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Abstract

A uniform recursive tree on n vertices is a random tree where each possible (n − 1)!
labelled recursive rooted tree is selected with equal probability. We introduce and study
weighted trees, a non-uniform recursive tree model departing from the recently intro-
duced Hoppe trees. This class generalizes both uniform recursive trees and Hoppe trees,
providing diversity among the nodes and making the model more flexible for applica-
tions. We analyse the number of leaves, the height, the depth, the number of branches,
and the size of the largest branch in these weighted trees.
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1. Introduction

A uniform recursive tree (URT) on n vertices is a rooted random recursive tree where each
possible (n − 1)! distinct tree has the same probability of appearing. Another way of looking at
uniform recursive trees is that one starts constructing the tree with only the root (node 1) and
node 2 attached to the root. At each subsequent step, k = 3, . . . , n, node k connects to one of
the prior nodes with equal probability 1/(k − 1). A detailed survey on URTs can be found in
[11], and a book length treatment of random trees can be found in [5].

URTs have been used in various applications. These include, but are not restricted to,
the spread of epidemics [6], determining the genealogy of ancient and medieval texts [13],
analysing pyramid schemes [8], and the spread of a fire in a tree [12]. Though these inves-
tigations use uniformity in their models, having different distributions would provide more
flexibility to the researcher. Using URTs implies that in the model all nodes are assumed to
be identical in a certain sense. In the spread of epidemics, this means, for instance, that every
infected person is equally likely to infect the next one. Similarly, it means that in the study
of medieval texts every book is equally likely to be copied. This is obviously not the case in
real-world applications.

Parallel to the development of the theory of uniform recursive trees, various other recursive
tree structures have already been studied. Among the most well known are binary recursive
trees, which are described in [3]. Other non-uniform recursive tree models include plane-
oriented recursive trees [16], scaled attachment random recursive trees [4], and biased recursive
trees [1].
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Our interest here is on another natural generalization, Hoppe trees, as recently considered in
[10]. There, the root is assigned a weight θ ; all other nodes get weight 1. Node i then attaches
to the root with probability θ

θ+i−2 and to any other node with probability 1
θ+i−2 . This model is

associated with Hoppe’s urn, which has an application in modelling the alleles of a gene with
mutation rate θ > 0. Concerning many properties like the number of leaves, the height, and
the depth of node n, Hoppe trees behave similarly to uniform recursive trees in an asymptotic
sense.

The model in this paper generalizes the idea of Hoppe trees: we assign every node a weight
wi. Node j then attaches to node 1 ≤ i < j with probability wi

w1+···+wj−1
. We call the resulting

tree construction a weighted recursive tree (WRT).
Using weights is interesting from the point of view of applications since it allows one to

introduce diversity among the nodes. In the other non-uniform models discussed above, all
nodes have the same behaviour, or in other words they attract nodes according to the same
rule. When a recursive process does not satisfy such conditions, weighted recursive trees can
be used to model it more precisely. Moreover, the properties of weighted recursive trees and
how much they differ from the uniform model can be interpreted as an indicator for the stability
of a process. In various applications it is reasonable to assume that it is more probable for some
nodes to get children than others. For example, some persons might be more likely to infect
others, some copies of ancient texts are more likely to have been copied again, and some
people might be more likely to recruit new individuals. Thus it is interesting to see how much
fluctuation in the attachment probabilities can be tolerated when using the uniform model.

The rest of the paper is organized as follows. The next section introduces a coupling used
to construct a specific WRT from a Hoppe tree. Section 3 applies the coupling construction for
an analysis of the number of leaves and the height of the resulting random tree. In Section 4
we relate Hoppe trees to Hoppe permutations, and use the coupling construction of Section 2
to study the size of the largest branch. In Sections 5 and 6 we study the depth and the number
of branches of a general WRT.

2. A useful coupling construction

2.1. Constructing WRTs from URTs

We will first introduce a coupling allowing us to construct a special kind of WRT from a
URT. We will not use this coupling in the analysis of random tree statistics because the second
coupling construction introduced below can be applied to a more general class of WRTs. We
still wanted to discuss this version because it has URTs rather than Hoppe trees as a starting
point, and URTs are a much better studied structure.

We will call trees that have a weight sequence such that the first k nodes have a constant
weight equal to θ and all other nodes have weight 1, θk-RTs. It is possible to construct a θk-RT
from a URT by a coupling construction when θ ∈N

+. To emphasize this assumption we will
use m instead of θ in this part. In particular, we can construct Hoppe trees for which the weight
of the root is a natural number by this coupling. To avoid confusion let us denote the nodes in
the URT by i and the nodes in the mk-RT obtained by the coupling by i∗.

The coupling construction in that case goes as follows: First construct a URT with mk +
n − k nodes. We write Tmk+n−k for this URT and T mk

n for the tree that we obtain at the end of
the coupling. Since we want the weight of the first k nodes to be m, we need to join several
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FIGURE 1: A WRT T 24

5 is constructed from a URT T9.

nodes into one. More precisely, we combine m nodes of the URT to get each of the first k nodes
of the mk-RT in the following way:

• Nodes 1, . . . , m become node 1∗;

• m + 1, . . . , 2m become node 2∗; · · ·
• (k − 1)m + 1, . . . , km become node k∗.

All nodes after km in Tmk+n−k correspond only to a single node in T mk

n ; we just need to
‘translate’ the names of the nodes to take into account that we used mk nodes instead of k
for the first k nodes in the reconstructed tree. More precisely, for j > km, node j in the URT
becomes node ( j − k(m − 1))∗ in the WRT.

The parent–child relations in the WRT follow from those in the URT as follows: If, for j >
km and i ≤ k, j is a child of one of the nodes (i − 1)m + 1, . . . , im in the URT, ( j − k(m − 1))∗
becomes a child of i∗ in the WRT. If, for j > km, the parent of node j is h with h > km, the
parent of node ( j − k(m − 1))∗ is node (h − k(m − 1))∗.

For the nodes before or equal to km, we need to be more careful, since we joined several
nodes into one and the nodes ( j − 1)m + 1, . . . , jm might have different parents in the URT.
To settle this ambiguity, for 1 < j ≤ k we set the parent of j∗ as the parent of ( j − 1)m + 1,
i.e. of the node with the smallest label among those that become j∗. Thus, if in the URT the
parent of ( j − 1)m + 1 is any of the nodes (i − 1)m + 1, . . . , im, the parent of j∗ is i∗. It can be
easily verified that the attachment probabilities obtained correspond to those of an mk-tree; for
details, see [9].

In Figure 1 we present a small example of the coupling construction. In the example, nodes
1 and 2 combine to form node 1∗, and nodes 3 and 4 become node 2∗. Then nodes 5 and 6
become node 3∗, and 3∗ is a child of 2∗, since node 5 is a child of node 4 in the URT. Nodes
7 and 8 become node 4∗, and 4∗ is a child of 1∗ since node 7 is a child of node 1 in the URT.
Finally, node 9 becomes node 5∗, and 5∗ is a child of 4∗ since node 9 is a child of node 7 in
the URT.

We now show, as an example, how the coupling can be used to study the number of leaves,
i.e. the number of nodes without children, of an mk-RT. Let Lmk+n−k denote the number of
leaves of Tmk+n−k, and Lmk

n denote the number of leaves of T mk

n . Then Lmk+n−k can be used

to bound Lmk

n . First, if node i > km is a leaf in Tmk+n−k, the corresponding node in T mk

n , which
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is (i − k(m − 1))∗, is also a leaf. The reconstruction process thus only affects the children of
the nodes i∗ with 1 ≤ i ≤ k, and the root cannot be a leaf, so we can have at most k − 1 addi-
tional leaves. Moreover, for each 1 ≤ i ≤ k we can ‘lose’ at most m − 1 leaves since if all
of (i − 1)m + 1, . . . , im are leaves in Tmk+n−k, i∗ will be a leaf in T mk

n too. Hence, we can
conclude that

Lmk+n−k − k(m − 1) <Lmk

n <Lmk+n−k + k − 1.

Together with results about the expected number of leaves of URTs, this implies, after some
simple manipulations, that ∣∣∣E[Lmk

n ] −E[Ln]
∣∣∣≤ k(m + 1)

2
,

where Ln denotes the number of leaves in a URT on n nodes. It is possible to derive other
results from this coupling, but since the coupling we present below is more general, we will
not go further into it here.

2.2. Constructing WRTs from Hoppe trees

We will now introduce a coupling construction for WRTs whose nodes have constant weight
after a certain index, a class similar to, but more general, than θk-RTs. Let T w

n be a WRT, and
(wi)i∈N, the weight sequence of T w

n , be such that there is a k ∈N such that wi = 1 for all i > k.
Then we can construct T w

n from a Hoppe tree with root weight θ =∑k
i=1 wi by a coupling

construction, more precisely by splitting the root into k nodes. To avoid confusion we will
write i for node i in the Hoppe tree and i∗ for node i in the reconstructed tree.

We now describe the coupling construction: First construct a Hoppe tree on n − k + 1 nodes
and with θ , the weight of the root, equal to

∑k
i=1 wi. Then construct a WRT of size k corre-

sponding to (wi)i∈{1,...,k}. Now we replace the root of the Hoppe tree by this weighted recursive
tree of size k in the following way: nodes 1∗, 2∗, . . ., k∗ are the nodes of the WRT of size k we
just constructed. For i ≥ 2, node i in the Hoppe tree becomes node (i + k − 1)∗ in the recon-
structed tree, so we shift the names of the rest of the nodes by k − 1. Then, for all i ≥ 2, if i is a
child of node 1 in the Hoppe tree, (i + k − 1)∗ becomes a child of one of the nodes 1∗, . . . , k∗
in the reconstructed tree, proportionally to their weights. This means that if i is a child of node
1 in the Hoppe tree, for 1 ≤ j∗ ≤ k, node (i + k − 1)∗ will become a child of a node j∗ in the
reconstructed tree with probability wj∑k

�=1 w�

.

Let us check that this gives the attachment probabilities corresponding to the WRT we aim
to construct.

For 1 ≤ i∗ ≤ k < j∗,

P( j∗ is child of i∗) = P( j − k + 1 is child of 1, i∗ is chosen as the parent of j∗)

=
∑k

�=1 w�

j − k + 1 − 2 +∑k
�=1 w�

wi∑k
�=1 w�

= wi

j − 1 − k +∑k
�=1 w�

.

For k < i∗ < j∗,

P( j∗ is child of i∗) = P( j − k + 1 is child of i − k + 1)

= 1

j − k + 1 − 2 +∑k
�=1 w�

= 1

j − 1 − k +∑k
�=1 w�

.

The following two sections will be using the coupling construction just described.
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3. Use of the coupling in WRT statistics

In this section we apply the coupling construction of the previous section to study the num-
ber of leaves in a WRT and the height of a Hoppe tree. Later, in Section 4, the coupling
construction will also be used in order to understand the size of the largest branch in a WRT.

3.1. Number of leaves

A node in a tree with degree one is said to be a leaf. Focusing on the number of leaves, the
reconstruction process in our coupling construction implies that all the leaves of the Hoppe tree
are still leaves in the reconstructed tree, since we do not change any relation among the nodes
2, . . . , n − k + 1 of the Hoppe tree or, respectively, nodes (k + 1)∗, . . . , n∗ of the reconstructed
tree. There can be at most k − 1 additional leaves among the first k nodes. Thus, we can bound
the number of leaves Lw

n of T w by the number of leaves Lθ
n of T θ :

Lθ
n−k+1 ≤Lw

n ≤Lθ
n−k+1 + k − 1. (1)

In [10] the following results about the leaves of Hoppe trees are given. In this theorem and
below, G denotes a standard normal random variable.

Theorem 1. ([10].) Let Lθ
n denote the number of leaves of a Hoppe tree with n ≥ 2 nodes. Then

E[Lθ
n] = n

2
+ θ − 1

2
+O

(
1

n

)
,

Var(Lθ
n) = n

12
+ θ − 1

12
+O

(
1

n

)
,

P(|Lθ
n −E[Lθ

n]| ≥ t) ≤ 2 exp

{
− 6t2

n + θ + 1

}
for all t > 0, and

Lθ
n −E[Lθ

n]√
Var
(
Lθ

n

) −→d G as n → ∞.

Using the above theorem we can derive results on the number of leaves in WRTs whose
nodes have constant weight after a certain index.

Theorem 2. Let Lw
n denote the number of leaves of a WRT of size n with weight sequence

(wi)i∈N such that there is a k ∈N such that for all i > k we have wi = 1. Then

E[Lw
n ] = n

2
+ C +O

(
1

n

)
with |C| ≤

∑k
i=1 wi + k

2
,

Var(Lw
n ) = n

12
+O(

√
n),

P(|Lw
n −E[Lw

n ]| ≥ t) ≤ 2 exp

{
− 6(t − 2k + 2)2

n − k + 2 +∑k
i=1 wi

}
for all t > 2k − 2, and

Lw
n −E[Lw

n ]√
Var
(
Lw

n

) −→d G as n → ∞.
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Proof. First, for the expected value we get, from Theorem 1 and (1),

Lθ
n−k+1 ≤Lw

n ≤Lθ
n−k+1 + k − 1

⇒ n − k + 1

2
+
∑k

i=1 wi − 1

2
+O

(
1

n

)
≤E

[
Lw

n

]
≤ n − k + 1

2
+
∑k

i=1 wi − 1

2
+ k − 1 +O

(
1

n

)

⇒ n

2
+
∑k

i=1 wi − k

2
+O

(
1

n

)
≤E

[
Lw

n

]≤ n

2
+
∑k

i=1 wi + k − 2

2
+O

(
1

n

)

⇒E
[
Lw

n

]= n

2
+ C +O

(
1

n

)
,

where C depends on k and w1, . . . , wk, and we have |C| ≤
∑k

i=1 wi+k
2 .

Equation (1) also directly gives a concentration inequality. We have that

P(|Lw
n −E[Lw

n ]| ≥ t)

≤ P(|Lw
n −Lθ

n−k+1| + |Lθ
n−k+1 −E[Lθ

n−k+1]| + |E[Lθ
n−k+1] −E[Lw

n ]| ≥ t)

≤ P(|Lθ
n−k+1 −E[Lθ

n−k+1]| ≥ t − 2k + 2)

≤ 2 exp

{
− 6(t − 2k + 2)2

n − k + 2 +∑k
i=1 wi

}
.

The coupling also gives us an approximation for the variance. Let Y denote the number
of additional leaves among the first k nodes in the reconstructed tree. Then Var(Y) =O(k2)
since Y ≤ k. Since Var(Lw

n ) = Var(Lθ
n−k+1 + Y) = Var(Lθ

n−k+1) + Var(Y) + 2Cov(Lθ
n−k+1, Y),

we get, by the Cauchy–Schwarz inequality,

Var(Lw
n ) = n

12
+O(

√
n).

In a similar way, one can make conclusions about the asymptotic distribution. For this we
will need Slutsky’s theorem: Let Xn and Yn be sequences of random variables such that Xn →d
X and Yn → c in probability for c ∈R. Then

lim
n→∞ Xn + Yn =d X + c.

In order to derive a central limit theorem for Lw
n , we write

Lw
n −E[Lw

n ]√
Var(Lw

n )
= Lw

n −Lθ
n−k+1√

Var(Lw
n )

+ Lθ
n−k+1 −E[Lθ

n−k+1]√
Var(Lw

n )

+ E[Lθ
n−k+1] −E[Lw

n ]√
Var(Lw

n )
.

Now, by Theorem 1 and our previous result on Var(Lw
n ) we have

Lθ
n−k+1 −E[Lθ

n−k+1]√
Var(Lθ

n−k+1)

√
Var(Lθ

n−k+1)

Var(Lw
n )

−→d G as n → ∞,
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and since Var(Lw
n ) −→ ∞ as n → ∞ we have, by (1), that∣∣∣∣∣L

w
n −Lθ

n−k+1√
Var(Lw

n )
+ E[Lθ

n−k+1] −E[Lw
n ]√

Var(Lw
n )

∣∣∣∣∣≤ 2k√
Var(Lw

n )
→ 0 almost surely.

Now we can apply Slutsky’s theorem and conclude that

Lw
n −E[Lw

n ]√
Var(Lw

n )
→d G as n → ∞.

�
Remark 1. It might be possible to get results on the number of leaves of a general WRT T w

n
by writing Lw

n as the sum of 1(�w
i ), where �w

i denotes the event that node i is a leaf in T w
n . It

follows from the construction principle that

P
(
�w

i

)= n∏
j=i+1

(
1 − wi

w1 + · · · + wj−1

)
.

After some manipulation this expression becomes

P
(
�w

i

)= w1 + · · · + wi−1

w1 + · · · + wn−1

n−1∏
j=i+1

(
1 + wj − wi

w1 + · · · + wj−1

)
.

An exact expression for the expectation of the number of leaves of a θk-RT can be obtained by
writing

E

[
Lθk

n

]
=

n∑
i=2

E

[
1
(
�θk

i

)]
and using the expression above. After some computations we get

E

[
Lθk

n

]
= n

2
+ k(θ − 1)

2
+ kθ (1 − kθ )

2(k(θ − 1) + n − 1)
+ k − 1

2

n−1−k∏
i=1

θ (k − 1) + i

θk + i
.

Remark 2. For θk-RTs it is also possible to obtain results about the expectation, variance, and
concentration rate of the number of leaves by using a martingale argument similar to the one
in [10]; for details, see [9].

3.2. Height

As a second example we discuss the height of a WRT, which is defined as the length of the
longest path from the root to a leaf. Let Hw

n denote the height of a WRT with weight sequence
(wi)i∈N such that wi = 1 for i > k. Let, moreover, Dw

1,i and Dθ
1,i denote the distance between

the root and node i in the reconstructed weighted tree and the original Hoppe tree respectively.
For i ≤ k, Dw

1,i is at most k − 1. Also, for any i > k, the path from the root to i∗ corresponds to
the path from the root to the corresponding node in the original Hoppe tree, i.e. the distance
from the root to i − k + 1, except that we might have an additional path among the first k nodes
instead of the first edge. Thus, Dw

1,i is at least as big as Dθ
i−k+1.

Also, Dw
1,i is at most k − 1 bigger than the distance between the root and the corresponding

node in the original tree. Let j − k + 1 be the first node on the path from node 1 to i − k + 1 in
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the original tree. Then, in the reconstructed tree j∗ will be attached to some h∗, where 1 ≤ h ≤ k.
Thus, when we consider the path consisting of the path from the root to h∗ in the reconstructed
tree, the edge from h∗ to j∗ and the path from j − k + 1 to i − k + 1 in the Hoppe tree, we get
a path from 1∗ to i∗ in the reconstructed tree. Thus, for all k + 1 ≤ i ≤ n, there is some h ≤ k
such that

Dw
1,i =Dw

1,h + 1 +Dθ
j−k+1,i−k+1 =Dw

1,h +Dθ
1,i−k+1.

Also, Dw
1,h ≤ k − 1, so we have

Dθ
1,i−k+1 ≤ Dw

1,i ≤Dθ
1,i−k+1 + k − 1,

which implies that

max
i=1,...,n−k+1

{Dθ
1,i} ≤ max

i=1,...,n
{Dw

1,i} ≤ max
i=1,...,n−k+1

{Dθ
1,i} + k − 1.

Thus, from the definition of the height as Hn = maxi=1,...,n{D1,i}, we have

Hθ
n−k+1 ≤Hw

n ≤Hθ
n−k+1 + k − 1. (2)

We have the following result about the height of Hoppe trees.

Theorem 3. ([10].) Let Hθ
n denote the height of a Hoppe tree with n nodes. Then

E[Hθ
n] = e ln (n) − 3

2
ln ln n +O(1),

Var(Hθ
n) =O(1).

Together with the coupling, this allows us to derive the following theorem.

Theorem 4. Let Hw
n denote the height of a WRT of size n with weight sequence (wi)i∈N such

that there is a k ∈N such that, for all i > k, we have wi = 1. Then

E
[
Hw

n

]= e ln (n) − 3

2
ln ln (n) +O(1),

Var(Hw
n ) =O(1).

Proof. According to Theorem 3 we have E[Hθ
n−k+1] = e ln (n − k + 1) − 3

2 ln ln (n −
k + 1) +O(1). Note that

e ln (n − k + 1) − 3

2
ln ln (n − k + 1) = e

(
ln (n) + ln

(
1 − k − 1

n

))

− 3

2

(
ln ln (n) + ln

(
1 + ln

(
1 − k−1

n

)
ln (n)

))

= e ln (n) − 3

2
ln ln (n) + o(1).

Thus, we get, by (2) for n > k,

e ln (n) − 3

2
ln ln (n) +O(1) ≤E

[
Hw

n

]≤ e ln (n) − 3

2
ln ln (n) +O(1) + k − 1,
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which implies

E
[
Hw

n

]= e ln (n) − 3

2
ln ln (n) +O(1).

As before, we might define Y :=Hw
n −Hθ

n−k+1. Then, by (2), we have Y < k, so

Var(Hw
n ) = Var(Hθ

n−k+1 + Y)

= Var(Hθ
n−k+1) + Var(Y) + 2Cov(Hθ

n−k+1, Y)

=O(1).
�

4. Largest branch

4.1. Permutations view

In this section we focus on standard Hoppe trees and study the size of the largest branch
in this tree model. The results will sharpen the corresponding observations of [6] for URTs.
Before moving on to largest branches, we need to discuss constructions of Hoppe trees via
random permutations, in particular permutations that are generated via the Ewens sampling
formula.

For each n, the Ewens distribution gives a family of distributions over the vectors

C(n) = (C(n)
1 , C(n)

2 , . . . , C(n)
n

)
with

∑n
i=1 iC(n)

i = n. In particular, for given θ > 0, the Ewens distribution EW(θ ) is defined
with the probabilities

Pθ (C(n) = (c1, . . . , cn)) = 1

⎛
⎝ n∑

j=1

jcj = n

⎞
⎠ n!

θ(n)

n∏
j=1

(
θ

j

)cj 1

cj! , c1, . . . , cn ∈N,

where θ(n) = θ (θ + 1) · · · (θ + n − 1).
Below we call a permutation whose cycle structure results from EW(θ ) a Hoppe permuta-

tion. In this setting, ci stands for the number of cycles in the permutation of size i. In order to
relate the topic to Hoppe trees, we need to discuss a recursive construction of Hoppe permuta-
tions. The discussion here is similar to the one in [1]. For convenience, the permutation will be
constructed on the label set {2, 3, . . . , n}. We first begin with the permutation (2) with only one
cycle. Then 3 either joins the first cycle to the right of 2 with probability 1

θ+1 , or starts the sec-

ond cycle with probability θ
θ+1 . Once we have constructed a permutation on {2, 3, . . . , k − 1},

k either starts a new cycle with probability θ
θ+k−2 , or is inserted to the right of a randomly cho-

sen integer already assigned to a cycle. The resulting permutation then has the cycle structure
from the distribution EW(θ ) [2].

Next, we construct a Hoppe tree based on the permutation construction of the previous
paragraph. Begin with node 1 as the root and node 2 attached to it. Then, if node 3 begins a
new cycle in the corresponding Hoppe permutation, attach it to node 1, and otherwise attach
it to node 2. Then, for node k ≥ 4, if k starts a new cycle in the Hoppe permutation, attach
node k to node 1, and otherwise attach it to node j where k was inserted to the right of j in the
corresponding permutation.
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It is then clear that this gives a bijection between Hoppe permutations and Hoppe trees. In
particular, the cycles in a Hoppe permutation are in a one-to-one relation with the branches in
the corresponding tree. This reduces the study of the size of the largest branch in a Hoppe tree
to the study of the largest cycle in its permutation correspondence.

4.2. Size of the largest branch

For a given tree T on n vertices, the number of branches is the number of children of the
root, i.e. all nodes that are attached to the root. If a node i is attached to the root, then node i
with its descendants is said to form a branch of the tree. Let Bn,i(T ) be the number of branches
of size i in T . Also define

νn(T ) := max{i ∈ [n − 1] : Bn,i(T ) ≥ 1}

to be the number of nodes in the largest branch of a given tree, T . In [6], it was shown that

lim
n→∞ P

(
νn(Tn) ≥ n

2

)
= ln 2, (3)

when Tn is a URT on n vertices. The first purpose of this section and the next theorem is
to extend the result of [6] to Hoppe trees, and to provide more details about the asymptotic
distribution, via exploiting the relation between Hoppe trees and Hoppe permutations. Further,
the result in (3) is now extended to an explicit expression for limn→∞ P (νn(Tn) ≥ cn) for
c ∈ [1/2, 1]. Once we have the results for the Hoppe tree case, the coupling construction of
Section 2 will also generalize these results to WRTs.

Theorem 5.

(i) Let T θ
n be a Hoppe tree. Then νn(T θ

n )
n converges weakly to a random variable ν with

Poisson–Dirichlet distribution, whose cumulative distribution function is given by

Fθ (x) = 1 +
∞∑

k=1

( − θ )k

k!
∫

· · ·
∫
Sk(x)

(
1 −∑k

j=1 yj

)θ−1

y1 · · · yk
dy1 · · · dyk, x > 0,

where γ is Euler’s constant [7] and

Sk(x) =
{

y1 > x, . . . , yk > x,
k∑

j=1

yj < 1

}
.

(ii) When θ = 1, for any c ∈ [ 1
2 , 1] we have

lim
n→∞ P(νn(Tn) ≤ cn) = 1 − ln (c−1).

In particular,

E[ν] ≥ 1

2
.
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Proof.

(i) First, we translate the problem into the random permutation setting. We have

νn(T θ
n ) =d max{i ∈ [n − 1] : Cn−1,i(θ ) ≥ 1} =: αn(θ ),

where Cn−1,i(θ ) is the number of cycles of length i in a θ -biased Hoppe permutation.
In this setting, Lemma 5.7 in [2] shows that αn(θ)

n converges in distribution to a random
variable α with cumulative distribution function

Fθ (x) = 1 +
∞∑

k=1

( − θ )k

k!
∫

· · ·
∫
Sk(x)

(
1 −∑k

j=1 yj

)θ−1

y1 · · · yk
dy1 · · · dyk, x > 0,

where γ is Euler’s constant [7] and

Sk(x) =
{

y1 > x, . . . , yk > x,
k∑

j=1

yj < 1

}
.

This proves the first part.

(ii) Setting θ = 1 in the argument of (i), and recalling that the random permutation in this
case reduces to a uniformly random permutation, yields that νn(Tn)

n converges weakly to
a random variable ν whose cumulative distribution function is given by

F1(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if x < 0,

1 +∑∞
k=1

(−1)k

k!
∫ · · · ∫Sk(x)

dy1...dyk
y1...yk

, if x ∈ [0, 1],

1, if x > 1,

where Sk(x) is as before.

Note that if x ≥ 1
2 , Sk(x) = ∅ for any k ≥ 2. Thus the expression simplifies for 1

2 ≤ x ≤ 1 to

F1(x) = 1 −
∫ 1

x

1

y1
dy1.

This in particular implies that the derivative of F1(x) over [1/2, 1] simplifies to

f1(x) = 1

x
.

Hence, for any c ∈ [ 1
2 , 1],

lim
n→∞ P(νn(Tn) ≥ cn) = P(ν ≥ c) =

∫ 1

c

1

x
dx = ln (1/c).

Finally, we have

E[ν] ≥
∫ 1

1/2
x

1

x
dx = 1

2
. (3)
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Remark 3. The value limn→∞ E

[
νn(Tn)

n

]
when Tn is a URT is known to be the Golomb–

Dickman constant in the literature. Its exact value is known to be 0.62432998854 . . .

Now, let T w
n be a WRT of size n with weight sequence (wi)i∈N such that there is a k ∈N

such that, for all i > k, we have wi = 1. Since we can find a coupling of a Hoppe tree to a WRT
in which the number of nodes in the largest branch differs at most by k, the following now
follows immediately.

Theorem 6. Let T w
n be a WRT of size n with weight sequence (wi)i∈N such that there is a k ∈N

such that, for all i > k, we have wi = 1. Then, for any c in
[ 1

2 , 1
]
, we have

lim
n→∞ P(νn(T w

n ) ≤ cn) = 1 − ln (c−1).

5. Depth of node n

The depth of node n is defined as the length of the path from the root to n. We call all the
nodes on the single path from the root to n ancestors of n, so the depth of n is also equal to the
number of ancestors of n. Note that in this and the next section we have no restrictions on the
weight sequence (wi)i∈N.

Theorem 7. Let Dw
n denote the depth of node n in a WRT T w

n , and let Zw
n denote the set of

ancestors of n. Define Aw
i,n := 1(i ∈ Zw

n ). Then

Dw
n = 1 +

n−1∑
i=2

Aw
i,n.

The Aw
i,n are mutually independent Bernoulli random variables with

P(Aw
i,n = 1) = wi∑i

j=1 wj
.

This directly yields the expectation and the variance:

E[Dw
n ] =

n−1∑
i=1

wi∑i
j=1 wj

,

Var(Dw
n ) =

n−1∑
i=2

wi∑i
j=1 wj

(
1 − wi∑i

j=1 wj

)
.

Proof. Each claim will follow easily once we show that Dw
n can be written as a sum of

independent Bernoulli random variables. For this purpose, we first observe that in a given
rooted tree the depth of a node is equal to its number of ancestors, since these determine the
path from the root to the node. Using that node 1 is definitely an ancestor of n, in the notation
of the theorem we thus get

Dw
n = 1 +

n−1∑
i=2

Aw
i,n.

We will first find the distribution law of the Aw
i,n and then show mutual independence. For the

distribution law we will use the method used in [6]: we first find the values for n − 1 and n − 2
and then proceed by induction.
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Node n − 1 can only be an ancestor of n if it is the parent of n, so we get

P(Aw
n−1,n = 1) = wn−1∑n−1

i=1 wi
.

Similarly, n − 2 can only be an ancestor of n if it is the parent of n or it is the grandparent of
n, in which case n − 2 needs to be the parent of n − 1, which needs to be the parent of n. This
gives

P(Aw
n−2,n = 1) = wn−2∑n−1

i=1 wi︸ ︷︷ ︸
n−2 is parent of n

+ wn−2∑n−2
i=1 wi

wn−1∑n−1
i=1 wi︸ ︷︷ ︸

n−2 is grandparent of n

= wn−2∑n−2
i=1 wi

.

We will now show by induction that, for all j = 2, . . . , n − 1,

P(Aw
j,n = 1) = wj∑j

i=1 wj

.

Let the above be true for all j ≥ i + 1, and let Cw
i,j denote the event that j is a child of i. Then

P(Aw
i,n = 1) =

n−1∑
j=i+1

P(Aw
j,n = 1, Cw

i,j) + P(Cw
i,n).

Since Cw
i,j only relates to the jth step of the construction process and Aw

j,n only depends on
the (j + 1)th,. . ., nth steps, these two events are independent. Thus,

P(Aw
i,n = 1) =

n−1∑
j=i+1

P(Aw
j,n = 1)P(Cw

i,j) + P(Cw
i,n)

=
n−1∑

j=i+1

(
wj∑j

k=1 wk

wi∑j−1
k=1 wk

)
+ wi∑n−1

j=1 wj
.

To simplify this expression we first note that we can factor out wi and, by some elementary
operations, get:

wi+1∑i+1
k=1 wk

∑i
k=1 wk

+ wi+2∑i+2
k=1 wk

∑i+1
k=1 wk

= wi+1 + wi+2∑i+2
k=1 wk

∑i
k=1 wk

.

In general, the following holds for l ∈N:

wi+1 + wi+2 + · · · + wi+l∑i
k=1 wk

∑i+l
k=1 wk

+ wi+l+1∑i+l+1
k=1 wk

∑i+l
k=1 wk

= wi+1 + · · · + wi+l+1∑i+l+1
k=1 wk

∑i
k=1 wk

.

By using this equality n − i − 2 times, we thus get

P(Aw
i,n = 1) = wi

(
wi+1 + · · · + wn−1∑i

k=1 wk
∑n−1

k=1 wk
+ 1∑n−1

k=1 wk

)
= wi∑i

k=1 wk
.

Now we will show that the random variables Aw
i,n are mutually independent for j = 2, . . . ,

n − 1. For this we will use the method used in [10]: for any 2 ≤ k ≤ n − 2 and 2 ≤ jk < · · · <
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j2 < j1 ≤ n − 1, consider the event that all the ji and only the ji are ancestors of n. We will
denote this event by E. Then

E := 1(Aw
ji,n = 1, Aw

j,n = 0, for j �= ji, i = 1, . . . , k).

By the structure of the recursive tree, to realize this event, n must be a child of j1, j1 a child of
j2,. . ., jk−1 a child of jk, and jk a child of 1. In general, for i = 1, . . . , k − 1, ji must be a child
of ji+1. It does not matter to which nodes j �= ji attach. Hence, by the attachment probabilities
we get

P(E) = P(Aw
ji,n = 1, Aw

j,n = 0, for j �= ji, i = 1, . . . , k)

= wj1∑n−1
�=1 w�︸ ︷︷ ︸

n child of j1

k−1∏
i=1

wji+1∑ji−1
�=1 w�︸ ︷︷ ︸

ji child of ji+1

w1∑jk−1
�=1 w�︸ ︷︷ ︸

jk child of 1

= w1wj1 · · · wjk

n−1∏
i=1

1∑i
�=1 w�

∏
1<j<n

j �=ji,i=1,...,k

( j−1∑
�=1

w�

)

=
k∏

i=1

wji∑ji
�=1 w�

∏
1<j<n

j �=ji,i=1,...,k

(∑j−1
�=1 w�∑j
�=1 w�

)
w1∑1
�=1 w�

=
k∏

i=1

wji∑ji
�=1 w�

∏
1<j<n

j �=ji,i=1,...,k

(
1 − wj∑j

�=1 w�

)

=
k∏

i=1

P(Aw
ji,n = 1)

∏
1<j<n

j �=ji,i=1,...,k

P(Aw
j,n = 0).

This implies that the random variables Aw
i,n are mutually independent Bernoulli random

variables. Expectation and variance formulas for Dw
n follow from this observation right

away. �
The following central limit theorem now follows.

Theorem 8. If E[Dw
n ] → ∞ and lim supn→∞ wn∑n

i=1 wi
< 1, then we have

Dw
n −E[Dw

n ]√
Var(Dw

n )
−→d G as n → ∞.

Proof. By Lyapunov’s central limit theorem for sums of independent Bernoulli random
variables, if Var(Dw

n ) → ∞ then we have Dw
n −E[Dw

n ]√
Var(Dw

n )
−→d G as n → ∞. Now let pn = wn∑n

j=1 wj
.

Since lim supn→∞ pn < 1, there is a 0 < ε < 1 and an N ∈N such that, for all n > N, 1 − pn >

ε. Then,

Var(Dw
n ) =

n∑
i=1

pi(1 − pi) =
N∑

i=1

pi(1 − pi) +
n∑

i=N+1

pi(1 − pi) > ε

n∑
i=N+1

pi.
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Since we know that E[Dw
n ] =∑n

i=1 pi → ∞ as n → ∞, this implies that Var(Dw
n ) → ∞ as

n → ∞. �
Example 1.

(i) If the weights are limited from below and above, the expectation and variance of the
depth of node n will still be equal to O( ln (n)) asymptotically.

(ii) For the Hoppe tree, we write Dθ
n for the depth of node n and have

E[Dθ
n ] = 1 +

n−2∑
i=1

1

θ + i
= log (n) +O(1),

Var
(
Dθ

n

)= n−2∑
i=1

θ + i − 1

(θ + i)2
= log (n) +O(1).

Notice that the depth in a URT and a Hoppe tree are asymptotically equivalent. The
same conclusion also holds for a wide range of statistics whose dependence on the root
is small and vanishes asymptotically. This makes the asymptotic study of Hoppe trees
slightly uninteresting. Another such example is the number of leaves in a Hoppe tree,
which was studied earlier.

(iii) There are weight sequences for which the behaviour of the depth of the WRT is totally

different from the URT case. Let (wi)i∈N =
(

1
i2

)
i∈N. Then

E[Dw
n ] =

n−1∑
i=1

1
i2∑i

j=1
1
j2

,

and since for all i ∈N we have 1 <
∑i

j=1
1
j2

< π2

6 , we get, for n ≥ 2,

1 ≤E[Dw
n ] ≤

n−1∑
i=1

1

i2
=⇒ 1 ≤E[Dw

n ] ≤ π2

6
.

Also, since

Var(Dw
n ) =

n−1∑
i=2

1
i2
∑i−1

j=1
1
j2(∑i

j=1
1
j2

)2
,

and, for all i ≥ 2,

42

52
≤

∑i−1
j=1

1
j2(∑i

j=1
1
j2

)2
≤ 1,

we get

42

52

n−1∑
i=2

1

i2
≤ Var(Dw

n ) ≤
n−1∑
i=2

1

i2
=⇒ 4

52
≤ Var(Dw

n ) ≤ π2

6
− 1.

https://doi.org/10.1017/jpr.2020.12 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.12


456 E. HIESMAYR AND Ü. IŞLAK

6. Number of branches

Finally, we study the number of branches in a WRT. Recall that the number of branches of a
tree is equal to the number of children of the root. Our results are summarized in the following
theorem.

Theorem 9. Let (wi)i∈N be a sequence of positive weights. Denote the number of branches in
T w

n by Bw
n .

(i) We have

E[Bw
n ] =

n∑
i=2

w1∑i−1
k=1 wk

, Var(Bw
n ) =

n∑
i=2

w1∑i−1
k=1 wk

(
1 − w1∑i−1

k=1 wk

)
.

(ii) If E[Bw
n ] diverges then a central limit theorem results:

Bw
n −E[Bw

n ]√
Var(Bw

n )
−→d G as n → ∞.

(iii) Further, one has

dW

(
Bw

n −E[Bw
n ]√

Var(Bw
n )

, G
)

≤ 1√
Var(Bw

n )

√
28 + √

π√
π

,

where, for any two probability measures, the Wasserstein metric dW(μ, ν) is defined as
suph∈H

∣∣∫ h(x) dμ(x) − ∫ h(x) dν(x)
∣∣, where H= {h : R→R : |h(x) − h(y)| ≤ |x − y|}.

Proof. Letting bi = 1(node i attaches to node 1), observe that Bw
n =∑n

i=2 bi and the bi are
independent with

E[bi] = w1∑i−1
j=1 wj

.

The formulas for E[Bw
n ] =∑n

i=2 E[bi] and Var(Bw
n ) =∑n

i=2 Var(bi) are then clear.
The central limit theorem follows from Lyapunov’s central limit theorem. If E[Bw

n ] → ∞,
we show that this implies that Var(Bw

n ) → ∞ too. Notice that, for all i ≥ 2,

1 − w1∑i
k=1 wk

≥ w2

w1 + w2
.

Hence, one obtains

Var(Bw
n ) ≥ w2

w1 + w2

n∑
i=2

w1∑i−1
k=1 wk

= w2

w1 + w2
(E[Bw

n ] − 1) → ∞.

The convergence rates can be obtained by using Theorem 3.6 in [15] for independent ran-
dom variables: Let Y1, Y2, . . . , Yn be independent random variables for which E[Y4

i ] < ∞ and
E[Yi] = 0 holds. Set σ 2 = Var

(∑n
i=1 Yi

)
and define W :=∑n

i=1
Yi
σ

. Then

dW(W, G) ≤ 1

σ 3

n∑
i=1

E[|Yi|3] +
√

28√
πσ 2

√√√√ n∑
i=1

E[Y4
i ].
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Defining Yi = bw
i+1 −E[bw

i+1], simple manipulations give E[|Yi|3] < Var(bw
i+1) and E[Y4

i ] <

Var(bw
i+1); for details, see [9]. Plugging these results into the expression of the theorem, we

get the bound. �
Remark 4.

(i) When w1 = θ > 0, and wi = 1 for i = 2, 3, . . . , we obtain

Bn − θ ln n√
θ ln n

−→d G as n → ∞.

In particular, when θ = 1 as well, one recovers the central limit theorem for the URT
case.

(ii) When there exist α1, α2 such that 0 < α1 ≤ supi wi ≤ α2 < ∞, it can be shown that both
the expectation and the variance are still of order ln n and a central limit theorem holds.

(iii) When the wi are not bounded, there can be big differences compared to the case of
URTs. One such extreme case is when wi = i, where E[Bw

n ] ∼ 2 and Var(Bw
n ) ∼ 14 −

4π2

3 . Another one is when wi = 1/i, in which case

6

π2
(n − 1) ≤E[Bw

n ] ≤ n − 1,
6

5π2
(n − 2) ≤ Var(Bw

n ) ≤ 1

4
(n − 2).

(iv) It is well known that the number of branches and the depth of node n have the same
distribution in a URT. This is not the case when the tree is non-uniform. Indeed, this is
intuitively clear since having more branches increases the chance that node n attaches
to a node at a lower level.
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