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Surfactant- and gravity-dependent instability of
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A linear stability analysis of a two-layer plane Couette flow of two immiscible fluid
layers with different densities, viscosities and thicknesses, bounded by two infinite
parallel plates moving at a constant relative velocity to each other, with an insoluble
surfactant monolayer along the interface and in the presence of gravity is carried out.
The normal modes approach is applied to the equations governing flow disturbances
in the two layers. These equations, together with boundary conditions at the plates
and the interface, yield a linear eigenvalue problem. When inertia is neglected the
velocity amplitudes are the linear combinations of certain hyperbolic functions, and
a quadratic dispersion equation for the increment, that is the complex growth rate, is
obtained, where coefficients depend on the aspect ratio, the viscosity ratio, the basic
velocity shear, the Marangoni number Ma that measures the effects of surfactant
and the Bond number Bo that measures the influence of gravity. An extensive
investigation is carried out that examines the stabilizing or destabilizing influences
of these parameters. Since the dispersion equation is quadratic in the growth rate,
there are two continuous branches of the normal modes: a robust branch that exists
even with no surfactant, and a surfactant branch that, to the contrary, vanishes when
Ma ↓ 0. Regimes have been uncovered with crossings of the two dispersion curves,
their reconnections at the point of crossing and separations as Bo changes. Due to the
availability of the explicit forms for the growth rates, in many instances the numerical
results are corroborated with analytical asymptotics.

Key words: instability, low-Reynolds-number flows

1. Introduction
The aim of this paper is to perform a linear stability analysis of a two-layer plane

Couette flow of two immiscible fluid layers with different densities, viscosities and
thicknesses, bounded by two infinite parallel plates moving at a constant relative
velocity to each other, with an insoluble surfactant monolayer along the interface and
in the presence of gravity.

It is well known that the presence of surfactant can modify the stability properties
of fluid flows (e.g. Edwards, Brenner & Wasan (1991)). Before the work of Frenkel &
Halpern (2002) (hereafter referred to as FH) and Halpern & Frenkel (2003) (from now
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Part 1. ‘Long-wave’ surfactant–gravity instability of layered channel flows 151

on referred to as HF), the cases of flows with insoluble surfactants were limited to
single-fluid flows with a free surface (e.g. Whitaker (1964), Anshus & Acrivos (1967),
Otis et al. (1993), De Wit, Gallez & Christov (1994)) or multi-fluid systems without a
base flow (e.g. Kwak & Pozrikidis (2001)). In those cases, the influence of insoluble
surfactants was shown to be stabilizing or neutral.

In contrast, FH and HF showed that under certain conditions, an insoluble surfactant
monolayer at the interface between two fluid layers may have a destabilizing effect
on the viscosity-dominated flows. This instability occurs provided there is a non-zero
shear at the interface (which is not the case for the before mentioned single-fluid
flows with a free interface or stagnant multi-fluid systems). Unlike the well-known
instability of two viscous fluids with different viscosities (Yih 1967), this surfactant
instability does not require inertia for its existence. In cylindrical flows, such as
core-annular flows, this instability has to compete with the capillary instability of the
cylindrical interface which is always present even without surfactants (see e.g. Bassom,
Blyth & Papageorgiou (2012) and references therein). In contrast, for planar flows,
the interfacial surfactant can be the sole source of instability. Regarding horizontal
channel flows with a surfactant-laden sheared interface, the inertialess surfactant
instability was studied in a number of papers. Blyth & Pozrikidis (2004b) confirmed
the inertialess surfactant instability of FH and HF, and performed nonlinear numerical
simulations on short computational domains. Pozrikidis (2004), Blyth & Pozrikidis
(2004a) and Frenkel & Halpern (2005) examined the influence of inertia on this
type of instability. Pozrikidis & Hill (2011) considered a two-layer Couette channel
flow and studied the linear stability with the emphasis on different asymptotic limits
such as the one of the infinite thickness ratio and also the limit of infinitesimally
short waves which they interpreted as the cases of one or two semi-infinite fluids,
respectively. Frenkel & Halpern (2006) and Bassom, Blyth & Papageorgiou (2010)
studied the nonlinear stability of two-fluid channel flow with surfactants for the
long-wave disturbances assuming that one layer is much thinner than the other (at the
leading order of the small thickness ratio, so that the results do not depend on the
thickness ratio). The latter paper took into account the influence of the thick layer
disturbances, assuming their wavelengths to be large, which was relaxed in Kalogirou,
Papageorgiou & Smyrlis (2012). Kalogirou & Papageorgiou (2016) extended the
work of Kalogirou et al. (2012) by including the effects of inertia in the thick
layer and three-dimensional disturbances. Frenkel & Halpern (2017) added gravity to
the long-wave stability analysis of channel flows with interfacial surfactants of FH
(formulated in a manner suggested by Wei (2005)). Since in the absence of surfactants
gravity can be either stabilizing or destabilizing depending on the flow parameters, the
interaction of the Rayleigh–Taylor instability with the surfactant instability leads to
interesting phenomena, in particular in nonlinear regimes. Kalogirou (2018) extended
the work of Kalogirou & Papageorgiou (2016) by including gravity in addition to the
effects of surfactants and the thick layer inertia (for two-dimensional disturbances).

The instability of two-layer channel flows with soluble surfactants was studied
recently by Rickett et al. (2015) and Picardo, Radhakrishna & Pushpavanam (2016).
They made the limiting assumption of instantaneous adsorption/desorption of the
surfactant at the interface (which, in particular, implies that the internal transport
of interfacial surfactant is negligible). In such models, the instability requires a
non-zero flux of the surfactant across the channel in the base state (with the walls
being permeable to the surface active solute), in which case it can be unstable
even for a zero base flow (Sternling & Scriven 1959). The case of insoluble
surfactant, never leaving the interface, implies a completely different, infinitely slow,
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adsorption/desorption kinetics. The latter model cannot be obtained as a parametric
limit of such soluble surfactant models as those mentioned above (Picardo et al.
2016).

The paper by Frenkel & Halpern (2017) was confined to long-wave disturbances
and based on the well-known lubrication approximation. By contrast, in the present
work, the linear stability analysis includes disturbances of arbitrary wavenumbers,
which is more challenging. It can also be regarded as an extension of HF, who
considered arbitrary wavenumbers, but did not include the effects of gravity, which
are incorporated in the present work. As was indicated in Frenkel & Halpern (2017),
one can expect a rich landscape of stability properties, especially since there are
two active normal modes of infinitesimal disturbances corresponding to the presence
of two interfacial functions: the interface displacement function and the interfacial
surfactant concentration (FH, HF). Since the growth rates of the normal modes are
the real parts of the increments which are shown to satisfy a (complex) quadratic
equation, they are available as explicit functions for all wavenumbers, and in many
instances numerical results may enjoy analytic (asymptotic) corroboration.

The inclusion of gravity leads to different new phenomena. This investigation started
in Schweiger (2013). The present paper constitutes the first part of our work and
deals with long-wave instability regimes, defined as those having a single interval of
unstable wavenumbers (not necessarily all small) which has zero as its left endpoint.
The second part (Frenkel, Halpern & Schweiger 2019; below, referred to as ‘Part 2’),
focuses on the mid-wave regimes (HF), defined as those having a finite interval of
unstable wavenumbers bounded away from zero. Both parts are presented together in
more detail in Frenkel, Halpern & Schweiger (2018).

In § 2, the stability problem is formulated. In § 3, the dispersion equation is obtained.
The long-wave stability properties for finite wavenumbers, which were beyond the
scope of Frenkel & Halpern (2017), are considered in § 4, while in § 5 we deal
with arbitrary wavelengths. Finally, § 6 contains discussion and concluding remarks.
The mathematical considerations concerning the existence of the two branches of the
growth rate as continuous functions of the wavenumber and the system parameters
can be found in the Appendix.

2. Stability problem formulation

The general framework and governing equations of the problem were given before
(see Schweiger 2013; Frenkel & Halpern 2017) and are as follows. Two immiscible
Newtonian fluid layers with different densities, viscosities and thicknesses are bounded
by two infinite horizontal plates, a distance d = d1 + d2 apart (see figure 1 for the
definition sketch of the Couette flow which we study here). The unperturbed liquid–
liquid interface is located at z∗ = 0, the top plate at z∗ = d2 and the bottom plate at
z∗ =−d1, where z∗-axis is the spanwise, vertical coordinate. (The symbol ∗ indicates
a dimensional quantity.) The frame of reference is fixed at the liquid–liquid interface.
The unperturbed Couette flow has only the horizontal component, which is linear
in z∗, and changes from zero at the interface to −U∗1 at the bottom plate and U∗2
at the top plate, where U∗1 + U∗2 = U∗, the velocity of the top plate relative to the
bottom plate. The base surfactant concentration is uniform along the base flat interface.
Once disturbed, the surfactant concentration is no longer uniform and, along with the
interfacial deflection, depends on x∗ and t∗, where x∗ is the horizontal coordinate and
t∗ is the time variable. The infinitesimal disturbances may grow under the action of
the Marangoni and/or gravity forces (Frenkel & Halpern 2017).
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FIGURE 1. (Colour online) Definition sketch of a two-layer Couette flow of two horizontal
liquid layers with different thicknesses di (i= 1 for the bottom layer and i= 2 for the top
layer), viscosities µi and densities ρi. The disturbed interface is located at z∗ = η∗(x∗, t∗),
and is coated by an insoluble surfactant monolayer indicated by dots. Gravity acts in the
spanwise direction.

In HF, for the same system but without gravity effects, we have established an
appropriately modified Squire’s theorem (see appendix C there. For other cases of
multilayer flows see Hesla, Prankch & Preziosi (1986), Joseph & Renardy (1993)).
It is easy to see that the same theorem holds with gravity effects present. Indeed
the only modification in the disturbance equations (C2)–(C12) in HF is adding the
term −Boh to the right-hand side of the normal stress balance equation (C10) where
Bo is an appropriate Bond number. (Its exact definition appears at the end of this
section.) Therefore, the theorem formulation is as before with the same transformation
from a three-dimensional solution to a two-dimensional one, which depends on the
streamwise coordinate only, with the additional transformation equation B̂o = Bo
which would be added to (C16). In view of this, we confine our consideration to
two-dimensional perturbed flows (in the x∗z∗-plane).

The governing equations for this problem are given, in both dimensional and
dimensionless forms, elsewhere (see, for example, Frenkel & Halpern (2017) and
references therein). We use the following notations (with j= 1 for the bottom liquid
layer and j= 2 for the top liquid layer): ρj is the density; v∗j = (u

∗

j , w∗j ) is the fluid
velocity vector with horizontal component u∗j and vertical component w∗j ; p∗j is the
pressure; µj is the viscosity; and g is the gravity acceleration.

We assume the dependence of surface tension σ ∗ on the surfactant concentration Γ ∗

to be given by the Langmuir isotherm relation (e.g. Edwards et al. 1991). For small
disturbances,

σ ∗ = σ0 − E(Γ ∗ − Γ0), (2.1)

where σ0 is the base surface tension corresponding to the base surfactant concentration
Γ0 and the known constant E :=−(∂σ ∗/∂Γ ∗)|Γ ∗=Γ0 is the elasticity parameter.

We use the following dimensionless variables:

(x, z, η)=
(x∗, z∗, η∗)

d1
, t=

t∗

d1µ1/σ0
, vj = (uj,wj)=

(u∗j ,w∗j )

σ0/µ1
,

pj =
p∗j
σ0/d1

, Γ =
Γ ∗

Γ0
, σ =

σ ∗

σ0
.

 (2.2)
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As in Frenkel & Halpern (2017), the dimensionless velocity field of the basic Couette
flow, with a flat interface, η = 0, uniform surface tension, σ̄ = 1, and corresponding
surfactant concentration, Γ̄ = 1 (where the over-bar indicates a base quantity), is

ū1(z)= sz, w̄1 = 0, and p̄1 =−Bo1z for − 1 6 z 6 0, (2.3a−c)

ū2(z)=
s
m

z, w̄2 = 0, and p̄2 =−Bo2z for 0 6 z 6 n, (2.4a−c)

where Boj := ρjgd2
1/σ0 is the Bond number of the layer j, m= µ2/µ1 is the ratio of

the viscosities, and n= d2/d1 is the ratio of the thicknesses. The constant s represents
the base interfacial shear rate of the bottom layer, s= Dū1(0), where D= d/dz, and
is used to characterize the flow instead of the relative velocity of the plates. It is
straightforward to establish that U = µ1U∗/σ0 = s(1+ n/m). The disturbed state with
small deviations (indicated by the tilde, ∼) from the base flow is given by

η= η̃, uj = ūj + ũj, wj = w̃j, pj = p̄j + p̃j, Γ = Γ̄ + Γ̃ . (2.5a−e)

The normal modes are disturbances of the form

(η̃, ũj, w̃j, p̃j, Γ̃ )= [h, ûj(z), ŵj(z), f̂j(z),G]eiαx+γ t, (2.6)

where ûj(z), ŵj(z) and f̂j(z) are the complex amplitudes that depend on the depth, α
is the wavenumber of the disturbance, G is the constant amplitude of Γ̃ (G = Γ̂ ),
h is the constant amplitude of η̃ (h = η̂) and γ is the increment, γ = γR + iγI . The
stability of the flow depends on the sign of the growth rate γR: if γR > 0 for some
normal modes then the system is unstable; and if γR< 0 for all normal modes then the
system is stable. The linearized governing equations for the disturbances translate into
the following system for the normal-mode amplitudes (see Frenkel & Halpern (2017)
and references therein for the omitted details). The continuity equation becomes

ûj =
i
α

Dŵj. (2.7)

Eliminating the pressure disturbances from the horizontal and vertical components
of the momentum equations with neglected inertia yields the well-known Orr–
Sommerfeld equations, here for the vertical velocity disturbances,

mj(D2
− α2)2ŵj = 0, (2.8)

where mj :=µj/µ1 (so that m1 = 1 and m2 =m).
The disturbances of the velocities are subject to the boundary conditions at the

plates and at the interface. At the plates, the boundary conditions are

Dŵ1(−1)= 0, ŵ1(−1)= 0, Dŵ2(n)= 0, ŵ2(n)= 0. (2.9a−d)

The kinematic boundary condition and surfactant transport equation yield, respectively,

γ h− ŵ1 = 0 (z= 0), (2.10)
γG−Dŵ1 + siαh= 0 (z= 0). (2.11)
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(Note that (2.11) is the normal form of equation (2.9) in Frenkel & Halpern (2017)
which was derived in HF, and was mentioned there to be consistent with the more
general equation of Wong, Rumschitzki & Maldarelli (1996). The last term in (2.11)
comes from the Taylor expansion of the base state fluid velocities at z = η(x, t).)
Continuity of velocity at the interface yields

ŵ1 − ŵ2 = 0(z= 0) (2.12)

and

Dŵ2 −Dŵ1 − iαsh
(

1−m
m

)
= 0(z= 0). (2.13)

To obtain the linearized homogeneous normal stress condition, the pressure amplitude,
f̂j, is first written in terms of ŵj. From the horizontal momentum equation it is given
by

α2 f̂j =mj(D2
− α2)Dŵj. (2.14)

The interfacial tangential stress condition is

mD2ŵ2 −D2ŵ1 + α
2(mŵ2 − ŵ1)− α

2GMa= 0 (z= 0), (2.15)

where

Ma := EΓ0/σ0 (2.16)

is the Marangoni number, and the normal stress condition is

mD3ŵ2 − 3mα2Dŵ2 −D3ŵ1 + Boα2h+ 3α2Dŵ1 + α
4h= 0 (z= 0), (2.17)

where Bo is the effective Bond number

Bo= Bo1 − Bo2 =
(ρ1 − ρ2)gd2

1

σ0
. (2.18)

Note that Bo can be negative, unlike the parameters n, m, s and Ma. Equations
(2.8)–(2.13), (2.15) and (2.17) form the eigenvalue boundary value problem for the
disturbances, which determines the growth rate as a function of the wavenumber α
and the parameters s, m, n, Ma and Bo. The eigenvalue, the increment γ , satisfies a
quadratic equation which is obtained in the next section.

3. Dispersion relation and special points of dispersion curves
For finite aspect ratio, n, the general solutions of (2.8) are given by

ŵj(z)= aj cosh(αz)+ bj sinh(αz)+ cjz cosh(αz)+ djz sinh(αz), (3.1)

where the coefficients aj, bj, cj and dj are determined by the boundary conditions up
to a common normalization factor. Equation (2.12) yields a2 = a1, which is used to
eliminate a2 from the equations.

Applying the plate velocity conditions, equation (2.9), the coefficients c1 and d1 are
expressed in terms of a1 and b1, and the coefficients c2 and d2 are expressed in terms
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of a1 and b2:

ŵ1(z) = a1 cosh(αz)+ b1 sinh(αz)+
1
α
[−s2

αb1 + (sαcα + α)a1]z cosh(αz)

+
1
α
[−(sαcα − α)b1 + c2

αa1]z sinh(αz) (3.2)

and

ŵ2(z) = a1 cosh(αz)+ b2 sinh(αz)−
1
αn2
[s2
αnb2 + (sαncαn + αn)a1]z cosh(αz)

+
1
αn2
[(sαncαn − αn)b2 + c2

αna1]z sinh(αz), (3.3)

where

cα = cosh(α), sα = sinh(α), cαn = cosh(αn), sαn = sinh(αn). (3.4a−d)

We substitute these velocity expressions into the interfacial conditions (2.13), (2.15),
and (2.17) to obtain a linear non-homogeneous system for a1, b1 and b2. Solving this
system yields a1, b1 and b2 in terms of h and G. Hence, we have the velocities ŵj(z)
in terms of h and G. Then the kinematic boundary condition (2.10) and surfactant
transport (2.11) yield a linear homogeneous system for h and G, written in matrix
form as [

(γ + A11) A12
A21 (γ + A22)

] [
h
G

]
=

[
0
0

]
, (3.5)

where A11, A12, A21 and A22 are known functions of the wavenumber α and the system
parameters. (For the explicit expressions see Frenkel et al. (2018).) Each non-trivial
solution (γ ; h, G) of the system (3.5) determines the normal-mode amplitudes (and
thus the complete structure of the normal mode), since h and G determine the
coefficients a1, b1 and b2, and thus the vertical velocities ŵj via (3.2) and (3.3), then
the horizontal velocities ûj via (2.7) and the pressures f̂j via (2.14). The condition
for the existence of non-trivial solutions is det(A)= (γ + A11)(γ + A22)− A12A21 = 0;
this yields a quadratic equation for the mode increment γ . We write this ‘dispersion
equation’ in the form

F2γ
2
+ F1γ + F0 = 0 (3.6)

which implies two solutions,

γ =
1

2F2
(−F1 + [F2

1 − 4F2F0]
1/2), (3.7)

where the two values of the square root correspond to the solutions γ1 and γ2
respectively. The coefficients of the quadratic equation (3.6), F2, F1 and F0, are as
follows:

Re(F2) =
1
α4
{(c2

αn + α
2n2)(s2

α − α
2)m2
+ 2(sαcαsαncαn − α

2n+ α4n2)m

+ (s2
αn − α

2n2)(c2
α + α

2)}, (3.8)
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Im(F2)= 0, (3.9)

Re(F1) =
1

2α3
{mMa(sαncαn + αn)(s2

α − α
2)+Ma(s2

αn − α
2n2)(sαcα + α)

+
1
α2

m(sαncαn − αn)(s2
α − α

2)(Bo+ α2)

+
1
α2
(s2
αn − α

2n2)(sαcα − α)(Bo+ α2)}, (3.10)

Im(F1)=
s
α2
(1−m)(sαncαn − αn+ n2sαcα − αn2), (3.11)

Re(F0)=
Ma
4α4

(s2
αn − α

2n2)(s2
α − α

2)(Bo+ α2), (3.12)

Im(F0)=−
Ma
2α

s(s2
αn − s2

αn2). (3.13)

Because the coefficients of the quadratic equation (3.6) are complex numbers, it is
clear that in general the imaginary parts of the solutions γ1 and γ2 are non-zero which
signifies an oscillatory instability.

One can see that the growth rate γR (as well as the increment γ ) has the function
symmetry property

γR(−nα; ns,m−1, n−1,Ma, n2Bo)= nmγR(α; s,m, n,Ma, Bo). (3.14)

In view of this symmetry, it is sufficient to consider stability for n > 1. (See Frenkel
& Halpern (2017) for comprehensive details.) We also note the following facts.
All the coefficients of the quadratic equation (3.6) are continuous at each point
(α; s,m, n,Ma,Bo) for the physical values of α and the parameters. All parenthetical
expressions in (3.8) through (3.13) containing hyperbolic functions are positive.
Therefore, F2 > 0, and Re(F1) and Re(F0) are positive for Bo > 0. For Bo < 0, the
functions Re(F1) and Re(F0) are positive provided α2 >−Bo. Also, Im(F1) > 0(< 0)
for m < 1(> 1). Furthermore, Im(F0) = 0 for n = 1, and negative for n > 1. The
zero gravity limit studied in FH and HF is recovered when Bo = 0. We want to
investigate the dependence of the growth rates γR=Re(γ ) on the wavenumber α and
the parameters n, m, s, Ma and Bo in the ranges 0<α <∞, 1 6 n<∞, 0<m<∞,
0 6 s<∞, 0 6 Ma<∞ and −∞< Bo<∞.

It is an elementary fact of complex analysis that there are two analytic, and
therefore continuous, branches of the complex square root function in every simply
connected domain not containing the origin (see e.g. Bak & Newman 2010,
pp. 114–115). Then, as the discriminant

ζ = F2
1 − 4F0F2 (3.15)

is clearly a smooth function of α and the parameters, there are two continuous
branches of the increment γ , given by (3.7), as functions of α and the parameters,
and correspondingly two continuous branches of the growth rate γR. If Ma ↓ 0 then
γ1γ2 = F0/F2 ↓ 0 and γ1 + γ2 =−F1/F2 6→ 0 and so either γ1 ↓ 0 or γ2 ↓ 0. We call
the increment branch that is non-zero at Ma = 0 the ‘robust branch’, and the other
one, that vanishes as Ma↓ 0, is called the ‘surfactant branch’. Correspondingly, these
are the continuous robust and surfactant branches of the growth rate. In certain cases,
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FIGURE 2. Typical dispersion curves of the two normal modes: (i) the unstable mode,
which has a maximum growth rate γR= γRmax at a wavenumber α= αmax and then decays,
eventually becoming stable for α>α0, and (ii) the stable mode, which has negative growth
rates for all wavenumbers.

such as the one considered in § 4.3.1 with m=1, it can be shown that the discriminant
ζ never takes the zero value and the range of the function ζ (α; s, m, n, Ma, Bo) is
a simply connected domain in the complex ζ -plane. Then, there are two branches of
the growth rate which are continuous functions of (α; s,m, n,Ma, Bo).

However, as will be seen below, the discriminant (3.15) may become zero for
some parameter values. That happens when Re(ζ ) = 0 and Im(ζ ) = 0. These two
equations define a manifold of co-dimension two in the (α; s, m, n, Ma, Bo) space
that is analogous to a branch point in the complex plane; and if we draw the line of
increasing α from each point of this manifold, that is a ray parallel to the α-axis, with
all the parameter values fixed, we obtain the ‘branch cut’ hypersurface. The growth
rates are not defined on this branch cut, and there is a jump in the growth rate when
crossing from one side of the branch cut to the other. Still, each of the two growth-rate
branches is defined and continuous almost everywhere in the α-parameter space (with
the branch cut hypersurface excluded from it), and the growth-rate branches defined
this way are smooth in α. The surfactant branch of the growth rate is again defined
as the one which vanishes as Ma ↓ 0. These considerations are given in more detail
in appendix A. It will be seen below, as for example in figure 9, that the discriminant
equal to zero corresponds to the reconnection point of the two growth-rate branches,
when the crossing dispersion curves of the two branches become non-crossing at a
certain value of a changing parameter. There is a jump discontinuity of the growth
rate in the changing parameter at its reconnection-point value, for all α exceeding
the reconnection-point value of α. Except for such reconnection situations, all the
dispersion curves are smooth at all α.

Typical dispersion curves of stable and unstable cases look like those in figure 2.
The unstable branch starts at α= 0 and γR= 0, grows with the wavenumber α, attains
a maximum value γRmax at some α=αmax, then decreases and crosses the α-axis so that
γR= 0 at some non-zero wavenumber, α0, called the marginal wavenumber. The other,
stable, branch also starts at α= 0 and γR= 0 but then decreases with the wavenumber
α. The values of α0, γRmax and αmax depend on the parameters n, m, s, Ma and Bo.

It is pointed out in FH (i.e. for the case Bo= 0) that at least one of the modes for
each given α is stable. This result holds for Bo> 0 as well, which is seen as follows.
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Part 1. ‘Long-wave’ surfactant–gravity instability of layered channel flows 159

(However, we will see that for Bo< 0 both modes are unstable sometimes.) Let the
two solutions of (3.7) be γ1 = γ1R + iγ1I and γ2 = γ2R + iγ2I . Then the real parts of
the solutions satisfy γ1R + γ2R =−Re(F1)/F2 < 0. The latter inequality holds because,
as was discussed before, Re(F1) > 0 when Bo > 0. So, if one of the quantities γjR is
positive (corresponding to an unstable mode), then the other must be negative, thus
giving a stable mode.

In order to compute the maximum growth rate, γRmax, the wavenumber corresponding
to the maximum growth rate, αmax, and the marginal wavenumber, α0, it is convenient
to split the dispersion equation (3.6) into its real and imaginary parts. The latter is
a linear equation in γI , and is used to express it in terms of γR (which can be done
almost everywhere in the parameter space as analysed in more detail in Frenkel et al.
(2018)). Substituting this expression into the real part of (3.6), which is quadratic in
both γR and γI , we obtain the following quartic equation for γR:

4F2
3γ 4

R + 8F2
2Re(F1)γ

3
R + F2[4F2Re(F0)+ Im(F1)

2
+ 5Re(F1)

2
]γ 2

R

+Re(F1)[Re(F1)
2
+ 4F2Re(F0)+ Im(F1)

2
]γR − F2Im(F0)

2

+Re(F1)
2Re(F0)+Re(F1)Im(F1)Im(F0)= 0. (3.16)

Since γR = 0 at the marginal wavenumber, α0, and using expressions for F2, F1 and
F0, the marginal wavenumber equation is a polynomial in Ma and Bo

k20Ma2
+ k11MaB+ k31Ma3B+ k22Ma2B2

+ k13MaB3
= 0, (3.17)

where B := Bo + α2. The coefficients kij, which are functions of α, m, n and s,
can be found in Frenkel et al. (2018). (To avoid confusion, the reader should
keep in mind that (3.17) is to be solved for α, given the input values of the
parameters (s,m, n,Ma,Bo).) For Ma= 0, it transpires that this marginal wavenumber
equation is not valid. However, then the coefficient F0 of the quadratic equation (3.6)
vanishes, and there remains just one mode corresponding to the Rayleigh–Taylor
instability whose increment γ = −F1/F2. For the marginal wavenumber, it follows
that Re(F1) = 0, which implies that α0 = (−Bo)1/2. This corresponds to capillary
forces balancing the destabilizing gravitational forces provided Bo< 0.

The wavenumber αmax corresponding to the maximum growth rate γRmax is obtained
by simultaneously solving (3.16) and the equation obtained by differentiating (3.16)
with respect to α, taking into account that dγR/dα = 0 at the maximum. The latter
equation is written as

γ 4
R

d
dα

C4(α)+ γ
3
R

d
dα

C3(α)+ γ
2
R

d
dα

C2(α)+ γR
d

dα
C1(α)+

d
dα

C0(α)= 0, (3.18)

where C j denotes the coefficient of the γ j
R term that appears in (3.16). (For example,

C4 = 4F3
2 .)

4. Long-wave asymptotics
As was mentioned earlier, from the long-wave approximation by FH (Bo= 0), three

sectors in the (n,m)-plane were identified that characterize the stability of the flow for
n> 1. Based on the leading-order long-wave results of Frenkel & Halpern (2017), the
same three sectors are found to be relevant in the presence of gravity effects: the Q
sector (m> n2), the R sector (1<m< n2) and the S sector (0<m< 1). Figure 3 shows
the three sectors and their borders. Stability properties of the robust and surfactant
branches can change significantly from sector to sector, and can be special on borders
as well.
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6

4

2

m

n

0
1 2 3 4

Q-sector R-sector

S-sector

The m = 1 border

The RQ border, m = n2

FIGURE 3. Partition of the (n,m)-plane of the system, n> 1 and m> 0, into three sectors
(Q, R and S) and their borders corresponding to differences in stability properties of the
flow.

4.1. General asymptotics for the three sectors
4.1.1. Increments and growth rates

While it is straightforward to use (3.7) to evaluate and graph growth rates, the
limit of long waves yields some simpler asymptotic expressions. The general growth
rate (and the increment) expressions in the three sectors are given in this subsection,
but additional results in each sector will be discussed in later sections. First, the
coefficients F2, F1 and F0 (3.8)–(3.13) in the dispersion equation (3.6) are expanded
in a Taylor series about α = 0:

F2 =Re(F2)≈
1
3ψ (4.1)

(where ψ = n4
+ 4mn3

+ 6mn2
+ 4mn+m2),

Re(F1)≈
1
9 n3(m+ n)α4

+
1
3 n(m+ n3)α2Ma+ 1

9 n3(m+ n)α2Bo, (4.2)

Im(F1)≈
2
3 n2s(n+ 1)(1−m)α, (4.3)

Re(F0)≈
1

36 n4α6Ma+ 1
36 n4α4MaBo, (4.4)

Im(F0)≈
1
6 n2s(1− n2)α3Ma, (4.5)

(where we have retained the leading orders of terms proportional to Ma, those
proportional to Bo, separately to the product MaBo, and separately those not
depending on either Ma or Bo). Unless s = 0 and Bo 6= 0, we have |F2

1| � |F2F0|,
provided α � s, since if s 6= 0, then |F2

1| ≈ Re(F2
1) ≈ (ReF1)

2
∼ α2 and |F2F0| ≈

F2|ImF0| ∼ α
3; and if s = 0 and Bo = 0 then |F2

1| ∼ α
4 and |F2F0| ∼ α

6. Therefore,
keeping the four leading members in the series for the second term of (3.7) (which
are needed for obtaining the two leading orders of the growth rates below), the two
increments are

γ ≈
1

2F2

(
−F1 ± F1

[
1+

1
2

(
−

4F2F0

F2
1

)
−

1
8

(
−

4F2F0

F2
1

)2

+
1
16

(
−

4F2F0

F2
1

)3
])

.

(4.6)
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(The last term here can be discarded if only the leading-order term of the growth rate
is of interest.) For s 6= 0, the growth rates for the robust and surfactant branches are
found to be, respectively,

γR ≈

(
ϕ(m− n2)

4(1−m)ψ
Ma−

n3(n+m)
3ψ

Bo
)
α2 (4.7)

and

γR ≈
(n− 1)Ma
4(1−m)

α2
+ kSα

4, (4.8)

where

ϕ = n3
+ 3n2

+ 3mn+m. (4.9)

We have kept only the leading-order term in (4.7), but included in (4.8) the term with
kS, which arises from the last term in (4.6), because the coefficient of the α2 term
vanishes when n = 1. (The coefficient of the α4 correction to (4.7) can be obtained
from the last term of (4.6) as well.) For this case,

kS =−
(m+ 1)BoMa
96(m− 1)2s2

(
Ma
2
+

Bo
3

)
. (4.10)

(The expression for arbitrary n appears in Frenkel et al. (2018)). For the case s= 0
and Bo= 0, the growth rates for the robust and surfactant branches are found to be

γR ≈−
n3

12(m+ n3)
α4 (4.11)

and

γR ≈−
n(m+ n3)Ma

ψ
α2, (4.12)

which is in agreement with FH.
Finally, for the case s = 0 and Bo 6= 0, we find that |F2

1| ∼ α
4
∼ |F2F0|. So, the

expansion (4.6) is no longer valid. However, both modes are stable if Bo > 0, but
there is instability if Bo < 0. Indeed, if Bo < 0 then F0 ≈ (1/36)n4α4MaBo < 0 (see
(4.4)). Therefore, the discriminant F2

1 − 4F0F2 > F2
1 . Then (3.7) yields one of the two

growth rates to be positive, so we have instability. On the other hand, if Bo> 0, then
Re(F1) > 0 but the discriminant can be either positive or negative. If it is negative,
then the square roots in (3.7) are purely imaginary and therefore both values of γR

are negative. If the discriminant is positive, then |
√

F2
1 − 4F0F2| < F1, so that both

values of γ given by (3.7) are negative again.
These leading-order results were obtained in a different way and discussed in more

detail in Frenkel & Halpern (2017).
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4.1.2. Marginal wavenumbers and their small s asymptotics
When the marginal wavenumber determined by (3.17) happens to be small

(typically, due to the smallness of some of the parameters, such as s, Bo and Ma), it
is approximated by substituting into (3.17) (with Ma 6= 0) the long-wave expressions
for the coefficients,

k20 ≈ k̃206s2α6
+O(s2α8), (4.13)

k11 ≈ k̃116s2α6
+O(s2α8), (4.14)

k31 ≈ k318α
8
+O(α10), k22 ≈ k228α

8
+O(α10), k13 ≈ k138α

8
+O(α10), (4.15a−c)

where we have kept only the leading orders, and all the coefficients on the right-hand
sides are functions of m and n only:

k̃206 =
n4

108
ϕ(n− 1)(n+ 1)2(m− n2), (4.16)

k̃116 =
n7

81
(n− 1)(n+ 1)2(m− 1)(n+m), (4.17)

k318 =
n6

324
(n3
+m)2, (4.18)

k228 =
n8

486
(n+m)(n3

+m), (4.19)

k138 =
n10

2916
(n+m)2. (4.20)

If s 6= 0 is fixed, then by keeping only the two leading terms in α2, we arrive at

ζ0 + ζ2α
2
= 0, (4.21)

where

ζ0 =
s2

n4
(k̃206Ma+ k̃116Bo) (4.22)

and

ζ2 =
s2k̃116

n4
+

1
n4
(k228Bo2Ma+ k318BoMa2

+ k138Bo3)+O(s2Ma, s2Bo). (4.23)

Equation (4.21) yields

α0 =
√
−(ζ0/ζ2). (4.24)

(Clearly, this result is consistent only when ζ0/ζ2 is negative and small, which is the
case only for some parameter values, such as, for example, those used in figures 4–6.)

It is interesting to investigate the transition from instability to stability of the case
s= 0 by considering the limit s ↓ 0. In this we should distinguish two cases: Bo= 0
and Bo 6= 0. For Bo 6= 0, the marginal wavenumber is given, instead of (4.21), by

ζ̃0s2
+ ζ20α

2
= 0, (4.25)
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FIGURE 4. (Colour online) (a) Values of γRmax, (b) αmax, (c) α0, for Bo= 0 and Bo= 0.1,
along with their small-s asymptotics (given by (4.28) for α0 with Bo= 0.1, equation (4.31)
for α0 with Bo= 0, equation (4.34) for γRmax and αmax with Bo= 0, equation (4.35) for
γRmax and αmax with Bo= 0.1), and (d) γR at α= 0.01 and Bo= 0.1, versus s. Here n= 2
and m= 2 (which is in the R sector), with Ma= 1.

where we define ζ̃0 = ζ0/s2 and ζ20 = ζ2(s= 0). In more detail,

ζ̃0 =
k̃206

n4
Ma+

k̃116

n4
Bo

=
1

108
(n− 1)(n+ 1)2(m− n2)ϕMa+

1
81

n3(n− 1)(n+ 1)2(m− 1)(n+m)Bo,

(4.26)

and

ζ20 =
Bo
n4
(k318Ma2

+ k228MaBo+ k138Bo2)=
n2Bo
2916

(3(m+ n3)Ma+ n2(m+ n)Bo)2.

(4.27)

Equation (4.25) yields

α0 = s
√
−ζ̃0/ζ20. (4.28)

However, for Bo= 0, ζ20 in (4.25) vanishes, and, instead the leading-order equation
for the marginal wavenumber is found to be

ζ̃0s2
+ ζ40α

4
= 0, (4.29)
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FIGURE 5. (Colour online) Values of (a) γRmin, (b) αmin, (c) α0, for Bo = −0.001 and
Bo=−0.1, along with their small-s asymptotics, and (d) γR at α = 0.01 and Bo=−0.1,
versus s for n= 2 and m= 5 (which is in the Q sector), with Ma= 1.

where

ζ̃0 =
k̃206

n4
Ma=

1
108

(n− 1)(n+ 1)2(m− n2)ϕMa,

ζ40 =
k318

n4
Ma2
=

1
324

n2(m+ n3)2Ma2.

 (4.30)

(We have used the first formula of (4.26) with Bo=0.) Then the marginal wavenumber
is asymptotically

α0 = (−ζ̃0/ζ40)
1/4s1/2. (4.31)

Figure 4(c) shows these asymptotes along with the marginal wavenumbers obtained
by solving (3.17) for Bo = 0 and some positive values of Bo in the R sector.
Figure 4(d) shows, for a fixed wavenumber, α = 0.01, how the instability at the
larger s corresponding to the (positive) growth rate (4.7), changes to stability with
the growth rate corresponding, in the leading order, to the case of s= 0 and non-zero
Bo. The growth rate that crosses the zero value at the s for which α = 0.01 is the
marginal wavenumber.

In the analogous figure for the Q sector, figure 5, the marginal wavenumber is
the left endpoint of the interval of the unstable wavenumbers, which is bounded
away from the zero of the wavenumber axis. There is a band of stable wavenumbers
between this marginal wavenumber and the zero, and inside it there is a minimum
of the growth rate, γRmin, at the corresponding wavenumber αmin; their dependencies
on s are plotted in panels (a) and (b), respectively. Correspondingly, panel (d) shows
stability at the larger s, and instability at the smaller s, since here, in the Q sector,
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FIGURE 6. (Colour online) Marginal wavenumber α0 versus the shear parameter s, along
with its asymptotics, at larger s, due to the capillary effects, and at smaller s, due to the
combined gravity–surfactant effects, for n= 2, m= 2, Ma= 0.05 and Bo=−0.05.

it is the band of stable wavenumbers that shrinks toward zero as s ↓ 0. We call such
cases, in which there is an interval of unstable wavenumbers bounded away from
zero, the mid-wave instability, to distinguish them from the long-wave instability,
in which the interval of unstable wavenumbers is bordered by zero. We study the
mid-wave instability in detail in Part 2.

By considering the formula for ζ2, when Ma and Bo are sufficiently small, we
discard all the terms containing Ma or Bo, which results in

ζ2 ≈
1
81 s2n3(n− 1)(n+ 1)2(m− 1)(n+m), (4.32)

the capillary term of ζ2. Equation (4.25), after being multiplied by an appropriate
factor, is interpreted as the instability term (4.7) being balanced by the capillary
effect (corresponding to the term α2 in B = Bo + α2, and arising from the second
term of (4.25).) The resulting, asymptotically s-independent, value of the marginal
wavenumber, as one can see at the larger s in figure 6 (which is described below
at the end of the current paragraph), is still small, consistent with the long-wave
approximation. However, for the same fixed small values of Ma and Bo, at sufficiently
small s, the capillary term in ζ2, equation (4.32), is negligible, and the stabilization
near the marginal wavenumber is due to non-capillary effects of the combined action
of surfactants and gravity which are captured by ζ20, equation (4.27). It is clear that in
the expanded form of ζ20, which includes a term with the product MaBo, all the three
terms appearing in ζ20 are not zero if both the Marangoni and Bond numbers are
non-zero. These (non-additively) combined surfactant–gravity effects are beyond the
lubrication approximation, and can be captured only by the post-lubrication correction
theory (see Frenkel & Halpern (2017) and references therein). Figure 6 shows the
numerical solution of the marginal wavenumber equation (3.17) without using the
long-wave asymptotics, along with the larger-s (capillary) and small-s (gravity- and
surfactant-determined, non-lubrication) approximations of the wavenumber given by
the long-wave asymptotic (4.25). Excellent agreement is evident.
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4.1.3. Maximum growth rates
As indicated earlier, a way to find γRmax and αmax is to solve (3.16) and (3.18). For

s↓ 0, numerical computations suggest that αmax∝ s if Bo 6= 0 (just like α0) and αmax∝

s2/3 if Bo = 0, and that γRmax ∝ s2 for both Bo 6= 0 and Bo = 0, as one can see in
figure 4. We find the coefficients of these asymptotic dependencies as follows:

For the case Bo= 0, it is convenient to write γRmax and s2 as functions of αmax to
the two leading orders,

s2
≈ φ1α

3
+ φ2α

4, γRmax ≈ψ1α
3
+ψ2α

4, (4.33a,b)

with indeterminate coefficients φ1, φ2, ψ1 and ψ2. We have to use two leading orders
because the leading order system for φ1 and ψ1 turns out to be degenerate, and only
gives one relation between φ1 and ψ1. The other relation between φ1 and ψ1 is found
as the solvability condition for the next-order non-homogeneous system for φ2 and
ψ2. For the solution details, we refer the reader to Frenkel et al. (2018). The solution
yields φ1=Φ

1/2Ma3/2 and ψ1=Ψ
1/2Ma1/2, where Φ and Ψ are functions of m and n

only (given explicitly in Frenkel et al. (2018)). Returning to the independent variable
s, the asymptotics

γRmax =
ψ1

φ1
s2, αmax = φ1s2/3 (4.34a,b)

are shown in figure 4(a,b) along with the full dependencies for a representative set of
the parameter values.

For the case Bo 6= 0, it is sufficient to consider only the leading order of (3.16)
and (3.18) (proportional correspondingly to α8 and α7) to determine the coefficients
c1 and d1 in the asymptotics s2

= c1α
2 and γRmax= d1α

2. Since there are contributions
from the terms of (3.16) and (3.18) with all powers of γRmax, the resulting system
of two quartic equations for c1 and d1 can only be solved numerically. The small-s
asymptotics,

γRmax =
d1

c1
s2, αmax = c−1/2

1 s (4.35a,b)

are shown in figure 4 along with the full numerics.
We see that the cases Bo = 0 and Bo 6= 0 have different powers of s in the

asymptotics for α0, and the same is true for αmax. Figure 4(c) shows that as Bo ↓ 0,
the interval of small s for which α0 ∝ s shrinks, and there is a cross-over to the
s1/2 behaviour characteristic of Bo = 0 for an interval of larger (but still small)
wavenumbers. Similarly, for αmax there is a cross-over from αmax ∝ s at the smallest s
to the s2/3 asymptotic characteristic of Bo= 0 for an interval of larger wavenumbers.

These considerations clarify the transition from the instability at s 6= 0 to stability
at s= 0, and the relation between the different powers in the α0 and αmax asymptotics
of the Bo 6= 0 and Bo= 0 cases.

4.2. Instability thresholds in the different sectors and nearby asymptotic behaviour

In both the R sector (1 < m < n2) and the Q sector, (m > n2), the surfactant branch
(4.8) is stable for all Bo and the robust branch (4.7) is unstable if Bo< BocL, where,
in view of (4.7), the threshold Bond value is

BocL =
3ϕ(m− n2)

4n3(1−m)(n+m)
Ma. (4.36)
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In the R sector, the Marangoni effect is destabilizing, so BocL > 0; gravity renders
the flow stable for Bo> BocL, whereas for Bo< BocL, the flow is unstable. In the Q
sector (and in the S sector as well), the Marangoni effect is stabilizing, BocL < 0, and
the gravity effect causes the robust branch unstable when the (negative, destabilizing)
Bo< BocL.

From (4.36) the ratio BocL/Ma is a function of m and n only, and its graph
is a surface in the (n, m, BocL/Ma)-space. This surface is plotted in figure 3
of Frenkel & Halpern (2017), and is discussed in detail there. The window of
unstable wavenumbers, 0 < α < α0, shrinks to zero as Bo ↑ BocL, so that the
marginal wavenumber α0 ↓ 0 for both the R and Q sectors. To obtain the asymptotic
approximation for α0, we write the Bond number as

Bo= BocL −∆, (4.37)

with ∆ ↓ 0. Equation (3.8) is substituted into (4.21) and when retaining the leading-
order terms in ∆ and α2 we find that ζ0 is proportional to ∆ and ζ2 is a cubic
polynomial in BocL (and is independent of ∆, to the leading order). The solution is

α0 ≈ [1+ β1BocL + β3Bo3
cL]
−1/2∆1/2, (4.38)

where

β1 =
1
15

(
(m2
− 1)m

m+ n
−m2

+
2(m− 1)m

m− n2
−

6(m− 1)(3mn+m+ 4n2)

3mn+m+ (n+ 3)n2

+ (m− 7)n+ 4m+ n2
− 2
)

(4.39)

and

β3 =
1
36

n3(n+m)|n− 1|ψ2

[ϕs(m− n2)(n+ 1)]2|m− 1|
. (4.40)

Note here that Ma has been written in terms of BocL using (4.36). If BocL� 1 (i.e.
Ma� 1) (4.38) simplifies to

α0 ≈∆
1/2. (4.41)

We also find in the way described above the long-wave asymptotic dependences

αmax ∝∆
1/2 and γRmax ∝∆

2. (4.42a,b)

For example, the relative error of the asymptotic expression (4.41) for n=m=2, s=1,
Bo= 10−6 and Ma= 10−6 to Ma= 10 is less than 10 % for ∆< 0.2. This is illustrated
in figure 7, where n=m= 2, s= 1 and Ma= 1. The asymptotics for γRmax, αmax and
α0 near Bo= Boc are practically indistinguishable from the full numerical solutions.

In the S sector (1 < n <∞ and 0 < m < 1), the robust branch (4.7), as has been
mentioned above, is stable when Bo > BocL, the latter given by (4.36), and unstable
otherwise. However, equation (4.8) for the surfactant branch does not contain the
Bond number, and indicates instability. Thus the surfactant mode is unstable for any
Bo provided α is sufficiently small. However, it is easy to see that the window of
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FIGURE 7. (Colour online) Values of (a) γRmax, (b) αmax and (c) α0 versus ∆ for the same
n, m and Ma as in figure 4, and s=1. The solid lines represent the full solutions, equation
(3.17), and the dashed lines represent the asymptotics given by (4.38).

unstable wavenumbers shrinks to zero as Bo↑∞. Indeed in this limit, equation (4.21)
reduces to

s2(n− 1)(n+ 1)2(m− 1)+ 36n3(n+m)α2Bo2
= 0. (4.43)

Hence the asymptotic formula for the marginal wavenumber is

α0 ≈

[
36s2(n+ 1)2(1−m)(n− 1)

n3(n+m)

]1/2

Bo−1. (4.44)

For the Q sector, the instability threshold (4.36) can be written in a different way, to
state that (while the surfactant branch (4.8) is stable for all Bo and Ma) the robust
branch, equation (4.7), is stable if Ma exceeds a critical Marangoni number, MacL

given by

MacL =
4n3(1−m)(n+m)

3ϕ(m− n2)
Bo, (4.45)

which is the reciprocal of (4.36).
When Ma↑MacL, the marginal wavenumber is expressed in terms of ∆M =MacL−

Ma. From (4.21), we obtain in the same way that we derived (4.38) for the marginal
wavenumber in the R sector that

α0 ≈ [M0 +M1MacL +M3Ma3
cL]
−1/2∆

1/2
M , (4.46)

where the coefficients M0, M1 and M3 are functions of m and n only, and given
explicitly in Frenkel et al. (2018).

4.3. Instabilities on the (n,m)-sector borders

The borders m= 1, m= n2 and n= 1 are considered separately because of singularities
that can occur in the expressions for the growth rates and the marginal wavenumber
derived in the previous sections for the R, S and Q sectors.
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4.3.1. The m= 1 border
Consider first the case m = 1 and n 6= 1. In the long-wave limit, F2

1 � |F2F0|

since F2
1 ∼ α

4 and |F2F0| ∼Maα3 (the truncated Taylor series for such quantities are
shown in appendix A of Schweiger (2013)). Therefore, the roots to the dispersion
equation (3.7), are approximated by

γ ≈
1

2F2

(
−F1 + (4F2F0)

1/2

[
1+

1
2

(
−

F2
1

4F2F0

)])
. (4.47)

Hence, the growth rates of the two branches are

γR =
−Re(F1)+Re(

√
ζ )

2F2
, (4.48)

where ζ is the discriminant of (3.7). To leading order in α, equation (4.48) reduces
to

γR ≈
Re(
√
ζ )

2F2
=±

n[|n− 1|(n+ 1)sMa]1/2

2(n+ 1)2
α3/2. (4.49)

This result does not depend on the Bond number and is the same as in FH and HF.
It turns out that the next-order correction, omitted in the leading-order expression,
depends on both the Bond number and the Marangoni number, and is proportional to
α2. Note also that (4.49) is valid as α ↓ 0 with the Marangoni number fixed but it is
not valid as Ma ↓ 0 with the wavenumber fixed. We will show below that for m= 1,
there are two branches of γR that are continuous at all parameter values and all α,
which we called the surfactant branch and the robust branch. It is unclear from (4.49)
whether the positive growth rate corresponds to the surfactant branch or the robust
branch. Recall that, as Ma ↓ 0, with α remaining finite, the identity of each branch
is clear since, by definition, the branch that vanishes in this limit is the surfactant
branch. Starting from there, each branch can be traced to the asymptotic region of
small α and finite Ma where (4.49) is valid and thus the branches will be identified
there.

The fact that there are two continuous branches of γ (α, Ma) (with the other
parameters fixed and not shown explicitly) given by (3.7) is seen as follows. As
was already mentioned previously, in § 3 (see also appendix A), in any simply
connected domain not containing 0 of the complex ζ -plane, there exist two distinct
analytic branches of the square root function, f (ζ )= ζ 1/2. The

√
ζ in the expression

for γR, is a composite function of (α, Ma) through ζ (α, Ma). The discriminant ζ ,
equation (3.15), is a single-valued continuous function of (α, Ma). It is easy to see
that it maps the first quadrant of the (α, Ma)-plane inside the upper half-plane U
of the ζ -plane, which is a simply connected domain not containing 0. Indeed, when
m= 1 (n 6= 1 and s 6= 0), then from (3.11), Im(F1)= 0, and hence

Im(ζ )=−4F2Im(F0). (4.50)

In view of n> 1, we have sαn > sαn, and hence, from (3.13), −Im(F0) > 0. Therefore,
equation (4.50) yields

Im(ζ ) > 0. (4.51)
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Since the upper half-plane U of the ζ -plane is a simply connected domain not
including 0, the square root function ξ = f (ζ ) = ζ 1/2 in U of ζ has two analytic
branches. One of them maps U onto the first quadrant of the ξ -plane, so that
Re(
√
ζ ) > 0 for this branch, and thus Re(

√
ζ ) is a positive continuous function

of (α,Ma). The other analytic branch of ξ = ζ 1/2 has its range entirely in the third
quadrant of the ξ -plane, so that Re(

√
ζ )< 0 and thus Re(

√
ζ ) is a negative continuous

function of (α,Ma). Thus, there is the one branch of Re(
√
ζ ) that is continuous and

positive at all (α,Ma) and the other branch of Re(
√
ζ ) that is continuous and negative

at all (α, Ma). (We note that for even for arbitrary m 6= 0, it readily follows that
Im(ζ ) > 0, provided that Ma ↓ 0 and Bo > 0, since then, according to (3.10)–(3.13),
F0 = 0, Re(F1) > 0 and Im(F1) > 0.)

In the limit of Ma ↓ 0, the surfactant branch vanishes, γR = 0, which from (4.48)
means Re(

√
ζ ) = Re(F1). Therefore, sgn(Re(

√
ζ )) = sgn(Re(F1)), where sgn is the

sign function. It is sufficient to consider here only small wavenumbers, from an
interval [0, αs], by choosing an arbitrary αs such that αs � 1 and αs < |Bo|. Then
(4.2) (with Ma = 0) yields sgn(Re(F1)) = sgn(Bo), so that sgn(Re(

√
ζ )) = sgn(Bo).

As was already established, each branch of Re(
√
ζ ) has the same sign for all

(α, Ma). Therefore, for the surfactant branch, the relation sgn(Re(
√
ζ )) = sgn(Bo)

holds in the limit of α ↓ 0 as well. From (4.49), sgn(γR)= sgn(Re(
√
ζ )), and then for

the surfactant branch, sgn(γR) = sgn(Bo). Thus, the surfactant branch is unstable for
Bo> 0, γR∝+α

3/2 and stable for Bo< 0, γR∝−α
3/2. Consequently, the robust branch

is stable (unstable) for Bo> 0 (Bo< 0). This answers the question of identifying the
stable and unstable modes as belonging to the appropriate branches in (4.49).

In certain limits it is possible to find a long-wave approximation to γR that captures
the growth-rate behaviour close to the marginal wavenumber α0. Assuming Bo�Ma,
α2
� Bo, and Ma/Bo2

� α � 1, equation (3.7) can be simplified to yield, for the
unstable surfactant branch,

γR ≈
27
4
(n− 1)2(n+ 1)3s2Ma2

n5Bo3 −
1
4

nMa
(n+ 1)

α2 (4.52)

which is valid for α ≈ α0. (Note that this equation is not valid in the limit as α ↓ 0;
in the latter limit, the leading-order behaviour is still given by (4.49)). In figure 8 the
growth rate of the surfactant branch is plotted using (3.7) along with the asymptotic
expression (4.52). One can see the dashed line approximations approaches the full
dispersion curve as α ↑ α0. The long-wave γR approximation (4.49) is not plotted
in figure 8 but for the same parameter values the error is less than 1 % when α <

1.4× 10−9.
An asymptotic expression for α0 is obtained by solving for α (4.52) with γR = 0:

α0 ≈
3s|n− 1|(n+ 1)2[3Ma]1/2

n3Bo3/2 . (4.53)

The above expression is also obtained from the long-wave marginal wavenumber
(4.21). This expression also suggests that gravity is not completely stabilizing since
α0 > 0 at any positive finite value of Bo. We had the similar result that gravity, no
matter how strong, cannot completely stabilize the Marangoni instability for the S
sector.
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FIGURE 8. (Colour online) The exact dispersion curve (3.7) (solid line) and the
asymptotic expression of the growth rate around the marginal wavenumber (4.52) (dashed
line) of γR for m= 1, n= 2, s= 1, Ma= 1 and Bo= 1000.

4.3.2. The case n= 1
Next, we consider the border n = 1 with m 6= 1. Just like the m = 1 and n 6= 1

case, the imaginary part of the discriminant ζ , Im(ζ )= 2Re(F1)Im(F1), is positive (or
negative) for m< 1 (or m> 1), see (3.8)–(3.13). The growth rate for the robust mode
is, from (4.7),

γR ≈−
(1+m)

m2 + 14m+ 1

{
Ma+

1
3

Bo
}
α2, (4.54)

but, since the coefficient of the α2 term in (4.8) becomes zero, we have for the
surfactant branch, using (4.10),

γR ≈−
1

96
(1+m)

s2(m− 1)2

{
1
2

Ma+
1
3

Bo
}

BoMaα4. (4.55)

For this case both the robust and surfactant branches are long-wave stable for Bo> 0.
For Bo < 0 both branches are unstable if the magnitude of Bo is sufficiently large.
This occurs when the leading term coefficients in (4.54) and (4.55) are positive, that
is when Bo<−3Ma for (4.54), and −3Ma/2< Bo< 0 for (4.55).

For the case Bo= 0, the corresponding asymptotics appear in HF.

4.3.3. The m= n2 border
For the m= n2

6= 1 border, using the general (4.6) to obtain the growth rates to the
leading orders, we find

γR ≈−

{
nBo

12(n+ 1)

}
α2
+

{
n(2Ma+ nBo− 5)

60(n+ 1)

}
α4, (4.56)

and

γR ≈−

{
Ma

4(n+ 1)

}
α2. (4.57)
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FIGURE 9. Dependence on gravity (represented by Bo) of the maximum growth rate γRmax,
the corresponding wavenumber αmax and the marginal wavenumber α0 in the R, S and Q
sectors. Here s= 1, Ma= 0.1 and the values of the (n,m) pairs for the R (a,d,g), S (b,e,h),
and Q (c, f,i) sectors are (2, 2), (2, 0.5) and (2, 5), respectively.

We have kept two leading orders in (4.56) because the α2 term vanishes for Bo= 0.
Equation (4.57) shows that the surfactant branch is always stable, and this is consistent
with HF in the limit Bo→ 0. Also, in this limit the robust branch, equation (4.56),
reproduces the corresponding HF result, their equation (4.13). Also, for Bo = 0,
equation (4.56) recovers the long-wave dispersion relation found in FH.

Finally, for the m= 1 and n= 1 case, the solutions to the dispersion equation (3.7)
for arbitrary wavenumber are of the form

γR =
−aMa− b(Bo+ α2)± [aMa− b(Bo+ α2)]

2F2α4
, (4.58)

where

a= α2(s2
α − α

2)(cαsα + α) and b= (s2
α − α

2)(cαsα − α). (4.59a,b)

After substituting F2, a and b into (4.58), the growth rate for the robust branch is

γR =−
(s2
α − α

2)(Bo+ α2)

4α(cαsα + α)
≈−

1
24
(Bo+ α2)α2 for α� 1, (4.60)
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and the growth rate for the surfactant branch is

γR =−
α(s2

α − α
2)Ma

4(cαsα − α)
≈−

1
8

Maα2 for α� 1. (4.61)

Note that the surfactant branch is always stable but the robust branch is unstable if
α2 <−Bo. Obviously, this only occurs if Bo< 0.

5. Long-wave regimes of instability in different (n, m)-sectors for arbitrary
wavenumbers

5.1. Effects of gravity
We first examine the influence of Bo on the maximum growth rate γRmax, its
corresponding wavenumber αmax and the marginal wavenumber α0. Figure 9 shows
plots of γmax, αmax and α0 for a representative (n, m) pair from each of the three
sectors where panels (a,d,g), (b,e,h) and (c, f,i) represent the R, S and Q sectors,
respectively. In the R sector, panels (a,d,g) show that the system is unstable provided
Bo does not exceed a finite positive value Boc and that γRmax, αmax, and α0 all decrease
to zero as Bo ↓ Boc. These findings were also observed in the long-wave limit (see
§ 4.2). The instability regimes of the figure 9 are of the long-wave type (as defined
in the introduction) even when the marginal wavenumber α0 is not small. However,
for m sufficiently close to n2 but still in the R sector, there appears a ‘mid-wave’
instability, which is discussed in Part 2. Panels (b,e,h) show the surfactant branch
is always unstable in the S sector. The discontinuity in the graph of αmax in (e) is
discussed below with figure 10. In the Q sector, surfactants are completely stabilizing
provided Bo> Boc, as shown in (c, f,i). Note that Boc < 0 agrees with the long-wave
analysis (see (4.45)).

The discontinuity that can occur in the S sector is displayed in figure 10. Panel
(a) shows that for negligible Bo, one branch is long-wave unstable and the other one
is stable. As the magnitude of Bo increases the previously stable branch becomes
unstable (Bo = −1) and at some point the branches cross (Bo = −1.5, −2.3). Panel
(e) shows that as |Bo| continues to increase the crossing eventually disappears at
which point the upper branch has two local extrema. At some value of Bo, the global
maximum shifts from the right local extremum (as for Bo=−2.45) to the left local
extremum (as for Bo = −2.67). Finally, as Bo ↓ −∞, both branches are unstable in
the long-wave manner, and feature a single maximum.

5.2. Effects of surfactants in the R and S sectors
Here, we investigate, for a fixed value of Bo in the R and S sectors, the Marangoni
number Ma dependences of the maximum growth rate γmax, the corresponding
wavenumber αmax and the marginal wavenumber α0. The Q sector turns out to
have somewhat different properties, which are discussed in Part 2. However, it is
immediately clear that in the Q sector both branches are stable for Bo> 0 and fixed
Ma (see (c, f,i) in figure 9).

Panels (a,b) of figure 11 show that γRmax attains a maximum at some Ma = O(1)
in both the R and S sectors, and that γRmax ↓ 0 as Ma ↑ ∞. Both αmax and α0 also
decrease to zero as Ma ↑∞. However, in the R sector there is a threshold value of
Ma, MacL, below which the flow is stable; while in the S sector the flow is unstable
for all Ma> 0. Recall from the long-wave results that the linear function MacL(Bo) is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

99
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.990


174 A. L. Frenkel, D. Halpern and A. J. Schweiger

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

0.15

0.10

0.05

0

0.10

0.05

0

0.10

0.05

0

0.10

0.05

0

0.10

0.05

0

0.05

0

0.05

0

0.15

0.10

0.05

0

å å

©R

©R

©R

©R

Bo = -2.67 Bo = -3

Bo = -2.394 Bo = -2.45

Bo = -1.5 Bo = -2.3

Bo = -0.01 Bo = -0.6
(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 10. Dispersion curves given by (3.7) in the S sector (n= 2, m= 0.5) for selected
values of Bo showing occurrence of two local maxima and a jump in the global maximum.
Here s= 1 and Ma= 0.1.

the inverse of BocL(Ma) (see (4.36) and (4.45)). In the S sector, αmax and α0 approach
some non-zero constant values and γRmax ↓ 0 showing no threshold value of Ma for
complete stabilization of the flow.

At very small and very large Ma, the numerically found behaviour of the marginal
wavenumber α0, the maximum growth rate γRmax and its wavenumber αmax (see
figure 11) is corroborated with their analytic (or, in some cases, semi-analytic)
asymptotic dependencies. The latter are determined as follows.

At Ma ↑∞, panels (e, f ) suggest that α0 ↓ 0. By substituting (4.13)–(4.15) into the
marginal wavenumber equation (3.17), and keeping only the dominant Ma terms, the
following expression is obtained:

n2

324
(n3
+m)2BoMaα2

+
s2

108
ϕ(n− 1)(n+ 1)2(m− n2)= 0, (5.1)
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FIGURE 11. Values of (a,b) γRmax, (c,d) αmax and (e, f ) α0 versus Ma for Bo= 1.0 in the
R sector (a,c,e) and S sector (b,d, f ). Here s= 1 and the values of the (n,m) pairs in the
R and S sectors are (2, 2) and (2, 0.5), respectively.

from which

α0 ≈
s(n+ 1)

√
3ϕ(n− 1)(n2 −m)

n(n3 +m)
Bo−1/2Ma−1/2. (5.2)

This is consistent with the numerically found behaviour for α0 at large Ma.
As Ma↓ 0, it is clear from panel ( f ) of figure 11 that in the S sector, α0 approaches

some finite non-zero value. Therefore, by keeping only the (dominant) linear Ma
terms, equation (3.17) reduces to

k11 + k13B2
= 0. (5.3)
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However, this equation must be solved numerically for α0 since it is not necessarily
small. Some other asymptotics for α0 approaching zero in the R sector were discussed
above in § 4.1.2.

At Ma↑∞, panels (a–d) of figure 11 suggest that γRmax and αmax ↓ 0. By using the
long-wave limit and the dominant linear and constant terms of (3.16) for Ma� 1, we
obtain the following asymptotic expressions:

γRmax ≈
ns2(n− 1)(n+ 1)2(m− n2)ϕ

4(n3 +m)3
Ma−1 (5.4)

and

αmax ≈
[12ϕ(1− n)(m− n2)]1/4(m− 1)1/2s

(n3 +m)
Ma−3/4Bo−1/4. (5.5)

The details of the derivation are found in Frenkel et al. (2018).
At Ma↓ 0, panels (b,d) of figure 11 show that γRmax ↓ 0 and αmax approaches some

non-zero constant. Therefore, equation (3.16) is approximately linear for γR� 1,

c10γR + c01Ma≈ 0 (5.6)

so that

γR ≈−
c01

c10
Ma, (5.7)

where cij, the coefficients of γ i
RMaj in (3.16), are independent of Ma. An equation

for αmax is obtained by differentiating (5.7) with respect to α and solving dγR/dα= 0
numerically for α, which is then substituted into (5.7) to obtain γRmax.

In contrast to the case shown in figure 11 for Bo> 0, the flow is unstable for all
Ma when Bo< 0 in either the R or S sectors. Moreover, figure 12(a,b) also shows that
γRmax has a global maximum at Ma=O(1). However, in the S sector γRmax decreases
with increasing Ma for sufficiently small Ma, up to Ma=Ma0. At Ma=Ma0 there is
a jump in αmax. This behaviour is due to the fact that the dispersion curve has two
maxima, and at this particular value of Ma there is a jump in the location of the global
maximum, similar to that shown in figure 10. Figure 12 also shows that γRmax, αmax
and α0 all approach some finite positive constant in the limits Ma ↑∞ and Ma ↓ 0
for both sectors. The asymptotics corresponding to figure 12 are obtained below.

Panels (e, f ) of figure 12 indicate that α0 asymptotes to non-zero constants both at
Ma ↑∞ and at Ma ↓ 0. The relevant values of α0 can be obtained as follows.

For Ma ↑∞, the dominant term in (3.17) is the Ma3 term, and since k13 6= 0 this
implies that Bo+ α2

≈ 0, or

α0 ≈ |Bo|1/2. (5.8)

For Bo=−1, this yields α0≈ 1 which is consistent with the numerical results shown
in figure 12(e, f ).

In the limit Ma ↓ 0, equation (3.17) reduces to

(k11 + k13B2)MaB≈ 0. (5.9)

In the R sector, the solution α0 ≈ |Bo|1/2 is again obtained because k13 is always
positive and k11 is the product of (m− 1) and a positive function, and thus k11 > 0 in
the R sector. However, in the S sector k11 < 0, and α is a solution of k11 + k13B2

= 0
which is solved numerically for α. The solution is approximately α0≈1.56, and agrees
with figure 12( f ).
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FIGURE 12. Values of (a,b) γRmax, (c,d) αmax and (e, f ) α0 as functions of Ma for Bo=
−1.0 in the R sector (a,c,e) and S sector (b,d, f ), for the same s and (n,m) points as in
figure 11.

Finally, consider the asymptotics of γRmax and αmax in the limit Ma ↑∞, and then
in the limit Ma ↓ 0, (panels (a–d) of figure 12). At Ma ↑∞, the terms proportional
to Ma3 in (3.16) yield a linear equation for γR. Hence,

γR ≈−
1
2

(s2
α − α

2)(s2
αn − α

2n2)(Bo+ α2)

α(s2
α − α

2)(sαncαn + αn)m+ α(s2
αn − α

2n2)(sαcα + α)
. (5.10)

Again, one must solve dγR/dα = 0 numerically for αmax which in turn is substituted
into (5.10) to obtain γRmax. At Ma↓ 0, the terms without γR in (3.16) vanish, and the
asymptotic constant values are found, similarly, from γR =−c10/c20.

Figure 13 shows the results of varying the shear parameter s. For any fixed s,
the growth rate has a global maximum over the (α, Ma)-plane, denoted maxγR. We
denote α(maxγR) and Ma(maxγR) the values of the wavenumber and Marangoni

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

99
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.990


178 A. L. Frenkel, D. Halpern and A. J. Schweiger

0 50 100 0 50 100 0 50 100

10

5

1.0

0.5

150

100

50

s s s

m
ax

© R

å(
m

ax
© R

)

M
a(

m
ax

© R
)

(a) (b) (c)

2, 0.5, -1

2, 0.5, 1
2, 2, -1

2, 2, 1

n, m, Bo

FIGURE 13. (Colour online) The influence of s on (a) the maximum of γRmax over all α
and Ma in the R sector (at n= 2 and m= 2) and the S sector (at n= 2,m= 0.5) for two
different values of Bo as indicated in the legend. Panels (b,c) show the corresponding α
and Ma.

number, respectively, at which the growth rate attains its maximum, maxγR. These
quantities are plotted versus s in figure 13, for selected sampling points in the R and
S sectors. We see that while in (a,c) the dependencies are linear, and also practically
independent of the Bond number, this does not hold for the α(maxγR) shown in
panel (b); in particular, in all four cases shown there, it stays almost constant (of
magnitude order 1) at large s but falls off precipitously to zero as s approaches zero.

In this subsection we only had to deal with the long-wave instability because the
values of Ma considered are either sufficiently large or sufficiently small, or the
viscosity ratio was not sufficiently close to the R− Q boundary m= n2. It turns out
that for the intermediate values of Ma and the appropriate values of m, even in the
R sector, a different type of instability, called the ‘mid-wave’ instability (Halpern &
Frenkel 2003), may happen. It is considered in Part 2.

6. Summary and discussion
In this paper, we have considered the linear stability of two immiscible viscous

fluid layers flowing in the channel between two parallel plates that may move steadily
with respect to each other driving a Couette flow. The combined effects of gravity
and an insoluble surfactant monolayer at the fluid interface were examined for
certain flows such that the effect of inertia on their stability properties is negligible.
The bulk velocity components satisfy linear homogeneous equations with constant
coefficients. Therefore, their general solution, in the standard normal-mode analysis,
is available with a few undetermined constants. The latter are determined, by the
plate and interfacial-balance boundary conditions, in terms of the interface deflection
and surfactant disturbance amplitudes. This yields a system of two algebraic linear
homogeneous equations for the latter two amplitudes. Non-trivial solutions of this
algebraic eigenvalue problem exist only if the increment γ , the complex ‘growth
rate’, satisfies a quadratic equation whose coefficients are known functions of the
wavenumber α, the Marangoni number Ma, the Bond number Bo, the viscosity ratio
m, the aspect ratio n and the interfacial shear parameter s. The two solutions of this
dispersion equation were shown to yield two continuous increment branches, defined
almost everywhere in the (wavenumber, system parameters)-space (with a ‘branch
cut’ hypersurface excluded from it), and their real parts, the two continuous growth
rate branches, were analysed to infer conclusions concerning the stability of the
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flow. Similar to FH and subsequent papers, we call one of the branches the ‘robust’
branch, as it is present even when Ma= 0, and we call the other one, that vanishes
as Ma ↓ 0, the ‘surfactant’ branch. Thus, we have explicit formulas allowing us to
readily compute the growth rates of instability for any given input values of the
wavenumber and the five parameters of the problem.

In the long-wave analysis of FH, three open sectors in the part of the (n, m)-plane
given by n > 1 and m > 0, categorizing the stability of the system without gravity
(Bo = 0), were identified: the Q sector, (m > n2), where both modes are stable; the
R sector, (n2 > m > 1), where only the robust branch is unstable; and the S sector,
(0<m< 1), where only the surfactant mode is unstable. The same long-wave sectors
were found to be relevant for non-zero Bo in the lubrication theory of Frenkel
& Halpern (2017). In the present paper, by using the long-wave asymptotics for
the coefficients of the quadratic dispersion equation, we corroborate the lubrication
approximation results of Frenkel & Halpern (2017) for the instability thresholds. In
the S sector, the surfactant mode remains unstable for all Bo, that is for arbitrarily
strong stabilizing gravity; while in the R sector the growth rate of the robust branch
is unstable provided Bo is below some positive threshold value Boc. In the Q sector,
both branches remain stable for Bo > 0, but the robust branch is long-wave unstable
for the smaller values of Ma (while mid-wave unstable for larger values of Ma, so that
there are longer waves that are stable, as discussed below), when Bo is below some
negative Boc. We have obtained the long-wave marginal wavenumbers and extremum
growth rates which depend on the two main orders of the growth rate expression and
were not considered in Frenkel & Halpern (2017). In particular, the small-s behaviour
of the marginal wavenumber was obtained from the asymptotic form of our general
equation for the marginal wavenumber. We have established that in the R sector
there are parametric situations in which the stabilizing effects, responsible for the
emergence of the marginal wavenumber, are due, instead of the capillary forces, as is
usual for larger s, to the non-trivial combined action of gravitational and surfactant
forces.

We also obtained the asymptotic small-s behaviour of the (long-wave) growth-rate
maximum and its corresponding wavenumber, which yielded different power laws for
the cases of zero and non-zero Bond numbers. The asymptotic behaviour in nearing
the instability thresholds in the different sectors was established as well.

The long-wave instabilities at the different borders between the three (n,m)-sectors
were analysed, such as the S − R one, m = 1. For the latter case, it was not clear
from the small-wavenumber expression for the growth rates, equation (4.49), whether
the unstable mode belonged to the surfactant branch, or, alternatively, to the robust
one. We used complex analysis to show that there are indeed two separate branches
of the growth-rate function continuous for all wavenumbers and all the values of the
parameters, one of the branches everywhere positive and the other one everywhere
negative. The surfactant branch is easily identified near the wavenumber axis in
the (wavenumber, Marangoni number)-space, as the one of the two branches which
vanishes in the limit of Marangoni number approaching zero, and it turns out to be
positive or negative for positive or negative Bond number, respectively. The same
is then true in the alternative limit, the wavenumber approaching zero at a finite
Marangoni number, (corresponding to (4.49)), since the branches keep their signs
everywhere, and in particular the surfactant branch of the growth rate has the same
sign near the Ma-axis as its sign near the α-axis. In this way, we established that the
unstable mode, corresponding to the positive sign in (4.49), belongs to the surfactant
(robust) branch for positive (negative) Bond numbers (and the stable mode belongs
to the other branch, in each case).
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For cases of arbitrary, (not necessarily small) wavenumbers, we still have explicit
formulas for the stability quantities of interest, albeit more complicated and therefore,
in general, studied numerically. It was found that in the S sector and in the R sector
sufficiently far from the Q sector, as well as in the Q sector for sufficiently small
Marangoni numbers, the dominant-mode instability has a long-wave character, in the
sense that the left endpoint of the interval of unstable wavenumbers is zero. Otherwise,
in particular in the Q sector, for sufficiently large Marangoni numbers, the ‘mid-wave’
instability may occur, in which the interval of unstable wavenumbers is bounded
away from zero. An interesting phenomenon, the dispersion-curve reconnection, was
observed in the S sector. Both branches are unstable for sufficiently negative values
of Bond number, and, as Bo decreases further, the robust-mode dispersion curve starts
to cross the other dispersion curve at a single intersection point. Later in this process,
at some sufficiently large value of |Bo|, the four parts of the two curves emanating
from the intersection point recombine and detach, forming two new, non-intersecting,
continuous curves, with the upper curve having two local maxima, of unequal heights.
Then, as the Bond number decreases further, a jump in the global maximum may
occur, as the shorter local maximum grows and eventually overcomes the other local
maximum (figure 10).

The long-wave instability was studied with respect to gravity effects, as indicated
by the dependencies of the characteristic dispersion quantities on the Bond number,
figure 9, and, in the S and R sectors, with respect to the surfactant effects, as
expressed in the dependencies on the Marangoni number, figures 11 and 12. For
the small and large values of these parameters, the relevant wavenumbers may be
small, allowing for simpler asymptotics. Even when the limits of the characteristic
dispersion quantities are not small, we sometimes get simplified equations which are
easier to solve numerically, or, occasionally, even approximate analytic expressions,
such as (5.8).

In the R and S sectors, at a fixed Bond number, the long-wave growth rate has a
maximum at certain finite values of the wavenumber and the Marangoni number. We
have observed, numerically, that both the maximum growth rate and its Marangoni
number, grow linearly with the shear parameter s, starting from zero, while the
corresponding wavenumber, which starts from zero as well, grows very fast at first,
but then remains almost constant at larger s (figure 13).

Appendix A. On the continuous branches of the growth-rate function

Recall that the two distinct analytic branches of the function
√
ζ exist in any simply

connected domain in the complex plane that does not contain the origin (ζ = 0). As
was mentioned in the text, it may happen for the discriminant ζ of the dispersion
relation that ζ = 0 for some values of α and the parameters. This implies the two
real equations, Re(ζ )= 0 and Im(ζ )= 0. The imaginary part of ζ (3.15) is

Im(ζ )=
s
α5

(
kMaMa+

kb

α2
(Bo+ α2)

)
. (A 1)

Here, kMα and kb are known functions of m, n and α, given explicitly in appendix A
of Frenkel et al. (2018). As we mentioned before, the two equations Re(ζ )= 0 and
Im(ζ ) = 0 define a manifold of codimension two in the α-parameter space. This
manifold is analogous to a multivalued-function branch point in the complex plane.
We consider the trace of this ‘branch manifold’ in the three-dimensional space of
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(α,Ma, Bo), with the rest of the parameters fixed, as follows. Solving Im(ζ )= 0 for
Marangoni number yields

Ma=−
kb

α2kMa
(Bo+ α2). (A 2)

Note that not all values of (Bo,Ma) are appropriate here because Ma must be positive.
Similarly to the above expression for Im(ζ ), we obtain

Re(ζ )=
1
α10

(K20Ma2
+K02(Bo+ α2)2 +K11Ma(Bo+ α2)+K00), (A 3)

Here, Kij are functions of m, n and α (for their explicit forms, see appendix A of
Frenkel et al. (2018)). To solve the system Re(ζ )= 0 and Im(ζ )= 0 for Ma and Bo
as functions of α (with s, m, and n fixed), equation (A 2) is substituted into Re(ζ )
which yields

Re(ζ )= AB2
+C= 0, (A 4)

where B= Bo+ α2, and A and C do not depend on Ma:

A=
1
α10

(
k2

b

α4k2
Ma

K20 +K02 −
kb

α2kMa
K11

)
, C=

K00

α10
. (A 5a,b)

Therefore, Bo= Bo(α), (without explicitly indicating the additional dependence on m,
n and s), where

Bo(α)=−α2
±

√
−

C
A
. (A 6)

Substituting (A 6) for Bo into (A 2) yields Ma such that ζ = 0 for a given α. Only
the unique value Bo = Bo(α) that yields Ma = Ma(α) > 0 is admitted here. In
figure 14(a,b) curves Bo= Bo(α) and Ma=Ma(α) are plotted for various values of
m with n fixed at 2 and s fixed at 1. One can see that Ma↑∞ in the limit α ↓ 0 for
all m. In this limit, Bo ↑∞ for m> 1, but Bo ↑−∞ for m< 1. At α ↑∞, for all m,
Bo∼−α2 and Ma ↓ 0. There are no points where the discriminant is zero for m= 1,
as was shown in the main text for all parameter values (formally, in the figure, we
get Ma(α) = 0 and Bo(α) = −α2). This indicates that the branch manifold consists
of at least two pieces, and perhaps more than two, some with m> 1 and others with
m < 1. The same fact is reflected in the infinite discontinuities of the curves in the
figure at finite values of α, which take place provided m> n2.

Also, if we consider the (α, Ma)-plane, with all the other parameters fixed,
including Bo, corresponding to a horizontal line in figure 14(a), there will be at
most two branch points in the (α,Ma)-plane since any horizontal line there intersects
any curve at no more than two points. Therefore, in some sufficiently narrow infinite
strip whose left boundary is the (vertical) Ma-axis, the discriminant is non-zero
at all its points, and so there are two continuous branches, in agreement with the
long-wave results in the main text. These results also show no intersections of the
two dispersion curves (when the wavenumbers are small enough), which means that
Re
√
ζ is non-zero in a sufficiently narrow strip bordering the Ma-axis. The equation

Re
√
ζ = 0 implies that ζ is real (and negative). We have solved this equation for
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FIGURE 14. (Colour online) The curves (a) Bo=Bo(α) and (b) Ma=Ma(α) such that the
discriminant ζ = 0 are plotted for the values of viscosity ratio m indicated in the legend.
Here n= 2 and s= 1.
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FIGURE 15. The zero discriminant curve corresponding to the m = 2 projection curves
shown in (a,b) of figure 14.

Ma as a function of α at fixed values of Bo (and the other parameters), and every
resulting curve in the (α,Ma)-plane indeed lies entirely outside some strip bordering
the Ma-axis.

Regarding the entire (α,Ma)-plane, if we remove from it the branch points together
with the infinite rays emanating from each branch point to the right and going parallel
to the α-axis (the branch cuts), then in the remaining domain the discriminant is
nowhere zero, and thus there are two continuous branches of the growth rate in this
domain, smooth in α at each point that they are defined.

Note that the horizontal line Bo = 0 in (a) of figure 14 intersects every curve
whose m > 1. So, even in the absence of gravity, there may be intersections of
the two dispersion curves. As Ma is varied, these intersections disappear at some
Ma, with the reconnection of the curve parts lying to the right of the ‘marginal
intersection’ point and consequent separation of the two ‘renovated’ dispersion curves.
This happens in the ranges of wavenumbers when both branches are stable, which
was not noted in HF.

Figure 15 shows, as an example, the curve in the three-dimensional space which
corresponds to the two dash-dotted, m = 2, curves of figure 14. The coordinate box
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there is shown with its front, top and right faces removed for a better view. The curve
of zero discriminant starts at the back top right vertex and steadily goes downward
and to the left simultaneously twisting first toward the viewer and then backward, until
it ends at the back bottom left vertex.

We note that there is always a strip Ds= {0<α<αs,Ma> 0} where ζ 6= 0. Indeed,
it appears in figure 14(a) that any horizontal line Bo=Bof intersects any of the graphs
of Bo = Bom(α) at no more than three points. If there are no intersections then the
value of αs is chosen completely arbitrarily. Otherwise, αs must be smaller than the
smallest α of the intersection points. For the purpose of this paper, the existence of
Ds (and thus of the two branches of the growth rate) is sufficient with any small but
finite αs. The existence of αs is confirmed analytically for the small values of α.
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