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Abstract. Multi-dimensional Alfvén simple waves in magnetohydrodynamics
(MHD) are investigated using Boillat’s formalism. For simple wave solutions, all
physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic
field induction in the MHD case) depend on a single phase function ϕ, which is
a function of the space and time variables. The simple wave ansatz requires that
the wave normal and the normal speed of the wave front depend only on the
phase function ϕ. This leads to an implicit equation for the phase function and
a generalization of the concept of a plane wave. We obtain examples of Alfvén
simple waves, based on the right eigenvector solutions for the Alfvén mode. The
Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic
pressure, and the group velocity (the sum of the Alfvén and fluid velocity) are
constant throughout the wave. The eigenequations require that the rate of change
of the magnetic induction B with ϕ throughout the wave is perpendicular to both
the wave normal n and B. Methods to construct simple wave solutions based on
specifying either a solution ansatz for n(ϕ) or B(ϕ) are developed.

1. Introduction
Treatments of time-dependent magnetohydrodynamics (MHD) simple waves in
one Cartesian space dimension are well-established (Jeffrey and Taniuti 1964;
Cabannes 1970). Webb et al. (1998) investigated multi-dimensional simple waves
in gas dynamics, and gave detailed examples of multi-dimensional vortex simple
waves and sound waves in two space dimensions (see also Rajee et al. 2008; Sahihi
et al. 2008; Rajee and Eshraghi 2009; Nadjafikhah and Mahdipour-Shirayeh 2009
for related work).

Webb et al. (1995) studied multi-dimensional MHD simple waves using the
formalism developed by Boillat (1970), in which all physical quantities of interest
depend on a single phase function ϕ(xα), where x = (t, x, y, z) are the independent
time and space variables. Examples of multi-dimensional Alfvén simple waves were
studied, including the two-dimensional (2D) Alfvén simple wave obtained by Barnes
(1976), but no detailed analysis of the large variety of possible simple waves was
carried out. Boillat’s analysis shows that both the eigenvalues, or characteristic
speeds {λi : 1 � i � n} of the system of interest, and the wave normal n must be a
function of ϕ. This places constraints on the functional form of ϕ.
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The main aim of the present paper is to study in more detail multi-dimensional
Alfvén simple waves. The method used by Webb et al. (1995) to construct Alfvén
simple waves is developed. In this method, Gauss’s law ∇ · B = 0 reduces to the
equation n · dB/dϕ = 0. By specifying the functional form of the magnetic field unit
vector (note B2 is constant), constrains the form of the wave normal unit vector
n(ϕ). Methods based on the Serret–Frenet moving trihedron are used in which the
wave normal n(ϕ) is conceived as the tangent vector to a space curve x = X(ϕ)
where ϕ is analogous to the distance, or affine parameter along the curve (see also
Webb et al. 1998). We show that the Alfvén wave eigenequations for B can be
rewritten as a modified form of the Serret–Frenet equations with a modified torsion
coefficient to that for the curve x = X(ϕ), with tangent vector n(ϕ). Using a method
due to Darboux (see Eisenhart 1960), the Serret–Frenet equations are mapped onto
a Ricatti equation by means of stereographic projection, which in turn is linearized
by a Cole–Hopf transformation.

In Sec. 2, the MHD equations and model are introduced. In Sec. 3 Boillat’s
formulation of multi-dimensional simple waves is applied to the MHD equations,
and the use of the Serret–Frenet frame to describe the field lines is developed.
Section 4 discusses the MHD eigensystem, and in particular the eigenvectors and
eigenvalues for the Alfvén mode (see also Appendix B). Section 5 gives examples of
Alfvén simple waves. Section 6 concludes with a summary and discussion.

2. The model
The MHD equations can be written in a variety of forms. One particular form of
the equations is

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂

∂t
(ρu) + ∇ ·

[
ρuu +

(
p +

B2

2µ

)
I − BB

µ

]
= 0, (2.2)

∂

∂t
(ρS) + ∇ · (ρuS) = 0, (2.3)

∂B

∂t
− ∇ × (u × B) + u∇ · B = 0, (2.4)

where ρ, u, p, S , and B correspond to the gas density, fluid velocity, pressure, specific
entropy, and magnetic induction B respectively, and I is the unit 3 × 3 dyadic. The
gas pressure p = p(ρ, S) is a function of the density ρ and entropy S , and µ is the
magnetic permeability. Equations (2.1)–(2.3) correspond to the mass, momentum and
entropy conservation laws, and Faraday’s equation in the MHD limit. In classical
MHD, (2.1)–(2.4) are supplemented by Gauss’ law:

∇ · B = 0, (2.5)

which implies the non-existence of magnetic monopoles.
In this paper, we consider only solutions of the MHD equations with ∇·B = 0.

There is an eigenmode of the MHD equations (2.1)–(2.4) with ∇ · B �= 0 known
as the divergence mode, which is advected with the fluid. This mode is used in
eight wave Riemann solvers in numerical MHD (e.g., Powell et al. 1999; Janhunen
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2000). In this paper, we consider only the Alfvén mode solutions, which have
∇ · B = 0 (the entropy wave, and the fast and slow magnetoacoustic modes also have
∇·B = 0).

If the equation of state for the gas is written in the form S = f(p, ρ) the entropy
conservation law (2.3) can alternatively be written in the form

∂p

∂t
+ u · ∇p + A(p, ρ)∇ · u = 0, A(p, ρ) = a2ρ, (2.6)

where a2 = ∂p/∂ρ = −fρ/fp is the square of the adiabatic sound speed of the
gas. For the case of an ideal gas with entropy S = Cv ln[(p/p1)/(ρ/ρ1)

γ], where
γ = Cp/Cv is the ratio of specific heats at constant pressure and volume respectively,
A(p, ρ) = γp in (2.6). An alternative formulation uses the internal energy density
relation ε = ε(ρ, S) as the equation of state for the gas, in which case p = ρ∂ε/∂ρ− ε

and ρT = ∂ε/∂S define the pressure and temperature of the gas. For an ideal gas
with adiabatic index γ, ε = p/(γ−1). Equation (2.3) is also equivalent to the entropy
advection equation:

∂S

∂t
+ u·∇S = 0. (2.7)

Equations (2.3), (2.6) and (2.7) are all equivalent to the comoving energy equation
for the gas.
Comment 1:

In numerical MHD, Powell et al. (1999) and Janhunen (2000) developed eight
wave Riemann solvers that include the u∇ · B term in Faradays’ equation (2.4).
Taking the divergence of (2.4) gives the continuity equation:

∂

∂t
(∇·B) + ∇ · (u∇·B) = 0. (2.8)

The numerically generated ∇·B �= 0 in these methods is advected with the fluid,
thus preventing accumulation of ∇·B �= 0 in the internal numerical domain. The
eigenmode with ∇·B �= 0 which is advected with the flow in (2.8) is referred to as
the divergence wave (see Webb et al. 2009 for an exact simple wave solution for the
divergence wave eigenmode and further discussion of this issue).

The total energy equation for the system (2.1)–(2.4),

∂

∂t

(
1

2
ρu2 + ε +

B2

2µ

)
+ ∇ ·

[
u

(
ε + p +

1

2
ρ|u|2

)
+

E × B

µ

]
= 0, (2.9)

follows from adding together: (i) the electromagnetic energy equation:

∂

∂t

(
B2

2µ

)
+ ∇ ·

(
E × B

µ

)
= −J · E − u · B

∇·B
µ

, (2.10)

where S = E × B/µ is the Poynting flux, E = −u × B is the motional electric field,
and J = ∇ × B/µ is Ampere’s law for the electric current in the MHD limit; (ii) the
comoving gas energy equation:

∂ε

∂t
+ ∇ · [u(ε + p)] = u·∇p; (2.11)

and (iii) the gas kinetic energy equation:

∂

∂t

(
1

2
ρu2

)
+ ∇ ·

(
u
1

2
ρu2

)
= −u·∇p + J·E + u · B

∇·B
µ

, (2.12)
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Comment 2:
Poynting’s theorem (2.10) follows from taking the scalar product of Faraday’s

equation (2.4) with B.
Comment 3:

The comoving gas energy equation (2.11) follows from the second law of thermo-
dynamics: dQ = TdS = dU + pdτ, where U = ε/ρ is the internal energy per unit
mass of the gas, τ = 1/ρ is the specific volume, and by noting that dS/dt = 0 for
an adiabatic process, where d/dt = ∂/∂t + u · ∇, is the Lagrangian time derivative
following the flow.
Comment 4:

The kinetic energy equation (2.12) for the gas follows from the momentum
equation (2.2), which with the aid of the continuity equation (2.1) can be cast in the
form:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + J × B + B

∇·B
µ

, (2.13)

where J = ∇ × B/µ is the current. Taking the scalar product of (2.13) with u and
using the continuity equation (2.1) gives the gas kinetic energy equation (2.12).

3. The simple wave formalism
Following the development of Boillat (1970), the MHD equations are first written
in the matrix form

A(α) ∂W

∂xα
= 0, (3.1)

where

W = (ρ, ux, uy, uz, Bx, By, Bz, p)
T (3.2)

is the state vector of the system using the primitive variables The matrix A(0) is
the unit 8 × 8 identity matrix, and we use the notation (x0, x1, x2, x3) = (t, x, y, z)
to denote the independent variables. The detailed form of the matrices A(i) for
the conservative Janhunen (2000) equation system based on (2.1)–(2.4) are given in
appendix A.

3.1. Boillat’s solution ansatz

In Boillat’s method, one searches for solutions of the MHD equations (3.1) of the
form

W = W(ϕ), (3.3)

where ϕ(t, x, y, z) is the wave phase. The equations

ω = −ϕt, k = ∇ϕ, λ =
ω

k
= − ϕt

|∇ϕ| , n =
∇ϕ

|∇ϕ| , (3.4)

locally define the wave frequency ω, wave number k, and wave phase speed λ

parallel to the wave normal n. Substitution of the solution ansatz (3.3) in the MHD
equations (3.1) yields the matrix equation

[An − λI] · dW
dϕ

= 0, (3.5)

where

An = A(1)nx + A(2)ny + A(3)nz. (3.6)
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The general solution of the eigenequation (3.5) corresponding to the kth eigen-
mode is of the form

dW

dϕ
= ak(ϕ)Rk, (3.7)

where ak determines the wave amplitude and Rk is the right eigenvector of the
matrix An corresponding to the kth wave mode. For the case where two or more of
the eigenvalues are coincident, the solution (3.7) may be written as a sum over the
corresponding wave modes. Boillat (1970) noted that if the solution for W is to be
solely a function of ϕ, it is necessary n and λ(W, n) are functions only of ϕ. This
places constraints on the possible functional form of ϕ(t, x, y, z), which we discuss
below.

The requirements that λ = λ(ϕ) and n = n(ϕ) imply that ϕ must satisfy the
first-order partial differential equations

n(ϕ) =
∇ϕ

|∇ϕ| , λ(ϕ) = − ϕt

|∇ϕ| (3.8)

for the eigenmode of interest. Boillat showed that the general solution of the
differential equations (3.8) for ϕ is of the form

f(ϕ) = r · n(ϕ) − λ(ϕ)t, (3.9)

where r = (x, y, z), and f(ϕ) is an arbitrary differentiable function of ϕ. For non-
exceptional waves with dλ/dϕ �= 0, centered simple waves correspond to the choice
f(ϕ) = 0, and non-centered simple wave to f(ϕ) �= 0.

Implicit differentiation of (3.9) with respect to (t, x, y, z) yields the derivatives of
ϕ:

ϕt = − λ

F
, ∇ϕ =

n(ϕ)

F
, (3.10)

where

F = f′(ϕ) +
dλ

dϕ
t − r· dn

dϕ
=

1

|∇ϕ| . (3.11)

Note that for a consistent solution F must be positive. At points where F → 0,
|∇ϕ| → ∞; |∇Wα| → ∞ and |Wα

t | → ∞, and wave breaking occurs.
Since λ = λ(W, n), the group velocity of the wave is given by

Vg =
∂ω

∂k
= λn + (I − nn) · ∇nλ. (3.12)

Using (3.12) it follows that W(ϕ) does not change along the ray path:

∂W

∂t
+ Vg · ∇W = 0. (3.13)

For exceptional waves in which dλ/dϕ = 0 one finds (Boillat 1970)

∇ · Vg = 0. (3.14)

It is worth noting that (3.9), for a fixed parameter ϕ, consists of a family of planes
in (t, x, y, z) space, i.e.,

G = f(ϕ) + λ(ϕ)t − xnx(ϕ) − yny(ϕ) − znz(ϕ) = 0. (3.15)
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The characteristic curve of the family of planes (3.15) is obtained by solving the
equations

G(x, y, z, t, ϕ) = 0 and Gϕ(x, y, z, t, ϕ) = 0, (3.16)

simultaneously for a fixed ϕ (e.g., Sneddon 1957, Appendix). Evaluating Gϕ in (3.16)
we obtain:

Gϕ = F = f′(ϕ) +
dλ

dϕ
t − r· dn

dϕ
=

1

|∇ϕ| . (3.17)

The family of characteristic curves obtained for all allowable ϕ obtained by
eliminating ϕ in (3.16) defines the envelope of the family of planes (3.15). From
(3.10)–(3.11) we note that the wave breaks on the envelope of the family of planes
(3.15). The family of planes (3.15) consists of straight lines and hence is a ruled
surface, and the envelope obtained by solving (3.16) is a developable surface (Sneddon
1957). The theory of ruled surfaces has a rich structure depending on the arbitrary
functions of ϕ occurring in (3.9) (e.g., the edge of regression obtained by solving
G = 0, Gϕ = 0 and Gϕϕ = 0 is also of geometrical interest), but the above discussion
is sufficient for our present purposes.

3.2. Magnetic field line and streamline equations

The simple wave ansatz, considered by Boillat (1970), has implications for the
geometry of the magnetic field line

dx

Bx(ϕ)
=

dy

By(ϕ)
=

dz

Bz(ϕ)
, (3.18)

and fluid streamline
dx

ux(ϕ)
=

dy

uy(ϕ)
=

dz

uz(ϕ)
, (3.19)

differential equations associated with simple waves. The form of the field line
equations (3.18) suggests that the wave phase is a natural parameter associated with
the family of integral curves for (3.18) and (3.19).

The solution ansatz (3.9) for the wave phase ϕ depends on the functional form
assumed for the wave normal n(ϕ), and the geometry of the field lines is clearly
related to the geometry of the curve C with tangent vector n(ϕ) on the unit sphere.
We think of n(ϕ) as the tangent vector to a curve X(ϕ) with unit tangent vector

d1 = T(ϕ) =
X′(ϕ)

|X′(ϕ)| . (3.20)

If the curve X(ϕ) is three times differentiable, then the geometry of the curve is
conveniently described by the use of the Serret–Frenet formulae (e.g., Lipschutz
1969, Ch. 5). If X(ϕ) is not thrice differentiable one can introduce a general director
basis (d1, d2, d3) to frame the curve (e.g., Bishop 1975; Goriely and Tabor 1997; Webb
et al. 1998). The unit vectors d2 and d3 are two differentiable functions spanning the
normal plane in such a way that {d1, d2, d3} form a right-handed orthonormal triad
(d1 × d2 = d3, d2 × d3 = d1). The choice of the vectors d2 and d3 is arbitrary as long
as they span the normal plane. From the orthonormality conditions di · dj = δij it
follows that

d′
i =

3∑
k=1

Kikdk = κ × di, (3.21)
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where κ =
∑3

i=1 κidi is the twist vector. Note that Kij = d′
i · dj = κsεsij is given by

K =

⎛
⎝ 0 κ3 −κ2

−κ3 0 κ1

κ2 −κ1 0

⎞
⎠ . (3.22)

For the special case for the Serret–Frenet frame basis,

e1 = n(ϕ), e2 =
n′(ϕ)

|n′(ϕ)| , e3 = e1 × e2, (3.23)

the Serret–Frenet equations describing the geometry of the curve C (e.g., Lipschutz
1969, Ch. 5) are

de1

dϕ
= κe2,

de2

dϕ
= −κe1 + τe3,

de3

dϕ
= −τe2, (3.24)

where κ(ϕ) and τ(ϕ) are the curvature and torsion coefficients of the curve. In this
case, the components of the twist vector are

κ1 = τ, κ2 = 0, κ3 = κ. (3.25)

Comment
In (3.24) and (3.25) we use ϕ as the parameter along the curve X(ϕ). If instead

we had used the natural parameter s (distance along the curve), then the natural
curvature and torsion coefficients are κ̄(s) = κ(ϕ)/s′(ϕ) and τ̄(s) = τ(ϕ)/s′(ϕ). In the
present application of the Serret–Frenet formalism, it is more natural to use the
wave phase ϕ as the parameter along the curve. It is a simple matter in applications
to convert to the natural curvature and torsion coefficients κ̄(s) and τ̄(s), if desired.
Note that s′(ϕ) = (x2

ϕ + y2
ϕ + z2

ϕ)1/2, where X(ϕ) = (x(ϕ), y(ϕ), z(ϕ)).
To obtain a convenient form of the field line equations (3.18) in the group velocity

frame, we introduce generalized coordinates:

q̃j = r̃ · dj , r̃ = r − Vgt, j = 1, 2, 3, (3.26)

where Vg(ϕ) is the group velocity (3.12). From (3.9) and (3.12),

q̃1 = r̃ · n(ϕ) = f(ϕ). (3.27)

The gradients of the q̃j with respect to r are

∇q̃1 =
f′(ϕ)d1

F
,

∇q̃2 = d2 +
d1

F
(κ1q̃3 − κ3q̃1 − d2 · V′

g(ϕ)t),

∇q̃3 = d3 +
d1

F
(κ2q̃1 − κ1q̃2 − d3 · V′

g(ϕ)t), (3.28)

where

F = f′(ϕ) + κ2q̃3 − κ3q̃2 + d1 · V′
g(ϕ)t (3.29)

is the function F = 1/|∇ϕ| defined in (3.11).
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Using (3.27)–(3.29) the field line equations dr = αB in (3.18) can be expressed in
the form

α =
Fdϕ

B1
=

Fdq̃2

FB2 + B1(κ1q̃3 − κ3q̃1 − d2 · V′
g(ϕ)t)

,

=
Fdq̃3

FB3 + B1(κ2q̃1 − κ1q̃2 − d3 · V′
g(ϕ)t)

. (3.30)

Note that we use dϕ rather than dq̃1 in (3.30) since f(ϕ) = 0 in a centred simple
wave. It is also necessary for n(ϕ) to have continuous derivatives for the formulation
(3.30) to make sense. For the case where n(ϕ) is a constant unit vector, equations
(3.30) are not applicable, and it is then necessary to use the original form of the
field line equations (3.18). The Jacobian

J =
∂(ϕ, q̃2, q̃3)

∂(x, y, z)
= ∇ϕ · ∇q̃2 × ∇q̃3 =

1

F
. (3.31)

Thus, the Jacobian of the transformation between the new variables {ϕ, q̃2, q̃3} and
{x, y, z} is in general non-zero and well defined, but J → ∞ on the wave envelope
where F → 0 and |∇ϕ| → ∞. Hence the use of ϕ, q̃2, and q̃3 as independent variables
is valid off the wave envelope where F �= 0.
Comment: 1

The field line equations can also be expressed in the forms

dx

dϕ
= F

B

B1
or

dx̃

dϕ
= F

B

B1
− V′

g(ϕ)t. (3.32)

To prove (3.32), note that for constant t,

dϕ = ∇ϕ · dx =
n·dx
F

. (3.33)

The field line equations (3.18) have the form

dx = αB where dx·n = αB1. (3.34)

From (3.33) and (3.34) it follows that

α =
dx · n

B1
=

Fdϕ

B1
. (3.35)

Combining (3.34) and (3.35) gives the first form of the field line equations in (3.32).
The second form of the field lines in (3.32) follows by noting that x̃ = x − Vg(ϕ)t is
the position vector in the group velocity frame. For simple Alfvén waves the group
velocity Vg(ϕ) = (V1, V1, V3) is a constant vector and the field lines in the group
velocity frame are dx̃/dϕ = FB/B1.
Comment 2:

From (3.32) the tangent vector to the field lines dx/dϕ = 0 on the wave envelope
where F = 0, provided, B1 is non-zero on the envelope. This implies that, in general,
the field lines form a cusp at the points where the field lines intersect the wave
envelope. This property of the field lines is verified in the simple Alfvén wave
solutions presented in Sec. 5.
Comment: 3

If we had used arc length s along the magnetic field line, rather than ϕ, then the
field line equations (3.32) would read dx/ds = B/B, where s′(ϕ) = FB/B1.
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Comment 4:
The field line equations (3.32) could also be analyzed using the Serret–Frenet

formalism, with curvature and torsion coefficients κB and τB , but this will not be
done here.

3.3. Serret–Frenet base formulae

Some basic formulae using the Serret–Frenet base are listed below. Using the Serret–
Frenet formulae (3.24), we obtain

dB

dϕ
=

(
dB1

dϕ
− κB2

)
e1 +

(
dB2

dϕ
+ κB1 − τB3

)
e2 +

(
dB3

dϕ
+ τB2

)
e3. (3.36)

For the usual MHD eigenmodes, namely the fast and slow magnetosonic modes
and the Alfvén and entropy waves ∇·B = 0, e1 · dB/dϕ = 0 where e1 = n, and (3.28)
gives

dB1

dϕ
= κB2. (3.37)

Note that Bn = B · n ≡ B1 is in general not constant throughout the simple wave.
The electric current in the wave is given by

J=
1

µ0
∇ × B =

1

µ0
|∇ϕ|n × dB

dϕ

=
1

µ0|F |

[
−

(
dB3

dϕ
+ τB2

)
e2 +

(
dB2

dϕ
+ κB1 − τB3

)
e3

]
. (3.38)

Note that the current diverges at points where |F | = 1/|∇ϕ| = 0, and that J is
perpendicular to n. The component of the current parallel to the magnetic field J·eB
is given by

J·eB =
|∇ϕ|
µ0B

(
B3

dB2

dϕ
− B2

dB3

dϕ
+ κB1B3 − τ

(
B2

2 + B2
3

))
. (3.39)

Similarly the component of the fluid vorticity ω = ∇ × u parallel to the magnetic
field, ω · eB , is given by

ω·eB =
|∇ϕ|
B

(
B3

du2

dϕ
− B2

du3

dϕ
+ κu1B3 − τ(u3B3 + u2B2)

)
. (3.40)

One of the distinguishing features of magnetoacoustic simple waves is that they have
zero field aligned currents and vorticity, whereas Alfvén waves can have non-zero
field aligned currents and vorticity.

4. The MHD eigensystem
The main ingredients in the construction of MHD simple waves are the eigenvalues
and eigenvectors of the matrix A ≡ An in (3.6). If we use the Serret–Frenet base, the
matrix A corresponding to the primitive variables W = (ρ, uT ,BT , p)T in (3.2) and
the conservative MHD system (2.1)–(2.4) with ∇·B �= 0 (note for our application to
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simple Alfvén waves ∇·B = 0), has the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 ρ 0 0 0 0 0 0

0 u1 0 0 −B1

µρ

B2

µρ

B3

µρ

1

ρ

0 0 u1 0 −B2

µρ
−B1

µρ
0 0

0 0 0 u1 −B3

µρ
0 −B1

µρ
0

0 0 0 0 u1 0 0 0

0 B2 −B1 0 0 u1 0 0

0 B3 0 −B1 0 0 u1 0

0 A 0 0 0 0 0 u1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.1)

The matrix (4.1) corresponds to the conservative MHD system used by Janhunen
(2000) with ∇·B �= 0.

The right and left eigenvectors of the matrix An are defined by the eigenequations

(A − λI) ·R = 0, L · (A − λI) = 0, det (A − λI) = 0, (4.2)

where the eigenvalues {λj : 1 � j � 8} satisfy the eigenvalue equation det(A−λI) =
0. The left and right eigenvectors of the matrix A, {Lj} and {Rs} (j, s = 1(1)8) in the
general non-singular case can be chosen to satisfy the orthonormality conditions:

Lj(n) · Rs(n) = δjs. (4.3)

However, for the case of perpendicular propagation (Bn = 0) there are multiple
eigenvectors corresponding to λ = un (i.e., ũn = 0), and a separate analysis of the
eigenvector equations is then necessary. In the case Bn = 0 the diagonalized matrix
system corresponds to a Jordan canonical matrix, in which the divergence wave mode
solution corresponds to a Jordan mode (i.e., the matrix A is not diagonalizable in this
case). Care is also required in normalizing the eigenvectors for parallel propagation
at the so-called triple point for the case where the gas sound speed a and the Alfvén
speed VA have the same value (e.g., Brio and Wu 1988; Roe and Balsara 1996).

In the present paper, we are interested in the Alfvén eigenmodes. The backward
and forward propagating Alfvén eigenmodes have eigenvalues

λ±
A = un ± VAn, where un = u · n, VAn = VA·n, (4.4)

where VA = B/(µρ) and u are the Alfvén velocity and flow velocity, respectively.
The corresponding group velocities for the backward and forward eigenmodes from
(3.12) are V±

g = u ± VA. The normalized right and left eigenvectors are

R±
A =

(
0,∓(µρ)−1/2 (n × β⊥)T , (n × β⊥)T , 0

)T
, (4.5)

L±
A =

1

2

(
0,∓(µρ)1/2(n × β⊥)T , (n × β⊥)T , 0

)
, (4.6)

where β⊥ = B⊥/B⊥ and B⊥ = (I − nn) · B is the component of B perpendicular to n.
The detailed form of the other eigenvalues, and left and right eigenvectors for the
other eigenmodes of the matrix A are given in Appendix B.
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5. Alfvén simple waves
From (3.7) and the eigenvector equations (4.5), the eigenequations governing Alfvén
simple waves are

dρ

dϕ
= 0,

du

dϕ
= ∓α(ϕ)

n × B
√
µρ

,
dB

dϕ
= α(ϕ)n × B,

dp

dϕ
= 0, (5.1)

where α(ϕ) is an arbitrary function of ϕ. In (5.1) the ∓ signs correspond to the
forward and backward Alfvén waves with eigenvalues λ = un ± VAn, respectively.
From (5.1),

n · du
dϕ

= 0, n · dB
dϕ

= 0,
d

dϕ

(
B2

2

)
= 0,

d

dϕ
(u ± VA) = 0. (5.2)

Thus, the eigenequations have six integrals:

u ± B
√
µρ

= u ± VA = (V1, V2, V3) = V = const.,

p = c4, ρ = c5, B2 = c6. (5.3)

The six integrals (5.3) imply the group velocity of the wave V, the gas pressure
p, the density ρ, and the magnetic pressure pB = B2/(2µ) are constant through-
out the wave. The conditions that the gas pressure and density are constant
throughout the wave implies that the entropy S is also constant throughout the wave.

One further integral can, in principle, be obtained from the equation

n · dB
dϕ

= 0, (5.4)

which corresponds to Gauss’ law ∇·B = 0. In fact, (5.4) suggests two possible
approaches to finding simple Alfvén wave solutions. In the first method, we specify
the unit magnetic field vector eB = B/B, and then determine n(ϕ) compatible with
Gauss’s equation (5.4) (note that B is constant throughout the wave). A second
approach is to specify the wave normal n(ϕ), and then obtain solutions of (5.4) for
B(ϕ). The latter approach is in fact equivalent to solving the eigenequation

dB

dϕ
= α(ϕ)n × B, (5.5)

listed in (5.1). In Sec. 5.1, Alfvén wave solutions are obtained using the first approach
(i.e., by specifying eB(ϕ)). In Sec. 5.2, the second approach is used in which n(ϕ) is
given, from which solutions for B(ϕ) are obtained satisfying (5.5).

It is of interest to note from the integrals (5.3) that

∇ × B = ∓√
µ0ρ ∇ × u, (5.6)

Hence the current is parallel, or anti-parallel, to the fluid vorticity according as the
backward or forward Alfvén wave is being considered. In general Alfvén waves
have field aligned currents and vorticity, but it is possible to construct Alfvén wave
solutions with zero field aligned currents and vorticity. Equation (3.39) gives the
field aligned current in the Serret–Frenet base (3.23).

5.1. Solutions with given eB(ϕ)

In the following analysis we restrict our attention to the forward propagating Alfvén
wave. Using the solution (3.9) with f(ϕ) = ϕ/k0, where k0 is a fixed normalizing

https://doi.org/10.1017/S0022377809990596 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377809990596


62 G. M. Webb et al.

wave number, gives

ϕ = k0[r · n(ϕ) − λt] (5.7)

for the wave phase. Since n(ϕ) is a unit vector and B2 is constant in an Alfvén
simple wave, then

n = (sinΘ cosΦ, sinΘ sinΦ, cosΘ), (5.8)

B = B0(sin α cos β, sin α sin β, cos α) (5.9)

are representations of the wave normal n and magnetic field B, where Θ, Φ, α, and
β are functions of ϕ, and B0 is a constant. Using the solution forms (5.8)–(5.9) for
n and B, Gauss’ law (5.4) reduces to

sinΘ cosΦ
d

dϕ
(sin α cos β) + sinΘ sinΦ

d

dϕ
(sin α sin β) + cosΘ

d

dϕ
cos α = 0, (5.10)

in which α, β, Θ, and Φ are functions of ϕ.
From (3.12) the group velocity for the wave is

Vg = u + VA = (V1, V2, V3), (5.11)

whereas the normal phase speed of the wave:

λ = (u + VA) · n. (5.12)

The group velocity of the wave is a constant vector, but the phase speed λ depends
on n(ϕ). In general dλ/dϕ �= 0, unless n is a constant unit vector. Thus for general
n(ϕ) the Alfvén wave is non-exceptional, and both centered and non-centered simple
Alfvén waves can be constructed. This fact is not generally recognized, since the
standard treatments of simple MHD waves assume that n is a constant unit vector.

Thus the analysis so far shows that the entropy S , density ρ, magnetic pressure
B2/(8π), and u + VA remain constant throughout the forward Alfvén simple wave.
Equation (5.10) implies there is a relationship between the angles Θ and Φ(ϕ)
determining n, and the magnetic field angles α(ϕ) and β(ϕ). Note that Gauss’ law
n·B′ = 0, does not in general imply that Bn is constant throughout the wave. For
given functional forms α(ϕ), β(ϕ), and Θ(ϕ), (5.10) for Θ �= 0 has solutions:

Φ = Φ1 = −ε − sin−1

(
R cotΘ

A

)
, Φ = Φ2 = −ε + π + sin−1

(
R cotΘ

A

)
, (5.13)

where

(P ,Q, R) =
1

B0

dB

dϕ
=

d

dϕ
(sin α cos β, sin α sin β, cos α),

ε = tan−1

(
P

Q

)
, A = (P 2 + Q2)1/2. (5.14)

Thus given α(ϕ), β(ϕ) and Θ, (5.13) determine the azimuthal angle Φ(ϕ) for n. This
leads to an infinite class of simple Alfvén wave solutions in which the geometry of
the wave front depends on the solution for Φ(ϕ).

In the analysis below we give examples of simple Alfvén wave solutions.
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Example 1.
If Θ = 0, (5.10) has the solution α = α0 = const., and no constraint is imposed on

β(ϕ). In this case we obtain the solution

n = (0, 0, 1), ϕ = k0(z − λt),

B = B0[sin α0 cos β(ϕ), sin α0 sin β(ϕ), cos α0],

u = − B

(µ0ρ)1/2
+ (V1, V2, V3), S = S0, ρ = ρ0, (5.15)

where ρ0, S0, and k0 are constants. For β = ϕ, this is the usual planar simple Alfvén
wave given in standard texts (e.g., Jeffrey and Taniuti 1964; Cabannes 1970).

The field lines for β = ϕ obtained by integrating (3.18) have the form

r̃ =
1

k0
(tan α0 sinϕ,− tan α0 cosϕ,ϕ), ϕ = k0(z − λt), (5.16)

where r̃ = r − Vt is the position in the group velocity frame. The curve (5.16) is
a helix, with curvature κB = sin α0, and torsion τB = cos α0 if one uses ϕ as the
parameter along the curve. From (3.38) the current J in the wave

J = − 1

µ0
k0B0 sin α0(cosϕ, sinϕ, 0) (5.17)

lies in the xy plane and has a field aligned component:

J·eB = − 1

µ0
k0B0 sin2 α0. (5.18)

The helical field configuration (5.16) is illustrated in Fig. 1.

Example 2
An example of a non-planar Alfvén wave is obtained by choosing α = α0 = const.,

β = ϕ, and Θ = Θ0. In this case (5.13) yield the solution Φ = ϕ. The resultant
Alfvén wave solution is described by the equations:

n = [sinΘ0 cosϕ, sinΘ0 sinϕ, cosΘ0],

f(ϕ) = [sinΘ0(x cosϕ + y sinϕ) + z cosΘ0 − λt],

B = B0(sin α0 cosϕ, sin α0 sinϕ, cos α0),

u = − B

(µ0ρ)1/2
+ (V1, V2, V3), ρ = ρ0, S = S0, f(ϕ) =

ϕ

k0
. (5.19)

Centered simple Alfvén waves with f(ϕ) = 0 are obtained by letting k0 → ∞ in the
solution (5.19). In contrast to Example 1, the wave phase is given in implicit form.
The equation for ϕ can also be written in the form

ϕ = k0[r sinΘ0 cos(ϕ − θ) + z cosΘ0 − λt], (5.20)

where x = r cos θ and y = r sin θ.
The field line differential equations (3.30) may be integrated to yield the field lines

for the wave in the form (see Appendix C):

x̃ = −[q̃2 sinϕ + cosϕ(q̃3 cosΘ0 − q̃1 sinΘ0)],

ỹ = q̃2 cosϕ + sinϕ(q̃1 sinΘ0 − q̃3 cosΘ0),

z̃ = cosΘ0q̃1 + sinΘ0q̃3, (5.21)
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Figure 1. Magnetic field line for the 1D, planar simple Alfvén wave (5.15), with α0 = π/4,
k0 = 1. The wave is a traveling, non-centered simple wave, propagating along the z-axis. The
wave normal n = (0, 0, 1). The current is finite and azimuthal about the z-axis.

where

q̃1 =
ϕ

k0
, q̃2 = r0 sin(ζ − ζ0) − tan α0

k0 cosΘ0
, q̃3 =

r0c0

cosΘ0
cos(ζ − ζ0) +

ϕ tanΘ0

k0
,

ζ = c0ϕ, c0 =

(
cosΘ0 cos α0

cos(Θ0 − α0)

)1/2

, (5.22)

r0 is an arbitrary constant, and q̃1, q̃2, and q̃3 ((3.26) specify the position r̃ in the
group velocity frame). In order to gain insight into the geometry of the field lines
(5.21) it is instructive to consider the cases of centered (k0 → ∞) and non-centered
simple Alfvén waves separately.

5.2. Centered simple waves

The simplest example of a centered simple Alfvén wave is obtained by letting k0 → ∞
and setting α0 = π/2 and Θ0 = π/2 in the solutions (5.19). This example has been
discussed by Barnes (1976). The solutions (5.19) for n and B reduce to

n = (cosϕ, sinϕ, 0), B = B0(cosϕ, sinϕ, 0). (5.23)
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For the centered simple Alfvén wave, the equation of the wave front is

x̃ cosϕ + ỹ sinϕ = 0, or ϕ = π − tan−1

(
x̃

ỹ

)
,

x̃ = r̃ cos θ̃, ỹ = r̃ sin θ̃, r̃2 = x̃2 + ỹ2. (5.24)

Either using (3.18) or (3.30) we obtain

(x̃, ỹ, z̃) = (r0 sinϕ,−r0 cosϕ, z̃0), (5.25)

for the field lines. Hence the field lines consist of concentric circles (x̃(ϕ), ỹ(ϕ), z̃0) of
radius r0 in each plane z̃ = z̃0 = const.

Wave breaking for the simple wave occurs on the wave envelope of the family
of phase fronts G = f(ϕ) − r̃ · n(ϕ) = 0. In the present example, f(ϕ) = 0 and
G(ϕ) = −r̃ · n. On the envelope (x̃, ỹ) satisfies simultaneously the equations G = 0
and Gϕ ≡ F = 0, i.e.,

G = − (x̃ cosϕ + ỹ sinϕ) = 0, Gϕ = x̃ sinϕ − ỹ cosϕ = 0. (5.26)

Equations (5.26) can be written in the matrix form Ax̃ = 0 where x̃ = (x̃, ỹ). Because
det A = 1, (5.26) only have the trivial solution (x̃, ỹ) = (0, 0). Thus the wave breaks
on the z̃-axis. An alternative way to view wave breaking is to evaluate the current
J in the wave, namely

J =
B0k

µ0
ez =

B0

µ0(x̃ sinϕ − ỹ cosϕ)
. (5.27)

On the field line (5.25) with r̃ = r0, the current (5.27) has the form

J =
B0

µ0r̃
ez . (5.28)

Thus, the current blows up on the wave envelope where r̃ = 0.
The magnetic field and current configuration are illustrated in Fig. 2. The magnetic

field is generated by the current (5.27) which is singular on the z̃-axis. The wave
normal n and the magnetic field B are parallel, and directed in the azimuthal
direction in the x̃ỹ plane. Note that ϕ = π/2 + θ̃, where x̃ = r0 cos θ̃, ỹ = r0 sin θ̃

gives the position of a point on the field line at radius r̃ = r0 from the z̃-axis.
The magnetic field (5.23) corresponds to the magnetic potential A = −B0r̃ez (i.e.,
B = ∇ × A).

Centered wave with α0 �= π/2 and Θ0 = π/2
The simplest generalization of the Barnes solution is obtained by setting α0 �= π/2

and Θ0 = π/2 in the solution (5.19). For a centered wave f(ϕ) = 0 in (5.19). For
this solution,

n = (cosϕ, sinϕ, 0), B = B0(sin α0 cosϕ, sin α0 sinϕ, cos α0), (5.29)

The field line equations (3.18) for the solution (5.29) integrate to give the helix

r̃ = −r0 (sinϕ,− cosϕ, cot α0 ϕ) . (5.30)

By noting that ϕ = π/2 + θ where (r, θ, z) are cylindrical polar coordinates, the
magnetic field (5.29) can be written in the form

B = B0 sin α0eθ + B0 cos α0ez . (5.31)
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Figure 2. The magnetic field lines and wave normal for the Barnes (1976) simple Alfvén
wave solution. The wave normal n and magnetic induction B are parallel and are directed
in the azimuthal direction (n = (cosϕ, sinϕ, 0) where ϕ is the wave phase). The wave phase
fronts are planes ϕ = const. perpendicular to B, passing through the origin of the xy plane.
The current is spatially non-uniform, directed along the z̃-axis, and diverges as r̃ → 0, where
r̃ = (x̃2 + ỹ2)1/2 is radial distance from the z̃-axis.

Thus, B has a constant azimuthal component Bθ = B0 sin α0, a constant z component
Bz = B0 cos α0 and Br = 0 in cylindrical polar coordinates. The field lines (5.30) are
the same as the non-centered, one-dimensional (1D), planar, traveling Alfvén wave
solution in (5.15)–(5.16) (setting r0 = − tan α0/k0 in (5.30) gives the field lines (5.16)).
However, the two solutions are clearly physically different. Solution (5.15)–(5.16) has
wave normal n = (0, 0, 1) directed along the z-axis, and has a non-singular azimuthal
circular current J ‖ (cosϕ, sinϕ, 0), which is finite in all space. The modified Barnes
solution (5.30) has an azimuthal wave normal n = (cosϕ, sinϕ, 0), and the current
J = B0 sin α0/(µ0r̃)(0, 0, 1) is directed along the z̃-axis, and diverges as r̃ → 0 on the
z̃-axis. The field lines for the simple wave (5.29)–(5.30) have a helical spiral structure
as illustrated in Fig. 1.
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The above example illustrates that two distinct Alfvén wave solutions can have the
same field line structure, but have distinct wave speeds, wave normals, and currents.

Centered waves with α0 �= π/2 and Θ0 �= π/2
A more complex model of a centered simple Alfvén wave is obtained by letting

k0 → ∞ in the solution (5.19), but choosing α0 �= π/2 and Θ0 �= π/2 (i.e., f(ϕ) = 0).
The equation for the wave phase ϕ in (5.19) reduces to

x̃ cosϕ + ỹ sinϕ + z̃ cotΘ0 = 0. (5.32)

Equation (5.32) has solutions ϕ = ϕ1 and ϕ = ϕ2 given by

ϕ1 = − tan−1

(
x̃

ỹ

)
− sin−1

(
z̃ cotΘ0

r̃

)
,

ϕ2 = π + sin−1

(
z̃ cotΘ0

r̃

)
− tan−1

(
x̃

ỹ

)
. (5.33)

It turns out that the solution ϕ = ϕ2 is the relevant solution for ϕ, for which
F = Gϕ = −r̃ · n′(ϕ) > 0. The function F ≡ 1/|∇ϕ| from (3.11), (3.29), and (5.33)
(using ϕ = ϕ2) is given by

F = −κq̃2 = sinΘ0(r̃
2 − z̃2 cot2 Θ0)

1/2. (5.34)

From (5.34) we require

|z̃| < r̃ tanΘ0 (5.35)

for a real solution. The gradient |∇ϕ| → ∞ on the cone z̃ = r̃ tanΘ0. The current J
is given by

J =
B0 sin α0

µ0(r̃2 − z̃2 cot2 Θ0)1/2
(− cotΘ0 cosϕ,− cotΘ0 sinϕ, 1),

≡ B0 sin α0

µ0|q̃2| sinΘ0
e3, (5.36)

Since q̃1 ≡ 0 for a centered wave, the field line solutions (5.21) simplify to

x̃ = −(q̃2 sinϕ + q̃3 cosΘ0 cosϕ), ỹ = q̃2 cosϕ − q̃3 cosΘ0 sinϕ, z̃ = q̃3 sinΘ0,

(5.37)

where

q̃2 = r0 sin(ζ − ζ0), q̃3 =
r0c0

cosΘ0
cos(ζ − ζ0), ζ = c0ϕ. (5.38)

It is of interest to note that in (q̃2, q̃3) space, the field line is an ellipse:

q̃2
2 +

(
cosΘ0q̃3

c0

)2

= r20 . (5.39)

From (5.38) the singular cone F = 0 corresponds to points along the field line

c0(ϕ − ϕ0) = nπ, (5.40)

where c0 is defined in (5.22), and n is an integer. Equation (5.40) gives the value of ϕ
on the field line where it intersects the singular cone. In effect the current singularity
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Figure 3. (Color online) Sample magnetic field line for centered simple Alfvén wave, which
generalizes the Barnes simple wave (Barnes 1976). The current is singular on the cone
z̃ = r̃ tanΘ0, where r̃ = (x̃2 + ỹ2)1/2 is radial distance from the z̃-axes. Θ0 = 45◦ and α0 = 85◦.
ϕ = 0 at the top of the figure, and ϕ = π/c0 at the bottom of the figure, where the field line
intersects the cone. The Barnes solution is recovered by setting α0 = 90◦ and Θ0 = 90◦

present along the z̃-axis in the example of Fig. 2 is now spread out over the cone
z̃ = r̃ tanΘ0.

Figure 3 shows an example of a field line solution for the centered simple wave
described in (5.32) et seq. with ϕ0 = 0, α0 = 85◦, Θ0 = 45◦, and r0 = 1. The field line
starts at the top of the figure, where ϕ = 0 and ends up at the bottom of the figure
at ϕ = π/c0. The field line has a spiral type structure and both begins and ends on
the current sheet z̃ = r̃ tanΘ0.

Figure 4 shows the same field line and current sheet (the cone) as in Fig. 3,
but extended from ϕ = 0 to ϕ = 2π/c0. Figure 5 shows the field line in Fig. 4,
without the current sheet. Notice the kink or cusp in the magnetic field line at the
bottom of the figure where ϕ = π/c0. It was noted in (3.32) et seq. that the tangent
vector to the field line dx/dϕ = FB/B1 = (0, 0, 0) on the wave envelope (i.e., on
the current sheet where F = 0). This is the point where the cusp is located. In the
present example F = −r0 sinΘ0 sin(c0ϕ) and F = 0 when ϕ = nπ/c0. Thus, there
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Figure 4. (Color online) Field lines and current sheet for the centered wave of Fig. 3,
for 0 � ϕ � 2π/c0.

are cusps in the field line at the points, where ϕ = nπ/c0 (n integer), for the present
example.

Consider the current for the simple waves illustrated in Figs. 3–5. The current in
the simple wave (5.36) can be written in the form

J =
B0 sin α0

µ0 sinΘ0

e3

[r̃2 − z̃2 cotΘ0]1/2
, (5.41)

where

e3 = −cosΘ0 cos(ϕ − θ)er − cosΘ0 sin(ϕ − θ)eθ + sinΘ0ez ,

=
z̃ cos2 Θ0

r̃ sinΘ0
er − σs cosΘ0

(
1 − z̃2 cot2 Θ0

r̃2

)1/2

eθ + sinΘ0ez , (5.42)

where σs = sgn(sin(ϕ − θ)) and er , eθ , and ez are unit vectors using cylindrical
coordinates with the polar axis along the z direction. On the current sheet z̃ =
±r̃ tanΘ0, J → ∞ and

e3 = ±cosΘ0er + sinΘ0ez . (5.43)
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Figure 5. Field lines for the centered wave of Fig. 4 for 0 � ϕ � 2π/c0. Note the cusp in the
field line at ϕ = π/c0 at the bottom of the figure. In general, cusps occur at ϕ = nπ/c0 (n
integer) when the field line hits the current sheet (the cone) in Fig. 4.

Thus, the current streamlines on the sheet consists of the straight line generators of
the cone. Note there is no azimuthal component to the current on the sheet.

At large radii r̃ � |z̃| cotΘ0, the current is approximately given by

J ∼ B0 sin α0

µ0 sinΘ0r̃
(−σs cosΘ0eθ + sinΘ0ez) . (5.44)

Thus, at large radii, the current has a helical structure, with no radial component,
whereas at small radii, the current has no azimuthal component.

An alternative analysis of the current streamlines is to use the field line streamlines
(3.30) but with (B1, B2, B3) replaced by (J1, J2, J3). In the present application, J1 =
J2 = 0 and J3 �= 0 and (κ1, κ2, κ3) ≡ (τ, 0, κ) where τ = cosΘ0 and κ = sinΘ0. The
current streamline equations take the form

dϕ

dλ
= 0,

dq̃2

dλ
= 0,

dq̃3

dλ
= FJ3 =

B0 sin α0

µ0
, (5.45)
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where λ is the parameter along the streamlines. Equations (5.45) have first integrals
q̃2 = q̃2c = const. and ϕ = ϕc = const.. The latter two integrals, in turn, imply

x̃ cosϕc + ỹ sinϕc + z̃ cotΘ0 =0,

−x̃ sinϕc + ỹ cosϕc= q̃2c. (5.46)

The streamlines for J follow by eliminating ϕc between the two equations in (5.46).
In particular, for the case q̃2c = 0, (5.46) give the envelope of the family of wave
fronts in the form

z̃ = −σc tanΘ0r̃, secϕc =
σcr̃

x̃
, σc = ±1. (5.47)

Thus the current streamlines are the straight line generators of the cone. Clearly,
(5.46) may also be used to determine the current streamlines at large radii r̃ �
|z̃| cotΘ0, by eliminating ϕc in (5.46) for q̃2c � 1.

5.3. Non-centered simple waves

A non-centered simple wave is obtained from the solution (5.19) by choosing
f(ϕ) = ϕ/k0 where k0 is finite. The centered simple waves in Figs. 3–4 occur for
k0 → ∞.

The field lines for the solution (5.19) are given by (5.21)–(5.22). The wave front
equation G(ϕ) = f(ϕ) − r̃·n(ϕ), is given by

G =
ϕ

k0
− sinΘ0(x̃ cosϕ + ỹ sinϕ) − cosΘ0z̃ = 0, (5.48)

Using the field line solutions (5.21)–(5.22) for (x̃, ỹ, z̃) it is straightforward to verify
G = 0 on the field lines (as it should). The function

F = Gϕ =
1

k0
− sinΘ0 (ỹ cosϕ − x̃ sinϕ) (5.49)

determines when the wave breaks (i.e., |∇ϕ| → ∞ as F → 0). On the field lines
(5.21)–(5.22),

F =
1

k0
− sinΘ0q̃2 ≡ 1 + tan α0 tanΘ0

k0
− r0 sinΘ0 sin[c0(ϕ − ϕ0)]. (5.50)

From (5.50), F = 0 if ϕ satisfies the equation:

sin[c0(ϕ − ϕ0)] =
1 + tan α0 tanΘ0

k0r0 sinΘ0
. (5.51)

The condition (5.51) to have solutions for ϕ is the right-hand side of (5.51) has
magnitude less than unity. If this is the case, then the wave breaks at values of ϕ

satisfying the equation

ϕ = ϕ0 + ϕc + nπ (n integer) where ϕc = sin−1

(
1 + tan α0 tanΘ0

k0r0 sinΘ0

)
. (5.52)

Assuming 0 < Θ0 � π/2 and 0 < α0 � π/2, the condition for the wave not to break
(i.e., to be free of current sheets) is

k0r0 <
1 + tan α0 tanΘ0

sinΘ0
. (5.53)

The radius r0 characterizes in some sense, the location of the field line from the
z-axis. Clearly for large enough r0, (5.53) will be violated, and the wave will break.
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It is also obvious from (5.53) that waves with smaller k0 will be more stable (i.e.,
will be less prone to break).

The envelope of the family of phase fronts (5.48) is obtained from the simultaneous
solution of (5.48) and (5.49). This surface from (5.48)–(5.49) can be expressed in the
parametric form:

x̃(ϕ, z̃) = −z̃ cotΘ0 cosϕ +
ϕ cosϕ − sinϕ

k0 sinΘ0
,

ỹ(ϕ, z̃) = −z̃ cotΘ0 sinϕ +
ϕ sinϕ + cosϕ

k0 sinΘ0
. (5.54)

Equations (5.54) reduce to the cone r̃2 = z̃2 cot2 Θ2
0 in the limit as k0 → ∞ where

r̃ = (x̃2 + ỹ2)1/2 is cylindrical radius from the x̃-axis. For finite k0 �= 0, (5.49)–(5.50)
can be written in the form

r̃ cos(ϕ + ε) =
1

k0 sinΘ0
, r̃ sin(ϕ + ε) =

ϕ

k0 sinΘ0
− z̃ cotΘ0, (5.55)

where

ε = tan−1

(
x̃

ỹ

)
, r̃ = (x̃2 + ỹ2)1/2. (5.56)

By squaring and adding (5.55) we obtain

r̃2 =
1

k2
0 sin2 Θ0

+

(
ϕ

k0 sinΘ0
− z̃cotΘ0

)2

. (5.57)

From (5.57) it follows that the envelope is located at r̃ > (k0 sinΘ0)
−1. From (5.57)

and (5.55) we obtain two independent equations for ϕ, namely

ϕ = k0z̃ cosΘ0 − σz
[
k2

0 r̃
2 sin2 Θ0 − 1

]1/2
, ϕ + ε = σc arccos

(
1

k0r̃ sinΘ0

)
, (5.58)

where σz = ±1 and σc = ∓1 (it turns out that σz = −σc in order for these formulae
to be consistent with (5.54)). Eliminating ϕ between the two equations in (5.58) gives
the wave envelope in cylindrical polar coordinates in the form

x̃ = r̃ cos θ, ỹ = r̃ sin θ,

z̃ =
1

k0 cosΘ0

[
θ − 1

2
π + σc arccos

(
1

k0r̃ sinΘ0

)
+ σz

√
(k0r̃ sinΘ0)2 − 1

]
.

(5.59)

Here θ = π/2 − ε relates ε to the cylindrical polar azimuthal coordinate θ and
σc = −σz . The σz = ±1 branches of the surface correspond to the upper and
lower z̃ branches of the surface. Note that the surface is located in the region
r̃ > 1/(k0 sinΘ0).

Figure 6 shows the current sheet and field lines for the non-centered simple Alfvén
wave for k0 = 200, r0 = 1, θ0 = 45◦ and α0 = 85◦. The field lines are shown for
0 < ϕ < 3π/c0. The current sheet (5.54) is shown for 0 < ϕ < 2π (the current
sheet looks more complicated if shown for a larger range of z and ϕ). The field line
intersects the wave envelope at ϕ = (ϕc + nπ)/c0 (n integer), where ϕc = 5.0424◦

(see (5.52)). The field line, without the current sheet is shown in Fig. 7. There are
cusps when the field line intersects the current sheet.
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Figure 6. (Color online) Field lines and singular current surface for the non-centered simple
Alfvén wave (5.19) for k0 = 200, r0 = 1, and 0 < ϕ < 3π/c0. Note the distortion of the current
sheet from a conical surface due to finite k0. The field line has cusps at ϕ = (ϕc + nπ)/c0,
where ϕc = 5.0424◦ (see (5.52)).

Figure 8 shows a field line and the current sheet for k0 = 10 and r0 = 1, and the
same value of the parameters as in Fig. 6. In this case there are no real solutions
of (5.51) for ϕ for which F = 0. Thus, the field lines do not intersect the current
sheet in this case. The current sheet was determined by using the polar coordinate
representation (5.59). Figure 9 shows the field line. There are no kinks in the field
line and no points at which the field line intersects the current sheet surface (5.54).

Example 3
As a third example, the choice α = ϕ, β = ϕ and Θ = Θ0 in (5.13) yields the

solution

α = ϕ, β = ϕ, Φ = 2ϕ − π

2
+ sin−1(sinϕ cotΘ0), (5.60)

for α, β, and Φ. Simpler solutions are obtained for special values of Θ0. In particular,
if Θ0 = 1/2π yields the solution

α = ϕ, β = ϕ, Φ = 2ϕ − π

2
, Θ0 =

π

2
. (5.61)
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Figure 7. Field line for the non-centered simple Alfvén wave (5.19) for k0 = 200, r0 = 1 and
0 < ϕ < 3π/c0. The field line has cusps when the field line intersects the current sheet. The
cusps occur at ϕ = (ϕc + nπ)/c0, where ϕc = 5.0424◦ (see (5.52)).

The choice Θ0 = π/4, yields the solution

α = ϕ, β = ϕ, Φ = 3ϕ − π

2
, Θ0 =

π

4
. (5.62)

5.4. Serret–Frenet equations

An alternative approach to constructing Alfvén simple waves is to specify the wave
normal n and then solve (5.5) for B(ϕ). Using (3.36) in (5.5), the equations for the
magnetic field B in the Serret–Frenet frame base reduces to the equations

dB1

dϕ
− κB2 = 0,

dB2

dϕ
+ κB1 − τB3 = −α(ϕ)B3,

dB3

dϕ
+ τB2 = α(ϕ)B2, (5.63)
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Figure 8. (Color online) Field line and current sheet for the non-centered simple Alfvén wave
(5.19) for k0 = 10, r0 = 1, and 0 < ϕ < 3π/c0. The field line in this case does not hit the
singular current surface.

where κ(ϕ) and τ(ϕ) are the curvature and torsion coefficients of the curve X(ϕ) in
the Serret–Frenet base. The dimensionless function α(ϕ) is the proportionality factor
relating B′(ϕ) to n × B in the Alfvén eigenequation (5.5).

Equations (5.63) can be rewritten in the Serret–Frenet form:

du

dϕ
− κv = 0,

dv

dϕ
+ κu − τ̃w = 0,

dw

dϕ
+ τ̃v = 0, (5.64)

where

(u, v, w) = (B1, B2, B3), τ̃(ϕ) = τ(ϕ) − α(ϕ). (5.65)

Equations (5.64) are the Serret–Frenet equations (e.g., Eisenhart 1960) associated
with the curve X̃(ϕ) with curvature κ(ϕ) and torsion τ̃ = τ(ϕ) − α(ϕ) (i.e., in a
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Figure 9. Field line for the non-centered simple Alfvén wave (5.19) for k0 = 10, r0 = 1, and
0 < ϕ < 3π/c0. The field line in this case does not hit the singular current surface.

fixed Cartesian coordinate base, the ith components of e1, e2, e3, namely (u, v, w) =
(ei1, e

i
2, e

i
3) for i = 1, 2, 3 satisfy (5.64)). The Serret–Frenet equations (5.64) have

integral u2 + v2 + w2 = const. (i.e., B2 = const.). Without loss of generality we may
choose (u, v, w) = eB to be the unit vector along the magnetic field.

Equations (5.64) may be reduced to a linear, second-order differential equation,
by means of a stereographic projection of (u, v, w) from the unit two-sphere S2:
u2 + v2 +w2 = 1 onto the (u, v) plane R2, to obtain a Ricatti equation, which reduces
to a second-order linear ordinary differential equation by means of a Cole–Hopf
transformation (see, e.g., Eisenhart 1960). To be specific, consider the projection of
the point P = (u, v, w) on S2 from the north pole N = (0, 0, 1) by the straight line
NP intersecting the (u, v) plane at the point (u′, v′), where

u′ =
u

1 − w
, v′ =

v

1 − w
, u2 + v2 + w2 = 1. (5.66)

From (5.66),

u
′2 + v

′2 =
1 + w

1 − w
, w =

u
′2 + v

′2 − 1

u
′2 + v

′2 + 1
. (5.67)
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The inverse of the transformations (5.66) are

u =
2u′

u
′2 + v

′2 + 1
, v =

2v′

u
′2 + v

′2 + 1
, w =

u
′2 + v

′2 − 1

u
′2 + v

′2 + 1
. (5.68)

Using the transformations (5.66)–(5.68), and the Serret–Frenet equations (5.64) gives

du′

dϕ
= κv′ − τ̃v′u′,

dv′

dϕ
= −κu′ +

1

2
τ̃(u

′2 − v
′2 − 1). (5.69)

Introducing the complex quantity

σ = u′ + iv′, (5.70)

(5.69) gives the Ricatti equation:

dσ

dϕ
= −iκσ +

i

2
τ̃(σ2 − 1). (5.71)

The Ricatti equation (5.71) can be linearized by the Cole–Hopf transformation:

σ =
2i

τ̃

Ω̇

Ω
, Ω̇ =

dΩ

dϕ
, (5.72)

to obtain the linear second-order ordinary differential equation (ODE):

Ω̈ + Ω̇

(
iκ − τ̃ϕ

τ̃

)
+

τ̃2

4
Ω = 0. (5.73)

Thus, given the curvature coefficient κ(ϕ) and torsion coefficient τ̃(ϕ) = τ(ϕ) − α(ϕ),
the simple Alfvén eigenequations for (B1, B2, B3) = B(u, v, w) (B = const.), can be
reduced to the linear second-order ODE (5.73). The sequence of transformations
(5.66)–(5.73) for the Serret–Frenet equations were originally obtained by Darboux
(see, e.g., Eisenhart 1960).

The implications of these transformations, is that solutions of (5.73) for given
κ(ϕ), τ(ϕ), and α(ϕ), give solutions of the Ricatti equation (5.71) for σ = u′ + iv′.
The inverse stereographic transformations (5.68) give solutions for (u, v, w). In the
present application (u, v, w) = (B1, B2, B3)/B and hence the procedure gives solutions
for B for Alfvén simple waves.

Example 1
If κ = const. and τ̃ = const. (5.73) has general solution

Ω = a1 exp(iλ1ϕ) + a2 exp(iλ2ϕ), (5.74)

where

λ1,2 =
1

2
(−κ ± K̃), K̃ =

√
κ2 + τ̃2. (5.75)

One can obtain solutions for (u, v, w) using the transformations (5.66)–(5.73). This is
a complicated procedure. The general solution in this case is more easily obtained
directly from (5.64). The solution of (5.64) can be written in the form

(u, v, w)=(cos α0 sin β0, 0, sin α0 sin β0)

+ cos β0(sin α0 sinϕB, cosϕB,− cos α0 sinϕB), (5.76)
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where

κB ≡ κ =
sin α0

RB

, τB ≡ τ̃ =
cos α0

RB

,

KB =

√
κ2
B + τ2

B =
1

RB

, ϕB =
ϕ

RB

. (5.77)

In (5.77) we have introduced subscripts B to emphasize, that the torsion coefficient of
the curve X(ϕ) is in general different that the torsion coefficient for the corresponding
curve for (B1, B2, B3) (see 5.65)). In (5.76) one can replace ϕB by ϕB + δ if desired.
The solution (5.76) also satisfies the equations:

u2 + v2 + w2 = u2
0 + v2

0 + w2
0 = 1, κBu0 − τBw0 = 0, (5.78)

where (u0, v0, w0) is the value of (u, v, w) at ϕB = 0. From (5.76) we find

u cos α0 + w sin α0 = sin β0. (5.79)

Thus, the solution (5.76) for (u, v, w) is a curve on the unit sphere, where the plane
(5.79) intersects the sphere.

To complete the specification of the simple wave solution requires the specification
of f(ϕ) defining the wave phase ϕ and also requires specification of the space curve
X(ϕ) with unit tangent vector e1 = n(ϕ) = X′(ϕ)/|X′(ϕ)|, with curvature κ and torsion
τ = τ̃ + α(ϕ). For the sake of simplicity, we consider the case α = α(ϕ) = const., for
which

X(ϕ) = RX (sinΘ0 sinϕX,− sinΘ0 cosϕX, cosΘ0ϕX) ,

e1 = (sinΘ0 cosϕX, sinΘ0 sinϕX, cosΘ0) ,

e2 = (− sinϕX, cosϕX, 0) ,

e3 = (− cosΘ0 cosϕX,− cosΘ0 sinϕX, sinΘ0) . (5.80)

In (5.80),

ϕX =
ϕ

RX

, KX =

√
κ2
X + τ2

X =
1

RX

,

κX =
sinΘ0

RX

≡ sin α0

RB

, τX =
cosΘ0

RX

. (5.81)

Note that the curvature κB = κX but τB �= τX (note τB = τX − α: see (5.65)).

Examples
In the following analysis, we set RB = 1 and RX is a free parameter. The solutions

turn out to depend on the parameter RX/RB , which roughly describes the torsion of
the magnetic field (we set τX = 0 in the examples).

Consider the class of simple waves described by (5.76)–(5.81). The field line
equations (3.30) for the case of non-centered waves with f(ϕ) = ϕ/k0 reduce to

dq̃2

dϕ
= −κX

B2

B1
q̃2 + τXq̃3 +

1

k0

(
B2

B1
− κXϕ

)
,

dq̃3

dϕ
= −q̃2

(
τX + κX

B3

B1

)
+

1

k0

(
B3

B1

)
, (5.82)

where (B1, B2, B3) = |B|(u, v, w) is given by (5.76).

https://doi.org/10.1017/S0022377809990596 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377809990596


Alfvén simple waves 79

Centered waves with k0 → ∞
We further restrict our attention to simple waves with τX = 0 (i.e., Θ0 = π/2) and

with k0 → ∞ (i.e to centered waves). For this class of waves, the moving tri-hedron
(e1, e2, e3) is given by

e1 = (cosϕX, sinϕX, 0), e2 = (− sinϕX, cosϕX, 0), e3 = (0, 0, 1). (5.83)

The solution for the magnetic field from (5.76) has the form

B1 = B(a + b sinϕB), B2 = B cos β0 cosϕB, B3 = B(c − d sinϕB), (5.84)

where

a = cos α0 sin β0, b = cos β0 sin α0, c = sin α0 sin β0, d = cos α0 cos β0. (5.85)

For Θ0 = π/2 and k0 → ∞ the wave phase ϕX = ϕ/RX satisfies the wave front
equation:

G ≡ −(x̃ cosϕX + ỹ sinϕX) = 0. (5.86)

This class of solutions has a current singularity on the z̃-axis as r̃ = (x̃2 + ỹ2)1/2 → 0,
where |∇ϕB | = 1/F → ∞ (see (5.23) et seq.). There are two scale lengths for the
wave: RX and RB associated with the curve X(ϕ) used to describe the wave front and
the magnetic field, respectively. The field line equations (5.82) in this limit reduce to

dq̃2

dϕ
+ κX

(
B2

B1

)
q̃2 = 0,

dq̃3

dϕ
= −κX

B3

B1
q̃2. (5.87)

Equations (5.87) have solutions for q̃2 and q̃3 of the form

q̃2 = q̃20
B10

B1
= q̃20

a

a + b sinϕB

, q̃3 = q̃30 − q̃20a sin α0I1, (5.88)

where

I1 =

∫ ϕB

0

(c − d sinϕ)

(a + b sinϕ)2
dϕ. (5.89)

The integral (5.89) for |a| > |b| can be expressed in the form

I1 =

[
2(ac + bd)√

a2 − b2

(
Arctan

(
b + aτ√
a2 − b2

)
+ w(ϕ)

)
+

(bc + ad) cosϕ

(a + b sinϕ)

]ϕ=ϕB

ϕ=0

, (5.90)

where

τ(ϕ) = tan
(ϕ

2

)
, w(ϕ) =

[
ϕ + π

2π

]
π. (5.91)

In (5.91) the square bracket notation [x] means the integer part of x. The Arctan(x)
function in (5.91) denotes the principal branch of Arctan(x) which is defined
for |x| � π/2. In the evaluation of the formula (5.90) for I1, use of (5.85)
gives

a2 − b2 = sin(β0 − α0) sin(β0 + α0), bc + ad =
1

2
sin(2β0), ac + bd =

1

2
sin(2α0),

(5.92)
for a2 − b2, bc + ad and ac + bd in (5.90). The field lines for the simple wave using
(x̃, ỹ, z̃) coordinates are given by

x̃ = −q̃2 sinϕX, ỹ = q̃2 cosϕX, z̃ = q̃3. (5.93)
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Figure 10. A field line for a centered simple Alfvén wave (5.83)–(5.85) which generalizes
Barnes (1976) solution. The solution couples the evolution of the wave front, with scale RX

to the magnetic field geometry in the Serret–Frenet frame, with scale RB . The field lines are
given by (5.93). The parameters are RX = 3, RB = 1, β0 = 30◦, |B| = 1, q30 = 0, q20 = 1.

Figure 10 shows a field line (5.93) for the simple wave (5.80)–(5.86), for the
parameter values:

RB = 1, RX = 3, β0 =
π

6
, B = 1, α0 = Arcsin

(
RB

RX

)
= 0.339837. (5.94)

The field line is a distorted helix, with axis of symmetry, roughly along the z̃-axis
(there are two fat lobes, and one thin lobe for each period along the z̃ direction).
The parameters q20 = 1 and q30 = 0 for this field line. The parametric form
[x̃(ϕ), ỹ(ϕ), z̃(ϕ)] of the field line is displayed in Fig. 11. The x̃(ϕ) and ỹ(ϕ) profiles
are periodic in ϕ, but z̃(ϕ) is monotonic decreasing with a smooth step-like structure.

Figure 12 shows a field line for the same parameters as in Fig. 10, except that
RB = 1 and RX = 10. Note the small-scale loops associated with the torsion of
the magnetic field (B1, B2, B3) components, superimposed on a large-scale helical
structure associated with the curve X(ϕ) with wave normal n(ϕ). The field is directed
downward in the negative z̃ direction. The parametric dependence of the field lines
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Figure 11. The field line [x̃(ϕ), ỹ(ϕ), z̃(ϕ)] versus ϕ, for RB = 1 and RX = 3 corresponding to
the field line in Fig. 10.
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Figure 12. A field line for the simple wave (5.83)–(5.85), with field lines (5.93). Same
parameters as in Fig. 10, except RB = 1 and RX = 10.

[x̃(ϕ), ỹ(ϕ), z̃(ϕ)] on ϕ ≡ ϕB (note RB = 1) is exhibited in Fig. 13 (ϕ is measured
in radians). The x̃ and ỹ components exhibit a large-scale periodic motion, whereas
z̃ decreases monotonically on the large scale. Small-scale variations associated with
RB are superimposed on the large-scale structure.

Figure 14 shows a sample field line for the case RB = 1 and RX = 4000. The field
line is a spiral with axis parallel to the x-axis. In the limit as RX → ∞, b = c = 0,
a = sin β0, d = cos β0, and the solution depends only on ϕ = ϕB , and the wave
normal n = (1, 0, 0). These features of the solution are illustrated in Fig. 14.

Other numerical examples of simple Alfvén waves can clearly be constructed by
the above methods. Below we discuss two more examples, but refrain from a detailed
numerical investigation of the solutions.

Example 2
For the case

κ(ϕ) = a0 + b0 tanhϕ, τ̃(ϕ) = k sechϕ, (5.95)

(5.73) for Ω reduces to the equation:

(1 − w2)
d2Ω

dw2
+

dΩ

dw
[i(a0 + b0w) − w] +

k2

4
Ω = 0, (5.96)
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Figure 13. Parametric form of the field line [x̃(ϕ), ỹ(ϕ), z̃(ϕ)] of Fig. 12, versus ϕ, for RB = 1
and RX = 10.
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Figure 14. Field line for the simple wave described by (5.83)–(5.85) and (5.93). Same
parameters as in Fig. 10, except RB = 1 and RX = 4000.

where

w = tanhϕ, (5.97)

Note that κ(ϕ) and τ̃(ϕ) are bounded for real ϕ. Equation (5.96) can be reduced to
the hypergeometric equation:

z(1 − z)
d2Ω

dz2
+ [c − z(1 + a + b)]

dΩ

dz
− abΩ = 0, (5.98)

where

z =
1

2
(1 + w), w = tanhϕ,

a =
1

2

[
−ib0 −

√
k2 − b2

0

]
, b =

1

2

[
−ib0 +

√
k2 − b2

0

]
,

c =
1

2
[1 + i(a0 − b0)] . (5.99)

Equation (5.98) is satisfied by Gauss’s hypergeometric function 2F1(a, b, c, z) (see,
e.g., Abramowitz and Stegun 1965, Chapter 15, p. 556). Polynomial solutions for for
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Ω result if b0 = 0 and k = 2n where n is an integer. This case corresponds to a
constant curvature coefficient κ and a variable torsion τ̃(ϕ).

Example 3
For the choice

κ(ϕ) =
(I2 − I3)

I2I3
B3, τ̃(ϕ) =

(I2 − I1)

I2I1
B1, (5.100)

the Serret–Frenet equations (5.64) for (u, v, w) = (B1, B2, B3) reduce to Euler’s
equations:

dB1

dϕ
=

(I2 − I3)

I2I3
B2B3,

dB2

dϕ
=

(I3 − I1)

I3I1
B3B1,

dB3

dϕ
=

(I1 − I2)

I1I2
B1B2 (5.101)

for rigid body rotational dynamics, where I1, I2, and I3 are analogous to the
principal moments of inertia and (B1, B2, B3) are analogous to the angular momenta
(Π1, Π2, Π3) about the principal axes (i.e., Πj = IjΩj where Ωj is the angular velocity
about the jth principal axis). The Euler–Poincaré form and Hamiltonian form of
the Euler equations are discussed, for example, by Marsden and Ratiu (1994) and
by Holm et al. (1998). Analytical solutions of Euler’s equations in terms of Jacobian
elliptic functions are listed in Marsden and Ratiu (1994).

6. Summary and discussion
In this paper, we have obtained examples of simple Alfvén waves, using Boillat’s
formalism (Boillat 1970) for multi-dimensional simple waves, thus extending the
previous examples obtained by Barnes (1976) and Webb et al. (1995).

MHD simple waves were obtained by requiring that the MHD state vector
W = (ρ, uT ,BT , p)T be purely a function of the wave phase ϕ(x, y, z, t). This condition
implies that dW/dϕ is a right eigenvector of the MHD matrix eigensystem (3.5), and
that the wave normal n(ϕ) and the eigenvalue λ(ϕ) of the mode of interest should be
solely functions of ϕ. The latter two conditions on λ(ϕ) and n(ϕ) imply that ϕ is given
implicitly by the equation: f(ϕ) = r · n(ϕ)−λ(ϕ)t (see (3.9)), where f(ϕ) is an arbitrary
function of ϕ. Solutions with f(ϕ) = 0 are known as centered waves whereas
solutions with f(ϕ) a non-zero function of ϕ are known as non-centered waves.

The 1D simple Alfvén wave propagating along the z-axis in standard textbooks
(e.g., Cabannes 1970) is obtained by using the ansatz f(ϕ) = ϕ/k0 for f(ϕ) where
k0 is a characteristic wave number and by setting and n = (0, 0, 1). Field lines for
the wave are helices, winding about the direction of propagation (see Fig. 1). More
general 1D planar solutions are obtained for other choices of f(ϕ). The Barnes
simple Alfvén wave in this scheme is obtained by setting f(ϕ) = 0, and by setting
n(ϕ) = (cosϕ, sinϕ, 0) (see, e.g., Barnes 1976 and Fig. 2). The magnetic field lines and
the wave normal are concentric circles centered on the z-axis, and lying in z = const.

planes. The current in the wave J = ∇ × B/µ is directed along the z direction and
diverges on the z-axis as 1/r as r = (x2 + y2)1/2 → 0. The current blow-up on the
z-axis is an example of wave breaking for Alfvén simple waves. The Barnes solution
(Barnes 1976) has f(ϕ) = 0 and is an example of a centered simple wave.
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The Barnes solution can be generalized by allowing the magnetic field to have
a non-zero constant component along the z-axis, but still maintaining n(ϕ) =
(cosϕ, sinϕ, 0) for the wave normal. This results in a simple wave with helical field
lines, which have the same form as the 1D planar, non-centered simple Alfvén
wave as illustrated in Fig. 1. However, this solution (described in (5.29)–(5.30)) has
a totally different current distribution and wave normal to the standard textbook
simple Alfvén wave, with wave normal along the z-axis. The standard 1D planar
simple wave has a wave normal directed along the z-axis, and a non-singular
azimuthal current. The generalized Barnes solution (5.29)–(5.30) has an azimuthal
wave normal, and the current is along the z-axis and diverges as r = (x̃2+ ỹ2)1/2 → 0.
This example shows that two waves can have the same field lines, but have distinct
wave normals and currents.

By allowing both the wave normal and the magnetic field to have non-zero and
constant z components, gives the centered simple wave obtained by Webb et al.
(1995). The magnetic field lines then become generalized helices. The current in the
wave now diverges on the cone z = r tanΘ0. A typical field line (e.g., Fig. 3) starts
on the current sheet (cone in z > 0 say) and ends on the current sheet in the other
half plane. An inspection of the field line solutions reveals that the tangent vector to
the field line T = dx/dϕ vanishes when the field line hits the current sheet (i.e., the
field line has a cusp on the current sheet, where the wave breaks: see Figs. 4 and 5).
The Barnes simple wave solution is obtained in the limit that Θ0 → π/2 and with
zero z components for n(ϕ) and B. In this limit, the cone current sheet collapses
onto the z̃-axis.

The centered simple Alfvén solution of Webb et al. (1995) can be generalized to
the case of a non-centered wave for which f(ϕ) = ϕ/k0 (see (5.19) and Figs. 6–9).
In this case, the current sheet cone is a distorted conical surface which does not
join back up with itself. There are two types of field lines: those that intersect the
current sheet (Figs. 6 and 7) and those that do not (e.g., Fig. 9). The latter type of
field line has a helical structure of varying diameter, and resembles a pig’s curly tail.

The above examples were constructed by first specifying the wave normal n(ϕ)
and then determining solutions for B(ϕ) consistent with the requirement n · dB/
dϕ = 0, or by specifying B(ϕ) and then determining n(ϕ), using rectangular Cartesian
coordinates in the group velocity frame of the wave. The magnetic field lines for
the wave were then integrated using the Serret–Frenet formulation. An alternative
approach is to solve the eigenequations dB/dϕ = α(ϕ)n(ϕ) × B(ϕ) using the Serret–
Frenet formalism. This approach gives rise to a more complex family of Alfvén
simple waves (Figs. 10–14). The more complicated nature of these waves arises
because there are two sets of curvature and torsion coefficients describing the simple
wave associated with the curve X(ϕ) used to define the wave normal n(ϕ) and also
the equations describing the magnetic field in the Serret–Frenet frame. Field lines
with finger like protuberances superimposed on a basic helical structure (Fig. 10),
helical fields with smaller scale loops superimposed (Fig. 12) and helical structures
(Fig. 14) were obtained.

The Serret–Frenet equations for B were mapped by stereographic projection from
the two-sphere S2 to the 2D (u, v) plane R2, resulting in a Ricatti equation for the
transformed variable σ = u′ + iv′, which in turn was linearized by a Cole–Hopf
transformation (this complicated transformation is originally due to Darboux (see
Eisenhart 1960). The main point is, that these transformations may be used to
generate simple Alfvén wave solutions. For a judicious choice of the curvature and
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torsion coefficients, the Serret–Frenet equations reduce to the Euler equations of
rigid body dynamics, with known solutions in terms of Jacobian elliptic functions
(e.g., Marsden and Ratiu 1994).

It is of interest to study the magnetic helicity of the Alfvén wave solutions
presented in the present paper (e.g., Berger and Field 1984; Berger and Prior 2006).
However, this investigation lies beyond the scope of the present paper.
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Appendix A
In this appendix we list the matrices A(i) {1 � i � 3} for the conservative MHD
system based on (2.1)–(2.4), corresponding to the x, y, and z derivative operators in
(3.1) using the primitive MHD variables (3.2). The matrices A(i) are

A(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ux ρ 0 0 0 0 0 0

0 ux 0 0 −Bx

µρ

By

µρ

Bz

µρ

1

ρ

0 0 ux 0 −By

µρ
−Bx

µρ
0 0

0 0 0 ux −Bz

µρ
0 −Bx

µρ
0

0 0 0 0 ux 0 0 0

0 By −Bx 0 0 ux 0 0

0 Bz 0 −Bx 0 0 ux 0

0 A 0 0 0 0 0 ux

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A 1)

A(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uy 0 ρ 0 0 0 0 0

0 uy 0 0 −By

µρ
−Bx

µρ
0 0

0 0 uy 0
Bx

µρ
−By

µρ

Bz

µρ

1

ρ

0 0 0 uy 0 −Bz

µρ
−By

µρ
0

0 −ByBx 0 uy 0 0 0

0 0 0 0 0 uy 0 0

0 0 Bz −By 0 0 uy 0

0 A 0 0 0 0 0 uy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A 2)
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A(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uz 0 0 ρ 0 0 0 0

0 uz 0 0 −Bz

µρ
0 −Bx

µρ
0

0 0 uz 0 0 −Bz

µρ
−By

µρ
0

0 0 0 uz
Bx

µρ

By

µρ
−Bz

µρ

1

ρ

0 −Bz 0 Bx uz 0 0 0

0 0 −Bz By 0 uz 0 0

0 0 0 0 0 0 uz 0

0 A 0 0 0 0 0 uz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A 3)

where A = a2ρ and a is the adiabatic sound speed of the gas.

Appendix B
It is instructive to write the eigensystem (3.5) for the right eigenvectors R = dW/dϕ

using components perpendicular and parallel to n in the form

ũnδρ + ρδu‖ = 0, (B 1)

ũnδu‖ +
1

ρ

(
δp +

B⊥ · δB⊥
µ

−
BnδB‖

µ

)
= 0, (B 2)

ũnδu⊥ − 1

µρ
(BnδB⊥ + B⊥δB‖) = 0, (B 3)

ũnδB‖ = 0, (B 4)

ũnδB⊥ − Bnδu⊥ + B⊥δu‖ = 0, (B 5)

ũnδp + a2ρδu‖ = 0, (B 6)

where

ũn=un − λ, Vp = λ − un, un = u · n, Bn = B · n,

u⊥ =(I − nn)·u, B⊥ = (I − nn)·B,

δu‖ =n · du
dϕ

, δB‖ = n · dB
dϕ

,

δu⊥ =(I − nn) · du
dϕ

, δB⊥ = (I − nn) · dB
dϕ

,

δρ=
dρ

dϕ
, δp =

dp

dϕ
. (B 7)

Equations (B 6) are the mass continuity (B 1), the parallel and perpendicular
momentum (B 2)–(B 3), the parallel and perpendicular components of Faraday’s
(B 4)–(B 5), and the comoving gas energy (B 6).
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The right eigenvector R = dW/dϕ for the system (3.5) is given by

R =
(
r1, r2, r3, r4, r5, r6, r7, r8)

T ≡ (δρ, δu‖, δuT⊥ , δB‖, δBT
⊥ , δp

)T
. (B 8)

For a non-trivial solution of (3.5) for dW/dϕ ≡ R (i.e., of (B 1)–(B 5)) it is necessary
that λ satisfy the eigenvalue equation

det(An − λI) ≡ ũ2
n(ũ

2
n − b2

n)[ũ
4
n − (b2 + a2)ũ2

n + b2
na

2] = 0, (B 9)

where

ũn = un − λ, un = u · n, bn = b·n, b =
B

(µ0ρ)1/2
. (B 10)

Here, ũn denotes the component of the fluid velocity normal to the wave front in
the wave frame, b is the Alfvén velocity, and a is the gas sound speed. The solutions
of the eigenvalue (B 9) for λ are

λ1 = un − cf, λ2 = un − bn, λ3 = un − cs, λ4 = un,

λ5 = un, λ6 = un + cs, λ7 = un + bn, λ8 = un + cf, (B 11)

where

c2
f,s =

1

2
{b2 + a2 ± [(b2 + a2)2 − 4b2

na
2]1/2} (B 12)

define the fast (cf) and slow (cs) magnetosonic speeds. The solutions (B 11) cor-
respond to the backward and forward propagating magnetosonic waves (λ1, λ3,
λ6, λ8), the backward and forward propagating Alfvén waves (λ2, λ7), the contact
discontinuity of ordinary gas dynamics (λ4 = un, Bn �= 0, u′ = B′ = 0, ρ′ �= 0, S ′ �= 0).
For MHD models with ∇·B �= 0 we identify λ5 with the divergence wave solution.

Similarly, writing

L = (�1, �2, �3, �4, �5, �6, �7, �8) = (�1, δaT , δbT , �8), (B 13)

for the left eigenvectors of the matrix An ≡ Ac where δa = (�2, �3, �4)
T and δb =

(�5, �6, �7)
T , the left eigenvector equations can be written in the form

ũn�1 = 0, (B 14)

ũnδa‖ + (�1ρ + �8a
2ρ) + B⊥ · δb⊥ = 0, (B 15)

ũnδa⊥ − Bnδb⊥ = 0, (B 16)

ũnδb‖ − δa · B

µρ
= 0, (B 17)

ũnδb⊥ − Bn

µρ
δa⊥ +

δa‖

µρ
B⊥ = 0, (B 18)

ũn�8 +
δa‖

ρ
= 0, (B 19)

where δa‖ = �2, δb‖ = �5, δa⊥ = (0, �3, �4) and δb⊥ = (0, �6, �7). Thus, the left
eigenvectors {Ls : 1 � s � 8} of the matrix An are obtained by solving (B 14)-(B 19).
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We use the notation:

R1 = R−
f , R2 = R−

A , R3 = R−
s , R4 = Re,

R5 = Rd, R6 = R+
s , R7 = R+

A , R8 = R+
f , (B 20)

where f, s, A, e, and d denote the fast magnetoacoustic, slow magnetoacoustic,
Alfvén, entropy, and divergence waves. The same notation is used for the left
eigenvectors {Lj : 1 � j � 8}.

The eigenequations (B 1)–(B 6) and (B 14)–(B 19) have solutions for the right and
left eigenvectors of the form

r(ma) =

[
1,

c

ρ

(
n − bnb⊥

c2 − b2
n

)T

,
c2BT

⊥(
c2 − b2

n

)
ρ
, a2

]T

, (B 21)

l(ma) =

⎡
⎣0, c

(
n − bnb⊥

c2 − b2
n

)T

,

(
b2
n(b

2 − c2)n + c2bnb⊥(
c2 − b2

n

)
Bn

)T

,
1

ρ

⎤
⎦ , (B 22)

where b⊥ = b − bnn is the component of b perpendicular to n and c is one
of the magnetoacoustic velocities (c = ±cf,s), and the superscript (ma) denotes
magnetoacoustic modes.

To obtain a well-defined set of right and left eigenvectors for the case of parallel
(n ‖ B) and perpendicular (n ⊥ B) propagation for the MHD system with ∇·B = 0,
Roe and Balsara (1996) considered the renormalized eigenvectors:

R(ma) = krr(ma), L(ma) = kl l(ma), (B 23)

such that L(ma) and R(ma) for the different eigenmodes form an orthonormal set. This
was achieved by choosing

krkl =
ρ|c2 − b2

n|
2c2

(
c2
f − c2

s

) =
1

N
, (B 24)

where l(ma) · r(ma) = N for the left and right eigenvectors for the same mode.
The conditions (B 24) for the fast and slow magnetoacoustic modes gives the

equations (e.g., Roe and Balsara 1996)

krfk
l
f =

ρ

2a2
α2
f , krsk

l
s =

ρ

2a2
α2
s , (B 25)

where

αf =

(
a2 − c2

s

c2
f − c2

s

)1/2

, αs =

(
c2
f − a2

c2
f − c2

s

)1/2

. (B 26)

Note that αf and αs satisfy the equations

α2
f + α2

s = 1, αfαs =
ab⊥

c2
f − c2

s

. (B 27)

The choices

krf = αf, klf =
ραf

2a2
, krs = αs, kls =

ραs

2a2
, (B 28)
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give well defined left and right eigenvectors for the fast mode eigenvectors as

R±
f =

[
αf,±

1

ρ

(
αfcfn − αscssgn(bn)β⊥

)T
, αsa

(
µ

ρ

)1/2

βT
⊥ , αfa

2

]T

, (B 29)

L±
f =

1

2

[
0,± ρ

a2

(
αfcfn − αscssgn(bn)β⊥

)T
,

ρ1/2

µ1/2a2cf

{
n

[
(αscsb⊥sgn(bn) − αfcfbn

]
+ αsacfβ⊥

}T

,
αf

a2

]
(B 30)

where

β⊥ =
B⊥
B⊥

. (B 31)

Similarly, the normalized, slow mode eigenvectors are

R±
s =

[
αs,±

1

ρ

(
αscsn + αfcfsgn(bn)β⊥

)T
,−αfa

(
µ

ρ

)1/2

βT
⊥ , αsa

2

]T

, (B 32)

L±
s =

1

2

[
0,± ρ

a2

(
αscsn + αfcfsgn(bn)β⊥

)T
,

− ρ1/2

µ1/2a2cs

{
n

(
αscsbn + αfcfb⊥sgn(bn)

)
+ αfacsβ⊥

}T

,
αs

a2

]
, (B 33)

Note that the right eigenvectors R±
s are well defined for the degenerate cases

of parallel (n ‖ B) and perpendicular (n ⊥ B) propagation. However, the left
eigenvectors L±

s in (B 33) diverge as Bn → 0, since �5 → ∞ as cs → 0 in this limit
(i.e., the third entry in (B 33) ‖ n diverges).

The normalized, right and left eigenvectors for the Alfvén waves are

R±
A =

(
0,∓(µρ)−1/2(n × β⊥)T , (n × β⊥)T , 0

)T
, (B 34)

L±
A =

1

2

(
0,∓(µρ)1/2(n × β⊥)T , (n × β⊥)T , 0

)
. (B 35)

Similarly, the right and left eigenvectors for the entropy wave are

Re = (1, 0, 0, 0, 0, 0, 0, 0)T , (B 36)

Le = (1, 0, 0, 0, 0, 0, 0,−1/a2). (B 37)

The right and left eigenvectors for the divergence wave eigenmode have the form

Rd =

(
ρ
b2

a2
, 0, 0, 0, (Bnn − B⊥)T , ρb2

)T

, (B 38)

Ld =
1

Bn

(0, 0, 0, 0, nT , 0), (B 39)

where we have used the fact that ρb2 = B2/µ. For the choices (B 38)–(B 39) for
Rd and Ld we find Le · Rd = 0 and Ld · Re = 0 which is required for the entropy
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and divergence wave eigenvectors to be orthonormal. Note that there is a problem,
with the normalized divergence wave solution (B 39) for the left eigenvector Ld for
perpendicular propagation as Bn → 0 (|Ld| → ∞ as Bn → 0).

Appendix C
In this appendix we indicate the derivation of the field line (5.21), corresponding to
the simple wave solution (5.19). From (3.23) and (5.19) we obtain for the orthonormal
triad (3.23):

e1 = (sinΘ0 cosϕ, sinΘ0 sinϕ, cosΘ0),

e2 = (− sinϕ, cosϕ, 0),

e3 = (− cosΘ0 cosϕ,− cosΘ0 sinϕ, sinΘ0). (C 1)

The curvature and torsion parameters of the curve C with tangent vector e1 = n(ϕ)
((3.24)) are

κ = sinΘ0, τ = cosΘ0, (C 2)

and

B1 = B0 cos(Θ0 − α0), B2 = 0, B3 = B0 sin(Θ0 − α0) (C 3)

are the components of the magnetic field parallel to e1, e2, and e3. Using the results
(C 1)–(C 3), the field line differential (3.30) reduce to

dq̃2

dϕ
= cosΘ0q̃3 − sinΘ0

ϕ

k0
, (C 4)

dq̃3

dϕ
=

tan(Θ0 − α0)

k0
− q̃2

cos α0

cos(Θ0 − α0)
. (C 5)

Elimination of q̃3 between (C 4) and (C 5) yields the differential equation

d2q̃2

dϕ2
+

cosΘ0 cos α0

cos(Θ0 − α0)
q̃2 = − sin α0

k0 cos(Θ0 − α0)
. (C 6)

Integration of (C 4)–(C 6) gives the solutions (5.22) for q̃2 and q̃3. Inversion of the
equations

q̃1 = sinΘ0(x̃ cosϕ + ỹ sinϕ) + z̃ cosΘ0,

q̃2 = ỹ cosϕ − x̃ sinϕ,

q̃3 = − cosΘ0(x̃ cosϕ + ỹ sinϕ) + z̃ sinΘ0, (C 7)

to obtain x̃, ỹ, and z̃ then yields the field line (5.21).
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