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Piezoelectric materials have a strong interaction between their mechanical and electrical properties that translates into inno-
vative components and circuits architectures. This work describes an original method using the electromechanical properties
of the aluminum nitride (AlN) piezoelectric material to characterize its vertical extension when an electric field is applied. The
novel techniques based on measurements of a planar parallel plate AlN capacitor without and with bias employing an impe-
dance analyzer. The parallel plate capacitor theory and piezoelectric material analysis are used to calculate the vertical dis-
placement of the AlN film.
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I . I N T R O D U C T I O N

Piezoelectric materials have become very useful in MEMS
devices because of their electrical–mechanical reciprocity.
MEMS merge the functions of sensing and actuating with
computation and communication to locally control physical
parameters. Piezoelectric materials are capable of very high
energy and power densities at micro scales [1]. The high fre-
quency of operation inherent in MEMS devices matches
well with the relatively high-frequency capability of piezoelec-
tric materials. The most commonly used piezo-materials in
MEMS devices are lead zirconate titanate (PZT), zinc oxide
(ZnO), and aluminum nitride (AlN). AlN has attracted con-
siderable attention in recent years owing to its unique proper-
ties. Specifically, its high thermal conductivity, moderate
piezoelectricity, low dielectric and acoustic losses, and high
acoustic wave velocity have made highly textured AlN thin
films a prime candidate for electro-acoustic applications
such as filters, resonators, and sensors. Further, its chemical
stability as well as compatibility with IC processing makes
AlN thin films a competitive alternative to single crystalline
piezoelectric substrates for microwave applications. A com-
parison between various piezoelectric materials is summarized
in Table 1.

Therefore, it has become increasingly important to charac-
terize the activity of piezoelectric materials under conditions
relevant to such applications. Consequently, different
methods have been sought to measure the piezoelectric
activity. Table 2 summarizes the different methods that are
presently used to extract or to measure the activity of a piezo-
electric material. Nevertheless, these techniques have been

acknowledged by the scientific community; their results still
need further understanding and validation. The use of mech-
anical devices looks a quick and easy solution. However, the
need for high precision poses a problem. Direct measurement
of induced charge becomes problematic for thin films because
of the properties of metallic contacts used to apply the force
and to collect the piezoelectric charges. The resonance tech-
niques are based on the assumption that samples are infinitely
thin or infinitely long, and the corrections for finite dimen-
sions must be taken into account. Moreover, the relationship
of resonant and anti-resonant frequencies to the piezoelectric
and elastic properties of films becomes less certain. In optical
techniques the sample is constrained by the substrate whose
eventual deformation by the applied field must be considered.

Recently, we have presented in [8] a promising method of
measuring the vertical extension of a piezoelectric thin film
using an impedance analyzer. It does this by taking the ratio
of parallel plate capacitance for two different bias conditions
under a set of assumptions in deriving equations for the ratio

Table 1. Comparison between various piezoelectric materials.

Property PZT ZnO AlN

d33 High Moderate Low
d31 High Moderate Low
Resistance High High High
Constant Huge High Low
RF losses High Moderate Low
Sound velocity Slow Slow High
Acoustic losses High Moderate Low
TEC High High Low
GHz capability Poor Poor Good
Ferroelectricity Yes Yes No
Environment Unfriendly Friendly
Density High Low
CMOS compatiable Not Not fully Fully
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of capacitance for the two bias conditions. In this work, the
determination of AlN thin-film displacement is proposed and
described. The technique relies on using the impedance analyzer
(or network analyzer) to measure the capacitance voltage
dependence of AlN composite structure. The developed analyti-
cal model is used to extract the vertical extension of the film
material. For validation, finite-element analysis is performed.

I I . T H E O R Y A N D A N A L Y S I S

The capacitance of a dielectric film is given by the equation [9]:

C0 ¼
e0eA

d
, (1)

where e0 is the permittivity of vacuum, e is the relative permit-
tivity or dielectric constant, d is the thickness of the film, and
A is the area of the capacitor. Having measured the capaci-
tance of an AlN film, (1) can be used to find the electronic
dielectric constant. At room temperature the piezoelectric
AlN thin film material does not exhibit tunability of its dielec-
tric constant when a dc bias field is applied. Further, AlN does
not require any polling process due to its oriented structure.
Figure 1(a) shows a solid circular piece of an AlN piezoelectric
material. When the circular solid is driven with the appli-
cation of a dc field E (Fig. 1(b)), it will cause its material

domains to contract; therefore, the thickness of the film
increases by Dd, while the area decreases by DA [10]. The
modification in the material shape is translated into a
change in the capacitance value, which is approximately calcu-
lated through the well-known capacitance parallel plate
formula:

CV ¼ e0e
(A� DA)
(d þ Dd)

, (2)

where both the vertical extension of the AlN material Dd, and
the variation in area DA are correlated with the magnitudes of
both the longitudinal d33 and the transverse d31 charge con-
stants as follows [11]:

Dd ¼ V jd33j, (3)

DA ¼ V jd31jA=d: (4)

Moreover, it is well known that the magnitude of the d33 coef-
ficient of the PZT is about twice the d31 [11]; therefore,

jd33j ¼ 2� jd31j: (5)

Thus,

Dd
d
� 2

DA
A
: (6)

Rewrite (2) as follows:

CV ¼ e0e
A
d

(1� (DA=A))
(1þ (Dd=d))

: (7)

Hence,

CV ¼ C0
(1� (DA=A))
(1þ (Dd=d))

(8)

Table 2. Concepts for piezoelectric characterization.

Method Type Physical effect Ref.

Laser Optical Bias-displacement [2]
cantilever Mechanical Force-charge [3]
Wafer Mechanical Force-charge [4]
Loading Mechanical Force-charge [5]
Resonant Electrical Resonant frequency [6]
AFM Mechanical Bias-displacement [7]

Fig. 1. AlN piezoelectric response to applied field. d31 is perpendicular to the
cylindrical surface aligned with the direction of the applied field and d33 is
parallel to the surface.

Fig. 2. Fabricated AlN parallel plate capacitor. The surface of the silicon
substrate represent the xy plane, where the z-axis is perpendicular to the
substrate.
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Inserting (6) into (8) and solving for Dd yields:

Dd ¼ d
1� Cr

0:5þ Cr

� �
, (9)

where Cr is the ratio between CV and C0.
The piezoelectric material is activated with the application

of dc field and the capacitance will decrease due to the change
in the geometrical dimensions as predicted by (3) and (4).
Hence, knowing the thin film thickness and capacitance ratio
will enable the vertical extension of the piezoelectric material
to be determined.

I I I . M E A S U R E M E N T S A N D
A N A L Y S I S

A parallel plate capacitor composite of AlN piezoelectric
material has been fabricated and is shown in Fig. 2. The
capacitor dielectric material is composed of AlN thin film of

thickness 0.6 mm. The electrodes are made from Molybdenum
with a thickness of 0.1 mm. The capacitor has an area of
700 � 200 mm2. The capacitances of the fabricated device
with and without dc bias were measured with the HP4294A
impedance analyzer and are shown in Fig. 3. The measure-
ments show a stable and smooth behavior over the frequency.
These results represent first experimental evidence of the
theory presented above. That is, applying a dc bias yields
the expansion of the material due to the converse piezoelectric
effect. This causes a decrease in the capacitance yielded by this
structure as clearly depicted in Fig. 3. The amount of variation
in capacitance due to the application of dc bias is around 3.5%
from its unbiased value.

From (9) and the data of Fig. 3, the displacements of the
piezoelectric material values as a function of the driven fre-
quency are computed and are shown in Fig. 4. Dd shows non-
stable behavior up to 2 kHz due to measurement setup that
use long cables, and then becomes more stable up to
300 kHz. The value of Dd changes from 12.5 to 17.5 pm.

I V . F E M A N A L Y S I S A N D
V A L I D A T I O N

The AlN material tested in this work has been measured and
the results of the mechanical and electrical properties are
listed in Table 3. Numerical simulations based on the
finite-element method (FEM) using the piezoelectric analysis
engine from CoventorWare [12] have been performed and
the results are shown in Fig. 5. The simulations reveal that
the vertical extension of the AlN material is homogeneously

Fig. 3. AlN capacitance versus frequency (logarithmic scale): C0 is
the unbiased capacitance and CV is the capacitance with the application
of 2 V.

Table 3. Material parameters.

Material parameter Value

Young’s modulus 80 (GPa)
Poisson ratio 0.22
Piezoelectric coefficient 5.7 (pm/v)

Fig. 5. Simulated vertical displacement of the AlN capacitor using FE
analysis.

Fig. 4. Relationship between driving frequency and piezoelectric
displacement.
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distributed around 15 pm. The results obtained by the pro-
posed experimental approach and the numerical model
show excellent agreement with each other. Considering the
simplicity of the introduced method and the difficulty of the
task, this represents a very satisfactory and promising
approach.

V . C O N C L U S I O N

An original method for the extraction of the vertical exten-
sion of AlN piezoelectric material under dc bias is presented.
The presented approach does not impose constraints or lim-
iting conditions. The method described here is also valid for
other arbitrary piezoelectric materials, but only for piezoelec-
tric ones that are not ferroelectric. As a matter of fact, the
technique circumvents complicated preparation and uses
arbitrary sample geometry. It may be used to determine the
piezoelectric vertical extension for films with a thickness
ranging from several nanometers up to several hundreds of
micrometers.
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d’Electronique de Microélectonique et de Nanotechnologie
(IEMN) at Lille/France with a post doc. fellowship. He has
been engaged in barium strontium titanate tunable capacitor
loss compensation using active negative circuit techniques.
Since September 2006 he has been working as a research
scientist at the Laboratoire d’Analyse et d’Architectures des
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