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We study the effect of algebraically localized impurities on striped phases in one
spatial dimension. We therefore develop a functional-analytic framework that allows
us to cast the perturbation problem as a regular Fredholm problem despite the
presence of the essential spectrum, caused by the soft translational mode. Our results
establish the selection of jumps in wavenumber and phase, depending on the location
of the impurity and the average wavenumber in the system. We also show that, for
select locations, the jump in the wavenumber vanishes.
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1. Introduction

We are interested in the effect of localized impurities on self-organized, spatially
periodic patterns, particularly in the idealized situation of an unbounded domain.
Our goal is to quantify the effect of the impurity on phases and wavenumbers in
the far field. A prototypical example for the formation of self-organized periodic
patterns is the Swift–Hohenberg equation,

ut = −(∆ + 1)2u + µu − u3,

where, for 0 < µ � 1, periodic patterns of the form

u∗(kx; k), u∗(ξ; k) = u∗(ξ + 2π; k)
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exist for a band of admissible wavenumbers k ∈ (k−(µ), k+(µ)). Our results are
concerned with this system in one-dimensional space, x ∈ R, including an impurity:

ut = −(∂2
x + 1)2u + µu − u3 + εg(x, u), (1.1)

where |g(x, u)| � C(u)(1 + |x|)−γ∗ for some γ∗ sufficiently large.
We find such perturbation problems interesting for a variety of reasons. First,

small impurities are simple examples of defects in spatially extended systems, and
a systematic description of such defects is essential for various multi-scale descrip-
tions of extended systems. In particular, defects can be responsible for the selection
of wavenumbers k in extended systems. Second, perturbations of periodic patterns
pose challenging technical problems, since the linearization at such periodic struc-
tures is generally not Fredholm when considered as an operator on translation-
invariant (or algebraically weighted) function spaces. The difficulty stems from the
presence of a non-localized neutral (or soft) mode, in this case the derivative ∂xu∗
of the periodic pattern, which induces a branch of the essential spectrum near the
origin. In this regard, our results can be viewed as a continuation of a variety of
results on perturbation and bifurcation in the presence of the essential spectrum.
Third, one can interpret the effect of inhomogeneities in relation to the notorious
question of asymptotic stability of periodic patterns, where the pattern is perturbed
at time t = 0, whereas in our case the perturbation is constant in time. It would be
quite interesting to bring those two viewpoints together and study spatio-temporal
perturbations of striped phases (see, for example, [5, 6, 12,13,26–28]).

The effect of inhomogeneities on patterns with soft modes, i.e. with eigenmodes
of the linearization that exhibit neutral or weak temporal decay, has been studied
in detail when periodic patterns are oscillatory in time [14, 24]. In this case, inho-
mogeneities may create wave sources such as target patterns, or act as weak sinks.
In fact, in this case, the effects are fairly similar to the effect of boundary condi-
tions on oscillatory media, or, more generally, the effect of self-organized coherent
structures on waves in the far field.

In the case of stationary periodic patterns with vanishing group velocities, as
they arise in the Swift–Hohenberg equation, the literature on defects and their
characterization is quite extensive [21], albeit arguably not at the level of detail
that we are striving for here. In the area of the present work, the characterization
of boundary conditions on striped phases in [18] is closest. Results therein show
how to identify and compute strain-displacement relations, i.e. relations between
wavenumbers and phases (translations) of periodic patterns in the far field, induced
by the presence of the boundary. The current paper can be viewed as matching such
relations at +∞ and −∞.

Technically, our work follows up on recent studies of inhomogeneities in a variety
of contexts [9–11], where Kondratiev spaces were used to study perturbations of
spatio-temporally periodic patterns by inhomogeneities. However, our work goes
significantly beyond these techniques by treating non-normal actual periodic pat-
terns, whereas in [9–11] the periodic patterns were, after appropriate transforma-
tions, constant in space.

Our results are concerned only with one spatial dimension, but we hope that
our approach will also allow us to tackle higher-dimensional problems. From a
phenomenological point of view, the one-dimensional case is the most difficult, since
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effective diffusion of the neutral mode is weakest in one spatial dimension, such that
the effect of inhomogeneity on the far-field is most significant. This phenomenon
is well understood in the case of diffusive stability, where decay of localized data
is faster in n spatial dimensions (t−n/2), or in the case of impurities in oscillatory
media, where small impurities can generate wave sources only in dimensions n � 2
[9, 11, 14]. On the other hand, From a technical point of view, the one-dimensional
case is easiest since the problem of finding stationary solutions can be cast as an
ordinary differential equation (see, for example, [18,24] for this point of view). Our
approach is different and in some sense more direct. We shall, however, comment on
how to implement a proof using such ‘spatial dynamics’ methods in our discussion.

1.1. Notation

We now collect some useful notation. Let Pj(R) and Pj(Z) denote the sets of
complex-coefficient polynomials of degree less than j ∈ Z

+ defined on the real line
and on the set of integers, respectively. The inner product in a Hilbert space H is
denoted by 〈·, ·〉 and the linear subspace spanned by u ∈ H is denoted by 〈u〉. The
Fourier transforms on L2(R, H) and L2(Z, H) are denoted respectively by F and
Fd. Moreover, for a Banach space B, the notation 〈〈u∗, u〉〉 represents the action of
a linear functional u∗ ∈ B∗ on u ∈ B. Throughout, the Lie bracket, [L1, L2], of two
operators L1 and L2 is the operator

[L1, L2] := L1 ◦ L2 − L2 ◦ L1.

We shall use Banach spaces of functions on R and Z. Given s ∈ Z
+∪{0}, p ∈ (1,∞),

γ ∈ R, and setting �x	 =
√

1 + |x|2, the weighted Sobolev space W s,p
γ is defined as

W s,p
γ := {u ∈ L1

loc(R, H) | �x	γ∂α
x u ∈ Lp(R, H) for all α ∈ [0, s] ∩ Z},

with norm
∑s

α=0 ‖�x	γ∂α
x u‖Lp , while the Kondratiev space Ms,p

γ on R is defined as

Ms,p
γ := {u ∈ L1

loc(R, H) | �x	γ+α∂α
x u ∈ Lp(R, H) for all α ∈ [0, s] ∩ Z},

with norm
∑s

α=0 ‖�x	γ+α∂α
x u‖Lp . Their dual spaces are defined in the standard

way and we write

W−s,q
−γ := (W s,p

γ )∗, M−s,q
−γ := (Ms,p

γ )∗, where
1
p

+
1
q

= 1.

For s = 0, both spaces are simply weighted Lp-spaces, denoted by Lp
γ . For p = 2, we

denote W s,2
γ by Hs

γ . Additionally, one can allow different weights on R
± to obtain

an anisotropic version of these spaces. More specifically, letting χ± be a smooth
partition of unity, with supp(χ+) ⊂ (−1,∞), χ−(x) = χ+(−x), we define

W s,p
γ−,γ+

:= {u ∈ L1
loc(R, H) | χ±u ∈ W s,p

γ± },

Ms,p
γ−,γ+

:= {u ∈ L1
loc(R, H) | χ±u ∈ Ms,p

γ± },

which are Banach spaces with the norms

‖u‖W s,p
γ−,γ+

:= ‖χ+u‖W s,p
γ+

+‖χ−u‖W s,p
γ−

, ‖u‖Ms,p
γ−,γ+

:= ‖χ+u‖Ms,p
γ+

+‖χ−u‖Ms,p
γ−

,
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respectively. Replacing R with Z, and replacing ∂x with the discrete derivative
δ+({uj}j∈Z) := {uj+1 − uj}j∈Z, the discrete counterparts of Lp

γ−,γ+
and Ms,p

γ−,γ+
are

denoted respectively by 	p
γ−,γ+

, and M s,p
γ−,γ+

. The discrete counterparts of W s,p
γ−,γ+

are isomorphic to 	p
γ−,γ+

due to the fact that δ+ is a bounded linear operator
on 	p

γ−,γ+
.

1.2. Outline of the paper

The remainder of the paper is organized as follows. In § 2, we present our main
results. Section 3 establishes Fredholm properties of one-dimensional differential
operators with periodic coefficients in suitable algebraically weighted spaces. Sec-
tion 4 exploits these weighted spaces to treat impurities via an implicit function
theorem and establishes expansions for solutions. We conclude with a discussion
in § 5.

2. Main result

We now state our assumptions and main results.

Assumption 2.1 (localization of impurity). We consider (1.1) with a smooth inho-
mogeneity g(x, u) that is algebraically localized:

|∂j1
x ∂j2

u g(x, u)| � (1 + |x|)−γ∗ , j1 + j2 � 1, (2.1)

where γ∗ > 6.

We next assume the existence of a periodic pattern.

Assumption 2.2 (existence of stripes). We assume that there exists an even, peri-
odic solution up(ξ; k∗) = up(ξ + 2π; k∗) = up(−ξ; k∗) with wavenumber k∗ > 0
to

−(k2
∗∂2

ξ + 1)2u + µu − u3 = 0, (2.2)

for some µ > 0 fixed.

Note that this assumption holds for 0 < µ � 1, |k∗ − 1| � 1.
The next assumption requires in particular that up is Eckhaus stable. In order

to state this assumption precisely, we introduce the family of Bloch-wave operators

LB(σ) := −(1 + (∂x + iσ)2)2 + µ − 3u2
p(x), σ ∈ [0, k∗), (2.3)

defined on D(LB(σ)) = H4
per(0, 2π/k∗) ⊂ L2

per(0, 2π/k∗). Note that all LB(σ) have
compact resolvent and depend analytically on σ as closed operators with Fredholm
index 0.

Assumption 2.3 (stability of stripes). We assume that the periodic solution up is
spectrally stable, i.e. 0 ∈ spec(LB(σ)) precisely for σ = 0, when the eigenvalue λ = 0
is algebraically simple, with eigenfunction u′

p. For σ ∼ 0, the expansion of the zero
eigenvalue in σ does not vanish at second order, i.e. λ(σ) = λ2σ

2 + O(σ3) for some
λ2 �= 0.
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We note that, for µ � 1, Eckhaus stable patterns satisfy this assumption with
λ2 < 0 [17], and Eckhaus-unstable patterns do not, due to a kernel of LB(σ) for
some σ �= 0. On the other hand, long-wavelength unstable patterns may satisfy this
assumption with λ2 > 0 (see, for example, [23]). We shall give an expression for λ2
in (4.20).

Lemma 2.4 (family of stripes). There exists a smooth family of stripe solutions,
up(kx−ϕ; k), to (1.1), parametrized by wavenumber k ∼ k∗ and phase ϕ ∈ R/2πZ.

Proof. We solve
−(1 + k2∂2

ξ )2u + µu − u3 = 0

by viewing the left-hand side as a mapping H4
per,even → L2

even and using the implicit
function theorem near up(ξ; k∗). The assumption that the kernel of LB(0) is simple,
spanned by u′

p and odd guarantees invertibility of the linearization.

Our main result is as follows.

Theorem 2.5. Let assumptions 2.1–2.3 hold. Then there exist ε0 and a two-par-
ameter family of stationary solutions to (1.1) of the form

u(x; ε) =
∑
±

χ±(x)up((k∗ + k0 ± k1)x − ϕ0 ∓ ϕ1; k∗ + k0 ± k1) + w(x),

where w ∈ H4
γ∗−2, γ∗ > 6, and ϕ1 and k1 are C1-functions of ε, k0 ∈ (−ε0, ε0),

ϕ0 ∈ R. Moreover, k1 and ϕ1 have the leading-order expansions

k1 = Mk(ϕ0, 0)ε + O(ε2), (2.4)

ϕ1 = Mϕ(ϕ0, 0)ε + O(ε2), (2.5)

where, for the case k0 = 0,

Mk(ϕ0, 0) = π

∫
R

g(x, up(k∗x − ϕ0; k∗)) · ∂ξup(k∗x − ϕ0; k∗) dx

×
(

λ2k∗

∫ 2π/k∗

0
(∂ξup(k∗x; k∗))2 dx

)−1

, (2.6)

Mϕ(ϕ0, 0) = π

∫
R

g(x, up(k∗x − ϕ0; k∗))

×
[(

x − ϕ0

k∗

)
∂ξup(k∗x − ϕ0; k∗) + ∂kup(k∗x − ϕ0; k∗)

]
dx

×
(

λ2k∗

∫ 2π/k∗

0
(∂ξup(k∗x; k∗))2 dx

)−1

. (2.7)

We note that when the inhomogeneity is a gradient field, i.e. g = ∂uG(x, u), we
have ∫

−Mk dϕ0 :=
1
2π

∫ 2π

0
Mk(ϕ0, 0) dϕ0 = 0,

and Mk necessarily vanishes for certain relative phase shifts ϕ0. We can therefore
find relative phase shifts for which k1 = 0.
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Corollary 2.6. Assume that g ∈ H1
γ∗ , γ∗ > 6, Mk(ϕ∗, 0) = 0 and M ′

k(ϕ∗, 0) �=
0. Then there exist ε̄, k̄0 > 0 and a function φ0(ε, k0) : [0, ε̄] × [0, k̄0] → R with
φ0(0, 0) = ϕ∗ such that the wavenumber difference k1 from theorem 2.5 vanishes
for ϕ0 = φ0(ε, k0).

Proof. Scaling (2.4) by ε, we may write k1 = εk̄, where

k̄(ε; ϕ0, k0) = Mk(ϕ0, k0) + O(ε).

Our assumptions Mk(ϕ∗, 0) = 0, M ′
k(ϕ∗, 0) �= 0 imply that k̄ = 0 satisfies the con-

ditions for the implicit function theorem, guaranteeing the results of the corollary.
The conditions on g allow us to obtain a well-defined value for M ′

k(ϕ, 0).

3. Fredholm properties in weighted spaces near the essential spectrum

The results in this section can be viewed independently of the remainder of the
paper. The difficulty of perturbing a striped pattern is due to the fact that the
linearization is not Fredholm, which in turn can be attributed to the presence of
the essential spectrum at the origin, which in turn is induced by the non-localized
eigenfunction u′

p. It is well known that the linearization ‘behaves’ in many ways
like an effective diffusion. We therefore expect that the linearization at a periodic
pattern possesses properties similar to the Laplacian ∂xx. The Laplacian, on the
other hand, while not Fredholm when posed as a closed, densely defined operator
mapping D(∂xx) ⊂ L2 → L2, is Fredholm when posed as a closed, densely defined
operator mapping D(∂xx) ⊂ L2

γ−2 → L2
γ for γ �∈ { 1

2 , 3
2}. The aim of this section is to

describe general Fredholm properties of operators with translation symmetry in R or
Z near points of the essential spectrum. The main restrictions are to one unbounded
spatial direction, to ‘algebraically simple’ points of the essential spectrum and to
non-critical weights γ. Throughout, we consider only bounded operators. We shall
point out how these results imply Fredholm properties for more general operators.

The outline for this section is as follows. We first consider operators with un-
bounded variable x ∈ R in § 3.1, then show how to adapt these straightforwardly
to operators with unbounded direction 	 ∈ Z in § 3.3. Finally, we show how to
relate those results to Floquet–Bloch theory for operators on x ∈ R with periodic
coefficients. We establish Fredholm properties for those operators in § 3.4. For con-
venience, we recall the Fredholm properties of ∂xx and of its discrete analogue in
the appendix.

3.1. Operators with continuous translation symmetry

3.1.1. Setup: operator symbols and essential spectrum

We consider bounded operators L on L2(R, Y ) (where Y is a complex separa-
ble Hilbert space) that possess a translation symmetry, i.e. they commute with
the action of translations on L2(R, Y ). The Fourier transform is an isomorphism
of L2(R, Y ), and, due to translation symmetry, the induced operator L̂ on the
Fourier space is a direct integral of multiplication operators with Fourier symbol
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L̂ =
∫

k∈R
L(k) dk, i.e.

L̂ : D(L̂) ⊂ L2(R, Y ) → L2(R, Y )
u(k) �→ L(k)u(k),

}
(3.1)

with L(k) linear and bounded on Y for all k ∈ R (see [1]). Formally, we have
L = L(−i∂x). We denote the Banach space of bounded operators on Y by B(Y ),
as follows.

Assumption 3.1 (analyticity of symbol). We assume that L(k) is analytic and
uniformly bounded, with values in B(Y ), in a strip k ∈ Ω0 := R × (−ik1, ik1)
for some k1 > 0. Moreover, we require that L(k) is Fredholm for all k ∈ R and
invertible with uniform bounds for |Re k| � k0 > 0 for some k0 sufficiently large.

We mainly think of L(k) rational, i.e. L(k) = P (k)Q(k)−1, with matrix-valued
polynomials P and Q, where the values of k such that Q(k) is singular lie off the real
axis. On the other hand, our results allow us to include convolution operators with
exponentially localized kernels. Specific examples are ∂xx(1−∂xx)−1, ∂x(1+∂x)−1,
(−id + K∗), K an exponentially localized kernel or (1 + ∂2

x)2(1 − ∂2
x)−2.

Note that the spectrum of L is bounded, given by

specL2(R,Y ) L = {λ | L(k) − λ not bounded invertible for some k ∈ R}.

In the Y = R
n case this can be more explicitly characterized by

specL2(R,Rn) L = {λ |det(L(k) − λ) = 0}.

Since L(k) is invertible for large k and Fredholm for all k ∈ R, L(k) is Fredholm of
index 0 for all k ∈ R, and the set of k ∈ R where L(k) is not invertible is discrete.

We are interested in the case where L is not invertible.

Assumption 3.2 (simple kernel). There exist a unique k∗ and a unique (up to
scalar multiples) e0 �= 0 such that L(k∗)e0 = 0. We then scale 〈e0, e0〉 = 1.

In particular, λ = 0 belongs to the essential spectrum of L. We can assume with-
out loss of generality that k∗ = 0, possibly conjugating L with the multiplication
operator eik∗x. We write e∗

0 for the kernel of the adjoint L∗(0) with 〈e∗
0, e

∗
0〉 = 1.

3.1.2. Spatial multiplicities in the essential spectrum

We are interested in the unfolding of the zero eigenvalue at k = 0 for the family
L(k). We therefore view L(k) as an analytic operator pencil and define the spatial
multiplicity as the multiplicity of k = 0 as an eigenvalue of the operator pencil.
Since such constructions are possibly not widely known, and their use here is less
standard, we include the relevant constructions.

Recall that, according to assumption 3.2, the kernel of L(0) is one dimensional.

Lemma 3.3. There exist an m > 0 (maximal) and e(k) =
∑m

j=0 ejk
j such that

L(k)e(k) = λmkme∗
0 + O(km+1) (3.2)
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or, equivalently,

k∑
j=0

Ljek−j = 0, k = 0, . . . , m − 1; λm :=
〈 m−1∑

j=0

Lm−jej , e
∗
0

〉
�= 0,

where we have expanded

L(k) =
m∑

j=0

Ljk
j + O(km+1).

We refer to m as the spatial multiplicity of λ = 0.

Proof. Write Q0 for the orthogonal projection onto span{e∗
0}. We solve L(k)(e0 +

v) = z by decomposing:

〈L(k)(e0 + v), e∗
0〉 = z1, (3.3)

(id − Q0)L(k)(e0 + v) = z2, (3.4)

where z = z1e
∗
0 + z2, z1 ∈ R and z2 ∈ Rg(id − Q0). Since L(0) is Fredholm of

index 0, L(0) : e⊥
0 → (e∗

0)
⊥ is an isomorphism, and (3.4) can be solved using the

implicit function theorem, with solution v = v∗(k, z2) for |k|, |z2| small. We then
plug v∗(k, z2) into (3.3), which yields

f(k, z1, z2) := 〈L(k)(e0 + v∗(k, z2)), e∗
0〉 − z1 = 0.

As L(k) is invertible for all k �= 0 ∈ Ω0, the reduced analytic function f(k, 0, 0)
has a non-trivial Taylor jet, i.e. there exist m ∈ Z

+ and λm �= 0 ∈ C such that
f(k, 0, 0) = λmkm + O(km+1). Taking v = v∗(k, 0), we have

L(k)(e0 + v∗(k, 0)) = f(k, 0, 0)e∗
0 = λmkme∗

0 + O(km+1).

Letting e(k) be the Taylor expansion up to O(km) of e0 +v∗(k, 0), the claims follow
quickly.

Remark 3.4. In the case where λ is an algebraically simple eigenvalue of L(0), one
can slightly modify the construction in the proof of lemma 3.3 and solve L(k)e(k) =
λ(k)e(k) together with 〈e(k) − e0, e0〉 = 0 using Lyapunov–Schmidt reduction in
much the same way. The linearization with respect to (e, λ) is onto, and one finds
the function λ(k), which is of course the expansion of the ‘temporal eigenvalue’ λ in
the Fourier parameter k. From this construction, one finds λ(k) = λ̃mkm + O(km+1)
for some λ̃m �= 0, with m as in lemma 3.3.

Since expansions typically do not converge globally, we introduce localized expan-
sions, as follows. Define the pseudo-derivative symbols

D(k) = ik(1 + ik)−1,

DC,m(k) = k(1 + Cikm)−1,

with associated operators D(−i∂x), DC,m(−i∂x). Here C > 0 will eventually be cho-
sen sufficiently large, so that the norm of the bounded multiplier DC,m is arbitrarily
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small. Restricting to the strip

Ω0(C, m) :=
{

k ∈ Ω0

∣∣∣∣ |Im k| � k1 :=
1

m
√

2C
sin

(
π

2m

)}
,

DC,m(k) is in fact analytic and uniformly bounded, i.e. there exists a constant C(m)
such that

‖DC,m(k)‖ � C(m)
m
√

C
for all k ∈ Ω0(C, m).

Remark 3.5. On the enlarged strip {k ∈ C | |Im k| < (1/ m
√

C) sin(π/2m)}, the
pseudo-derivative DC,m is analytic but not bounded. To obtain boundedness, we
can restrict ourselves to any narrower strip,{

k ∈ C

∣∣∣∣ |Im k| <
1

m
√

NC
sin

(
π

2m

)}

for any N > 1. For convenience, we simply choose N = 2 and Ω0(C, m) ⊂ Ω0,
where the strip Ω0 is introduced in assumption 3.1.

Note that replacing k by DC,m(k) in the expansion of e(k) does not alter its
Taylor expansion up to order m. We therefore may define, for all k ∈ Ω0(C, m),

ẽ(k) :=
m∑

j=0

[DC,m(k)]jej ,

such that
L(k)ẽ(k) = λme∗

0k
m + O(km+1). (3.5)

Repeating these considerations for the adjoint, we also find

e∗(k) =
m∑

j=0

e∗
j k̄

j

and define

ẽ∗(k) :=
m∑

j=0

[DC,m(k)]je∗
j ,

so that
L∗(k)ẽ∗(k) = λ̄me0k

m + O(km+1). (3.6)

Since L∗(k) is anti-analytic, e∗(k) is anti-analytic, and we use the complex conjugate
DC,m(k) to guarantee that ẽ∗(k) is anti-analytic.

3.1.3. Fredholm properties of L
The main results on Fredholm properties of L are stated in the following theorem.

Proposition 3.6 (Fredholm properties of L). Suppose the operator L satisfies as-
sumptions 3.1 and 3.2 with k∗ = 0. Let m be the spatial multiplicity according to
lemma 3.3. Then, for γ−, γ+ �∈ { 1

2 , 3
2 , . . . , m − 1

2}, the operator

L : D(L) ⊂ L2
γ−−m,γ+−m(R, Y ) → L2

γ−,γ+
(R, Y ) (3.7)
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is closed, densely defined and Fredholm. Moreover, setting

γmax = max{γ−, γ+}, γmin = min{γ−, γ+},

we have that

(i) for γmin ∈ Im := (m − 1
2 ,∞), the operator (3.7) is one-to-one with cokernel

cok(L) = span
{ β∑

α=0

(−i)α(∂α
x xβ)e∗

α

∣∣∣∣ β = 0, 1, . . . , m − 1
}

,

(ii) for γmax ∈ I0 := (−∞, 1
2 ), the operator (3.7) is onto with kernel

ker(L) = span
{ β∑

α=0

(−i)α(∂α
x xβ)eα

∣∣∣∣ β = 0, 1, . . . , m − 1
}

,

(iii) for γmin ∈ Ii and γmax ∈ Ij with Ik := (k − 1
2 , k + 1

2 ) for 0 < k ∈ Z < m, the
kernel of (3.7) is

ker(L) = span
{ β∑

α=0

(−i)α(∂α
x xβ)eα

∣∣∣∣ β = 0, 1, . . . , m − j − 1
}

,

and its cokernel is

cok(L) = span
{ β∑

α=0

(−i)α(∂α
x xβ)e∗

α

∣∣∣∣ β = 0, 1, . . . , i − 1
}

.

On the other hand, the operator (3.7) does not have a closed range for γ−, γ+ ∈
{ 1

2 , 3
2 , . . . , m − 1

2}.

The proof of the proposition will occupy the remainder of this section. The key
ingredient is the construction of a normal form representation of the operator L,
through which we conclude that Fredholm properties of the operator L are equiv-
alent to those of the regularized derivative [D(−i∂x)]�. We organize the proof by
first establishing Fredholm properties of regularized derivatives defined in the Kon-
dratiev spaces, and then Fredholm properties of the normal form of the operator
L, eventually concluding the proof by returning to physical space.

3.1.4. Fredholm properties of regularized derivatives

We employ regularized derivatives as model operators. More specifically, for any
	 ∈ Z

+ and γ± ∈ R, we define the regularized derivative by

[D(−i∂x)]� : D([D(−i∂x)]�) ⊂ L2
γ−−�,γ+−� → L2

γ−,γ+

u �→ ∂�
x(1 + ∂x)−�u,

}
(3.8)

with domain

D([D(−i∂x)]�) = {u ∈ L2
γ−−�,γ+−� | (1 + ∂x)−�u ∈ M �,2

γ−−�,γ+−�}.

Moreover, the Fredholm properties of the operator [D(−i∂x)]� are summarized in
the following proposition.

4
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Proposition 3.7. For γ± ∈ R\{ 1
2 , 3

2 , . . . , 	− 1
2}, [D(−i∂x)]�, the regularized deriva-

tive defined in (A 1), is Fredholm. Moreover, the operator [D(−i∂x)]� satisfies the
following conditions:

(i) if γmax ∈ I0 := (−∞, 1
2 ), the operator [D(−i∂x)]� is onto, with its kernel equal

to P�(R);

(ii) if γmin ∈ I� := (	 − 1
2 ,∞), the operator [D(−i∂x)]� is one-to-one, with its

cokernel equal to P�(R);

(iii) if γmin ∈ Ii and γmax ∈ Ij with Ik := (k − 1
2 , k + 1

2 ) for 0 < k ∈ Z < 	,
the kernel and cokernel of the operator [D(−i∂x)]� are respectively spanned by
P�−j(R) and Pi(R).

On the other hand, the range of the operator [D(−i∂x)]� is not closed if γ−, γ+ ∈
{ 1

2 , 3
2 , . . . , 	 − 1

2}.

Proof. The proof is relegated to Appendix A.1, where we prove a more general
result.

3.1.5. Normal form operators

We diagonalize every operator L(k) defined in Y into the direct sum of the Fourier
counterpart of a regularized derivative and an isomorphism. To start with, recalling
the definitions of the modified kernel and cokernel expansions (3.5) and (3.6), for
any k ∈ Ω0(C, m), we define the projections

P (k)u := 〈u, e0〉ẽ(k), Q(k)v := 〈v, ẽ∗(k)〉e∗
0, (3.9)

from which it is straightforward to conclude the following lemma.

Lemma 3.8. There exists C0 > 0 so that, for any C > C0 and k ∈ Ω0(C, m), the
operators

id − P (k) : 〈ẽ(k)〉⊥ → 〈e0〉⊥, id − Q(k) : 〈e∗
0〉⊥ → 〈ẽ∗(k)〉⊥

are isomorphisms whose inverses take the following form:

(id − P (k))−1 : 〈e0〉⊥ → 〈ẽ(k)〉⊥

u �→ u − 〈u, ẽ(k)〉
〈ẽ(k), ẽ(k)〉 ẽ(k),

(id − Q(k))−1 : 〈ẽ∗(k)〉⊥ → 〈e∗
0〉⊥

u �→ u − 〈u, e∗
0〉e∗

0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.10)

Moreover, for fixed C > C0, both operators and their inverses admit uniform bounds
for k ∈ Ω0(C, m).

We also introduce analytic isomorphisms ι(k) : 〈ẽ(k)〉 → 〈e∗
0〉 and ι⊥(k) : 〈e0〉⊥ →

〈ẽ∗(k)〉⊥. Such isomorphisms can be constructed in many ways and we outline one
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construction here. Define

ι(k) : 〈ẽ(k)〉 → 〈e∗
0〉

αẽ(k) �→ αe∗
0,

ι⊥(k) : 〈e0〉⊥ → 〈ẽ∗(k)〉⊥

u �→ (id − Q(k))ι⊥(0)u,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.11)

where we define the isomorphism ι⊥(0) : 〈e0〉⊥ → 〈e∗
0〉⊥ to be a direct sum of the

identity map on 〈e0〉⊥ ∩ 〈e∗
0〉⊥ and a linear length-preserving map from E0,⊥ :=

span{e∗
0 − 〈e∗

0, e0〉e0} to E∗
0,⊥ := span{e0 − 〈e0, e

∗
0〉e∗

0}. More specifically, we choose

ι⊥(0)u :=

{
u, u ∈ 〈e0〉⊥ ∩ 〈e∗

0〉⊥,

c(e0 − 〈e0, e
∗
0〉e∗

0), u = c(e∗
0 − 〈e∗

0, e0〉e0) ∈ E0,⊥.

We are now ready to define the normal form operators,

LNF(k) : D(LNF(k)) ⊂ Y → Y

u �→ Dm(k)ι(k)P (k)u + ι⊥(k)(id − P (k))u,

}
(3.12)

and prove the following lemma.

Lemma 3.9 (factorization). For C > C0 fixed and any k ∈ Ω0(C, m), the operator
L(k) admits the decomposition

L(k) = ML(k)LNF(k) = LNF(k)MR(k),

where ML\R : Ω0(C, m) → B(Y ) are analytic, L∞-bounded with an L∞-bounded
inverse.

Proof. For k �= 0, the inverse of LNF(k) is analytic and takes the form

L−1
NF(k)u = D−m(k)ι−1(k)Q(k)u + ι−1

⊥ (k)(id − Q(k))u

= D−m(k)〈u, ẽ∗(k)〉ẽ(k) + ι−1
⊥ (0)(u − 〈u, e∗

0〉e∗
0).

In addition, based on (3.5), we have that

lim
k→0

L(k)L−1
NF(k)u

= lim
k→0

[
(1 + ik)m

km
〈u, ẽ∗(k)〉L(k)ẽ(k) + L(k)ι−1

⊥ (0)(u − 〈u, e∗
0〉e∗

0)
]

= λm〈u, e∗
0〉e∗

0 + L(0)ι−1
⊥ (0)(u − 〈u, e∗

0〉e∗
0)

is an invertible bounded operator. We now define

ML(k)u :=

{
L(k)L−1

NF(k)u, k �= 0,

limk→0 L(k)L−1
NF(k)u, k = 0,

(3.13)

which, according to Riemann’s removable singularity theorem and assumption 3.2,
implies ML(k) is analytic and invertible for all k in the strip Ω0. Furthermore,

4
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noting that, according to assumption 3.1, L(k) is invertible with uniform bounds
for k ∈ Ω0(C, m) with |Re k| > k0 and

lim
Re k→∞

L−1
NF(k) = 〈u, e∗

0〉e0 + ι−1
⊥ (0)(u − 〈u, e∗

0〉e∗
0)

is bounded and invertible, we conclude that ML(k) is uniformly bounded with
uniformly bounded inverses. We can define and analyse MR(k) analogously.

3.2. Back to physical space: proof of proposition 3.6

We introduce the multiplier operators

ML\R : S(R, Y ) → S(R, Y )

u(x) �→
̂

ML\Rû(x),

}
(3.14)

which, according to the L∞-boundedness and invertibility of ∂α
k ML and ∂α

k MR for
all α ∈ Z

+ ∪ {0}, are isomorphisms on the Schwartz space S(R, Y ). For any given
γ± ∈ R, it is straightforward to see that S(R, Y ) ⊂ L2

γ−,γ+
(R, Y ) is a continuous

embedding. We claim that we can continuously extend the multiplier operators
ML\R onto L2

γ−,γ+
(R, Y ). In other words, we have the following lemma.

Lemma 3.10. For any given γ± ∈ R, the multiplier operators

ML\R : L2
γ−,γ+

(R, Y ) → L2
γ−,γ+

(R, Y )

are isomorphisms.

Remark 3.11. We suspect that results analogous to lemma 3.10 hold for general
anisotropic weighted spaces Lp

γ−,γ+
(R, Y ) with p ∈ (1,∞). It appears, however,

that ‘necessary and sufficient’ conditions for Fourier multipliers on Lp
γ−,γ+

(R, C)
with general p ∈ (1,∞) are not available; only sufficient conditions such as the
Marcinkiewicz and the Hörmander–Mikhlin multiplier theorems, which can both
be generalized to certain families of weighted Lp(R, C) spaces, are available (see
[4, 15, 19] for details and [1, 2, 7, 29] for general background on operator-valued
Fourier multipliers).

Proof. We first prove the case of isotropic weights, i.e. γ− = γ+ = γ. For γ ∈
Z+ ∪{0}, we adopt the notation L2

γ(R, Y ) := L2
γ,γ(R, Y ) and exploit the Plancherel

theorem to derive that

‖ML\Ru‖L2
γ(R,Y ) = ‖ML\Rû‖Hγ(R,Y ) � C(γ)‖û‖Hγ(R,Y ) = C(γ)‖u‖L2

γ(R,Y ),

which, together with a similar inequality for M−1
L\R, shows that ML\R : L2

γ(R, Y ) →
L2

γ(R, Y ) are isomorphisms for γ ∈ Z+ ∪ {0}, and thus for γ ∈ Z− due to duality.
By classical interpolation results (see, for example, [3, theorem 6.4.5]), Hn+θ(R, Y )
is a complex interpolation space between Hn(R, Y ) and Hn+1(R, Y ) for any given
n ∈ Z and θ ∈ (0, 1). Therefore, we conclude that ML\R : L2

γ(R, Y ) → L2
γ(R, Y ) are

isomorphisms for γ ∈ R.
To prove the case of anisotropic weights, we start by introducing the exponentially

weighted space

L2
exp,η(R, Y ) := {u ∈ L1

loc(R, Y ) | eη·u(·) ∈ L2(R, Y )},
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with its norm ‖u‖L2
exp,η(R,Y ) := ‖eη·u(·)‖L2(R,Y ) for any given η ∈ R. Our strategy

is to exploit the fact that the space L2
γ−,γ+

(R, Y ) admits the decomposition

L2
γ−,γ+

(R, Y ) = (L2
γ−(R, Y ) ∩ L2

exp,η(R, Y )) + (L2
γ+

(R, Y ) ∩ L2
exp,−η(R, Y )) (3.15)

for any η > 0, where norms on intersections and sums are defined in the usual way
(see below).

With this in mind, we first study the multipliers on ML\R : L2
exp,η(R, Y ) →

L2
exp,η(R, Y ) and claim that they are isomorphisms for any fixed |η| � k1, where k1

is half the width of the strip Ω0(C, m). Note that the multiplier on the Schwartz
space can be viewed as a convolution operator. More specifically, setting the reflec-
tion (Ru)(x) := u(−x), we define the distribution

M̌L\R : S(R, Y ) → C

u �→ (ML\RRu)(0),

from which, for all u ∈ S(R, Y ), we readily derive

(ML\Ru)(x) = (M̌L\R ∗ u)(x) =
∫

R

M̌L\R(x − y)u(y) dy.

Since the Fourier transform is given through F(eη·M̌L\R(·))(k) = ML\R(k + iη) for
|η| � k1, we have that the inequality

‖ML\Ru‖L2
exp,η(R,Y ) =

∥∥∥∥
∫

R

[eη(x−y)M̌L\R(x − y)][eηyu(y)] dy

∥∥∥∥
L2(R,Y )

= ‖F(eη·M̌L\R(·))F(eη·u(·))‖L2(R,Y )

= ‖ML\R(· + iη)F(eη·u(·))‖L2(R,Y )

� ‖ML\R(· + iη)‖L∞(R,B(Y ))‖F(eη·u(·))‖L2(R,Y )

� C‖u‖L2
exp,η(R,Y )

holds for any |η| � k1 and u ∈ S(R, Y ). Noting that S(R, Y ) ⊂ L2
exp,η(R, Y ) is

dense, there are natural extensions of ML\R as a bounded linear operator on
L2

exp,η(R, Y ). Applying analogous reasoning to the inverses of ML\R lets us con-
clude that the multipliers ML\R : L2

exp,η(R, Y ) → L2
exp,η(R, Y ) are isomorphisms

for any fixed |η| � k1.
We are now ready to prove the case of anisotropic weights. Given two Banach

spaces E and F , the linear spaces E ∩ F and E + F are also Banach spaces with
norms

‖u‖E∩F := ‖u‖E + ‖v‖F ,

‖u‖E+F := inf{‖v‖E + ‖w‖F | v + w = u, v ∈ E, w ∈ F},

respectively. Moreover, for a linear operator L bounded on both E and F , it is
straightforward to check that L is also bounded on E ∩ F and E + F . Therefore,
given γ± ∈ R and η ∈ [0, k1], due to the fact that ML\R are isomorphisms on L2

γ±
and L2

exp,±η, we conclude that ML\R are isomorphisms on the Banach space

B(γ−, γ+, η, Y ) := (L2
γ−(R, Y ) ∩ L2

exp,η(R, Y )) + (L2
γ+

(R, Y ) ∩ L2
exp,−η(R, Y )).

(3.16)

4
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As defined in (3.15), the Banach spaces L2
γ−,γ+

(R, Y ) and B(γ−, γ+, η, Y ) consti-
tute the same linear space. It is therefore sufficient to show that the natural norm
on L2

γ−,γ+
(R, Y ) is equivalent to the norm on B(γ−, γ+, η, Y ) induced by the inter-

section and sum property. For any u ∈ L2
γ−,γ+

(R, Y ), we have

u = χ+u + χ−u, χ±u ∈ L2
γ±(R, Y ) ∩ L2

exp,∓η(R, Y ),

and

‖u‖B(γ−,γ+,η,Y ) � ‖χ+u‖L2
γ+

(R,Y )∩L2
exp,−η(R,Y ) + ‖χ−u‖L2

γ−
(R,Y )∩L2

exp,η(R,Y )

= ‖χ+u‖L2
γ+

(R,Y ) + ‖χ+u‖L2
exp,−η(R,Y )

+ ‖χ−u‖L2
γ−

(R,Y ) + ‖χ−u‖L2
exp,η(R,Y )

� C(γ±, η)[‖χ+u‖L2
γ+

(R,Y ) + ‖χ−u‖L2
γ−

(R,Y )]

= C(γ±, η)‖u‖L2
γ−,γ+

(R,Y ),

which implies that the two norms are equivalent, concluding the proof.

Denoting the inverse Fourier transform of LNF as LNF, we have

L = MLLNF, Lad = Mad
R Lad

NF.

The proof of proposition 3.6 now reduces to establishing the Fredholm properties
of LNF.

Proof of proposition 3.6. Note that

Y ∼= 〈ẽ(k)〉 ⊕ 〈e0〉⊥ ∼= 〈e∗
0〉 ⊕ 〈ẽ∗(k)〉⊥.

Thus, the normal form operator LNF(k) admits an isomorphic diagonal form:

LD(k) : 〈ẽ(k)〉 ⊕ 〈e0〉⊥ → 〈e∗
0〉 ⊕ 〈ẽ∗(k)〉⊥

(
u1

u2

)
�→

(
Dm(k)ι(k) 0

0 ι⊥(k)

) (
u1

u2

)
.

⎫⎪⎬
⎪⎭ (3.17)

According to lemmas 3.8 and 3.9 and the definition (3.11) of projections ι(k) and
ι⊥(k), we derive the following:

LNF : D(LNF) ⊂ Lp
γ−−m,γ+−m(R, Y ) → Lp

γ−,γ+
(R, Y )

u �→ 〈Dm(−i∂x)u, e0〉e∗
0 + ι̌⊥

(
u −

m∑
j=0

〈Dj
C,m(−i∂x)u, e0〉ej

)
,

where u(x) −
∑m

j=0〈D
j
C,m(−i∂x)u(x), e0〉ej ∈ 〈e0〉⊥ for all x ∈ R, and the mapping

ι̌⊥ : Lp
γ−,γ+

(R, 〈e0〉⊥) →
{

u ∈ Lp
γ−,γ+

(R, Y )
∣∣∣∣

m∑
j=0

〈Dj
C,m(−i∂x)u(x), e∗

i 〉 = 0

for all x ∈ R

}

v �→ ι⊥(0)v −
m∑

j=0

〈Dj
C,m(−i∂x)[ι⊥(0)v], e∗

i 〉e∗
0
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is an isomorphism. As a result, Fredholm properties of LNF are encoded in the
regularized derivative operator [D(−i∂x)]m. More specifically, we note that

F−1[Dm(k)ι(k)(û(k)ẽ(k))] = ([D(−i∂x)]mu(x))e∗
0,

F−1(û(k)ẽ(k)) =
m∑

j=0

([DC,m(−i∂x)]ju(x))ej ,

which implies that the kernel and cokernel of LNF, respectively, are given by

ker(LNF) =
{ m∑

j=0

([DC,m(−i∂x)]ju(x))ej

∣∣∣∣ u(x) ∈ ker([D(−i∂x)]m)
}

,

cok(LNF) =
{ m∑

j=0

([DC,m(i∂x)]ju(x))e∗
j

∣∣∣∣ u(x) ∈ cok([D(−i∂x)]m)
}

.

The statements in proposition 3.6 then follow by applying the statement of propo-
sition A.1 to the above analysis and noting that, for any u ∈ Pm(R),

[DC,m(−i∂x)]ju(x) = (−i)α∂α
x u(x).

3.3. Operators with discrete translation symmetry

The results from § 3.1 can easily be adapted to the case of an operator L on
	2(Z, Y ) that commutes with the discrete translation group Z. The discrete Fourier
transform takes the form

Fd : 	2(Z, Y ) → L2(T1, Y )

u = {uj}j∈Z �→ û(σ) =
∑
j∈Z

uje−2πijσ,

⎫⎪⎬
⎪⎭ (3.18)

where T1 := R/Z denotes the unit circle. The counterparts of the derivative ∂x are
the discrete derivatives

δ+({aj}j∈Z) := {aj+1 − aj}j∈Z,

δ−({aj}j∈Z) := {aj − aj−1}j∈Z,

δ := − 1
2 i(δ+ + δ−).

⎫⎪⎬
⎪⎭ (3.19)

The Fourier transform of L, denoted by L̂ =
∫

T1
L(σ) dσ, is an isomorphism of

L2(T1, Y ), i.e.
L̂ : D(L̂) ⊂ L2(T1, Y ) → L2(T1, Y )

u(σ) �→ L(σ)u(σ),

}
(3.20)

with L(σ) linear and bounded on Y for all σ ∈ T1.

Assumption 3.12 (analyticity, periodicity and simple kernel). We assume L(σ) is
analytic, uniformly bounded and 1-periodic, with values in the set of bounded
operators on Y , in a strip σ ∈ Ω1 := R × (−iσ0, iσ0) for some σ0 > 0. Moreover, we
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require that L(σ), restricted to σ ∈ [− 1
2 , 1

2 ], is invertible except at σ = 0 and L(0)
admits a simple kernel spanned by e0 with 〈e0, e0〉 = 1.

Remark 3.13. For convenience, we identify the interval [− 1
2 , 1

2 ] with the unit circle
T1, collapsing endpoints − 1

2 ∼ 1
2 .

We adopt all the notations in the continuous case, except for those related to
pseudo-derivative symbols. The new pseudo-derivatives take the form

D+(σ) = e2πiσ − 1,

D−(σ) = 1 − e−2πiσ,

DC,m(σ) = (e2πiσ − 1)[1 + iC sinm(2πσ)]−1,

⎫⎪⎬
⎪⎭ (3.21)

whose associated physical operators are δ+, δ− and δ+[1 + iCδm]−1, respectively.
Here m ∈ Z

+ is the power related to the expansion of the zero eigenvalue, λ(σ) =
λmσm + O(σm+1), with λm �= 0 for σ ∼ 0 ∈ C. The constant C > 0 will eventually
be chosen sufficiently large so that the norm of the bounded multiplier DC,m is
arbitrarily small. As a matter of fact, in the strip

Ω1(C, m) :=
{

σ ∈ Ω1

∣∣∣∣ |Re σ| � 1
2 , |Im σ| <

1
2π

sinh−1
(

1
m
√

2C
sin

(
π

2m

))}
,

DC,m(σ) is analytic and uniformly bounded, i.e. there exists a constant C(m) such
that

‖DC,m(σ)‖ � C(m)
m
√

C
for all σ ∈ Ω1(C, m).

Moreover, we define

e(σ) =
m∑

j=0

ejσ
j and e∗(σ) =

m∑
j=0

e∗
j σ̄

j

so that

L(σ)e(σ) = O(σm), L∗(σ)e∗(σ) = O(σm),〈 m−1∑
j=0

Lm−jej , e
∗
0

〉
�= 0,

k∑
j=0

Ljek−j = 0, k = 0, . . . , m − 1.

There exist {ẽj , ẽ
∗
j}m

j=0 ⊂ Y , independent of C, and

ẽ(σ) :=
m∑

j=0

[DC,m(σ)]j ẽj , ẽ∗(σ) :=
m∑

j=0

[DC,m(σ)]j ẽ∗
j , σ ∈ Ω1(C, m).

such that L(σ)ẽ(σ) = O(σm) and L∗(σ)ẽ∗(σ) = O(σm).

Proposition 3.14 (Fredholm properties of L). For γ± �∈ { 1
2 , 3

2 , . . . , m − 1
2}, the

operator satisfying assumption 3.12, i.e.

L : D(L) ⊂ 	2γ−−m,γ+−m(Z, Y ) → 	2γ−,γ+
(Z, Y ), (3.22)

https://doi.org/10.1017/S0308210518000197 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210518000197


148 G. Jaramillo, A. Scheel and Q. Wu

is closed, densely defined and Fredholm. Letting

γmax = max{γ−, γ+}, γmin = min{γ−, γ+}

and ηβ := {ηβ}η∈Z, we have that

(i) for γmin ∈ Im := (m − 1
2 ,∞), the operator (3.22) is one-to-one with cokernel

cok = span
{ β∑

α=0

(δα
+ηβ)ẽ∗

α

∣∣∣∣ β = 0, 1, . . . , m − 1
}

,

(ii) for γmax ∈ I0 := (−∞, 1
2 ), the operator (3.22) is onto with kernel

ker = span
{ β∑

α=0

(δα
+ηβ)ẽα

∣∣∣∣ β = 0, 1, . . . , m − 1
}

,

(iii) for γmin ∈ Ii and γmax ∈ Ij with Ik := (k − 1
2 , k + 1

2 ) for 0 < k ∈ Z < m, the
kernel of (3.22) is

ker = span
{ β∑

α=0

(δα
+ηβ)ẽα

∣∣∣∣ β = 0, 1, . . . , m − j − 1
}

and its cokernel is

cok = span
{ β∑

α=0

(δα
+ηβ)ẽ∗

α

∣∣∣∣ β = 0, 1, . . . , i − 1
}

.

On the other hand, the operator (3.22) does not have a closed range for γ−, γ+ ∈
{ 1

2 , 3
2 , . . . , m − 1

2}.

Proof. Just as in the continuous case, the proof reduces to the verification of Fred-
holm properties of the discrete derivative δm−j

+ δj
−, for j = 0, 1, . . . , m, which is

relegated to Appendix A.2.

3.4. Floquet–Bloch theory and periodic coefficients

We are interested in operators posed on the real line, with only a discrete trans-
lational symmetry. Examples are of course the linearization at periodic structures,
but include more generally operators with periodic coefficients P(∂x, x), periodic
in x. One commonly introduces the Bloch-wave transform

B : L2(T1, [L2([0, 2π])]n) → [L2(R)]n

U(σ, x) �→
∫

T1

eiσxU(σ, ·) dσ,

which is an isometric isomorphism, with inverse

B−1 : [L2(R)]n → L2(T1, [L2([0, 2π])]n)

u(x) �→ 1
2π

∑
�∈Z

ei�xû(σ + 	).

⎫⎪⎬
⎪⎭ (3.23)
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We refer the reader to [22, § XIII.16] for details. Under the Bloch-wave transform,
P(∂x, x) defined on [L2(R)]n becomes a direct integral: the Bloch-wave decomposi-
tion

B−1 ◦ P ◦ B =
∫

T1

PBL(σ) dσ, (3.24)

where the Bloch-wave operator PBL(σ) takes the form

PBL(σ) : D(PBL(σ)) ⊂ [L2([0, 2π])]n → [L2([0, 2π])]n

u(x) �→ P (∂x + iσ, x)u(x).

}
(3.25)

We assume that the family of Bloch-wave operators PBL(σ) satisfies the following.

Assumption 3.15 (analyticity and a simple kernel). We assume PBL(σ) is analyt-
ic, uniformly bounded and 1-periodic, with values in the set of bounded operators
on Y , in a strip σ ∈ Ω1 := R × (−iσ0, iσ0) for some σ0 > 0. Moreover, we require
that PBL(σ), restricted to [− 1

2 , 1
2 ], is invertible except at σ = 0, and PBL(0) admits

a simple kernel spanned by e0 with 〈e0, e0〉 = 1.

In order to exploit the results from § 3.3, we first define both the chopping oper-
ator C that identifies [L2(R)]n with 	2(Z, [L2([0, 2π])]n), i.e.

C : [L2(R)]n → 	2(Z, [L2([0, 2π])]n)
u �→ {u(2πj + x)}j∈Z,

and the discrete Fourier transform which takes the form

Fd : 	2(Z, [L2([0, 2π])]n) → L2(T1, [L2([0, 2π])]n)

u = {uj}j∈Z �→
∑
j∈Z

uj(x)e−2πijσ.

⎫⎪⎬
⎪⎭ (3.26)

Under the transformations C and Fd, P(∂x, x) again becomes a direct integral with
the notation ∫

T1

P (σ) dσ := Fd ◦ C ◦ P ◦ C−1 ◦ F−1
d . (3.27)

In fact, for any U ∈ D(
∫

T1
P (σ) dσ), we have that

(Fd ◦ C ◦ P ◦ C−1 ◦ F−1
d (U))(σ, x) =

∑
j∈Z

e−2πijσ

(
P(∂x, x)

∫
T1

U(η, x)e2πijη dη

)

= P(∂x, x)
∫

T1

U(η, x)
( ∑

j∈Z

e2πij(η−σ)
)

dη

= P(∂x, x)
∫

T1

U(η, x)δ(η − σ) dη

= P(∂x, x)U(σ, x),

which shows that, for any σ ∈ T1,

P (σ) : D(P (σ)) ⊂ [L2([0, 2π])]n → [L2([0, 2π])]n

u(x) �→ P(∂x, x)u(x).
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We conclude with the following commutative diagram of isomorphisms, dropping
the superscript n for ease of notation:

L2(T1, L
2([0, 2π])) B ��

∫
T1

PBL(σ) dσ

��

L2(R) C ��

P
��

	2(Z, L2([0, 2π]))
Fd �� L2(T1, L

2([0, 2π]))
∫
T1

P (σ) dσ

��
L2(T1, L

2([0, 2π])) B �� L2(R) C �� 	2(Z, L2([0, 2π]))
Fd �� L2(T1, [2([0, 2π]))

From this it is straightforward to show that∫
T1

PBL(σ) dσ and
∫

T1

P (σ) dσ

are isomorphic. Moreover, we have the following lemma.

Lemma 3.16. The operators P (σ) and PBL(σ) are canonically isomorphic for all
σ ∈ T1.

Proof. From (3.23), (3.24) and (3.26), (3.27), we summarize, for any σ ∈ T1, that

D(P (σ)) = {eiσxu(x) ∈ [L2([0, 2π])]n | u(x) ∈ D(PBL(σ))},

which directly implies that we have the isomorphism

PBL(σ) = e−iσxP (σ)eiσx. (3.28)

According to assumption 3.15, there exist m ∈ Z
+, λm �= 0, e(σ) =

∑m
j=0 ejσ

j

and e∗(σ) =
∑m

j=0 e∗
j σ̄

j with

PBL(σ)e(σ) = λme0σ
m + O(σm+1) (3.29)

and

P ∗
BL(σ)e∗(σ) = λ̄me∗

0σ
m + O(σm+1), (3.30)

such that〈 m−1∑
j=0

PBL,m−jej , e
∗
0

〉
�= 0,

k∑
j=0

PBL,jek−j = 0, k = 0, . . . , m − 1.

According to lemma 3.16 and proposition 3.14, we have the following proposition.

Proposition 3.17 (Fredholm properties of L). For γ−, γ+ �∈ { 1
2 , 3

2 , . . . , m − 1
2},

the operator satisfying assumption 3.15,

P : D(P) ⊂ L2
γ−−m,γ+−m → L2

γ−,γ+
, (3.31)

is closed, densely defined and Fredholm. Letting

γmax = max{γ−, γ+} and γmin = min{γ−, γ+},
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we have that

(i) for γmin ∈ Im := (m − 1
2 ,∞), the operator (3.31) is one-to-one with cokernel

cok = span
{ β∑

α=0

(ix)α

α!
e∗
β−α

∣∣∣∣ β = 0, 1, . . . , m − 1
}

,

(ii) for γmax ∈ I0 := (−∞, 1
2 ), the operator (3.31) is onto with kernel

ker = span
{ β∑

α=0

(ix)α

α!
eβ−α

∣∣∣∣ β = 0, 1, . . . , m − 1
}

,

(iii) for γmin ∈ Ii and γmax ∈ Ij with Ik := (k − 1
2 , k + 1

2 ) for 0 < k ∈ Z < m, the
kernel of (3.31) is

ker = span
{ β∑

α=0

(ix)α

α!
eβ−α

∣∣∣∣ β = 0, 1, . . . , m − j − 1
}

and its cokernel is

cok = span
{ β∑

α=0

(ix)α

α!
e∗
β−α

∣∣∣∣ β = 0, 1, . . . , i − 1
}

.

On the other hand, the operator (3.31) does not have a closed range for γ−, γ+ ∈
{ 1

2 , 3
2 , . . . , m − 1

2}.

Proof. All the results in this proposition, except the explicit forms of kernels and
cokernels, are direct consequences of proposition 3.14. From the isomorphism prop-
erty (3.28) and the expansion (3.29), we have, for β = 0, 1, . . . , m − 1,

P
β∑

α=0

(ix)α

α!
eβ−α = 0,

which, combined with the domain of P for given γ±, concludes the proof.

Remark 3.18. There is an alternative way to obtain the explicit forms of kernels
and cokernels. The first step is to obtain explicit forms of ẽj and ẽ∗

j . Taking ẽj , for
example, we note that the first m+1 terms of the Taylor expansion of eixσe(σ) and∑m

j=0(e
2πiσ − 1)j ẽj with respect to σ are the same. More specifically, we have

eixσe(σ) = e0 +
m∑

k=1

( k∑
j=0

(ix)j

j!
ek−j

)
σk + O(σm+1),

m∑
j=0

(e2πiσ − 1)j ẽj = ẽ0 +
m∑

k=1

(2πi)k

k!
(A(k, j)ẽj)σk + O(σm+1),

where

A(k, j) =
j∑

�=1

(
j

	

)
	k(−1)j−�,
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with A(k, j) = 0 for 1 < k < j. We can then solve {ẽj}m
j=0 in terms of {ej}m

j=0. In
a second step, we plug all these explicit expansions of ẽj into proposition 3.14 to
derive explicit forms of the kernels and cokernels.

4. Impurities

We now prove theorem 2.5. Recalling χ± is a smooth partition of unity with
supp(χ+) ⊂ (−1,∞), χ−(x) = χ+(−x), we write θ = χ+ − χ− and

ϕ(x) = k0x − ϕ0 + k1Θ − ϕ1θ(x), ϕ′(x) = k0 + k1θ(x) − ϕ1θ
′(x),

ϕ±(x) = k0x − ϕ0 ± (k1x − ϕ1), (ϕ±)′(x) = k0 ± k1,

}
(4.1)

where Θ(x) :=
∫ x

0 θ(y) dy + c, with the constant c > 0 chosen so that Θ(x) = |x|
for |x| > 1. We think of ϕj and kj as matching variables in the far field and we
shall consider ψ0 = (ϕ0, k0) as free parameters and ψ1 = (ϕ1, k1) as variables, and
write ψ = (ψ0, ψ1), such that ϕ = ϕ(x; ψ), ϕ± = ϕ±(x; ψ). We write

uψ
p (x) := up(k∗x + ϕ(x; ψ); k∗ + ϕ′(x; ψ)),

u±,ψ
p (x) := up(k∗ + ϕ±(x; ψ); k∗ + (ϕ±)′(x; ψ)).

}
(4.2)

We then substitute the ansatz u(x) = uψ
p +w into the stationary Swift–Hohenberg

equation, to obtain

LSH(uψ
p + w) + F (uψ

p + w) + εg = 0, (4.3)

where
LSH = −(1 + ∂2

x)2, F (u) = µu − u3.

The phase shifts ϕ± encode simply shifted phases and wavenumbers, so that u±,ψ
p

are solutions to the Swift–Hohenberg equation and, for both + and −,

χ±(LSHu±,ψ
p + F (u±,ψ

p )) = 0.

Subtracting these from (4.3) gives

LSHw + F ′(uψ
p )w + N(w, ψ) + K + εG = 0, (4.4)

where

N(w, ψ) = F (uψ
p + w) − F (uψ

p ) − F ′(uψ
p )w = O(w2), G = g(x, uψ

p + w),

and the commutator

K = LSHuψ
p −

∑
±

χ±LSHu±,ψ
p + F (uψ

p ) −
∑

χ±F (u±,ψ
p )

depends only on ψ. In particular, one readily finds that K is compactly supported
and smooth in ψ as an element of Hk

γ for any k, γ. Expanding

K = K1 · ψ + K2, K2 = O(|ψ|2),

gives
Lψ(w, ψ) + N (w, ψ) + εG(w, ψ) = 0, (4.5)
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where
Lψ(w, ψ) = LSHw + F ′(uψ

p )w + K1 · ψ,

with the following notation:

K1 := ∂ψK|ψ=0 = (Kϕ0 , Kk0 , Kϕ1 , Kk1),

N (w, ψ) := N(w, ψ) + K2 = O(|w|2 + |ψ|2).

Our goal is to use Lyapunov–Schmidt reduction to solve (4.5) with variables w, ψ1
and parameters ε, ψ0, near the trivial solution k0 = k1 = ϕ1 = ε = 0, w = 0 and
ϕ0 ∈ [0, 2π) fixed.

Remark 4.1. Without loss of generality, we can also redefine the primary pattern,
shifting its location by ϕ0/k∗ in a ϕ0-dependent fashion, and subsequently applying
the shift x′ = x − ϕ0/k∗ in (1.1). As a consequence, in our proof, ϕ0 ≡ 0; in other
words, ϕ0 as a variable does not appear within uψ

p , and the dependence on ϕ0 is
moved to g = g(x′ + ϕ0/k∗, u).

Making the role of variables versus parameters explicit, we further decompose:

Lψ(w, ψ) = Lψ
1 (w, ψ1) + Lψ

0 ψ0,

with

Lψ
1 (w, ψ1) = LSHw + F ′(uψ

p )w + Kϕ1ϕ1 + Kk1k1, Lψ
0 ψ0 = Kϕ0ϕ0 + Kk0k0.

In order to implement Lyapunov–Schmidt reduction, we proceed as follows. We
precondition (4.5) with M(ψ) := (Lψ

1 )−1 and consider the resulting equation,

(w, ψ1) + M(ψ)(Lψ
0 ψ0 + N (w, ψ) + εG(w, ψ)) = 0,

on H4
γ∗−3−δ × R

2 in a neighbourhood of the origin, with parameters ψ0, ε. The
following two ingredients ensure that we can actually apply the implicit function
theorem near the trivial solution w = ψ1 = 0.

(i) The inverse M(ψ) is bounded from L2
γ to H4

γ−2 × R
2, and is C1 in ψ when

considered as an operator from L2
γ to H4

γ−3−δ for γ > 3
2 .

(ii) The nonlinearity N is of class C1 as a map from H4
γ × R

4 into L2
2γ , with

vanishing derivatives at the origin.

We then choose γ = γ∗ in (i) and 2γ = γ∗ in (ii), which gives the restriction
2(γ∗ − 3 − δ) > γ∗, compatible with γ∗ > 6.

The second part is quite standard, using the fact that u �→ u · u maps Hk
γ into

Hk
2γ for k > 1

2 , and we shall focus on the first part in the next two subsections. We
therefore proceed in several steps. We first show bounded invertibility for ψ = 0
in § 4.1; in particular, we compute the derivatives of K and their projection on
the cokernel of L0

1 = LSH + F ′(up), where up simply stands for up(ξ; k∗). We then
show bounded invertibility and continuity of Lψ

1 for ψ �= 0 using a decomposition
argument in § 4.2. Finally, we compute expansions in § 4.3.
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4.1. Invertibility at ψ ≡ 0

In this subsection we drop the subscripts from L0
1. We first show that

L0 = LSH + F ′(up) (4.6)

is Fredholm and identify the cokernel. We then compute projections of the partial
derivatives of K1 on the cokernel, and finally identify projection coefficients with
effective diffusivity. Recall that up(ξ; k∗), ξ = k∗x, denotes a periodic solution to
the unperturbed Swift–Hohenberg equation. Throughout this section we shall write
u′

p := ∂xup = k∗∂ξup(ξ; k∗), ∂ξup := ∂ξup(ξ; k∗) and ∂kup := ∂kup(ξ; k∗).

4.1.1. Fredholm properties of L0

We start by putting the results from § 3 to work.

Proposition 4.2. Let assumptions 2.1–2.3 hold. For all γ > 3
2 , the linear operator

L0 : D(L0) ⊂ H4
γ−2 → L2

γ is Fredholm of index −2, with trivial kernel and cokernel
spanned by u′

p and up,k∗ = x∂ξup + ∂kup.

Proof. According to proposition 3.17 and the fact that m = 2, there exist e0 and e1
so that the operator L̃0 := −[1+(k∗∂ξ)2]2 +µ−3u2

p(ξ; k∗), which is the counterpart
of the operator P, satisfies

L̃0e0 = 0, L̃0(e1 + iξe0) = 0.

By definition, L̃0 is a rescaling of L0 and thus e0 is the normalized version of
u′

p = k∗∂ξup. According to the dependence on parameter k of up(ξ; k), we readily
derive

L̃0(∂kup + x∂ξup) = 0,

which, combined with the invertibility of L̃0 restricted to the subspace of even,
2π-periodic functions, shows that ∂kup + x∂ξup is a rescaling of e1 + iξe0. As a
result, we now conclude that the results in this proposition follow naturally from
the self-adjointness of L0.

4.1.2. Spanning the cokernel

As a next step, we compute the scalar products between

K1 := ∂ψK|ψ=0 = (Kϕ0 , Kk0 , Kϕ1 , Kk1)

and the elements in the cokernel. More precisely, we show that Kϕ0 = Kk0 = 0 and
that Kϕ1 and Kk1 span up,k∗ and u′

p in the following sense:

det
(

〈u′
p, Kϕ1〉 〈up,k∗ , Kϕ1〉

〈u′
p, Kk1〉 〈up,k∗ , Kk1〉

)
�= 0, (4.7)

where 〈·, ·〉 denotes the standard inner product in L2(R).
First, a straightforward calculation shows that the total derivative of K is

∂ψK|ψ=0 = L0(∂ξup∂ψϕ|ψ=0 + ∂kup∂ψϕ′|ψ=0)

−
∑
±

χ±L0(∂ξup∂ψϕ±|ψ=0 + ∂kup∂ψ(ϕ±)′|ψ=0), (4.8)
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where L0 = LSH + F ′(up) as defined in (4.6) and

∂ψϕ = (−1, x,−θ, Θ), ∂ψϕ′ = (0, 1,−θ′, θ),

∂ψϕ± = (−1, x,∓1,±x), ∂ψ(ϕ±)′ = (0, 1, 0,±1).

We then exploit the facts that χ± is a partition of unity and θ = χ+ −χ− to obtain
expressions for each partial derivative in (4.8):

Kϕ0 = Kk0 = 0,

Kϕ1 = [θ, L0]∂ξup − L0(θ′∂kup),

Kk1 = L0(Θ∂ξup + θ∂kup) − θL0(x∂ξup + ∂kup).

Recalling that up,k∗ = x∂ξup + ∂kup, we can further simplify the formula for Kk1

into the following form:

Kk1 = [L0, θ]up,k∗ + L0(Θ∂ξup − θx∂ξup).

We now proceed to show that (4.7) is true. Noting that L0 is self-adjoint, θ′ and
Θ − θx are compactly supported, u′

p = k∗∂ξup and

[L0, w]v = LSH(wv) − wLSHv = [−∂4
x − 2∂2

x, w]v,

we derive the expressions of projections of Kϕ1 and Kk1 on the cokernel:

〈u′
p, Kϕ1〉 = k−1

∗ 〈u′
p, [θ, L0]u′

p〉 = k−1
∗ 〈u′

p, [∂4
x + 2∂2

x, θ]u′
p〉, (4.9)

〈up,k∗ , Kϕ1〉 = k−1
∗ 〈up,k∗ , [θ, L0]u′

p〉 = k−1
∗ 〈up,k∗ , [∂4

x + 2∂2
x, θ]u′

p〉, (4.10)

〈u′
p, Kk1〉 = 〈u′

p, [L0, θ]up,k∗〉 = −〈u′
p, [∂4

x + 2∂2
x, θ]up,k∗〉, (4.11)

〈up,k∗ , Kk1〉 = 〈up,k∗ , [L0, θ]up,k∗〉 = −〈up,k∗ , [∂4
x + 2∂2

x, θ]up,k∗〉. (4.12)

A straightforward computation gives

∫
R

u[∂2m
x , w]v dx =

∫
R

w′
2m−1∑
j=0

(−1)ju(j)v(2m−1−j) dx, (4.13)

which has the following two consequences related to (4.7).

(i) Applying (4.13) to (4.10) and (4.11), we conclude that the off-diagonal ele-
ments in (4.7) coincide, taking the form

〈u′
p, Kk1〉 = k∗〈up,k∗ , Kϕ1〉

=
∫

R

θ′
[ 3∑

j=0

(−1)ju
(j)
p,k∗

u(4−j)
p + 2

1∑
j=0

(−1)ju
(j)
p,k∗

u(2−j)
p

]
dx. (4.14)

(ii) Expression (4.13) is zero if u · v · w is odd and all u, v, w are either even or
odd. Noting that u′

p and θ are odd and up,k∗ is even, we conclude that the
diagonal elements in (4.7) vanish, i.e.

〈u′
p, Kϕ1〉 = 〈up,k∗ , Kk1〉 = 0. (4.15)
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To further simplify the expression of off-diagonal elements (4.14), we note that the
projections on the cokernel are independent of the choice of θ. More specifically,
suppose θ1 and θ2 differ by a compactly supported term, δθ. We can evaluate the
contribution of δθ to our projections:∫

R

u′
p[L0, δθ]up,k∗ dx =

∫
R

u′
pL0(δθup,k∗) − u′

pδθL0up,k∗ dx = 0.

As a result, as θ′ → 2δx0 , (4.14) converges to

〈u′
p, Kk1〉 = k∗〈up,k∗ , Kϕ1〉

= 2
[ 3∑

j=0

(−1)ju
(j)
p,k∗

u(4−j)
p + 2

1∑
j=0

(−1)ju
(j)
p,k∗

u(2−j)
p

]∣∣∣∣
x=x0

, (4.16)

where x0 ∈ R is arbitrary. Now, using up,k∗ = (x/k∗)u′
p + ∂kup and u′

p(0) =
u′

p(2π/k∗) = 0, averaging the constant expression in (4.16) over a period x0 ∈
[0, 2π/k∗] and integrating by parts, we find

〈u′
p, Kk1〉 = k∗〈up,k∗ , Kϕ1〉 =

2
π

∫ 2π/k∗

0
[k∗∂k((u′′

p)2 − (u′
p)2) + (3(u′′

p)2 − (u′
p)2)] dx.

(4.17)
Next, we shall see how this expression relates to the effective diffusivity, and hence
conclude that it does not vanish. As a consequence, L0 is bounded invertible.

4.1.3. Computing the effective diffusivity

We first recall the definition of LB(σ) from (2.3), and consider the eigenvalue
equation

LB(σ)e(σ) = λ(σ)e(σ) (4.18)

for λ(0) = 0 and σ ∼ 0. Expanding

LB(σ) = L0 + L1σ + L2σ
2 + O(σ3),

e(σ) = e0 + e1σ + e2σ
2 + O(σ3),

λ(σ) = λ2σ
2 + O(3),

and setting e0 = u′
p and 〈e0, e(σ) − e0〉L2(0,2π/k∗) = 0, we find explicitly that

L0 = −(1 + ∂2
x)2 + µ − 3u2

p(x), L1 = −4i(1 + ∂2
x)∂x, L2 = 2 + 6∂2

x,

which, when plugged into the eigenvalue equation (4.18), solve

L0e0 = 0, L1e0 + L0e1 = 0, L0e2 + L1e1 + L2e0 = λ2e0.

Noting that 〈e1, e0〉L2(0,2π/k∗) = 0, we project the equation for λ2 onto e1, i.e.

λ2〈e0, e0〉L2(0,2π/k∗) = 〈L1e1 + L2e0, e0〉L2(0,2π/k∗). (4.19)

In order to determine e1, we recall lemma 2.4 and note that ∂kup(kx; k) at k = k∗
satisfies

−4k∗(1 + k2
∗∂2

ξ )∂2
ξup + (−(1 + k2

∗∂2
ξ )2 + µ − 3u2

p)∂kup = 0
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or, equivalently, L1e0 + L0(ik∗∂kup) = 0, which gives

e1 = ik∂kup.

Inserting the expansions for L1, L2 and e1 into (4.19) gives

λ2

∫ 2π/k∗

0
(u′

p)2 dx = −2
∫ 2π/k∗

0
[k∗∂k((u′′

p)2 − (u′
p)2)+(3(u′′

p)2 − (u′
p)2)] dx. (4.20)

Therefore, combining (4.17) and (4.20), we conclude that

〈u′
p, Kk1〉 = k∗〈up,k∗ , Kϕ1〉 = −λ2

π

∫ 2π/k∗

0
(u′

p)2 dx. (4.21)

Remark 4.3. Note that a similar reasoning to that in the proof of proposition 4.2
shows that for γ > 3

2 the operators L±,ψ = LSH + F ′(u±,ψ
p ), with u±,ψ

p as in (4.2),
are also Fredholm operators from H4

γ−2 to L2
γ . Moreover, because the inner products

(4.9)–(4.12) depend continuously on the parameter ψ, the terms Kφ1 and Kk1 span
the cokernel of these operators as well.

4.2. Invertibility of Lψ
1

The invertibility of Lψ
1 for ψ = (0, ϕ0, 0, 0) can be derived straightforwardly

from the invertibility of L0
1 due to the simple fact that Lψ

1 for ψ = (0, ϕ0, 0, 0) is
conjugate to L0

1 via a spatial translation. As a result, we only need to deal with
the operator Lψ

1 for ψ ∼ 0. The operators Lψ
1 are close to L0

1, but the difference is
in general not relatively bounded. The difficulty stems from the fact that L0

1 ‘gains
localization’ in certain components, whereas the difference Lψ

1 − L0
1, a bounded

multiplication operator, does not affect localization. Therefore, a simple Neumann
series perturbation argument will not suffice to establish the invertibility of Lψ

1 . We
establish somewhat weaker bounds on an inverse of Lψ

1 , as follows. First, using the
results from § 4.1 and changing notation in order to make the distinction between
variables and parameters explicit, we write a more complete definition of Lϑ

1 , i.e.

Lϑ
1 (w, ψ1) := −(1 + ∂2

x)2w + µw − 3(uϑ
p)2w + Kϕ1α0 + Kk1α1 = h, (4.22)

where ϑ = (ϑ1, ϑ2, ϑ3, ϑ4) denotes the parameter, and w, ψ1 = (α0, α1) are vari-
ables. The following proposition then shows the invertibility of this operator and
its differentiability with respect to ϑ.

Proposition 4.4. For γ > 3
2 , (4.22) possesses a solution (w, ψ1) such that

‖w‖H4
γ−2

+ |ψ1| � C‖h‖L2
γ
,

with constant C independent of sufficiently small ϑ. Moreover, the solution depends
continuously on ϑ in H4

γ−2−δ, and is differentiable in ϑ, when considered in spaces
with weaker localization:

‖∂ϑw‖H4
γ−3−δ

+ |∂ϑψ1| � C‖h‖L2
γ
.
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Proof. For ease of notation we let m0 = Kϕ1 and m1 = Kk1 , and look for solutions
to

Lϑ
1 (w, ψ1) = Lϑw + α0m0 + α1m1 = h, (4.23)

where w ∈ H4
γ−2, α0, α1 ∈ R are variables, h ∈ L2

γ−2, and

Lϑw = −(1 + ∂2
x)2w + µw − 3(uϑ

p)2w.

We recall as well that m0 and m1 span the cokernel of L±,ϑ = −(1 + ∂2
x)2 + µ −

3(u±,ϑ
p )2, where u±,ϑ

p is as defined in (4.2). We decompose (4.23) using the partition
of unity, w = w+ + w−, h = h+ + h−, w± = χ±w, h± = χ±h and obtain

L+,ϑw+ +
1∑

j=0

(αj − βj)mj + (Lϑ − L−,ϑ)w− − h+ = 0, (4.24)

L−,ϑw− +
1∑

j=0

βjmj + (Lϑ − L+,ϑ)w+ − h− = 0. (4.25)

To solve (4.24) and (4.25) for w±, αj , βj , j ∈ {0, 1}, we shall consider the cross-
coupling terms (Lϑ − L±,ϑ)w± as small perturbations. Note that, given h ∈ L2

γ ,
the system

L+,ϑw+ +
∑

(αj − βj)mj − h+ = 0,

L−,ϑw− +
∑

βjmj − h− = 0,

possesses a unique solution (w+, w−, α1, α2, β1, β2), where w− ∈ H4
γ−2,γ′ and w+ ∈

H4
γ′,γ−2, with γ′ arbitrarily large, since h± are supported on ±x > −1. Given |ϑ|

small, the cross terms are small bounded operators when considered on these spaces,
since, for instance, supp(Lϑ − L−,ϑ) ⊂ R

+ and w−|R+ ∈ H4
γ′ . This establishes the

existence of a bounded inverse, with w = w+ + w− ∈ H4
γ−2. It remains to establish

the desired smooth dependence of the solution w = (w, α0, α1) on ϑ. Simplifying
the notation Lϑ

1w = h to L(ϑ)(w(ϑ)) = h, we find

w(ϑ + ζ�) − w(ϑ) = −L(ϑ)−1(L(ϑ + ζ�) − L(ϑ))w(ϑ + ζ�),

where 0 < ζ � 1 and ϑ, � ∈ R
4 with |�| = 1 and |ϑ| sufficiently small. Now

L(ϑ)−1(L(ϑ + ζ�) − L(ϑ)) converges to zero when considered as an operator from
H4

γ−2 → H4
γ−2−δ for any δ > 0, which, using uniform bounds for w(ϑ + ζ�), estab-

lishes continuity. Difference quotients, and therefore continuity of partial deriva-
tives, can be established in a similar fashion. Note, however, that the dependence
of the operator Lϑ on the parameter comes from the coefficient

3(uϑ
p)2 = 3[up(k∗x + ϕ; k∗ + ϕ′)]2

via
ϕ(x) = ϑ1x + ϑ2 + ϑ3Θ(x) − ϑ4θ(x).

Therefore, derivatives of w(ϑ) with respect to ϑj , j = 1, 3, induce linear growth
and involve the loss of one degree of localization.
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4.3. Reduced equations and expansions

In order to obtain approximations for the variables (w, ϕ1, k1), we assume expan-
sions of the form

w = w1(ϕ0, k0)ε + O(ε2),

ϕ1 = Mϕ(ϕ0, k0)ε + O(ε2),

k1 = Mk(ϕ0, k0)ε + O(ε2),

and we observe that the first-order approximations of (w1, Mϕ, Mk) satisfy the
following equation:

L0w1 + Kϕ1Mϕ + Kk1Mk + G1 = 0,

where by remark 4.1 we have that

G1 = g

(
x′ +

ϕ0

k∗
, up((k∗ + k0)x′; k∗ + k0)

)
.

We then proceed to use Lyapunov–Schmidt reduction and obtain the following
reduced equations by projecting on the cokernel of L0:

0 = 〈up,k∗ , Kϕ1〉Mϕ + 〈up,k∗ , G1〉,
0 = 〈u′

p, Kk1〉Mk + 〈u′
p, G1〉,

where the variables Mϕ and Mk depend on k0 and ϕ0. Then, combining these results
with (4.21) and (4.16), and in the particular case of k0 = 0, we obtain formulae for
Mϕ(ϕ0, 0) and Mk(ϕ0, 0), i.e.

Mϕ(ϕ0, 0) =
(

πk∗

∫
R

g

(
x′ +

ϕ0

k∗
, up

)
up,k∗ dx′

)(
λ2

∫ 2π/k∗

0
(u′

p)2 dx

)−1

,

Mk(ϕ0, 0) =
(

π

∫
R

g

(
x′ +

ϕ0

k∗
, up

)
u′

p dx′
)(

λ2

∫ 2π/k∗

0
(u′

p)
2 dx

)−1

.

It is useful to again consider the change of variables x′ = x − ϕ0/k∗, and write∫
R

g

(
x′ +

ϕ0

k∗
, up

)
u′

p dx′ =
∫

R

g(x, up(k∗x − ϕ0; k∗))u′
p(k∗x − ϕ0; k∗) dx,

which, in the case of g = ∂uH(x, u) for some function H, implies that∫
−Mk dϕ0 :=

1
2π

∫ 2π

0
Mk(ϕ0, 0) dϕ0 = 0.

5. Discussion

In this paper, we developed a functional-analytic framework for perturbation theory
in the presence of the essential spectrum, induced by non-compact translation sym-
metry. The key ingredients are algebraically weighted spaces, which include the loss
of localization by the inverse according to the spatial multiplicity of the essential
spectrum. We restricted our analysis to ‘simple’ branches of the essential spectrum
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for notational simplicity, but the methods can be generalized to more complicated
situations. The framework included problems on infinite lattices and cylinders. A
crucial assumption is that there is precisely one unbounded direction.

We showed how such results can be used to study defects (here, impurities) in
striped phases. The framework of algebraically localized spaces here allows the alge-
braic decay of impurities. One naturally encounters negative Fredholm indices in
the linearization, which one may compensate for by adjusting parameters in the
far field. In fact, the spatial multiplicity is related directly to the fact that periodic
patterns come in two-parameter families. Technically, the decomposition into core
deformations (algebraically localized functions) and far-field deformations (wave-
number and phase corrections) can be employed in a variety of different contexts. In
particular, our approach establishes the basis for the continuation of localized defor-
mations, such as defects in parameters, using more classical algorithms of numerical
continuation [16,18].

We emphasize that our results do not depend on the particular equation studied,
as long as one is able to determine the existence of periodic patterns and estab-
lish the linearization properties. Both existence and stability properties can be
established in very reliable ways by solving simple periodic boundary-value prob-
lems. In particular, one can treat reaction–diffusion systems without much adap-
tation. Technically more interesting would be systems with conserved quantities,
such as Cahn–Hilliard, phase-field or diblock copolymer models, since mass con-
servation induces an additional multiplicity in the essential spectrum, violating
assumption 3.2 on simple kernels of L(0). One could also study problems in chan-
nels or infinite cylinders, particularly deformations of hexagonal spot arrays with
periodicity of inhomogeneities in one direction.

There are at least two alternative approaches. One could work in exponentially
weighted spaces, resorting to stronger assumptions on the inhomogeneity. Fredholm
properties of differential operators on the real line in exponentially weighted spaces
are well known [20, 25] and have been used in the context of perturbation and
bifurcation theory in the presence of the essential spectrum [8,25].

In a similar vein, one could cast the existence problem as a non-autonomous
differential equation in space x, and use dynamical systems tools to investigate the
effect of inhomogeneities. From this point of view, the periodic patterns form a
two-dimensional normally hyperbolic manifold of equilibria. One can then readily
calculate the effect of inhomogeneities on the periodic flow on this centre manifold
using traditional methods of averaging.

A major drawback of these more subtle methods is the reliance on a phase space
and exponential behaviour in normal directions. In particular, there is no clear
path towards perturbation of two-dimensional patterns. Algebraic weights, however,
allow finite-dimensional reductions in the presence of the essential spectrum in
higher dimensions [9, 10].
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Appendix A.

A.1. Fredholm properties of pseudo-derivatives [D(−i∂x)]−�

In this section we prove a more general version of proposition 3.7. More specifi-
cally, for any 	 ∈ Z

+, p ∈ (1,∞) and γ± ∈ R we define the regularized derivative

[D(−i∂x)]� : D([D(−i∂x)]�) ⊂ Lp
γ−−�,γ+−� → Lp

γ−,γ+

u �→ ∂�
x(1 + ∂x)−�u,

}
(A 1)

with domain

D([D(−i∂x)]�) = {u ∈ Lp
γ−−�,γ+−� | (1 + ∂x)−�u ∈ M �,p

γ−−�,γ+−�}.

By lemma A.2, it is straightforward to see that D([D(−i∂x)]�) is a Banach space
under the norm

‖u‖ := ‖u‖Lp
γ−−�,γ+−�

+ ‖(1 + ∂x)−�u‖M�,p
γ−−�,γ+−�

.

Moreover, the Fredholm properties of the bounded operator

[D(−i∂x)]� : D([D(−i∂x)]�) → Lp
γ−,γ+

are summarized in the following proposition.

Proposition A.1. For γ± ∈ R/{1 − 1/p, 2 − 1/p, . . . , 	 − 1/p}, the regularized
derivative [D(−i∂x)]� defined in (A 1) is Fredholm. Moreover, [D(−i∂x)]� satisfies
the following conditions.

(i) If γmax ∈ I0 := (−∞, 1− 1/p), the operator [D(−i∂x)]� is onto with its kernel
equal to P�(R).

(ii) If γmin ∈ I� := (	 − 1/p, ∞), the operator [D(−i∂x)]� is one-to-one with its
cokernel equal to P�(R).

(iii) If γmin ∈ Ii, γmax ∈ Ij with Ik := (k − 1/p, k + 1/p) for 0 < k ∈ Z < 	,
the kernel and cokernel of the operator [D(−i∂x)]� are respectively spanned by
P�−j(R) and Pi(R).

On the other hand, the range of the operator [D(−i∂x)]� is not closed if γ−, γ+ ∈
{1 − 1/p, 2 − 1/p, . . . , 	 − 1/p}.

We shall only prove the result in the isotropic case, i.e. for γ− = γ+ = γ, since
the proof for the anisotropic case follows the same arguments with straightforward
modifications. We start by showing in lemma A.2 that the operator

(1 ± ∂x) : W �,p
γ → W �−1,p

γ

is an isomorphism, and then establish the Fredholm properties of ∂�
x : Mk+�,p

γ−� →
Mk,p

γ in lemma A.4. By combining these two results one arrives at proposition A.1.

Lemma A.2. Given 	 ∈ Z
+, p ∈ (1,∞) and γ ∈ R, the operator 1 ± ∂x : W �,p

γ →
W �−1,p

γ is an isomorphism.
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Proof. We have the following commutative diagram:

W �,p
γ

	x
γ

��

1±∂x �� W �−1,p
γ

	x
γ

��
W �,p

M± �� W �−1,p

As a result, we have

(M±u)(x) = �x	γ(1 ± ∂x)(�x	−γu(x)) = (1 ± ∂x)u(x) − γx�x	−2u(x),

i.e. according to the Kondrachov embedding theorem, the operator M± is equal to
a compact perturbation of the invertible operator (1±∂x) : W �,p → W �−1,p. Noting
that kerM± = {0}, we conclude that M± is invertible.

To obtain the Fredholm properties of ∂�
x, we first generalize the canonical defini-

tion of ∂x : Mk+1,p
γ−1 → Mk,p

γ , k � 0, to the k < 0 regime: given k ∈ Z
−, the operator

∂x : Mk+1,p
γ−1 → Mk,p

γ is defined as

∂xu(v) = −〈〈u, ∂xv〉〉 for all u ∈ Mk+1,p
γ−1 , v ∈ M−k,q

−γ , (A 2)

where 1/p + 1/q = 1.

Remark A.3. The generalized operator ∂x : Lp
γ−1 → M−1,p

γ is an extension of the
canonical operator ∂x : M1,p

γ−1 → Lp
γ in the sense that ∂xu(v) = 〈〈∂xu, v〉〉 for any

u ∈ M1,p
γ−1 and v ∈ M1,q

−γ .

For this generalized operator, we have the following lemma, whose proof will
occupy the rest of this section.

Lemma A.4. Given k ∈ Z, 	 ∈ Z
+, p ∈ (1,∞) and γ ∈ R\{1−1/p, 2−1/p, . . . , 	−

1/p}, the operator
∂�

x : Mk+�,p
γ−� → Mk,p

γ (A 3)

is Fredholm. Moreover,

(i) if γ < 1 − 1/p, the operator (A 3) is onto with its kernel equal to P�(R),

(ii) if γ > 	 − 1/p, the operator (A 3) is one-to-one with its cokernel equal to
P�(R),

(iii) if j − 1/p < γ < j +1− 1/p, where j ∈ Z
+ ∩ [1, 	− 1], the kernel and cokernel

of the operator (A 3) are respectively P�−j(R) and Pj(R).

On the other hand, the operator (A 3) does not have a closed range if γ ∈ {1 −
1/p, 2 − 1/p, . . . , 	 − 1/p}.

We focus on the proof of the two primary cases when 	 = 1 and k = 0,−1, which
can be readily generalized to the case when 	 = 1 and k = n, −n−1 for n ∈ Z

+, and
then the case 	 > 1. The proof is given in various steps written as lemmas. We first
establish the Fredholm properties of the operator ∂x : M1,p

γ−1 → Lp
γ when γ > 1−1/p

in lemma A.5. We then establish those of the operator ∂x : Lp
γ−1 → M−1,p

γ when
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γ �= 1 − 1/p in lemmas A.7 and A.8, from which the Fredholm properties of the
operator ∂x : M1,p

γ−1 → Lp
γ when γ < 1 − 1/p follow. Finally, in lemma A.9 we show

that for γ = 1 − 1/p both operators do not have a closed range.

Lemma A.5. Given p ∈ (1,∞) and γ > 1 − 1/p, the operator ∂x : M1,p
γ−1 → Lp

γ is
Fredholm and one-to-one with its cokernel spanned by P1(R).

Remark A.6. We can readily apply the techniques from the following proof to
show that, given p ∈ (1,∞) and [γ+ − (1 − 1/p)][γ− − (1 − 1/p)] < 0, the operator
∂x : M1,p

γ−−1,γ+−1 → Lp
γ−,γ+

is bounded and invertible.

Proof. Given γ > 1 − 1/p, we write

Lp
γ,⊥ :=

{
f ∈ Lp

γ

∣∣∣∣
∫

R

f = 0
}

,

which is closed in Lp
γ since 1 is a bounded linear functional on Lp

γ . It is not difficult
to see that, for any u ∈ M1,p

γ−1, its derivative, ∂xu ∈ L1. We then consider

v(x) :=
∫ x

∞
∂xu(y) dy

and take C1 = limx→−∞ v(x). It is clear that there exists some C2 ∈ R such that
u(x) − v(x) = C2, which leads to

lim
x→∞

u(x) = C2, lim
x→−∞

u(x) = C2 + C1.

The fact that u ∈ Lp
γ−1 implies that if the limx→±∞ u(x) exists, it must be zero.

Thus, we have C1 = C2 = 0, i.e.
∫

R
∂xu dx = 0, and consequently

Rg(∂x) ⊆ Lp
γ,⊥.

We now claim that the inverse of ∂x can be defined as

∂−1
x : Lp

γ,⊥ → M1,p
γ−1

f �→
∫ x

∞
f(y) dy.

⎫⎪⎬
⎪⎭ (A 4)

The fact that ∂−1
x is well defined reduces the claim to verifying that

u(x) =
∫ x

∞
f(y) dy ∈ Lp

γ−1.

To do that, we let γ̃ := γ − (1 − 1/p) > 0 and split R into three intervals: R =
(−∞,−1) ∪ [−1, 1] ∪ (1,∞). First, it is not difficult to see that

‖u(x)‖Lp
γ̃−1/p([−1,1]) � C(γ, p) max

|x|�1
|u(x)| � C(γ, p)‖f‖L1(R) � C(γ, p)‖f‖Lp

γ(R),

(A 5)
where C(γ) is a constant varying with γ and p. For the interval (1,∞), we use a
logarithmic scaling, i.e.

τ := ln(x), w(τ) := eγ̃τu(eτ ), g(τ) := e(γ̃+1)τf(eτ ),
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so that the ordinary differential equation wτ − γ̃w = g admits a solution

w(τ) =
∫ τ

∞
eγ̃(τ−s)g(s) ds.

Applying Young’s inequality to the above integral equation, we obtain
√

2
(1/p−γ̃)‖u(x)‖Lp

γ̃−1/p((1,∞)) � ‖w(τ)‖Lp((0,∞))

� 1
γ̃

‖g(τ)‖Lp((0,∞))

� 1
γ̃

‖f(x)‖Lp
γ̃+1−1/p((1,∞)). (A 6)

For the interval (−∞, 1), a similar argument can be applied, which leads to the
inequality

‖u(x)‖Lp
γ̃−1/p((−∞,−1)) � C(γ, p)‖f(x)‖Lp

γ̃+1−1/p((−∞,−1)). (A 7)

Combining (A 5)–(A 7), we conclude that the operator (A 4) is well defined and we
have

‖∂−1
x f‖M1,p

γ−1
= ‖u‖Lp

γ−1
+ ‖f‖Lp

γ
� C(γ)‖f‖Lp

γ
,

which implies that ∂−1
x is also a bounded linear operator.

Lemma A.7. Given p ∈ (1,∞), we have that

(i) for γ > 1 − 1/p, the operator ∂x : Lp
γ−1 → M−1,p

γ is one-to-one,

(ii) for γ < 1 − 1/p, the operator ∂x : Lp
γ−1 → M−1,p

γ is Fredholm, onto with its
kernel equal to P1(R).

Proof. For γ > 1 − 1/p, consider u ∈ Lp
γ−1 with ∂xu = 0. We let {un}n∈N ⊂ C∞

0
such that un → u in Lp

γ−1, and then have that, for any v ∈ M1,q
−γ ,

∂xu(v) = −〈〈u, ∂xv〉〉 = lim
n→∞

〈〈∂xun, v〉〉 = 0,

which implies ∂xun → 0 in Lp
γ . We therefore have u = 0, proving the first statement

of the lemma.

For γ < 1 − 1/p, the operator ∂x : M1,q
−γ → Lq

1−γ , according to lemma A.5, is
a Fredholm operator with index −1 and cokernel equal to P1(R). Therefore, the
operator ∂x : Lp

γ−1 → M−1,p
γ , as the adjoint operator of ∂x : M1,q

−γ → Lq
1−γ with an

extra negative sign, is Fredholm with index 1 and kernel equal to P1(R).

Lemma A.8. Given p ∈ (1,∞), we have that

(i) for γ < 1−1/p, the Fredholm operator ∂x : M1,p
γ−1 → Lp

γ is onto with its kernel
equal to P1(R),

(ii) for γ > 1− 1/p, the Fredholm operator ∂x : Lp
γ−1 → M−1,p

γ is one-to-one with
its cokernel equal to P1(R).
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Proof. To prove the lemma we just need to show that each operator has a closed
range. We restrict our attention to the first operator, the second being analo-
gous. By way of contradiction, suppose that ∂x : M1,p

γ−1 → Lp
γ does not have a

closed range for γ < 1 − 1/q. Then there exists a sequence {un}n∈N ⊂ M1,p
γ−1 such

that dist(un, P1(R)) = 1 and ‖∂xun‖Lp
γ

→ 0. The norm inequality ‖∂xun‖M−1,p
γ

�
‖∂xun‖Lp

γ
, together with the fact that the operator ∂x : Lp

γ−1 → M−1,p
γ has a closed

range, shows that we can find a subsequence {vn} ⊂ ker(∂x) ⊂ M1,p
γ−1 such that

‖un − vn‖Lp
γ−1

→ 0. Therefore, we have

‖un − vn‖M1,p
γ−1

� ‖un − vn‖Lp
γ−1

+ ‖∂xun − ∂xvn‖Lp
γ

→ 0 as n → ∞,

i.e. dist(un, P1(R)) → 0, which is a contradiction and concludes the proof.

Lemma A.9. Given p ∈ (1,∞) and γ = 1−1/p, the operators ∂x : M1,p
γ−1 → Lp

γ and
∂x : Lp

γ−1 → M−1,p
γ do not have a closed range.

Proof. Let φ ∈ C∞
0 with 0 � φ � 1 and supp(φ) = [−1, 1]. Let un(x) = φ(x/n).

Then {∂xun}n∈Z+ is a bounded sequence in M−1,p
γ (and also in Lp

γ). However, if
γ = 1 − 1/p, the sequence {un}n∈N is unbounded in Lp

γ−1 (and also in W 1,p
γ−1).

Therefore, both operators do not have a closed range.

A.2. Fredholm properties of operators δ�−i
+ δi

−

Proposition A.10. Given k ∈ Z, 	 ∈ Z
+ p ∈ (1,∞), and γ ∈ R \ {1 − 1/p, 2 −

1/p, . . . , 	 − 1/p}, the operator

δ�−i
+ δi

− : Mk+�,p
γ−� → Mk,p

γ (A 8)

is Fredholm for i ∈ [0, 	] ∩ Z. Moreover,

(i) if γ < 1 − 1/p, the operator in (A 8) is onto with its kernel equal to P�(Z),

(ii) if γ > 	 − 1/p, the operator in (A 8) is one-to-one with its cokernel equal to
P�(Z),

(iii) if j − 1/p < γ < j +1− 1/p, where j ∈ Z
+ ∩ [1, 	− 1], the kernel and cokernel

of the operator in (A 8) are respectively P�−j(Z) and Pj(Z).

On the other hand, the operator in (A 8) does not have a closed range if γ ∈ {1 −
1/p, 2 − 1/p, . . . , 	 − 1/p}.

The proof of proposition A.10 is essentially the same as in the continuous case,
i.e. the proof of lemma A.4. The main technical difference lies in the proof of the
discrete version of lemma A.5, which we shall establish now.

Lemma A.11. For γ > 1 − 1/p and p ∈ [1,∞], discrete derivative operators

δ± : M 1,p
γ−1 �→ 	p

γ

are one-to-one Fredholm operators with both cokernels spanned by P1(Z).
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Proof. It is straightforward to see that δ± are isomorphic, and we only need to
prove the results for δ+. Just like the continuous version, the essential part is to
prove that

δ−1
+ : 	p

γ,⊥ → 	p
γ−1

{bj}j∈Z �→
{

−
∞∑

i=j

bi

}
j∈Z

,

where

	p
γ,⊥ =

{
{bj}j∈Z ∈ 	p

γ

∣∣∣∣ ∑
j∈Z

bj = 0
}

is the bounded inverse of δ+. To do this, we consider the following operator:

δ̃−1
+ : 	p

γ,⊥(N) → 	p
γ−1(N)

{bj}j∈N �→
{

−
∞∑

i=j

|bi|
}

j∈N

.

We define aj = −
∑∞

i=j bi for all j ∈ Z, and ãj = −
∑∞

i=j |bi| for all j ∈ N. It is then
not difficult to conclude that

(i) aj+1 − aj = bj for all j ∈ Z,

(ii) ãj+1 − ãj = |bj | for all j ∈ N,

(iii) {ãj}j∈N is an increasing sequence with non-negative entries,

(iv) |ãj | � |aj | for all j ∈ N.

For any γ̃ > 0 and j ∈ N, we introduce

Aj = 2jγ̃ ã2j , Bj = 2jγ̃
2j+1−1∑

i=2j

|bj |,

and have 2−γ̃Aj+1 − Aj = Bj or, equivalently,

Aj = −
∞∑

i=j

2(j−i)γ̃Bi,

which, according to Young’s inequality, leads to

‖{Aj}j∈N‖�p(N) � ‖{2−γ̃j}j∈N‖�1‖{Bj}j∈N‖�p(N) � 2γ̃

2γ̃ − 1
‖{Bj}j∈N‖�p(N). (A 9)
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Moreover, we have

‖{Aj}j∈N‖p
�p(N) =

∞∑
j=0

2γ̃pj−j(2j |ã2j |p)

�
∞∑

j=0

2(γ̃p−1)j
( 2j+1−1∑

i=2j

|ãi|p
)

� min{41−γ̃p, 1}
∞∑

j=0

( 2j+1−1∑
i=2j

�i	γ̃p−1|ãi|p
)

= min{41−γ̃p, 1}‖{ãj}j∈Z+‖p
�p

γ̃−1/p(Z+)

� min{41−γ̃p, 1}‖{aj}j∈Z+‖p
�p

γ̃−1/p(Z+) (A 10)

and

‖{Bj}j∈N‖p
�p(N) =

∞∑
j=0

2(γ̃+1)pj

(
1
2j

2j+1−1∑
i=2j

|bi|
)p

�
∞∑

j=0

2[(γ̃+1)p−1]j
( 2j+1−1∑

i=2j

|bi|p
)

� max{41−(γ̃+1)p, 1}
∞∑

j=0

( 2j+1−1∑
i=2j

i(γ̃+1)p−1|bi|p
)

= max{41−(γ̃+1)p, 1}‖{bj}j∈Z+‖p
�p

γ̃+1−1/p(Z+). (A 11)

Combining (A 9)–(A 11), we conclude that there exists C(γ̃, p) > 0 such that

‖{aj}j∈Z+‖�p
γ̃−1/p(Z+) � C(γ̃, p)‖{bj}j∈Z+‖�p

γ̃+1−1/p(Z+)

� C(γ̃, p)‖{bj}j∈Z‖�p
γ̃+1−1/p(Z).

By shifting and letting j → −j, we can also show that

‖{aj}j∈Z−∪{0}‖�p
γ̃−1/p(Z−∪{0}) � C(γ̃, p)‖{bj}j∈Z‖�p

γ̃+1−1/p(Z).

In conclusion, letting γ̃ = γ − 1 − 1/p > 0, there exists C(γ, p) > 0 such that

‖{aj}j∈Z‖�p
γ−1

� C(γ, p)‖{bj}j∈Z‖�p
γ
,

which concludes the proof.
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