.22) do not take into account the viscous decay as they are only
valid in the inviscid region I, i.e. for x̄ � 1. Viscous effects become important as the outer
flow evolves downstream through region IV. The flow in regions III and IV can be found
by a composite solution. The expression for the outer velocity field in region IV can be
written as

u =
{

1
r
∂ψ

∂r
,−1

r
∂ψ

∂x
, 0

}
+ εuout ei(mθ−kxt) + c.c., (3.33)
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Figure 8. Contours of the instantaneous velocity components 2ūx,0, 2ūr,0, 2ūθ,0 and pressure 2p̄0 at t = 0,
x̄ = 0.018, for Reλ = 2356, kx = 0.185, R = 0.6366 (n = 3,m = 4).

where the stream function ψ(x, r) is given in (3.6) and (3.11). As depicted in figure 1,
the base-flow pressure gradient only has a second-order effect through the x-dependence
of ψ(x, r). In the Cartesian geometry the outer velocity uout can be obtained analytically
by solving the parabolic region-IV momentum equation (5.9) on page 181 in Leib et al.
(1999). In the cylindrical geometry, the radial and the azimuthal momentum equations are
instead coupled and the system has to be solved numerically. The inner solution must
also found numerically by solving the boundary-region equations (5.2)–(5.5) on page
180 of Leib et al. (1999), complemented by mixed-type boundary conditions obtained
by asymptotically matching with the outer solution (3.33). These numerical calculations
are not pursued herein because our region-V solution includes the solutions of regions III
and IV and covers the whole streamwise flow evolution as the base-flow pressure gradient
is accounted for at leading order.
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4. Downstream flow development

In § 3 the base and perturbation flows are influenced by the confinement of the pipe, but
the streamwise location is sufficiently upstream for the base-flow streamwise pressure
gradient not to play a leading-order role. In the present section, we consider region V, i.e.
streamwise locations where the base-flow pressure gradient instead plays a leading-order
role on the base flow and therefore on the perturbation flow. In region VI, the pressure
gradient adjusts downstream to a constant value as the base flow develops to the fully
developed Poiseuille flow. The base-flow profiles are obtained by solving (2.8)–(2.9) and
the perturbation profiles are found by solving (2.11)–(2.12).

4.1. Base flow
The base-flow streamwise and wall-normal velocity profiles across the pipe are shown in
figure 9 at different streamwise positions. The small-x asymptotic profiles (3.1) are also
shown (dashed lines). The flow field approaches the fully developed regime as it develops
downstream: the base-flow streamwise velocity evolves to the parabolic Poiseuille profile,
while the wall-normal velocity decreases to zero.

The base-flow streamwise velocity is shown in figure 10 at various r/R locations as a
function of the streamwise position. There is excellent agreement with the numerical data
by Hornbeck (1964) (red circles) and very good agreement with the experimental data by
Reshotko (1958) (white circles), except at the two locations closest to the pipe wall, where
the uncertainty of the measurements may have been influential.

The downstream adjustment of the pressure gradient can be monitored through the
correction pressure function

K
(

x
R2Reλ

)
= |�P̄∗|
ρ∗U∗2∞

− 8ν∗x∗

R∗2U∗∞
= |�P̄| − 8x

R2Reλ
, (4.1)

which measures the deviation of the base-flow pressure, defined in (2.5), from the fully
developed Poiseuille value. Our numerical data, shown in figure 11, agree well with
the numerical data based on the series solution by Sparrow et al. (1964) (red circles)
and satisfactorily with the experimental data by Mohanty & Asthana (1978). Our fully
developed computed value, K∞ = limx→∞ K(x) = 0.63, matches the one by Sparrow
et al. (1964) and is slightly lower than the experimental values by Shapiro, Siegel & Kline
(1954) (square) and Knibbs (reported by Sparrow et al. (1964), triangle).

We can define boundary-layer thicknesses to quantify the diffusion of the viscous effects
as the flow develops downstream. They are defined as

δk = Δk

∫ R

0

[
1 − Ū(x, r)

Ūcen(x)

]
dr, (4.2)

where k = R identifies the boundary thickness that matches the pipe radius in
the fully developed downstream limit (ΔR = 3 is obtained by substituting δR = R,
limx→∞ Ū(x, r) = 2[1 − (r/R)2] and limx→∞ Ūcen = 2 into (4.2)) and k = LWG,PIPE
denotes the boundary thickness that matches the one employed by Leib et al. (1999) as
x → 0, i.e., δLWG = (2x/Reλ)1/2 (ΔLWG,PIPE = β−1 = 0.822 is obtained by substituting
(3.12) into (4.2)). Figure 12(a) shows the boundary-layer thicknesses as functions of the
streamwise coordinate. The thickness δLWG,PIPE in our pipe-flow flow case is thinner
than the corresponding Blasius-flow δLWG because of the accelerating core caused by the
favourable pressure gradient.
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Figure 9. Streamwise (a) and wall-normal (b) base-flow velocity profiles. The solid lines denote the solutions
at x/(R2Reλ) = 0.0012, 0.0036, 0.01, 0.03, 0.06, 0.12, 0.6 obtained by numerically solving the boundary-layer
equations (2.8)–(2.9). The dashed lines show the composite solution of the streamwise velocity (3.12) (a) and
of the wall-normal velocity (3.13) (b) at x/(R2Reλ) = 0.0004.

We also quantify the entry length, i.e. the distance from the pipe mouth where region
V ends and the fully developed region VI starts. The entry length is typically defined
by the streamwise location where the axis base velocity Ūcen reaches 99 % of its fully
developed value. We can first use (23) in Durst et al. (2005), i.e. xe,u = 2R[0.4642 +
(2Ce,uRReλ)1.6]1/1.6, where Ce,u = 0.0567. As we operate under the assumption Reλ � 1,
Durst et al. (2005)’s equation reduces to xe,u = 4Ce,uR2Reλ, which is consistent with the
scaling adopted in figure 10. We compute Ce,u = 0.057, which is within the uncertainty
range provided by Durst et al. (2005). We also quantify the entrance region as xe,pres =
4Ce,presR2Reλ, i.e. the streamwise distance from the pipe mouth where K = 0.99K∞, that
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x/(R2Reλ)

Figure 10. Base-flow streamwise velocity Ū at r/R = 0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9 (from top to bottom)
as a function of the streamwise coordinate, computed by numerically solving the boundary-layer equations
(2.8)–(2.9) (solid lines). The symbols are experimental data by Reshotko (1958) (empty circles) and
boundary-layer numerical data by Hornbeck (1964) (red circles).
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x/(R2Reλ)

K

Figure 11. Correction pressure function K, defined in (4.1), as a function of the streamwise coordinate,
computed by numerically solving the boundary-layer equations (2.8)–(2.9) (solid line). The symbols are
numerical data by Sparrow et al. (1964) (red circles) and experimental data by Mohanty & Asthana (1978)
(white circles), Shapiro et al. (1954) (square) and Knibbs (reported by Sparrow et al. (1964), triangle).

is, where the pressure gradient has reached its fully developed constant value. We compute
Ce,pres = 0.055.

Crabtree, Küchemann & Sowerby on page 440 of Rosenhead (1963) remark that in a
pipe entrance flow: ‘. . . the whole of the fluid across a section becomes influenced by
viscosity before the parabolic profile is reached’. We can examine this statement, although
they do not specify how the diffusion of viscous effects is defined mathematically. The
development of the flow to the Poiseuille parabolic profile is already quantified by the
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Figure 12. (a) Boundary-layer thicknesses δR, δLWG and δLWG,PIPE as functions of the streamwise coordinate.
(b) Second derivative of the streamwise velocity at the pipe axis and average error E , defined in the text and
measuring the deviation of the Ū profile from the Poiseuille solution, as functions of the streamwise coordinate.

Criterion dP̄/dx̄ E Ūp(r = 0) δR
∂2Ū
∂r2 |r=0

Parameter Ce,pres Ce,pois Ce,u Ce,δ Ce,u2
0.055 0.057 0.057 0.059 0.085

Entry length xe,pres/(R2Reλ) xe,pois/(R2Reλ) xe,u/(R2Reλ) xe,δ/(R2Reλ) xe,u2/(R2Reλ)
0.219 0.228 0.226 0.237 0.341

Table 1. Entrance lengths according to the definitions in the text.

entry length xe,u, based on the downstream evolution of Ūcen, but we also further monitor it
by an adjustment length xe,pois = 4Ce,poisR2Reλ, defined as the streamwise location where
the average difference between the streamwise velocity and the Poiseuille velocity, i.e.
E(x) = R−1 ∫ R

0 |Ū(x, r)− 2[1 − (r/R)2]| dr (shown by the dashed line in figure 12b), has
decayed to 1 % of limx→0 E = 2/3. We find Ce,pois = 0.057, i.e. the same as Ce,u. The
diffusion of viscous effects can be quantified by two adjustment lengths. We first obtain
xe,u2 = 4Ce,u2R2Reλ, i.e. the downstream distance from the pipe mouth where the second
derivative of the streamwise velocity with respect to the radial coordinate at the pipe axis,
∂2Ū/∂r2|r=0 (shown by the solid line in figure 12b), is 99 % of its fully developed value.
We choose this quantity because it represents radial viscous effects and the axis is the
last radial location where the viscous diffusion from the wall is felt. We compute Ce,u2 =
0.085. We then find xe,δ = 4Ce,δR2Reλ, i.e. the downstream distance from the entrance
where δR = 0.99R, and obtain Ce,δ = 0.059. Table 1 summarizes the computed entrance
lengths.

We therefore find that Ce,u2, Ce,δ > Ce,u,Ce,pois, i.e. the flow becomes viscous for the
whole wall-normal extent of the pipe slightly downstream from where the flow can be
considered in good agreement with the Poiseuille profile. Therefore, there does not exist
a distinct streamwise region along which viscous diffusion affects the whole wall-normal
extent of the pipe and the velocity profile has not yet developed to the parabolic profile,
which appears to be in contradiction with the statement by Crabtree, Küchemann &
Sowerby. The adjustment length xe,u2, based on the second wall-normal derivative of the
streamwise velocity at the pipe axis, is the most conservative amongst the four lengths, as
also visually evident in figure 12(b).
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ν∗ Re∗∞ R∗ λ∗
U∗∞ (m2 s−1) (m−1) (m) (m) λ∗x

Fluid (m s−1) ×106 ×10−3 ×103 ×103 (m) Reλ kx ReR λxR

Water 0.1 1 100 15 23.6 0.8 2356 0.185 1500 53.3
Air 1.3 13 100 15 23.6 0.8 2356 0.185 1500 53.3

Table 2. Parameters for water and air pipe flow experiments. The unit Reynolds number is Re∗∞ = U∗∞/ν∗
and m = 4.

4.2. Perturbation flow
The downstream evolution of the perturbation flow is discussed in this section. The scaling
adopted in § 2, which leads to ūx,0 = ūx,0(x̄, r; Reλ, kx, n,m,R, û∞

x , û∞
r ), is useful for the

asymptotic analysis and it relates directly to the open-boundary-layer case of Leib et al.
(1999). However, it is does not convey an immediate physical meaning as, for example,
the scaled frequency kx appears as an independent variable and in the scaling of x̄. We
therefore express the solution as ūx,0 = ūx,0(xR, rR; ReR, λxR, n, λR, û∞

x , û∞
r ), where the

subscript R indicates scaling by the pipe radius R∗, i.e. λR = λ∗/R∗. In the cylindrical
geometry, varying the index n allows studying the role of radial length scale, i.e. the larger
n, the smaller the radial length scale.

In the analysis, we fix û∞
x,mn = 1, and the kinetic energy of the gust at the pipe mouth,

defined as

Egust,R = E∗
gust

U∗2∞R∗2 = π

∫ 1

0
(|ug,x|2 + |ug,r|2 + |ug,θ |2)rR drR, (4.3)

(where rR = r∗/R∗), is kept equal to Egust,11, the energy for m = n = 1 and û∞
r,11 = 1

(ug,x, ug,r, ug,θ are the amplitudes of the free stream gust velocity components, defined
in (2.1)). Expression (4.3) is written explicitly as

Egust,R = π

∫ 1

0

[
rR(û∞

x,mnJm(r̄))2 + (4û∞
r,mnJm(r̄))2

rRξ2
mn

+ rR
(û∞

r,mnJ′
m(r̄))

2

m2

]
drR, (4.4)

where r̄ = ξmnrR/2 and û∞
θ,mn has been eliminated by using (2.2). Setting Egust = Egust,11

allows computing û∞
r,mn for m, n of choice and use of (2.2) gives û∞

θ,mn.
We first study the velocity and pressure profiles of a reference case that is representative

of realistic water and air pipe-flow experiments. Table 2 presents the flow parameters
of these cases. We then study the effect of the inflow parameters on the perturbation
field.

4.2.1. Initial reference-case flow
The region-I-II asymptotic initial conditions require a smooth matching with the numerical
solutions of the boundary-region equations (2.11) and (2.12) at small xR locations. This
matching is monitored by comparison in figure 13. The asymptotic profiles (dashed lines)
are consistent with the numerical solutions (solid lines) at small xR. The ūx profiles
resemble the profiles of the Klebanoff modes appearing in free stream open boundary
layers due to free stream vortical disturbances, shown in figure 3 on page 184 of Leib
et al. (1999). This profile shape is expected because at short distances from the pipe
entrance the flow confinement and the base pressure gradient do not play a leading

932 A16-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
05

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1005


Vortical disturbances entrained in the pipe entrance region

0

0.002

0.004

0.006

–0.04

–0.02

0

0.02

0.04

0.90 0.93 0.95 0.98 1.00

0 0.25 0.50 0.75 1.00
–0.015

–0.010

−0.005

0

xR = 0.153
xR = 0.192
xR = 0.234
xR = 0.275

xR = 0.153
xR = 0.192
xR = 0.234
xR = 0.275

xR = 0.153
xR = 0.275
xR = 0.513

xR = 0.153

xR = 0.206

xR = 0.247

xR = 0.848

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.015

0.020

0.025

(b)(a)

(c) (d )

R
e(

u– r)
Im

(u– x)

Im
(u– x 

   
)

(0
)

R
e(

u– r 
   

)
(0

)

r/R r/R

Figure 13. Streamwise and radial velocity components for the Reynolds number and the frequency of table 2
and n = 3, m = 2. The solid lines indicate the numerical solutions of the boundary-region equations (2.11)
and (2.12) and the dashed lines indicate the asymptotic composite solutions used as initial conditions of the
numerical calculations: (3.25) for ūx; (3.27) for ū(0)x ; (3.26) for ūr; (3.32) for ū(0)r .

role, a valid representation being given by the free stream boundary-layer region-II
profile (3.25). Nevertheless, the amplitude and growth rate of ūx in our case are given
by ūθ,com in (3.23) and are thus influenced by the presence of the pipe wall. At these
locations the dominant part of the total streamwise disturbance velocity ūx,0 is due to
ū(0)x , which is given in (3.27) and is caused by the direct free stream forcing action of the
inviscid streamwise velocity in (3.19). The part due to ūx is smaller, which means that
the streaks have not formed yet and do not dominate the boundary layers over the pipe
wall.

4.2.2. Downstream evolution of the reference-case flow
The downstream evolution of the disturbance field for the reference case of table 2 is
investigated (n = 3,m = 4), assigned as perturbations at the pipe entrance. The inflow
perturbations are streamwise-stretched vortices with comparable radial and azimuthal
length scales in cross-sectional r − θ planes and a much longer streamwise wavelength.
As discussed in § 2.3, at this bulk Reynolds number, ReR = 1500, no TS waves exist,
but nevertheless an intense transient growth is detected. This growth is monitored by the
energy of the perturbation, defined as

E(xR) = π

∫ 1

0
|ūx,0|2rR drR︸ ︷︷ ︸

Ex

+π

∫ 1

0
|ūr,0|2rR drR︸ ︷︷ ︸

Er

+π

∫ 1

0
|ūθ,0|2rR drR︸ ︷︷ ︸

Eθ

, (4.5)
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Figure 14. (a) Streamwise evolution of the perturbation energy E and of its three parts Ex,Er,Eθ related to the
velocity components. (b) Radial location of the maximum of E and amplitude of the wall perturbation pressure
pw (inset).

where ūx,0, ūr,0, ūθ,0 are defined in (2.7). Figure 14(a) shows that, while at the entrance the
three velocity components have comparable intensity, the streamwise velocity component
is the major contributor to the perturbation dynamics as the total energy increases from the
pipe inlet, while the other two velocity components decay at comparable rate, as shown
in the inset of figure 14(a). Downstream of xR = 20, the total energy is almost entirely
due to ūx,0. It reaches its peak at xR = 28 and then decays monotonically because of
viscous dissipation. Almost no perturbation energy is computed downstream of xR = 120.
The transient growth is confined to region V, upstream of the fully developed region VI,
because the entry region, estimated through the centreline base velocity, terminates at
xR = 339. The energy growth and decay is qualitatively similar the transient results in fully
developed pipe flows by Reshotko & Tumin (2001) in the spatial case and by O’Sullivan &
Breuer (1994) and Trefethen et al. (1999) in the temporal case if the time scale is converted
to the axial coordinate by use of the streamwise velocity at the pipe axis for qualitative
comparison.

As shown in figure 14(b), the maximum of the perturbation energy near the pipe mouth
is confined near the pipe wall, within the base-flow viscous layer. As the flow evolves
downstream, the perturbation spreads towards the core of the pipe, although its peak
remains in the outer quarter radial region during the entire flow evolution (radial location
rE > 0.6). The inset of figure 14(b) depicts the downstream evolution of the magnitude of
the pressure at the wall, i.e.

pw(xR) = |p̄0(rR = 1)| = λ3
R

4π2

∣∣∣∣∣ ∂ ūθ,0
∂rR

+ ∂2ūθ,0
∂r2

R

∣∣∣∣∣
rR=1

. (4.6)

Relation (4.6) is obtained from the θ -momentum equation (S2.8). The wall pressure
decays up to xR = 0.5, grows to a maximum at xR = 4, and then decays monotonically
downstream.

The radial profiles of |ūx,0| are shown in figure 15(a), for growing disturbances, and
figure 15(b), for decaying disturbances. The base-flow streamwise gradients enhance the
perturbation near the wall and the maximum of |ūx,0| moves towards the centreline at
all streamwise locations. During the growth phase, the wall-shear stress induced by the
perturbation remains constant, while it decays when the perturbation energy decreases.
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Figure 15. Profiles of the streamwise velocity amplitude |ūx,0| at different streamwise locations: (a) growing
disturbance at xR = 3.5, 6.9, 13.7, 20.5; (b) decaying disturbances at xR = 39.2, 51, 62.9, 81.6.
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Figure 16. Profiles of the azimuthal velocity amplitude |ūθ,0| (a) and of the pressure amplitude |p̄0| (b) at
xR = 8.7, 13.7, 28.9, 45.9.

The azimuthal velocity |ūθ,0| in figure 16(a) decays at a faster rate near the centreline and
so does the radial velocity |ūr,0| (not shown). Figure 16(b) confirms that the pressure |p̄0|
is closely related to |ūθ,0| as the near-wall maximum of |ūθ,0| is located at the same radial
position of the local maximum of |p̄0|, although the overall maximum pressure disturbance
is found at the pipe wall.

Figure 17 shows contour plots of the velocity components and pressure at a fixed time
instant in a cross-plane where the total perturbation energy reaches its maximum. The
spanwise and streamwise velocity components appear twisted about the pipe axis with
respect to the initial symmetrical distribution observed near the pipe mount, shown in
figure 8.

4.2.3. Effect of Reynolds number
Figure 18 shows the evolution of the total energy E at different bulk Reynolds numbers
ReR. As ReR increases up to approximately ReR = 6000, the perturbation energy increases,
with the peak occurring farther downstream. The initial growth rate is independent
of ReR. For 6000 < ReR < 10 000, the evolution of the energy up to the maximum is
Reynolds number independent, while downstream of the peak the energy decays at a
slower rate as ReR increases. This dependence on the Reynolds number also occurs in
free stream boundary layers exposed to convected gusts, where the spanwise wavenumber
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Figure 17. Contours of the instantaneous velocity components 2ūx,0, 2ūr,0 and 2ūθ,0, and the pressure 2p̄0 at
t = 0, xR = 28, for ReR = 1500, kx = 0.118, n = 3, m = 4.

κ = kz/F1/2 is the governing parameter (Leib et al. 1999). In figures 5 and 6 of Leib
et al. (1999), as κ decreases from 1 to 0.1 the the global perturbation energy, dominated
by the streamwise velocity, increases and its maximum occurs farther downstream. This
behaviour is thus consistent with figure 18, where κ = m/(kx,RReR)

1/2 is in the range
0.12 < κ < 0.3 for 1500 < ReR < 10 000. The radial locations of the energy maxima
move closer to the wall at larger ReR as the boundary layers becomes thinner (not shown).

4.2.4. Effect of streamwise wavelength
Studying the influence of the streamwise wavelength λxR of the oncoming disturbance
is equivalent to studying that of the frequency because the two quantities are inversely
proportional to each other and related through U∗∞ for small-amplitude free stream gusts.
Figure 19 shows that the initial amplitude of the perturbation energy is independent of

932 A16-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
05

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1005


Vortical disturbances entrained in the pipe entrance region

0 50 100 150 200 250 300

20

40

60

x/R

E

ReR = 9000

ReR = 6000

ReR = 3000

ReR = 1500

Figure 18. Effect of ReR on the downstream evolution of perturbation energy E . The dashed line in this figure
and in figures 19, 20 and 21 indicates the case of table 2 (n = 3,m = 4).
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Figure 19. Effect of λxR on the downstream evolution of total energy E .

λxR. Up to xR = 10, λxR has no influence on the disturbance growth as the profiles overlap
on one another. Farther downstream, longer wavelengths (i.e. smaller frequencies) lead to
perturbations that grow more intensely, with their maxima occurring at larger xR locations.

The trends at the two highest λxR overlap (red line and thin black line), showing the
independence of the dynamics in the limit of low frequency. The asymptotic scaling at
large λxR can be studied for ε = F � 1. In this limit, we introduce Û = U, V̂ = εV , x̂ =
x̄/ε and ûx = ūx/ε. All the terms in the base-flow equations (2.8)–(2.9) are retained and
the coefficient in front of the parenthesis in (2.9) changes to unity. The boundary-region
equations (2.11)–(2.12) simplify as all the terms in (2.13)–(2.26) that are proportional to
i, which are due to the unsteadiness of the oncoming disturbance (2.1), are asymptotically
smaller, and F changes to unity. The low-frequency disturbance dynamics is thus steady at
leading order. The analogous scaling for open free stream boundary layers was first found
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Figure 20. (a) Real part of ūr for m = 4 at xR = 0.18. (b) Effect of n on the downstream evolution of total
energy E for m = 4.

by Leib et al. (1999) on pages 183–185. In figure 19, the behaviour is consistent with the
asymptotic analysis for ε � 1: ReR is constant for those cases and thus it does not affect
the scaling x̂. At leading order the total energy is

E ∼ πm2

k2
x

∫ 1

0
|ûx|2rR drR = 4π3Re2

R

∫ 1

0
|ûx|2rR drR, (4.7)

which is independent of λxR. The prediction that the optimum conditions leading to the
maximum transient growth are steady is fully consistent with the optimal-growth results
of vortical perturbations that are present inside a Blasius boundary layer and evolve
downstream from locations near the leading edge (Andersson et al. 1999; Luchini 2000).
Figure 19 shows that oncoming perturbations with measurable unsteadiness, i.e. with
frequency f ∗ = 1 Hz (λxR = 200) for the air pipe in table 2, are equally likely to lead
to the flow breakdown as they achieve a growth which is very close to the optimal one.

4.2.5. Effect of radial characteristic scale
In the expansion based on Fourier–Bessel coefficients (2.1), the characteristic radial
scale is defined by the zeros of the Bessel function ξmn. For fixed azimuthal index
m, the larger the radial coefficient n, the smaller the radial length scale, as shown in
figure 20(a) by the profiles of the real part of ūr at small xR locations. The transient
growth decreases as the radial length scale of the free stream disturbance becomes smaller,
as shown in figure 20(b). This effect is due to the more intense viscous dissipation
caused by the large velocity gradients related to the small radial scale. The location of
the maximum energy is computed closer to the pipe inlet as the radial scale decreases.
For a Fourier–Bessel coefficient n = 9, the perturbation decreases upstream of the
expected transient growth and subsequent viscous dissipation. For n = 12, the perturbation
decreases at any streamwise location.

The influence of the radial scale on the disturbance evolution cannot be investigated
through the non-normality of the eigenfunctions of the developing boundary layers on
the pipe wall. An eigenvalue-based approach would model the near-entrance disturbance
as completely confined within the base-flow boundary layer, whereas the radial scale only
pertains to the free stream gust flow and does not enter the classical stability problem of the
boundary layer. The adopted boundary-region approach instead takes into account all the
characteristics of the gust flow because, being an initial-value problem, the specification
of the pipe-entrance flow is vital for the evolution of the perturbation inside the pipe.
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Figure 21. (a) Real part of w̄ for n = 6 at xR = 0.18. (b) Effect of λzR on the downstream evolution of total
energy E .

4.2.6. Effect of azimuthal wavelength
Figure 21(a) shows the real part of ūθ for n = 6 near the pipe mouth, at xR = 0.18,
for different λzR = 2π/m. For this n value, varying m only impacts on the azimuthal
modulation of the disturbance, while the characteristic radial scale is maintained. The
influence of the azimuthal wavelength λzR on the perturbation energy inside the pipe is
shown in figure 21(b). There exists an optimal λzR (the reference λzR = 2.09, m = 3)
that leads to the most energetic growth. This azimuthal coefficient was also found to
lead to the most energetic spatial transient disturbance by Mayer & Reshotko (1997) in
a fully developed laminar flow. Disturbances with smaller λzR are influenced by viscous
dissipation that hampers their growth. Oncoming disturbances with a larger azimuthal
wavelength, λzR = 3.14 (m = 2) are almost two-dimensional and do not lead to the
maximum growth because the dynamics of the streaks is a strictly three-dimensional
phenomenon (Leib et al. 1999), unlike TS waves, the amplification of which is maximum
in the two-dimensional case (Schmid & Henningson 2001). The perturbations with λzR =
3.14 persist downstream to larger distances than in the optimal case because they are less
influenced by viscous dissipation due to azimuthal shear effects.

4.2.7. Comparison with experimental and numerical data
Wygnanski & Champagne (1973) experimentally studied the air flow in the entrance
region of a circular pipe in order to understand the formation of turbulent slug and puffs.
Just like Reynolds (1883), they recognized the impact of the entry disturbances on the
flow character farther downstream, especially the intensity of inlet perturbations. They
utilized an orifice, a suspended circular disk and a honeycomb to generate the perturbation
at the pipe mouth. In the entrance region, i.e. where the flow is stable according to
classical stability theory, Wygnanski & Champagne (1973) detected intense growth of
low-frequency oscillations upstream of the turbulent region and proposed that ‘. . . the
growth of perturbations is associated with the large shear existing within the boundary
layer . . . ’. They also observed that the longitudinal fluctuations rose abruptly, much more
than the cross-flow velocity components. These experimental results fully agree with our
theoretical results.

Figure 22 shows their flow visualization of the pipe entrance flow by dye injection at
two downstream locations. It is evident that, upstream of where the flow breaks down to
turbulent puffs (right-hand part of figure 22a), the disturbances are elongated in the axial
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λ∗λ∗

(b)(a)

Figure 22. Visualization of flow disturbances at xR = 60 (a) and xR = 100 (b) for an air flow in a pipe at
ReR = 1250 (Wygnanski & Champagne 1973). The arrows indicate the azimuthal wavelength in the developing
regions. The flows are from the left to the right.

direction and characterized by a well-defined azimuthal length scale, as predicted by the
low-frequency theory.

Figure 23 presents a comparison between our calculations and three sets of experimental
data by Wygnanski & Champagne (1973). In figure 23(a,b), the base-flow comparison is
excellent for the case at low level of free stream turbulence (figure 23a; |u′|/Ūcl = 0.16 %,
where Ūcl is the centreline mean velocity), whereas the experimental base-flow data at
much higher levels of free stream turbulence (figure 23b; |u′|/Ūcl = 5.8 %, and 7.8 %)
deviate considerably from the base flow computed via (2.8) and (2.9). These results are
expected because, when the oncoming disturbances are weak (generated by the upstream
honeycomb), the nonlinear effects on the perturbation dynamics are negligible and do not
distort the laminar base flow. When the disturbances are more intense (generated by the
orifice and the suspended disk), nonlinearity distorts the base flow, even though the flow
has not broken down to turbulence. The comparisons of the perturbation data, shown in
figure 23(c,d), are consistent with the mean-flow results, i.e. much better agreement is
obtained in the left graph, where nonlinear effects are likely to play a marginal role. The
results in figure 23(c) are robust because the profile shape varies only slightly when the
frequency, and the azimuthal and radial indexes, m and n, are varied independently about
the reference case kx,R = 0.118, n = 2, m = 3. The flow parameter ranges were chosen
based on the description of the experimental conditions given in Wygnanski & Champagne
(1973), i.e. streamwise wavelength longer than the radius and comparable azimuthal and
radial length scales because generated by the honeycomb upstream of the pipe entrance. It
would certainly be interesting to carry out further comparisons between better controlled
experiments and computations of the nonlinear boundary-region equations and direct
numerical simulations.

Wu et al. (2015) studied the pipe-flow entrance problem via direct numerical
simulations. In one of their cases at ReR = 4000, the flow at the pipe inlet was a
superposition of a uniform base flow and vortical disturbances located near the pipe wall
with a quite distinct azimuthal modulation. The perturbation did not grow as the base
flow evolved along the entry region and the breakdown to turbulence was detected much
farther downstream, i.e. at locations where the laminar base flow reached the parabolic
profile. This result qualitatively agrees with our theoretical prediction. A visual inspection
of their figure 1D leads to an estimate of m = 8 or larger, that is, sufficient for viscous
effects to dominate and attenuate the algebraic growth, as observed in figure 21 (m = 8
corresponds to λzR = 0.79).
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Figure 23. Experimental data by Wygnanski & Champagne (1973) (symbols) and numerical profiles
(solid lines) at xR = 30. (a,b) Base-flow streamwise velocity, computed by solving (2.8) and (2.9);
(c,d) perturbation-flow streamwise velocity ε|ūx,0| normalized by the maximum value, computed by solving
(2.11) and (2.12); (a,c) ReR = 9500 and |u′|/Ūcl = 0.16 %; (b,d) ReR = 1200 and |u′|/Ūcl = 5.8 % (white
circles) and |u′|/Ūcl = 7.8 % (black circles). Here Ūcl denotes the centreline base-flow velocity. For all cases,
the reference flow parameters are kx,R = 0.118, n = 2, m = 3.

5. Conclusions

In this paper, we have presented the first theoretical study of the entrainment and
growth of unsteady three-dimensional vortical disturbances in the entrance region of an
incompressible pipe flow, as a step towards the full comprehension of laminar to turbulent
transition in confined flows. This fundamental problem has been central in the fluid
mechanics research community since the pioneering work of Reynolds (1883). In the
other theoretical studies of the pipe-entrance flow, the entrainment of disturbances in the
confined space was not studied because velocity or pressure fluctuations were absent in
the pipe core flow and were only present in the viscous boundary layer attached to the pipe
wall (references in § 1.3).

The mathematical framework takes inspiration from the pioneering work by Leib et al.
(1999) on the generation of low-speed streaks in a flat-plate boundary layer. The analysis
is based on the method of matched asymptotic expansions and on the assumptions of
high Reynolds number and of flow perturbations of low amplitude and frequency. The
low-frequency hypothesis has been motivated by the evidence that these disturbances
amplify the most in free stream boundary layers to form streamwise-elongated streaks.
This approach has allowed for an analytical description of realistic vortical perturbations
that can be created in a laboratory set-up at the pipe inlet. The effects of the pipe
confinement, the streamwise pressure gradient, the viscous/inviscid interplay and the
interactions amongst the velocity components have been revealed. The amplitude of the
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initial disturbance is related uniquely to that of the oncoming free stream perturbation. The
composite velocity profiles of the disturbance flow have been useful for the specification
of the appropriate initial conditions for the boundary-region perturbation equations.

The base-flow velocity components and pressure gradient agree with results from direct
numerical simulations and experiments. We propose to utilize the second derivative of
the base flow at the pipe centreline to ascertain whether the flow has reached the fully
developed Poiseuille flow. This method is the most conservative one among those tested for
quantifying the entry length because the pipe axis is the last location where the base flow
is subject to the diffusing viscous effects. Near the pipe mouth, the base pressure gradient
plays a minimal role and the disturbance flow is mostly dominant within the boundary
layer at the pipe wall. The perturbations appear in the form of streamwise-elongated
streaky structures and eventually evolve towards the pipe core, where the base flow is still
mostly inviscid. The disturbance growth is enhanced as the frequency decreases, and the
bulk Reynolds number and the characteristic radial length scale increase. The azimuthal
wavelength that generates the most intense downstream growth has also been computed.

The significant algebraic growth and the viscous decay only occur in the entrance region,
i.e. where the base flow is still streamwise dependent. Nevertheless, as evident from the
direct numerical simulations of Wu et al. (2015), vortical disturbances that initially decay
from the pipe inlet may trigger nonlinear effects farther downstream and lead the flow to
the breakdown to turbulence. Our results compare favourably with the experimental data of
Wygnanski & Champagne (1973) when the amplitude of the oncoming perturbation is low,
thus suggesting that the linearized dynamics is valid. The less satisfactory agreement for
more intense perturbations highlights the urgency for the inclusion of the nonlinear effects.
We therefore plan to extend our analysis by relaxing the assumption of small amplitude to
study the nonlinear dynamics and to explore the link between the perturbations generated
at the pipe inlet and the travelling waves discovered by Faisst & Eckhardt (2003) and Wedin
& Kerswell (2004). Accurate experimental data are also required in order to further test
our results.

Supplementary material. Supplementary materials are available at https://doi.org/10.1017/jfm.2021.1005.
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