
Canad. Math. Bull. Vol. 64 (1), 2021, pp. 13–24
http://dx.doi.org/10.4153/S0008439520000181
© Canadian Mathematical Society 2020

On Single-Distance Graphs on the Rational
Points in Euclidean Spaces

Sheng Bau, Peter Johnson, and Matt Noble

Abstract. For positive integers n and d > 0, let G(Qn , d) denote the graph whose vertices are the set
of rational pointsQn , with u, v ∈ Qn being adjacent if and only if the Euclidean distance between u and

v is equal to d. Such a graph is deemed “non-trivial” if d is actually realized as a distance between points

of Qn . In this paper, we show that a space Qn has the property that all pairs of non-trivial distance

graphs G(Qn , d1) and G(Qn , d2) are isomorphic if and only if n is equal to 1, 2, or a multiple of 4.

Along the way, we make a number of observations concerning the clique number of G(Qn , d).

1 Introduction

Let R, Q denote the fields of real and rational numbers, respectively, and let Z
denote the ring of integers. For any X ⊆ Rn , equip X with the usual Euclidean
distance metric. �at is, for x = (x1 , . . . , xn) and y = (y1 , . . . , yn), we have ∣x − y∣ =√
(x1 − y1)2 +⋯+ (xn − yn)2.
�e central notion of this work will be that of the Euclidean distance graph. For

X ⊆ Rn and D ⊂ (0,∞), let G(X ,D) designate the graph whose vertex set is X, with
x , y ∈ X being adjacent if and only if ∣x − y∣ ∈ D. If f is a graph parameter, such as the
chromatic number χ, or the clique number ω, we abbreviate f (G(X ,D)) as f (X ,D).
In almost all cases, we will be concerned with D being a singleton, so we will also
follow the convention of denoting the graph asG(X , d) instead of the more awkward
G(X , {d}). We refer the reader to [17] for an expansive treatment of this subject
matter.

Our principal question is the following:

“Given some X ⊆ Rn , does there exist d1 , d2 > 0 with d1 and d2 both realized
as distances between points of X such that the graphs G(X , d1) and G(X , d2)
are not isomorphic?”

Now, in the case of X = Rn , this question is trivially resolved in the negative, as
certainly anyG(Rn , d1) andG(Rn , d2) are isomorphic by a simple scaling argument.
However, in the case of X = Qn , such an argument does not apply when d1 and d2
are not rational multiples of each other. With this observation in mind, we will set
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about the business of answering the above question when X = Qn for all positive
integers n. We show that for n equal to 1, 2, or a multiple of 4, given d1 , d2 > 0 such
that both G(Qn , d1) and G(Qn , d2) are both non-trivial, a bijection φ ∶ Qn

→ Qn

can be constructed that scales distance by a factor d2
d1
, thus guaranteeing that the

graphs G(Qn , d1) and G(Qn , d2) are isomorphic. For all other values of n, we show
that there exist particular selections of such d1 and d2 such that the clique numbers
ω(Qn , d1) and ω(Qn , d2) are unequal. It follows that the corresponding G(Qn , d1)
and G(Qn , d2) are not isomorphic.

Regarding the clique number of a Euclidean distance graph, we will also recall a
related parameter defined not on a graph but rather on a space X ⊆ Rn . Originally
seen in [1], let Cn(X) be the n-th clique number of X where Cn(X) =max{ω(X ,D) ∶
D ⊂ (0,∞) and ∣D∣ = n}. In our work we also define cn(X) to be the n-th lower
clique number of X where cn(X) =min{ω(X ,D) ∶ D ⊂ (0,∞), ∣D∣ = n, and each
d ∈ D is actually realized as a distance between points of X}. In this context, our
proof showing that the above question is answered in the affirmative (for those
n where it does indeed have an affirmative answer) consists of verifying that
c1(Qn) < C1(Qn). We also make note of this notation, as it will also appear in the
final section of this paper where we give a number of open problems for further
research.

2 Preliminaries

In this section, a collection of lemmas and previous results is assembled for use
in proving our main result in the section to follow. We begin with observations
concerning sets of equidistant points inRn .We omit the proof of the following lemma
as it is a standard exercise in the geometry of real inner product spaces. Guidance can
be obtained in [3, 4].

Lemma2.1 Suppose that P0 , . . . , Pn−1 ∈ Rn and for 0 ≤ i < j ≤ n − 1, ∣Pi − Pj ∣ =
√
d >

0. Let C = 1
n ∑n−1

i=0 Pi , and let

S = {Q ∈ Rn ∶ ∣P0 − Q∣ = ∣P1 − Q∣ = ⋯ = ∣Pn−1 − Q∣}.

�en each of the following is true.

(i) ∣Pi − C∣ =
√

d(n−1)
2n

for i = 0, . . . , n − 1.
(ii) S is the line C + L where L is the orthogonal complement of H, the hyperplane in

Rn spanned by the vectors Pi − P0 where i = 1, . . . , n − 1.
(iii) For each Q ∈ S, for i ∈ {0, . . . , n − 1}, ∣Pi − Q∣2 = d(n−1)

2n
+ ∣C − Q∣2.

Although we are omitting the proof, it is useful to note that the equidistance
of the points Pi implies that the vectors Pi − P0 for i ∈ {1, . . . , n − 1} are linearly
independent. Also, each Pi ∈ C +H. We are, of course, primarily interested in the
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On Single-Distance Graphs 15

vertices of such a simplex (as in Lemma 2.1) being rational points, and in that case,
we are able to give a useful characterization of distances realized between points of S.

Lemma 2.2 Let L be a line inRn and suppose that P,Q ∈ L ∩Qn , P ≠ Q, and P − Q =
( a1

b
, . . . , an

b
), a1 , . . . , an , b ∈ Z. �en there is an integer, namely, y = a21 +⋯+ a2n , such

that for any points P′ ,Q′ ∈ L ∩Qn , ∣P′ − Q′∣ = r√y for some r ∈ Q.

Proof Let v = P − Q. �en L = {Q + tv ∶ t ∈ R} and L ∩Qn = {Q + tv ∶ t ∈ Q}.
Letting P′ ,Q′ ∈ L ∩Qn , for some t1 , t2 ∈ Qn we have P′ = Q + t1v and Q′ = Q + t2v.
Consequently, ∣P′ − Q′∣ = ∣t1 − t2∣∣v∣ = ∣ t1−t2b

∣√y.

�e following result of Schoenberg [16] is also vital to our work.

�eorem 2.3 A regular n-simplex (that is, n + 1 equidistant points) can be embedded
in Zn if and only if one of the following hold:

(i) n is even and n + 1 is a perfect square;
(ii) n ≡ 3 (mod 4);
(iii) n ≡ 1 (mod 4) and n + 1 is the sum of two squares.

A regular n-simplex can be embedded in Zn if and only if it is possible to
embed a regular n-simplex in Qn , so using our notation, �eorem 2.3 gives us when
C1(Qn) = n + 1. Furthermore, for those values of n where C1(Qn) ≠ n + 1, certainly
we have C1(Qn) = n, as evidenced by the standard n orthogonal unit vectors. �ese
observations will play a key role in several proofs presented in the next section, and
for easy reference, we note them as Corollary 2.4.

Corollary 2.4 For a positive integer n, C1(Qn) = n + 1 in the following cases:

(i) n is even and n + 1 is a perfect square;
(ii) n ≡ 3 (mod 4);
(iii) n ≡ 1 (mod 4) and n + 1 is the sum of two squares.

Otherwise, C1(Qn) = n.

We now take a moment to sample a few results from classical number theory.
�eorem 2.5 summarizes Euler, Gauss, and Lagrange’s well-known characterizations
of integers representable as sumsof two, three, and four squares, respectively.�eorem
2.6 is Legendre’s result concerning the solvability of a certain type of Diophantine
equation. In the next section, we will also occasionally employ a few other number-
theoretic staples in the reciprocity laws, the Chinese Remainder�eorem, andDirich-
let’s theorem concerning primes in arithmetic progressions. For further reference, one
could consult virtually any textbook on elementary number theory, with our favorite
being [12].

�eorem 2.5 Let n ∈ Z+. �ere exist a, b ∈ Z such that a2 + b2 = n if and only if the
square-free part of n has no prime factor congruent to 3 (mod 4).�ere exist a, b, c ∈ Z
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such that a2 + b2 + c2 = n if and only if the square-free part of n is not congruent to 7
(mod 8). For all n, there exist a, b, c, d ∈ Z such that a2 + b2 + c2 + d2 = n.

�eorem 2.6 Let a, b, c be non-zero integers, not each positive or each negative, and
suppose that abc is square-free. �en the equation

ax2 + by2 + cz2 = 0
has a non-trivial integer solution (x , y, z) if and only if each of the following are satisfied:
(i) −ab is a quadratic residue of c;
(ii) −ac is a quadratic residue of b;
(iii) −bc is a quadratic residue of a.

�eorem 2.5 engenders a couple of conditional ramifications to Schoenberg’s
�eorem2.3. If n ≡ 2 (mod 4), itmust be the case that the square-free part of n + 1 has
at least one prime factor p ≡ 3 (mod 4).�erefore, n ≡ 2 (mod 4) implies C1(Qn) =
n. Also, note that for n ≡ 0 (mod 4), when C1(Qn) = n + 1, we have n + 1 being a
perfect square, which implies C1(Qn+1) = n + 2.

We now come to what is the spiritual forebear of this work. In [4], Chilakamarri
determines the clique number ω(Qn , 1) for all n. His main result is given as�eorem
2.7 below, although we have updated its statement to fit our current notation.

�eorem 2.7 For even n, the clique number ω(Qn , 1) equals n + 1 or n according to
whether n + 1 is or is not a perfect square. For odd n, if the Diophantine equation nx2 −
2(n − 1)y2 = z2 has a solution with x ≠ 0, then ω(Qn , 1) equals n + 1 or n according to
whether 1

2
(n + 1) is or is not a perfect square. If nx2 − 2(n − 1)y2 = z2 is not solvable in

the integers with x ≠ 0, then ω(Qn , 1) = n − 1.

As mentioned in the previous section, our primary goal is to decide for given
n whether or not there are non-trivial and non-isomorphic graphs G(Qn , d1) and
G(Qn , d2). �eorem 2.7 shows that for many odd n, such graphs do indeed exist.
Although Chilakamarri himself does not further address the Diophantine equation
nx2 − 2(n − 1)y2 − z2 = 0 and comment on when it is and is not solvable, we remark
that in [6], Elsholtz and Klotz demonstrate that for odd n, the equation is solvable
if and only if the square-free part of n consists solely of factors congruent to 1 or 7
modulo 8. In conjunction with Corollary 2.4, we have, for all other odd n, ω(Qn , 1) <
C1(Qn). However, for those n where ω(Qn , 1) = C1(Qn), which happens to include
all even n, certainly more work needs to be done.

For our purposes, the method Chilakamarri uses in [4] to prove �eorem 2.7 is
more useful than the theorem itself. He employs a result due to Hall and Ryser (given
as�eorem 2.8 below) to show that for setsU ,V ⊂ Qn with each ofU ,V consisting of
n − 1 points satisfying A, B ∈ U and C ,D ∈ V imply ∣A− B∣ = ∣C − D∣ = 1, there exists
a rational isometry mapping U to V. Such a transformation preserves distance, and
is an effective tool in proving �eorem 2.7 by the following rationale. If a specific
set of n − 1 points in Qn constitute the vertices of a copy of Kn−1 in G(Qn , 1), and
it can be shown that there does not exist a point in Qn at distance 1 from each of
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those n − 1 points, one immediately has that ω(Qn , 1) = n − 1. We happily add this
observation to our toolbox in the form of�eorem 2.9, whose proof is a cosmetically-
altered generalization of the one given in [4].

�eorem 2.8 [7] Let A be a non-singular n × n matrix with entries from a field of
characteristic not equal to 2. Suppose that AAT = D1 ⊕ D2, the direct sum of two square
matrices D1 and D2 of orders r and s, respectively, where r + s = n. LetM be an arbitrary
r × n matrix such that MMT = D1. �en there exists an n × n matrix Z with entries
from the field and having M as its first r rows such that ZZT = D1 ⊕ D2.

�eorem 2.9 Let n, r ∈ Z+ with r ≤ n. Let U ,V ∈ Qn where ∣U ∣ = ∣V ∣ = r and both
U ,V each constitute the vertices of a copy of Kr appearing as a subgraph of G(Qn , d).
�en there exists a rational isometry mapping U to V.

Proof Write U = {u0 , u1 , . . . , ur−1} and V = {v0 , v1 , . . . , vr−1} and without loss of
generality, assume both u0 and v0 are the origin.

Let ur , . . . , un be independent vectors in Qn that are orthogonal to all the vectors
of U. Let A be the n × n matrix with rows u1 , u2 , . . . , un and let M be the (r − 1) × n
matrix with rows v1 , . . . , vr−1. Note that A is non-singular. Write AAT = D1 ⊕ D2 and
MMT = D1 whereD1 is a squarematrix of order r − 1, andD2 is a non-singular square
matrix of order n − r + 1. ByHall and Ryser’s�eorem 2.8, there exists an n × nmatrix
Z havingM as its first r − 1 rows such that ZZT = D1 ⊕ D2. Let L = Z−1A. �en L has
rational entries and v iL = u i for i = 0, . . . , r − 1. Moreover, L is orthogonal seeing as
(ZT)−1Z−1AAT = I and so LLT = Z−1AAT(Z−1)T = I. ∎

�eorem 2.9 gives the following corollary, which will be a fundamental utility in
the proofs of �eorems 3.4, 3.5, and 3.6 in the next section.

Corollary 2.10 If r ≤ ω(Qn , d) and P1 , . . . , Pr−1 ∈ Qn satisfy ∣Pi − Pj ∣ = d for 1 ≤ i <
j ≤ r − 1, then there is a point P ∈ Qn such that ∣P − Pi ∣ = d for i = 1, . . . , r − 1.

3 Main Results

In this section we prove that a space Qn has the property that any two non-trivial
distance graphs G(Qn , d1) and G(Qn , d2) are isomorphic if and only if n equals 1,
2, or a multiple of 4.

�eorem 3.1 Let n, z be positive integers where n is even and z = a2 + b2 for some
a, b ∈ Z. Let d > 0 be a distance realized between points of Qn . �en the graphs
G(Qn , d) and G(Qn , d

√
z) are isomorphic.

Proof We will give two proofs of this theorem, although both are essentially
different flavors of the same argument. LetQ[i] denote the field of Gaussian rationals;
that is, all complex numbers whose real and imaginary part are both rational.We have
Q2 ≃ Q[i]. Let α = a + bi ∈ Q[i]. Let n = 2k for some k ∈ Z+. �en Qn ≃ (Q[i])k in
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an obvious way:

(x1 , . . . , xn) ↔ (x1 + x2 i , . . . , xn−1 + xn i) ∈ (Q[i])k .
Multiplication by α maps (Q[i])k bijectively onto itself. For u, v ∈ (Q[i])k with ∣u −
v∣ = d, we have

∣αu − αv∣ = ∣α∣∣u − v∣ =√zd .
Note that in the above discussion, ∣α∣ =√a2 + b2 =√z is the modulus (absolute
value) of the complex number α, while ∣u − v∣ is the Euclidean distance between the
rational vectors u and v.

Alternately, consider thematrixM0 = [ a −b
b a

]. Construct an n × nmatrixM =
M0 ⊕⋯⊕M0, formed by taking the direct sum of k copies of M0. Any two column
vectors ofM have dot product 0 and each has length

√
z. �us,M defines a bijective

transformation of Qn where any two points distance d apart are mapped to points
distance d

√
z apart. ∎

By a quick scaling argument, for any q ∈ Q+ and d > 0, the graphs G(Qn , d) and
G(Qn , qd) are isomorphic. It follows that any non-trivial distance graph with vertex
setQn is isomorphic to someG(Qn ,

√
r)where r ∈ Z+. In the case of n = 2, any non-

trivial G(Q2 ,
√
r) by necessity has r = a2 + b2 for some a, b ∈ Z+. As �eorem 3.1

implies any such graph is isomorphic to G(Q2 , 1), we have Corollary 3.2. We remark
that this result also appeared in [11].

Corollary 3.2 Any two non-trivial distance graphs G(Q2 , d1) and G(Q2 , d2) are
isomorphic.

�eorem 3.3 Let n ∈ Z+ with n ≡ 0 (mod 4). For every d realized as a distance
between points ofQn , the graphs G(Qn , d) and G(Qn , 1) are isomorphic.

Proof Let n = 4t, and without loss of generality, suppose d =√m for some m ∈
Z+. By �eorem 2.5, there exist non-negative integers p, q, r, s such that m = p2 +
q2 + r2 + s2. Denote by Q[i, j, k] the rational quaternions, and let α = p + qi + rj +
sk ∈ Q[i, j, k]. We know thatQ[i, j, k] ≃ Q4. We also have, as vector spaces ofQ,

Qn ≃ (Q[i, j, k]) n
4 ≃ (Q[i, j, k])t .

We can treat (Q[i, j, k])t as amodule over the ring of rational quaternions.Multiplica-
tion by 1

α
= 1

p2+q2+r2+s2
(p − qi − rj − sk)maps (Q4)t bijectively onto itself, with every

pair of vectors Euclidean distance d apart mapped to a pair of vectors unit distance
apart. ∎

�e proof of the “only if ” direction of our main result will be divided into three
separate theorems. Although the same style of argument is presented in all three,
each case has its own particular twists and turns, and this presentation is intended
to heighten clarity.
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�eorem 3.4 Let n ≡ 2 (mod 4) with n ≥ 6. �ere exist non-trivial distance graphs
G(Qn+1 , d1) and G(Qn+1 , d2) that are not isomorphic.

Proof Corollary 2.4 givesC1(Qn+1) = n + 2, so it suffices to find a positive integer d

such that ω(Qn+1 ,
√
d) < n + 2. Let p ≡ 1 (mod 4) be prime with p > n. By�eorem

2.5, there exist a, b ∈ Z such that p = a2 + b2. Consider points P1 , . . . , Pn ∈ Qn formed
as follows. For odd i, Pi has its i-th coordinate equal to a, its (i + 1)-th coordinate equal
to b, and all other coordinates 0. For even i, Pi has its (i − 1)-th coordinate equal to
−b, its i-th coordinate equal to a, and all other coordinates 0. Note that P1 , . . . , Pn
constitute the vertices of Kn appearing as a subgraph of G(Qn ,

√
2p).

Let P′1 , . . . , P
′
n ∈ Qn+1 be formed by placing 0 as an (n + 1)-th coordinate for each

of the corresponding Pi . Assume there exists P ∈ Qn+1 at distance
√
2p from each of

P′1 , . . . , P
′
n and write P = (x1 , . . . , xn , x). As per Lemma 2.1, let L ⊂ Rn be the line of

points equidistant to each of P1 , . . . , Pn and note that (x1 , . . . , xn) must lie on L. Let
C ∈ Qn be the circumcenter of the (n − 1)-simplex with vertices P1 , . . . , Pn . We have
C = ( a−b

n
, a+b

n
, . . . , a−b

n
, a+b

n
) and note that C lies on L.

By Lemma 2.2, there exists z ∈ Z+ such that for any two distinct rational points on
L, the distance between those points is equal to y

√
z for some selection of y ∈ Q+.

Here, we can calculate z by finding the distance between C and (0, . . . , 0), which is
also on L. �e distance between these two points is√

(n
2
)( a − b

n
)2 + (n

2
)( a + b

n
)2 ,

which simplifies to
√

p

n
. So we can use z = pn. Note also that by Corollary 2.1, we have

∣Pi − C∣ =√ p(n−1)
n

for each i.
In light of the above discussion, a calculation of the distance between P and any of

the Pi leaves us with the following Diophantine equation:

p(n − 1)
n

+ pny2 + x2 = 2p.(3.1)

We now move to homogeneous coordinates, where equation (3.2) has a non-trivial
integer solution if equation (3.1) has a non-trivial rational solution:

pnx2 + y2 − (n + 1)z2 = 0.(3.2)

Our goal is to apply�eorem 2.6 and show the existence of p such that equation (3.2)
is not solvable. We do this by way of a classical argument. Let r be the square-free
part of n + 1, and note that r ≠ 1. For solvability, r must be a residue of p, expressed
using the Legendre symbol as ( r

p
) = 1. Suppose r has prime factorization r = q1⋯qs .

Let α1 be a non-residue of q1. For i = 2, . . . , s, let α i be a residue of q i . Consider the
system of linear congruences t ≡ 1 (mod 4), t ≡ α i (mod q i) for i = 1, . . . , s. By the
Chinese Remainder �eorem, there exists a solution t to this system. Now consider
the arithmetic progression t + 4r j for j ∈ Z+. Dirichlet’s �eorem asserts that there
exists a prime in this sequence. We make this prime our choice for p. Since p ≡ 1(mod 4), by quadratic reciprocity, we have ( r

p
) = ( q1

p
)⋯( qs

p
) = ( p

q1
)⋯( p

qs
) = −1.�is
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contradiction indicates that no such P exists to extend P′1 , . . . , P
′
n to the complete

graph Kn+1 in G(Qn+1 ,
√
2p). Corollary 2.10 concludes that Kn+1 is not a subgraph

of G(Qn+1 ,
√
2p) and completes the proof of the theorem. ∎

�eorem 3.5 Let n ∈ Z+ with n ≡ 0 (mod 4). �ere exist non-trivial distance graphs
G(Qn+1 , d1) and G(Qn+1 , d2) that are not isomorphic.

Proof By Corollary 2.4, either C1(Qn) = n or C1(Qn) = n + 1. However, we can
address the case of C1(Qn) = n using a line-by-line replication of the argument in the
proof of �eorem 3.4.

Suppose that C1(Qn) = n + 1. Again considering Corollary 2.4, note that this
implies that n + 1 is a perfect square. We then have n + 2 being a sum of two squares
(namely, n + 1 and 1), and so C1(Qn+1) = n + 2. Let P1 , . . . , Pn+1 ∈ Qn constitute the

vertices of a copy of Kn+1 appearing as a subgraph of G(Qn ,
√
d). By �eorem 3.3,

such points exist for any d ∈ Z+. Without loss of generality, assume the circumcenter
of the n-simplex with vertices P1 , . . . , Pn+1 is the origin.

Let P′1 , . . . , P
′
n+1 ∈ Qn+1 be formed by placing 0 as an (n + 1)-th coordinate for each

of the corresponding Pi . Assume there exists P ∈ Qn+1 at distance
√
d from each of

P′1 , . . . , P
′
n+1. �en P = (0, . . . , 0, x) for some x ∈ Q. By Lemma 2.1, the distance from

any of P1 , . . . , Pn+1 to the origin is
√

dn
2n+2

. Now calculating the distance from P to any

P′i , we obtain the following Diophantine equation:

dn

2n + 2
+ x2 = d .(3.3)

�is equation has a rational solution for x if and only if
d(n+2)
2(n+1)

is a rational square.

So any selection of a d (say, a prime larger than n + 2) that results in it not being
a square contradicts the existence of P. We now apply Corollary 2.10 and conclude

that ω(Qn+1 ,
√
d) = n + 1 that is less than C1(Qn+1). �is completes the proof of the

theorem. ∎

�eorem 3.6 Let n ∈ Z+ with n ≡ 0 (mod 4). �ere exist non-trivial distance graphs
G(Qn+2 , d1) and G(Qn+2 , d2) that are not isomorphic.

Proof By Corollary 2.4, we have C1(Qn+2) = n + 2. First, consider the case of
C1(Qn) = n + 1. By�eorem 3.3, for any selection of d ∈ Z+, we can let P1 , . . . , Pn+1 ∈
Qn be the vertices of a regular n-simplex of edge-length

√
d. Furthermore, we can

assume this simplex has its circumcenter at the origin.
Create points P′1 , . . . , P

′
n+1 ∈ Qn+2 by placing zeroes as the last two coordinate

entries of the corresponding Pi . Assume there exists P ∈ Qn+2 where P is at distance√
d from each of P′1 , . . . , P

′
n+1. �en P must be of the form (0, . . . , 0, x , y) for some

x , y ∈ Q. Using Lemma 2.1, we calculate the distance from P to any of the Pi , and set

it equal to
√
d to obtain the following Diophantine equation:

dn

2n + 2
+ x2 + y2 = d .(3.4)
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Equation (3.4) can be rearranged to obtain equation (3.5).

x2 + y2 = d(n + 2)
2n + 2

.(3.5)

All we need to do tomake equation (3.5) unsolvable is to select a d so that�eorem 2.5

guarantees
d(n+2)
2n+2

is not a sum of two squares. As an example, d = 3(n + 2)(2n + 2)
does the work.

We now consider the case of C1(Qn) = n. Recall the points P1 , . . . , Pn as formed
in the proof of �eorem 3.4. Since n ≡ 0 (mod 4), for any prime q ≡ 3 (mod 4),
there exists a bijective transformation φ ∶ Qn

→ Qn that scales distance by a factor

of
√

q

p
. For i ∈ {1, . . . , n}, let φ(Pi) = Q i where Q1 , . . . ,Qn form the vertices of a

copy of Kn appearing as a subgraph of G(Qn ,
√
2q). Let L ⊂ Rn be the set of all

points equidistant to P1 , . . . , Pn and let L′ ⊂ Rn be the set of all points equidistant
to Q1 , . . . ,Qn . We have by Lemma 2.1 that L and L′ are both lines and note that
φ(L) = L′. By Lemma 2.2, there exist z, z′ ∈ Z+ such that for any pair of rational points
on L or pair of rational points on L′, the distance between those points is equal to y

√
z

or y′
√
z′, respectively, for some selection of y, y′ ∈ Q+. In the proof of �eorem 3.4,

we explicitly found z = pn. Since φ scales distance by a factor of
√

q

p
, we have

√
z′ = (√z)(√ q

p
) = (√pn)(√ q

p
) =√qn.

So we can use z′ = qn.
Create points Q′1 , . . . ,Q

′
n ∈ Qn+2 by placing zeroes as the last two coordinate

entries of the corresponding Q i . Assume there exists Q ∈ Qn+2 at distance
√
2q from

each of Q′1 , . . . ,Q
′
n . Write Q = (x1 , . . . , xn , x , z) for some x , z ∈ Q, and note that(x1 , . . . , xn) lies on L′. By Lemma 2.1, we have the circumradius of the (n − 1)-simplex

with verticesQ1 , . . . ,Qn is
√

q(n−1)
n

. We can now calculate the distance fromQ to any

of the Q′i and set it equal to
√
2q to obtain the following Diophantine equation:

q(n − 1)
n

+ qny2 + x2 + z2 = 2q.(3.6)

We now combine constant terms, and move to homogeneous coordinates to produce
equation (3.7), which is solvable in the integers if equation (3.6) is solvable in the
rationals:

n(x2 + z2) + q(y2 − (n + 1)w2) = 0.(3.7)

Consider a potential solution (x , y, z,w) ∈ Z4 to equation (3.7). If q ≡ 3 (mod 4)
is selected so that gcd(n, q) = 1, we must have (x2 + z2) ≡ 0 (mod q). By �eorem
2.5, we would be forced to have both x , z ≡ 0 (mod q). Hence, we can write x = qx0
and z = qz0 for some x0 , z0 ∈ Z. �is results in the term y2 − (n + 1)w2 necessarily
being congruent to 0 (mod q) as well. Consider the congruence y2 − (n + 1)w2 ≡ 0(mod q), and since n + 1 is odd and not a perfect square, perform a similar procedure
to that put forth in the proof of�eorem 3.4 where we use quadratic reciprocity along
with the Chinese Remainder �eorem and Dirichlet’s �eorem to find a prime q ≡ 3
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(mod 4)with n + 1 a non-residue of q.�is results in the congruence y2 − (n + 1)w2 ≡
0 (mod q) only being satisfied when y,w are both multiples of q. Combining all of
these observations, we conclude that in any solution (x , y, z,w) of equation (3.7),
x , y, z,w are multiples of q. �is infinite descent shows that equation (3.7) is in fact
not solvable for our selection of q. ∎

Finally, note that in the specific case ofQ3 (which is not addressed by�eorem3.4),
we have ω(Q3 , 1) = 2 and C1(Q3) = 4 by�eorem 2.7 and Corollary 2.4, respectively.
Combining this observation with Corollary 3.2 and �eorems 3.3 through 3.6, we
obtain the main result of this section.

�eorem 3.7 Let n ∈ Z+. �e space Qn has the property that any two non-trivial
distance graphs G(Qn , d1) and G(Qn , d2) are isomorphic if and only if n is equal
to 1, 2, or a multiple of 4.

4 Further Work

Open questions concerning structural properties of Euclidean distance graphs are
numerous, and more are being produced at a steady clip. Indeed, the authors (par-
ticularly the third author) will freely admit to whiling away many a lazy a�ernoon
dreaming them up. Here are a few that are ripe for further investigation.

Question 1 For n ∈ Z+, and arbitrary d realized as a distance between points of Qn ,
determine ω(Qn , d).

A complete generalization of �eorem 2.7 may be a little too much to ask for.
As well, an answer to Question 1 may be quite unwieldy, as it would likely involve
a number of conditional statements regarding solvability of Diophantine equations.
For n = 3, however, it has been completely resolved. �eorem 4.1 is a restatement of
Ionascu’s main result in [8].

�eorem 4.1 Let z ∈ Z+ be square-free, with√z being realized as a distance between
points ofQ3.

(i) If z = 2, then ω(Q3 ,
√
z) = 4.

(ii) If z is even, but has no odd factor congruent to 2 modulo 3, then ω(Q3 ,
√
z) = 3.

(iii) Otherwise, ω(Q3 ,
√
z) = 2.

�e qualification that z is square-free is not limiting at all. For any q ∈ Q+, the
graphs G(Qn , d) and G(Qn , qd) are isomorphic, and it follows that any non-trivial
distance graph G(Qn , d) is isomorphic to one of the form G(Qn ,

√
z) where z

is some square-free positive integer. With Ionascu’s result in mind, we give a few
updates to a long-standing problem originally posed by Benda and Perles in [2]. It is
Question 2 below.

Question 2 Does there exist a graph G(Q3 ,
√
z) of chromatic number

χ(Q3 ,
√
z) = 3?
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Chromatic numbers of graphs G(Qn , d) have been well studied for small values
of n (see [14, 15] for further reading). In [10], it was shown that for any d > 0 and
n ≤ 4, χ(Qn , d) ≤ 4. In passing, we remark that Benda and Perles proved in [2] that
χ(Q4 , 1) = 4, and this result, taken in conjunction with�eorem 3.3, implies themain
result of [10].

Let z be defined as in �eorem 4.1. It is shown in [9] that if z is odd, then
χ(Q3 ,

√
z) = 2. In [5], Chow proves that for z even, χ(Q3 ,

√
z) ≥ 3. Finally, in [13], it

was shown that if ω(Q3 ,
√
z) = 3, then χ(Q3 ,

√
z) = 4.�e author of [13] also consid-

ered the graph G(Q3 ,
√
10) and was able to show that, even though ω(Q3 ,

√
10) = 2

by �eorem 4.1, it is nevertheless the case that χ(Q3 ,
√
10) = 4 as well. �is gives us

some belief in Question 2 having a negative answer, but the problem remains open.
Also regarding �eorem 4.1, we present the following question. Define the odd

girth of a graph G to be the minimum length of an odd cycle in G. If G is bipartite,
define its odd girth to be∞.

Question 3 For any d > 0, is it true that the odd girth of G(Q3 , d) is equal to
3, 5, or∞?

�e next few questions concern the n-th clique number and n-th lower clique
number defined in Section 1.

Question 4 Does there exist n such that C1(Qn) − c1(Qn) = 4?
Some perspective is needed. Both C1(Qn) and c1(Qn) are non-decreasing func-

tions ofn. By�eorem3.3, for any positive integerm, we haveC1(Q4m) = c1(Q4m). As
discussed in Section 2, C1(Qn) = n or n + 1. For a spaceQn , wemay write n = 4m + k
wherem is a non-negative integer and k ∈ {0, 1, 2, 3}. �en 4m ≤ c1(Qn) ≤ C1(Qn) ≤
4m + k + 1, which implies that C1(Qn) − c1(Qn) ≤ 4.

We also note that there are examples of nwhere C1(Qn) − c1(Qn) ≥ 3. In the proof
of�eorem 3.6, we let n ≡ 0 (mod 4) and first considered the case of C1(Qn) = n + 1.
Points P′1 , . . . , P

′
n+1 ∈ Qn+2 were selected that constitute the vertices of a copy of Kn+1

appearing as a subgraph of G(Qn+2 ,
√
d). It was then shown that there exists a point

P ∈ Qn+2 at distance
√
d from each of P′1 , . . . , P

′
n+1 if and only if equation (3.5) had a

non-trivial solution.
It did not figure into the proof of �eorem 3.6, but we may instead extend those

P′1 , . . . , P
′
n+1 to points of Qn+3 by placing a zero as their (n + 3)-th coordinate entry.

It then follows that there exists P ∈ Qn+3 at distance
√
d from each of those points if

and only if the Diophantine equation below has a non-trivial solution:

x2 + y2 + z2 = d(n + 2)
2n + 2

.(4.1)

Letting d = r(n + 2)(2n + 2) where r ∈ Z+ with r ≡ 7 (mod 8), by �eorem 2.5,
equation (4.1) is not solvable. �is results in c1(Qn+3) ≤ n + 1, and since Corollary
2.4 gives C1(Qn+3) = n + 4, we have C1(Qn+3) − c1(Qn+3) ≥ 3.
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Question 5 For each n, is it true that every integer in the closed interval [c1(Qn),
C1(Qn)] is realized as the clique number of some graph G(Qn , d)?

Of course,�eorem 3.3 resolves the above question in the affirmative for all n equal
to 1, 2, or a multiple of 4, and�eorem 4.1 gives the same answer for the specific case
of n = 3. More work is needed for general n.

Question 6 Is C2(Qn) − c2(Qn) bounded over all n? If not, what about the ratio
C2(Q

n)
c2(Qn)

?
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