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The linear stability of a basic forced and free convection flow in an inclined
porous channel is analysed by using the Darcy law and the Oberbeck–Boussinesq
approximation. The basic velocity and temperature distributions are influenced by
the effect of viscous dissipation, as well as by the boundary conditions. The boundary
planes are assumed to be impermeable and isothermal, with a temperature of the
lower boundary higher than that of the upper boundary. The instability against
longitudinal rolls is studied by employing a second-order weighted residual solution
and an accurate sixth-order Runge–Kutta solution of the disturbance equations.
The instability against transverse rolls is also investigated. It is shown that these
disturbances are in every case less unstable than the longitudinal rolls.
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1. Introduction
The onset of flow instability, induced by the viscous dissipation effect, has been

the subject of several investigations carried out through the last decades. Joseph
(1965) studied the thermal instability of plane Couette flow and of Poiseuille flow
in a circular pipe due to the non-uniform thermal gradient caused by viscous
dissipation in the fluid. Along those lines, further developments were carried out
by Sukanek, Goldstein & Laurence (1973), who obtained neutral stability curves for
plane Couette flow with different values of the Brinkman number, and by Cheng &
Wu (1976), who analysed the linear stability of Poiseuille flow in a plane channel with
isothermal walls and heated from below. Ho, Denn & Anshus (1977) extended
the linear stability analysis of plane Couette flow developed by Sukanek et al.
(1973), adopting an accurate numerical integration of the coupled equations for
the velocity and temperature disturbances, and also studying the case of Poiseuille
flow in a circular pipe. More recently, these stability problems were revisited by
Yueh & Weng (1996), Johns & Narayanan (1997) and Subrahmaniam, Johns &
Narayanan (2002). Some authors also considered the thermal instability induced
by viscous dissipation in plane Couette flow, or in plane Couette–Poiseuille flow,
with reference to non-Newtonian fluids (Eldabe, El-Sabbagh & El-Sayed (Hajjaj)
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2007; Nouar & Frigaard 2009). We mention that all the papers cited above are
theoretical investigations of thermal instability in a basic shear flow where the
velocity–temperature coupling is due to a temperature-dependent viscosity. On the
other hand, the buoyancy effect is neglected.

The role played by the buoyancy force in the onset of convective instability is a
challenging subject when the basic state of the fluid displays an unstable thermal
stratification caused by internal viscous dissipation, and not by an externally imposed
bottom heating as in the classical Rayleigh–Bénard problem. Recently, there has been
an increase in interest in the effect of viscous dissipation in convection both in porous
media and in fluids clear of solid material. In particular, viscous dissipation effects
on the onset of convection in a porous medium have been studied by Barletta, Celli
& Rees (2009a , b), Barletta, Celli & Nield (2010), Nield & Barletta (2009, 2010),
Storesletten & Barletta (2009) and Barletta & Nield (2010). The last authors treated
the case of Hadley–Prats flow (the extension of the well-known Horton–Rogers–
Lapwood problem to the case of horizontal throughflow and an inclined temperature
gradient), a situation for which the basic flow is one-dimensional. Closely related to
the Hadley flow problem is the problem of convection in an inclined porous layer. The
latter problem has been studied by several people, notably Weber (1975), Caltagirone
& Bories (1986) and Rees & Bassom (2000), and further literature on the subject
has been reviewed by Nield & Bejan (2006) and Nield (2011). Again the basic flow
is one-dimensional, and Weber (1975) was able to deduce, under the assumption of
a small inclination angle, some stability results for the inclined layer problem from
those for the Hadley problem.

In this paper, we extend the results on flow stability in an inclined porous layer
by including the effects of a basic mass flow rate in the layer and of the viscous
dissipation associated with this basic flow. Due to the effect of the viscous dissipation,
the basic flow is no longer given by a simple linear polynomial expression and, in order
to obtain it, one has to solve a nonlinear ordinary differential equation. However, an
approximate polynomial solution for the basic flow, valid for the realistic assumption
of a very small Gebhart number, is considered here in developing the linear stability
analysis.

We finally mention that a very interesting experimental work on the effect of
viscous dissipation for the flow instability was recently carried out by White & Muller
(2002). These authors refer to Taylor–Couette flow and investigate the onset of the
instability due to the coupling of viscous heating and centrifugal destabilization in
glycerin–water solutions and in a polybutene oligomer.

2. Mathematical model
We consider a layer of a saturated porous medium inclined at an angle φ to

the horizontal, confined between the planes z = 0 and z = H , with the x-axis in the
direction up the plane. Each boundary plane is impervious. The plane z =0 is held at
temperature T = T0 +�T and the plane z = H is held at temperature T0 (see figure 1).
All the overlined quantities refer to dimensional variables.

Let us assume that
(i) Darcy’s law holds;
(ii) the Oberbeck–Boussinesq approximation can be applied;
(iii) the viscous dissipation cannot be neglected;
(iv) a condition of local thermal equilibrium holds.
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Figure 1. A sketch of the porous layer.

Then, the governing balance equations can be written as

∇ · u = 0, (2.1)

µ

K
u = −∇p + ρf g β T (sinφ e1 + cos φ e3), (2.2)

(ρ c)m
∂T

∂t
+ (ρ c)f u · ∇ T = km∇2

T +
µ

K
u · u, (2.3)

where u is the Darcy velocity, while ρ, β and µ denote the density, volumetric
coefficient of thermal expansion and dynamic viscosity, respectively, while g is the
modulus of the gravitational acceleration, K is the permeability of the porous medium,
c denotes the specific heat and e1, e2, e3 are the unit vectors in the x, y, z directions.
The term (ρc)m is the heat capacity per unit volume of the porous medium, (ρc)f is the
heat capacity per unit volume of the fluid and km is the effective thermal conductivity
of the porous medium. In particular, ρf is the fluid density at temperature T0.

The boundary conditions are given by

z = 0: w = 0, T = T0 + �T, (2.4)

z = H : w = 0, T = T0. (2.5)

2.1. Dimensionless formulation

Let us introduce the scaling

x = x H, t = t
σ H 2

α
, u = u

α

H
, p = p

α µ

K
, T = T0 + T �T, (2.6)

where α is the thermal diffusivity and σ is the heat capacity ratio:

α =
km

(ρ c)f
, σ =

(ρ c)m
(ρ c)f

. (2.7)

Equations (2.1)–(2.3) then take the dimensionless form

∇ · u = 0, (2.8)

u = −∇ p + R T (sin φ e1 + cosφ e3), (2.9)

∂T

∂t
+ u · ∇T = ∇2T +

Ge

R
u · u, (2.10)
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where the Darcy–Rayleigh number R and the Gebhart number Ge are defined by

R =
ρf g β K H�T

µ α
, Ge =

β g H

cf

. (2.11)

Equations (2.8)–(2.10) are to be solved subject to the boundary conditions

z = 0 : w = 0, T = 1, (2.12)

z = 1 : w = 0, T = 0. (2.13)

One can eliminate the pressure by taking the curl of (2.9). This gives

∇ × u = R ∇ × [T (sinφ e1 + cosφ e3)]. (2.14)

3. Basic solution
We assume a basic flow with a purely transverse temperature gradient. We now

seek a basic steady-state solution of the form

u = uB(z), v = w = 0, T = TB(z), (3.1)

where the subscript ‘B ’ stands for ‘basic flow’. Equations (2.10) and (2.14) give

d2TB

dz2
+

Ge

R
[uB(z)]2 = 0, (3.2)

duB

dz
= R

dTB

dz
sinφ. (3.3)

The last equation integrates to give

uB = R sin φ (TB + C), (3.4)

where C is a constant. Substitution in (3.2) then gives the nonlinear equation

d2TB

dz2
+ Ge R (TB + C)2 sin2 φ = 0. (3.5)

Equation (3.5) is to be solved subject to the boundary conditions

TB(0) = 1, TB(1) = 0, (3.6)

and to the constraint ∫ 1

0

uB dz =

∫ 1

0

R sinφ (TB + C) dz = Pe, (3.7)

where Pe is the Péclet number associated with the basic flow. The constant C is thus
expressed as

C =
Pe

R sinφ
−

∫ 1

0

TB dz. (3.8)

One can now define the parameter Λ as

Λ = GePe2. (3.9)

We note that usually the Gebhart number is extremely small. For instance, if H =0.1 m
and we consider dry air at 300 K, then β = 1/300 K−1 and cf = 103 J kg−1 K−1. This
means, on account of (2.11), that Ge ∼= 3 × 10−6. On the other hand, the Péclet
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Figure 2. Plots of the basic temperature profile TB (z) for different values of Λ/R.

number can be very large especially when highly viscous fluids are considered.
Thus, it is physically reasonable to assume Ge � 1, Pe � 1 so that Λ ∼ O(1) and
R ∼ O(1) (see, for instance, Barletta, Celli & Rees 2009a, b). Under these hypotheses,
one can conclude that Ge Pe � 1 and GeR � 1. One can thus apply a regular
perturbation procedure to obtain the approximate solution as a function of the
parameter γ = GeR sin2 φ � 1. We look for a TB expressed as

TB = TB,0 + γ TB,1 + O(γ 2). (3.10)

The basic temperature and velocity profiles at O(γ ) can be written as

TB ≈ 1 − z +
γ

12

[
1

16
−

(
z − 1

2

)4
]

+
z Ge Pe sinφ

6

[
1 +

3 Pe

R sinφ
− 3 z

(
1 +

Pe

R sinφ

)
+ 2 z2

]
, (3.11)

uB ≈ R sinφ

(
TB − 1

2

)
+ Pe. (3.12)

Taking into account that Λ ∼ O(1), Ge Pe � 1 and Ge R � 1, one can simplify (3.11)
and (3.12) by keeping only the dominant terms

TB ≈ (1 − z)

(
1 + z

Λ

2 R

)
, (3.13)

uB ≈ R sinφ

[
(1 − z)

(
1 + z

Λ

2 R

)
− 1

2

]
+ Pe. (3.14)

Plots of the basic temperature profiles are shown in figure 2. The basic profile is
potentially unstable for every value of the parameter Λ/R because, on the lower
boundary z = 0, a temperature higher than that on the upper boundary z = 1 is
prescribed. On the other hand, for increasing values of Λ, thus for a stronger
contribution of the viscous heating, the basic temperature profile shows increasing
values of the average temperature.
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When γ is not small, one can still obtain an analytical solution involving an
incomplete elliptic integral of the first kind (Abramowitz & Stegun 1965). In the
remainder of this paper, just the case of small γ is considered. Given the very small
values assumed by Ge, this limit appears in fact as the only physically sensible regime.

3.1. The inclined channel and the Hadley–Prats flow

We mentioned that Weber (1975), by considering small inclination angles, proposed
a solution of the stability problem for an inclined channel with isothermal walls by
developing an analogy with the Hadley problem. One could consider the possibility
that such an analogy can be extended for the case with a net mass flow rate (Pe �= 0)
and with non-negligible viscous dissipation. This possibility appears to be out of
reach for the following reason. The net mass flow rate in an inclined channel may
influence the temperature distribution only through the effect of viscous dissipation,
whereas the net mass flow rate in the Hadley–Prats flow may influence the temperature
distribution even with negligible viscous dissipation (Barletta & Nield 2010). In other
words, in the inclined channel, when Ge → 0 (negligible viscous dissipation) the basic
temperature distribution is not influenced by Pe. This conclusion is easily drawn from
(3.5) and (3.6). The Hadley–Prats problem, examined by Barletta & Nield (2010),
is different as the basic temperature distribution in the layer depends on Pe even
when the viscous dissipation is negligible (Ge → 0). This important difference in the
physics of the Hadley–Prats problem, with respect to the inclined channel problem, is
the reason why the approximation of small-Ge adopted here (Ge � 1, Pe � 1 so that
Λ ∼ O(1)), could not be consistently applied in the analysis of the Hadley–Prats flow
(Barletta & Nield 2010).

4. Linear disturbances
We perturb the basic solution by setting

u = uB + ε U, v = ε V, w = wB + ε W, T = TB + ε θ, (4.1)

where ε is a small parameter. On substituting (4.1) in (2.8), (2.10) and (2.14) and
neglecting the nonlinear terms O(ε2), we obtain the linearized stability equations,
namely

∇ · U = 0, (4.2)

∇ × U = ∇ × [R θ (sinφ e1 + cos φ e3)], (4.3)

∂θ

∂t
+ uB

∂θ

∂x
+ W

dTB

dz
= ∇2θ + 2

Ge

R
uB U. (4.4)

Here, U denotes the vector (U, V, W ). Consistently with the approximation Ge � 1,
Pe � 1, so that Λ ∼ O(1) and R ∼ O(1), the last term on the right-hand side of (4.4)
can be neglected. In fact, as a consequence of (3.14), this term is of order Ge Pe. One
can thus simplify (4.4) as follows:

∂θ

∂t
+ uB

∂θ

∂x
+ W G(z) = ∇2θ, (4.5)

where G(z) is defined as

G(z) =
dTB

dz
= (1 − 2 z)

Λ

2 R
− 1. (4.6)
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From (2.12) and (2.13), the boundary conditions are given by

z = 0, 1 : W = θ = 0. (4.7)

In this paper, we consider an inclined porous layer without any lateral confinement.
In the absence of viscous dissipation, it is well known that the most unstable linear
disturbances are longitudinal rolls (see, for instance, Rees & Bassom 2000), i.e. wave-
like disturbances invariant along the x direction. We will first assume, in the following
section, that the viscous dissipation effect is not so strong as to alter this pattern
selection for the instability. Then, we will illustrate how the action of transverse rolls,
i.e. wave-like disturbances invariant along the y direction, implies higher values of the
critical Rayleigh number for the onset of the instability than the action of longitudinal
rolls.

5. Longitudinal rolls
Assuming the disturbances to be x-independent longitudinal rolls, the solutions of

(4.2), (4.3), (4.5) and (4.7) are thus sought such that U = 0 and the fields V , W , θ

depend only on (y, z, t). It is now convenient to introduce a streamfunction, ψ , such
that (4.2) is satisfied,

V =
∂ψ

∂z
, W = −∂ψ

∂y
. (5.1)

Equations (4.3) and (4.5) can thus be rewritten as

∇2ψ = −R
∂θ

∂y
cosφ, (5.2)

∂θ

∂t
− ∂ψ

∂y
G(z) = ∇2θ. (5.3)

We seek solutions of the disturbance equations for the analysis of stability in the
form of plane waves,

ψ(y, z, t) = Re
{
i f (z) ei (a y−λ t)

}
, θ(y, z, t) = Re

{
h(z) ei (a y−λ t)

}
, (5.4)

where Re denotes the real part of a complex function, a is the real wavenumber,
λ= λR + i λI is a complex exponent, and f (z) and h(z) are the complex disturbance
amplitudes. When λI > 0, the disturbance is growing exponentially and that means
instability, whereas λI < 0 implies an exponentially damped disturbance and that
means stability. Because we are interested in the threshold condition of neutral
stability, we now set λI = 0, so that

f ′′ − a2f + a R cosφ h = 0, (5.5)

h′′ − (a2 − i λR) h − a G(z) f = 0, (5.6)

where λR = Re{λ} and the primes denote differentiation with respect to z. The
eigenvalue problem becomes self-adjoint assuming λR =0. Now if one rescales the
amplitude h as

h̃ = h R cos φ, (5.7)

the system of (5.5)–(5.6) becomes

f ′′ − a2f + a h̃ = 0, (5.8)

h̃′′ − a2 h̃ − a G̃(z) f = 0, (5.9)
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where

G̃(z) = G(z) R cos φ = (1 − 2 z)
Λ̃

2
− R̃, Λ̃ = Λ cosφ, R̃ = R cosφ. (5.10)

The system thus rescaled loses dependence on the angle φ. The boundary conditions
can be expressed as

z = 0, 1 : f = h̃ = 0. (5.11)

5.1. A weighted-residuals solution

An approximate solution of the eigenvalue problem constituted by (5.8)–(5.9) can be
obtained by using the Galerkin method of weighted residuals (Finlayson 1972). We
denote the trial functions (satisfying the boundary conditions) as fn, with n ∈ �, and
write

f =

N∑
n=1

An fn, h̃ =

N∑
n=1

Bn fn. (5.12)

In the present case, by taking into account the boundary conditions (5.11), we can
choose

fn(z) = sin (n π z). (5.13)

We take N = 2, thus obtaining two solutions for R̃:

R̃ =
18 a4 π2 + 90 a2 π4 + 153 π6 −

√
729 π8

(
2 a2 + 5 π2

)2
+ 1024 a4 Λ̃2

18 a2 π2
, (5.14)

R̃ =
18 a4 π2 + 90 a2 π4 + 153 π6 +

√
729 π8

(
2 a2 + 5 π2

)2
+ 1024 a4 Λ̃2

18 a2 π2
. (5.15)

With respect to (5.14)–(5.15), we will consider the lowest neutral stability curve

described by (5.14). We note that, when Λ̃= 0, (5.14) and (5.15), respectively, simplify
to

R̃ =

(
a2 + π2

)2

a2
, (5.16)

R̃ =

(
a2 + 4 π2

)2

a2
. (5.17)

Equations (5.16) and (5.17) are the well-known relationships for the first two modes
of neutral stability in the Horton–Rogers–Lapwood problem.

5.2. The numerical solution

The eigenvalue problem defined by (5.8) and (5.9), as well as by (5.11), is here
solved numerically by means of a sixth-order Runge–Kutta method coupled with
the shooting method. In order to use the Runge–Kutta method, we imposed two
additional initial conditions in z = 0, namely

f ′(0) = 1, h̃′(0) = η, (5.18)

where the condition f ′(0) = 1 fixes the otherwise indeterminate scale of the

eigenfunctions (f, h̃) in (5.8)–(5.9) and the parameter η can be determined by the
shooting method. The approximate analytical solution obtained in the preceding
section with the method of weighted residuals provides in fact excellent estimates for
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Λ̃ R̃cr acr

0 4 π2 π
100 37.88950 3.232423
200 32.86951 3.516578
300 23.91902 3.954144
400 11.09960 4.399537

471.3847 0 4.675189
500 −4.823007 4.775561
600 −23.06281 5.090010

Table 1. Longitudinal rolls: values of R̃cr and acr versus Λ̃.

initializing the Runge–Kutta method. For any given value of the parameter Λ̃, one

obtains a functional relationship, R̃ = R̃(a), between the modified Darcy–Rayleigh
number, defined in (5.10), and the wavenumber. In particular, on differentiating the

system of differential equations (5.8) and (5.9) with respect to a with dR̃(a)/da =0,
one can obtain two additional differential equations that, together with (5.8) and (5.9),

allow one to determine directly the minimum of the function R̃(a), i.e. the critical

pair (acr , R̃cr ) for the onset of the convective instability. The sixth-order Runge–Kutta
method with an adaptive step-size control is implemented by using the Mathematica
7.0 package ( c© Wolfram Research, Inc.) and, in particular, by means of the function
NDSolve. The same software package also allows the implementation of the shooting
method by employing the function FindRoot. Details about the functions NDSolve
and FindRoot are available in Wolfram (2003).

5.3. Onset of the instability

By employing the numerical method illustrated in the preceding section, we were able

to obtain the critical values (acr , R̃cr ) for prescribed values of Λ̃. The parametrization

adopted in (5.7)–(5.11) yields a unique pair (acr , R̃cr ) for a given Λ̃ without any
need to prescribe the value of φ. In fact, the dependence on the inclination angle

remains hidden in the definitions of (h̃, R̃cr , Λ̃). In this sense, the solution does
not distinguish the case of a horizontal channel from that of an inclined channel.

Values of (acr , R̃cr ) are reported in table 1. One may easily see that R̃cr decreases

with Λ̃, thus confirming the well-known destabilizing action of viscous dissipation
(Barletta, Celli & Rees 2009a, b; Barletta & Nield 2010). Table 1 also reveals that

acr is an increasing function of Λ. We note that, as R̃cr decreases with Λ̃, there

exists a value Λ̃ = 471.3847 such that the onset of the instability occurs with R̃cr =0.

If Λ̃ > 471.3847, the basic flow becomes linearly unstable even with a negative R̃.

Physically, this means that the viscous dissipation, when Λ̃ � 471.3847, is so intense

as to destabilize a porous layer with even boundary temperatures (R̃ =0) or with a

top boundary hotter than the bottom boundary (R̃ < 0). This special role played by

the value Λ̃ = 471.3847 was previously revealed by Barletta, Celli & Rees (2009a)
with reference to a horizontal porous layer (φ = 0) having isothermal boundaries with
the same temperature (�T = 0).

The neutral stability curves R̃(a) are shown in figure 3 for different values of Λ̃.

One can notice that, when the value of Λ̃ exceeds the threshold value Λ̃ = 471.3847,

the minimum value R̃cr of the parameter R̃ becomes negative. The behaviour of R̃cr

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

14
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.144


Effect of viscous dissipation on the onset of convection 553

2 4 6 8 10
–40

–20

0

20

40

60

80

100

a

R~ Λ
~

 =  300

Λ
~

 =  0

Λ
~

 =  471.3847

Λ
~

 =  600

Figure 3. Longitudinal rolls: neutral stability curves, R̃(a), for different values of Λ̃.

0 100 200 300 400 500 600 700
–40

–20

0

20

40
R~cr =  4π2

Λ
~

 =  471.3847

Λ
~

R~cr

Figure 4. Longitudinal rolls: plot of R̃cr versus Λ̃. The solid line refers to the numerical
solution and the dashed line refers to the weighted residual solution.

and acr versus Λ̃ is also illustrated in figures 4 and 5. In these figures, the accurate
numerical solution obtained by the Runge–Kutta method is compared with the N =2

weighted residual solution. The latter solution loses precision as Λ̃ increases, especially
with respect to the evaluation of acr (figure 5).

The parametrization, based on R̃ and Λ̃, allows one to optimize the number of
governing parameters, but it is not appropriate for illustrating the effect of the
inclination angle on the onset conditions for the instability. Therefore, it is useful
to see how an assigned pair (φ, Λ) determines the onset conditions (acr , Rcr ). This
task is easily accomplished by first solving (5.8), (5.9) and (5.11), and then by taking
into account the definitions expressed by (5.10). Values of Rcr and acr are reported
in tables 2 and 3, respectively. In these tables, different inclination angles φ are
considered. Table 2 demonstrates that, on increasing the inclination of the layer
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φ Λ = 0 Λ = 100 Λ = 200 Λ = 300 Λ = 400

0◦ 4 π2 37.88950 32.86951 23.91902 11.09960
10◦ 40.08744 38.52333 33.58816 24.79179 12.16092
20◦ 42.01205 40.52143 35.83629 27.49804 15.44105
30◦ 45.58575 44.21459 39.93158 32.33934 21.26062
40◦ 51.53541 50.32538 46.57603 39.98193 30.29399
50◦ 61.41751 60.40472 57.29484 51.89103 43.96022
60◦ 78.95684 78.17088 75.77900 71.68295 65.73902
70◦ 115.4272 114.8906 113.2699 110.5325 106.6264
80◦ 227.3471 227.0751 226.2574 224.8897 222.9651

Table 2. Longitudinal rolls: values of Rcr versus Λ and φ.

φ Λ = 0 Λ = 100 Λ = 200 Λ = 300 Λ = 400

0◦ π 3.232423 3.516578 3.954144 4.399537
10◦ π 3.229637 3.505127 3.932914 4.374292
20◦ π 3.221629 3.472071 3.869984 4.297689
30◦ π 3.209403 3.421288 3.768523 4.167702
40◦ π 3.194483 3.359052 3.636622 3.984023
50◦ π 3.178703 3.293317 3.489836 3.756351
60◦ π 3.163971 3.232423 3.349803 3.516578
70◦ π 3.152034 3.183666 3.237309 3.313954
80◦ π 3.144279 3.152360 3.165896 3.184987

Table 3. Longitudinal rolls: values of acr versus Λ and φ.

above the horizontal, one obtains increasing values of Rcr . This qualitative behaviour
of Rcr versus φ is perfectly compatible with that in the absence of viscous dissipation
(Λ = 0). In the latter case, Rcr cos φ is just given by 4 π2 (Nield & Bejan 2006). On the
other hand, Rcr cos φ changes with φ when Λ �= 0. Table 2 provides further interesting
information. In fact, the critical wavenumber is π for every inclination angle if no
viscous dissipation is present (Nield & Bejan 2006), whereas it changes with φ when
Λ �= 0. Due to the destabilizing effect of the viscous dissipation, Rcr decreases with Λ

for every fixed angle φ. Hence, one may associate to every φ the corresponding value

of Λ that yields the condition Rcr = 0. We pointed out above that R̃cr =0 implies

Λ̃= 471.3847. In other words, from (5.10), Rcr = 0 is obtained when

Λ =
471.3847

cosφ
. (5.19)

Obviously, the value of Λ expressed by (5.19) increases with φ and eventually tends
to ∞ when the layer becomes vertical.

6. Transverse rolls
Assuming the disturbances to be y-independent, we have transverse rolls. The

solutions of (4.2), (4.3), (4.5) and (4.7) are thus sought such that V = 0 and the
fields U , W and θ depend only on (x, z, t). It is now convenient to introduce a
streamfunction, ψ , such that (4.2) is satisfied,

U =
∂ψ

∂z
, W = −∂ψ

∂x
. (6.1)
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Figure 5. Longitudinal rolls: plot of acr versus Λ̃. The solid line refers to the numerical
solution and the dashed line refers to the weighted residual solution.

Equations (4.3) and (4.5) can thus be rewritten as

∇2ψ = R
∂θ

∂z
sin φ − R

∂θ

∂x
cos φ, (6.2)

∂θ

∂t
+ uB

∂θ

∂x
− ∂ψ

∂x
G(z) = ∇2θ. (6.3)

The boundary conditions can be expressed as

z = 0, 1 : ψ = θ = 0. (6.4)

An appropriate choice for the analysis of the neutral stability condition is seeking
solutions of (6.2)–(6.3) in the form of plane waves,

ψ(x, z, t) = Re
{
i f (z) ei (a x−λ t)

}
, θ(x, z, t) = Re

{
h(z) ei (a x−λ t)

}
, (6.5)

where λ = λR +i λI . As we are interested in the threshold condition of neutral stability,
we now set λI = 0. Then substitution of (6.5) into (6.2)–(6.3) yields

f ′′ − a2f + iR sinφ h′ + a R cos φ h = 0, (6.6)

h′′ −
[
a2 + i a H (z) tan φ + i ξ

]
h − a G(z) f = 0, (6.7)

where

H (z) =
uB − Pe

tan φ
= (1 − z)

(
R̃ + z

Λ̃

2

)
− R̃

2
, (6.8)

and ξ = a Pe − λR . By employing the definitions given in (5.7) and (5.10), (6.6) and
(6.7) can be rewritten as

f ′′ − a2f + i tan φ h̃′ + a h̃ = 0, (6.9)

h̃′′ −
[
a2 + i a H (z) tan φ + i ξ

]
h̃ − a G̃(z) f = 0. (6.10)

The boundary conditions can be expressed as

z = 0, 1 : f = h̃ = 0. (6.11)
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Figure 6. Plots of R̃cr versus φ for longitudinal and for transverse rolls with different values

of Λ̃. The solid lines refer to transverse rolls and the dashed lines refer to longitudinal rolls.

The eigenvalue problem defined by (6.9)–(6.11) is again solved numerically by means of
a sixth-order Runge–Kutta method coupled with the shooting method. The procedure
is exactly the same as before for longitudinal rolls, except that here the eigenvalue

problem is not self-adjoint so that the eigenfunctions (f, h̃) are complex-valued. The
results of the numerical solution are illustrated in figure 6. This figure shows the plots

of R̃cr versus φ for different values of Λ̃. Both longitudinal and transverse rolls are

considered. For the longitudinal rolls, there is a unique value of R̃cr for a given Λ̃,
independent of the inclination angle φ (dashed lines in figure 6). On the other hand,

for transverse rolls with a given Λ̃, the parameter R̃cr is an increasing function of
φ (solid lines in figure 6). Figure 6 reveals that longitudinal and transverse rolls are

equivalent for φ = 0 but, as φ increases, R̃cr for longitudinal rolls is always less than
for transverse rolls. Therefore, as reasonably assumed in § 4, the longitudinal rolls are
in every case more unstable than the transverse rolls. We note that the equivalence of
the transverse and longitudinal rolls in the horizontal case (φ = 0) can be interpreted
as symmetry, relative to the onset of convection, between the x and y horizontal
directions. This symmetry is broken when the porous layer is inclined above the
horizontal, thus selecting the longitudinal rolls as the preferred mode of instability.
This phenomenon can be traced back to the relationship between bifurcations and
symmetry breaking pointed out by Golubitsky & Stewart (1985).

7. Conclusions
A basic parallel flow in an inclined porous channel has been studied, determined

both by an imposed pressure gradient and by the buoyancy force. The buoyancy is
due to the different temperatures assigned on the two boundary planes and to the
effect of viscous dissipation. An approximate analytical solution of the local balance
equations has been obtained under the realistic assumption that the Gebhart number,
Ge, is very small. The governing dimensionless parameters are the Darcy–Rayleigh
number, R, the viscous dissipation parameter, Λ, and the inclination angle, φ.

The linear response of the system to longitudinal roll disturbances has been invest-
igated by adopting two solution methods: a second-order weighted residual solution,
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an accurate numerical solution based on the sixth-order Runge–Kutta method and the
shooting method. It has been shown that an appropriate parametrization of the eigen-

value problem, based on the modified parameters R̃ =R cos φ and Λ̃ = Λ cosφ, allows
one to encompass the dependence on the inclination angle φ. Instability arises when

either R exceeds a critical value Rcr , for given Λ and φ, or R̃ exceeds a critical value R̃cr ,

for a given Λ̃. We have proved that Rcr is an increasing function of the inclination angle
φ, for a prescribed Λ, and that Rcr is a decreasing function of Λ, for a prescribed φ.

The linear response of the system to transverse roll disturbances has also been

investigated. In this case, the parametrization based on R̃ = R cosφ and Λ̃ = Λ cosφ

does not allow one to reduce the number of governing parameters. This means

that the critical value R̃cr depends on φ, for every given Λ̃. When φ =0 (horizontal

channel), the value of R̃cr coincides with that for longitudinal rolls. On the contrary,

R̃cr increases with φ for φ > 0. This means that the transverse rolls are more stable
than the longitudinal rolls. This result is expected on the basis of the behaviour, well
known in the literature, for the limiting case of negligible viscous dissipation.

The investigation carried out in this paper demonstrated the role played by viscous
dissipation as a possible source of convective instability. In particular, previous
studies, published by these authors, focused on viscous dissipation as the sole cause
of the instability. On the other hand, here viscous dissipation has been considered
together with an externally imposed boundary temperature difference leading to the
onset of convection. The subject of the dissipation-induced thermal instability leaves
open several aspects that deserve attention and represent interesting opportunities
for future research. Among these possible developments, we mention the nonlinear
analysis of the instability that may provide new insight into the dynamics of the
disturbance amplitudes, as well as on the prediction of the heat transfer rates at
supercritical conditions.
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