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Abstract

Let K be a number field and r an integer. Given an elliptic curve E , defined over K , we
consider the problem of counting the number of degree two prime ideals of K with trace of
Frobenius equal to r . Under certain restrictions on K , we show that “on average” the number
of such prime ideals with norm less than or equal to x satisfies an asymptotic identity that
is in accordance with standard heuristics. This work is related to the classical Lang–Trotter
conjecture and extends the work of several authors.

1. Introduction

Let E be an elliptic curve defined over a number field K . For a prime ideal P of the ring
of integers OK where E has good reduction, we let aP(E) denote the trace of the Frobenius
morphism at P. It follows that the number of points on the reduction of E modulo P satisfies
the identity

#EP(OK /P) = NP + 1 − aP(E),

where NP := #(OK /P) denotes the norm of P. It is a classical result of Hasse that

|aP(E)| � 2
√

NP.

See [18, p. 131] for example.
It is well known that if p is the unique rational prime lying below P (i.e., pZ = Z � P),

then OK /P is isomorphic to the finite field Fp f for some positive integer f . We refer to
this integer f as the (absolute) degree of P and write deg P = f . Given a fixed elliptic
curve E and fixed integers r and f , the classical heuristics of Lang and Trotter [14] may be
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generalized to consider the prime counting function

π
r, f
E (x) := #{NP � x : aP(E) = r and deg P = f }.

Conjecture 1 (Lang–Trotter for number fields). Let E be a fixed elliptic curve defined
over K , and let r be a fixed integer. In the case that E has complex multiplication, also
assume that r � 0. Let f be a positive integer. There exists a constant CE,r, f such that

π
r, f
E (x) ∼ CE,r, f

⎧⎨
⎩

√
x

log x if f = 1,

log log x if f = 2,

1 if f � 3,

(1)

as x → ∞.

Remark 2. It is possible that the constant CE,r, f may be zero. In this event, we interpret
the conjecture to mean that there are only finitely many such primes. In the case that f � 3,
we always interpret the conjecture to mean that there are only finitely many such primes.

Remark 3. The first appearance of Conjecture 1 in the literature seems to be in the work
of David and Pappalardi [6]. It is not clear to the authors what the constant CE,r, f should be
for the cases when f � 2. Indeed, it does not appear that an explicit constant has ever been
conjectured for these cases. We hope that one of the benefits of our work is that it will shed
some light on what the constant should look like for the case f = 2.

Given a family C of elliptic curves defined over K , by the average Lang–Trotter problem
for C, we mean the problem of computing an asymptotic formula for

1

#C
∑
E∈C

π
r, f
E (x).

We refer to this expression as the average order of π
r, f
E (x) over C. In order to provide support

for Conjecture 1, several authors have proven results about the average order of π
r, f
E (x) over

various families of elliptic curves. See [1, 2, 4, 5, 6, 9, 11, 12]. In each case, the results have
been found to be in accordance with Conjecture 1. Unfortunately, at present, it is necessary
to take C to be a family of curves that must “grow” at some specified rate with respect to
the variable x . The authors of the works [1, 9, 12] put a great deal of effort into keeping the
average as “short” as possible. This seems like a difficult task for the cases of the average
Lang–Trotter problem that we will consider here.

In [4], it was shown how to solve the average Lang–Trotter problem when K/Q is an
Abelian extension and C is essentially the family of elliptic curves defined by (7) below.
It turns out that their methods were actually sufficient to handle some non-Abelian Galois
extensions as well in the case when f = 2. In [12], the results of [4] were extended to
the setting of any Galois extension K/Q except in the case that f = 2. In this paper, we
consider the case when f = 2 and K/Q is an arbitrary Galois extension. We show how the
problem of computing an asymptotic formula for

1

#C
∑
E∈C

π
r,2
E (x)

may be reduced to a certain average error problem for the Chebotarëv Density Theorem
that may be viewed as a variation on a classical problem solved by Barban, Davenport and
Halberstam. We then show how to solve this problem in certain cases.
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2. An average error problem for the Chebotarëv Density Theorem

For the remainder of the article it will be assumed that K/Q is a finite degree Galois
extension with group G. Our technique for computing an asymptotic formula for the average
order of π

r,2
E (x) involves estimating sums of the form

θ(x; C, q, a) :=
∑
p�x(

K/Q

p

)
⊆C

p≡a (mod q)

log p,

where the sum is over the primes p which do not ramify in K , ((K/Q)/p) denotes the
Frobenius class of p in G, and C is a union of conjugacy classes of G consisting entirely of
elements of order two. Since the last two conditions on p under the sum may be in conflict
for certain choices of q and a, we will need to take some care when attempting to estimate
such sums via the Chebotarëv Density Theorem.

For each positive integer q, we fix a primitive q-th root of unity and denote it by ζq . It is
well known that there is an isomorphism

(Z/qZ)× Gal(Q(ζq)/Q)��∼ (2)

given by a 
→ σq,a where σq,a denotes the unique automorphism in Gal(Q(ζq)/Q) such that
σq,a(ζq) = ζ a

q . By definition of the Frobenius automorphism, it turns out that if p is a rational
prime, then ((Q(ζq)/Q)/p) = σq,a if and only if p ≡ a (mod q). See [20, pp. 11–14] for
example. More generally, for any number field the extension K (ζq)/K is Galois, and under
restriction of automorphisms of K (ζq) down to Q(ζq) we have mappings

Gal(K (ζq)/K ) Gal(Q(ζq)/K � Q(ζq)) Gal(Q(ζq)/Q).��∼ � � ��

Therefore, via (2), we obtain a natural injection

Gal(K (ζq)/K ) (Z/qZ)×.
� � �� (3)

We let G K ,q denote the image of the map (3) in (Z/qZ)× and ϕK (q) := #G K ,q . Note that
ϕQ is the usual Euler ϕ-function. For a ∈ G K ,q and a prime ideal p of K , it follows that
((K (ζq)/K )/p) = σq,a if and only if Np ≡ a (mod q).

Now let G ′ denote the commutator subgroup of G, and let K ′ denote the fixed field of G ′.
We will use the notation throughout the article. It follows that K ′ is the maximal Abelian
subextension of K . By the Kronecker–Weber Theorem [13, p. 210], there is a smallest in-
teger mK so that K ′ ⊆ Q(ζmK ). For every q � 1, it follows that K � Q(ζqmK ) = K ′. Further-
more, the extension K (ζqmK )/Q is Galois with group isomorphic to the fibered product

{(σ1, σ2) ∈ Gal(Q(ζqmK )/Q) × G : σ1|K ′ = σ2|K ′ }.
See [8, pp. 592–593] for example. It follows that

[K (ζqmK ) : Q] = ϕ(qmK )nK

nK ′
= ϕK (qmK )nK , (4)

where here and throughout we use the notation nF := [F : Q] to denote the degree of a
number field F .

For each τ ∈ Gal(K ′/Q), it follows from the above facts that there is a finite list Sτ of
congruence conditions modulo mK (really a coset of G K ,mK in (Z/mK Z)×) such that for any
rational prime not ramifying in K ′, ((K ′/Q)/p) = τ if and only if p ≡ a (mod mK ) for
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some a ∈ Sτ . Now, suppose that τ has order one or two in Gal(K ′/Q), and let Cτ be the
subset of order two elements of G that restrict to τ on K ′, i.e.,

Cτ := {σ ∈ G : σ |K ′ = τand |σ | = 2}.
Since K ′/Q is Abelian, it follows that Cτ is a union of conjugacy classes in G. Then for each
a ∈ (Z/qmK Z)×, the Chebotarëv Density Theorem gives the asymptotic formula

θ(x; Cτ , qmK , a) ∼ #Cτ

ϕK (qmK )nK
x, (5)

provided that a ≡ b (mod mK ) for some b ∈ Sτ . Otherwise, the sum on the left is empty.
For Q � 1, we define the Barban–Davenport–Halberstam average square error for this
problem by

EK (x; Q, Cτ ) :=
∑
q�Q

qmK∑
a=1

′
(

θ(x; C, qmK , a) − #Cτ

ϕK (qmK )nK
x

)2

, (6)

where the prime on the sum over a means that the sum is to be restricted to those a such that
a ≡ b (mod mK ) for some b ∈ Sτ .

3. Notation and statement of results

We are now ready to state our main results on the average Lang–Trotter problem. Recall
that the ring of integers OK is a free Z-module of rank nK , and let B = {γ j }nK

j=1 be a fixed
integral basis for OK . We denote the coordinate map for the basis B by

[·]B : OK
∼−→

nK⊕
j=1

Z = ZnK .

If A, B ∈ ZnK , then we write A � B if each entry of A is less than or equal to the corres-
ponding entry of B. For two algebraic integers α, β ∈ OK , we write Eα,β for the elliptic
curve given by the model

Eα,β : Y 2 = X 3 + αX + β.

From now on, we assume that the entries of A, B are all non-negative, and we take as our
family of elliptic curves the set

C := C(A; B) = {Eα,β : −A � [α]B � A, −B � [β]B � B, −16(4α3 + 27β2)� 0}. (7)

To be more precise, this box should be thought of as a box of equations or models since the
same elliptic curve may appear multiple times in C. For 1 � i � nK , we let ai denote the i-th
entry of A and bi denote the i-th entry of B. Associated to box C, we define the quantities

V1(C) := 2nK

nK∏
i=1

ai , V2(C) := 2nK

nK∏
i=1

bi ,

min1(C) := min
1�i�nK

{ai }, min2(C) := min
1�i�nK

{bi },
V(C) := V1(C)V2(C), min(C) := min{min1(C), min2(C)},

which give a description of the size of the box C. In particular,

#C = V(C) + O

(
V(C)

min(C)

)
.
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Our first main result is that the average order problem for π
r,2
E (x) may be reduced to

the Barban–Davenport–Halberstam type average error problem described in the previous
section.

THEOREM 4. Let r be a fixed odd integer, and recall the definition of EK (x; Q, Cτ ) as
given by (6). If

EK (x; x/(log x)12, Cτ ) �
x2

(log x)11

for every τ of order dividing two in Gal(K ′/Q) and if min(C) � √
x, then there exists an

explicit constant CK ,r,2 such that

1

#C
∑
E∈C

π
r,2
E (x) = CK ,r,2 log log x + O(1),

where the implied constants depend at most on K and r. Furthermore, the constant CK ,r,2 is
given by

CK ,r,2 = 2

3nK

∏
�|r

(
�

� − (−1
�

)
) ∑

τ∈Gal(K ′/Q)
|τ |=1,2

#Cτ

∑
g∈Sτ

c(g)
r ,

where the product is taken over the rational primes � dividing r,

c(g)
r :=

∞∑
k=1

(k,2r)=1

1

k

∞∑
n=1

(n,2r)=1

1

nϕK (mK nk2)

∑
a∈(Z/nZ)×

(a

n

)
#Cg(r, a, n, k) (8)

and

Cg(r, a, n, k) := {
b ∈ (Z/mK nk2Z)× : 4b2 ≡ r 2 − ak2 (mod nk2), b ≡ g (mod mK )

}
.

Alternatively, the constant CK ,r,2 may be written as

CK ,r,2 = nK ′

3πϕ(mK )

∏
�|r

(
�

� − (−1
�

)
) ∏

��2rmK

(
�
(
� − 1 − (−1

�

) )
(� − 1)

(
� − (−1

�

) )
) ∑

τ∈Gal(K ′/Q)
|τ |=1,2

#Cτ

∑
g∈Sτ

∏
�|mK
��2r

K(g)
r ,

(9)
where the products are taken over the rational primes � satisfying the stated conditions and
K(g)

r is defined by

K(g)
r :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
ν�(4g2−r2)+1

2 − 1

�
ν�(4g2−r2)−1

2 (� − 1)

if ν�(4g2 − r 2) < ν�(mK )

and 2 � ν�(4g2 − r 2),

�
ν�(4g2−r2)

2 +1 − 1

�
ν�(4g2−r2)

2 (� − 1)
+

(
(r2−4g2)/�ν�(r2−4g2)

�

)
�

ν�(4g2−r2)

2

(
� −

(
(r2−4g2)/�ν�(r2−4g2)

�

)) if ν�(4g2 − r 2) < ν�(mK )

and 2 | ν�(4g2 − r 2),

�
2
⌈

ν�(mK )

2

⌉
+1

(� + 1)

(
�

⌈
ν�(mK )

2

⌉
− 1

)
+ �ν�(mK )+2

�
3
⌈

ν�(mK )

2

⌉
(�2 − 1)

if ν�(4g2 − r 2)�ν�(mK ).

Remark 5. The notation ν�(4g2−r 2) in the definition of K(g)
r is a bit strange as g is defined

to be an element of (Z/mK Z)×. This can be remedied by choosing any integer representative
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of g, and noting that any choice with 4g2 ≡ r 2 (mod �ν�(mK )) corresponds to the case that
ν�(4g2 − r 2) � ν�(mK ).

Remark 6. We have chosen to restrict ourselves to the case when r is odd since it simpli-
fies some of the technical difficulties involved in computing the constant CK ,r,2. A result of
the same nature should hold for non-zero even r as well. For the case r = 0, see Theorem 10
below.

The proof of Theorem 4 proceeds by a series of reductions. We make no restriction on
the number field K except that it be a finite degree Galois extension of Q. In Section 5, we
reduce the proof of Theorem 4 to the computation of a certain average of class numbers.
In Section 6, we reduce that computation to a certain average of special values of Dirichlet
L-functions. In Section 7, the problem is reduced to the problem of bounding EK (x; Q, Cτ ).
Finally, in Section 8, we compute the constant CK ,r,2.

Under certain conditions on the Galois group G = Gal(K/Q), we are able to completely
solve our problem by bounding EK (x; Q, Cτ ). One easy case is when the Galois group G
is equal to its own commutator subgroup, i.e., when G is a perfect group. In this case, we
say that the number field K is totally non-Abelian. The authors of [4] were able to prove a
version of Theorem 4 whenever G is Abelian. That is, when the commutator subgroup is
trivial, or equivalently, when K = K ′. It turns out that their methods are actually sufficient
to handle some non-Abelian number fields as well. In particular, their technique is suffi-
cient whenever there is a finite list of congruence conditions that determine exactly which
rational primes decompose as a product of degree two primes in K . Such a number field
need not be Abelian over Q. For example, the splitting field of the polynomial x3 − 2 pos-
sesses this property. If K is a finite degree Galois extension of Q possessing this property,
we say that K is 2-pretentious. The name is meant to call to mind the notion that such
number fields “pretend” to be Abelian over Q, at least as far as their degree two primes are
concerned.1

In Section 9, we give more precise descriptions of 2-pretentious and totally non-Abelian
number fields and prove some basic facts which serve to characterize such fields. Then,
in Section 10, we show how to give a complete solution to the average order problem for
π

r,2
E (x) whenever K may be decomposed K = K1 K2, where K1 is a 2-pretentious Galois

extension of Q, K2 is totally non-Abelian, and K1 � K2 = Q.

THEOREM 7. Let r be a fixed odd integer, and assume that K may be decomposed as
above. If min(C) � √

x, then

1

#C
∑
E∈C

π
r,2
E (x) = CK ,r,2 log log x + O(1),

where the implied constant depends at most upon K and r, and the constant CK ,r,2 is as in
Theorem 4.

By a slight alteration in the method we employ to prove Theorem 4, we can also provide
a complete solution to our problem for another class of number fields.

1 We borrow the term pretentious from Granville and Soundararajan who use the term to describe the
way in which one multiplicative function “pretends” to be another in a certain technical sense.

https://doi.org/10.1017/S0305004112000631 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004112000631


Average Frobenius distribution for degree two primes 505

THEOREM 8. Let r be a fixed odd integer, and suppose that K ′ is ramified only at primes
which divide 2r . If min(C) � √

x, then

1

#C
∑
E∈C

π
r,2
E (x) = CK ,r,2 log log x + O(1),

where the implied constant depends at most upon K and r. Furthermore, the constant CK ,r,2

may be simplified to

CK ,r,2 = #C

3π

∏
�>2

�
(
� − 1 −

(
−r2

�

))
(� − 1)

(
� − (−1

�

)) ,

where the product is taken over the rational primes � > 2 and C = {σ ∈ Gal(K/Q) :
|σ | = 2}.

Remark 9. We note that the required growth rate min(C) � √
x for Theorems 4, 7, 8 can

be relaxed to min(C) � √
x/ log x . The key piece of information necessary for making the

improvement is to observe that (14) can be improved to H(T ) � T 2/log T , where H(T ) is
the sum defined by (12). Indeed, the techniques used to prove Propositions 16 and 17 below
can be used to show that H(T ) is asymptotic to some constant multiple of T 2/log T .

Following [6], we also obtain an easy result concerning the average supersingular distri-
bution of degree two primes. To this end, we define the prime counting function

π
ss,2
E (x) := #{NP � x : E is supersingular at P, deg P = 2}.

Recall that if P is a degree two prime of K lying above the rational prime p, then E is
supersingular at P if and only if aP(E) = 0, ±p, ±2p. By a straightforward adaption of [6,
pp. 199–200], we obtain the following.

THEOREM 10. Let K be any Galois number field. Then provided that min(C) � log log x,

1

#C
∑
E∈C

π
0,2
E (x) � 1,

where the implied constant depends at most upon K and r. Furthermore, if min(C) �√
x/ log x, then

1

#C
∑
E∈C

π
ss,2
E (x) ∼ #C

12nK
log log x,

where C = {σ ∈ Gal(K/Q) : |σ | = 2}.
Since the proof of this result merely requires a straightforward adaptation of [6, pp. 199–
200], we choose to omit it.

Remark 11. In all of our computations, the number field K and the integer r are assumed
to be fixed. We have not kept track of the way in which our implied constants depend on
these two parameters. Thus, all implied constants in this article may depend on K and r
even though we do not make this explicit in what follows.
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4. Counting isomorphic reductions

In this section, we count the number of models E ∈ C that reduce modulo P to a given
isomorphism class.

LEMMA 12. Let P be a prime ideal of K and let E ′ be an elliptic curve defined over
OK /P. Suppose that deg P = 2 and P � 6. Then the number of E ∈ C for which E is
isomorphic to E ′ over OK /P is

#{E ∈ C : EP � E ′} = V(C)

NP#Aut(E ′)
+ O

(
V(C)

NP2
+ V(C)

min(C)
√

NP
+ V(C)

min1(C) min2(C)

)
.

Proof. Since deg p = 2, the residue ring OK /P is isomorphic to the finite field Fp2 , where
p is the unique rational prime lying below P. Since P � 6, the characteristic p is greater
than 3. Hence, E ′ may be modeled by an equation of the form

Ea,b : Y 2 = X 3 + aX + b

for some a, b ∈ OK /P. The number of equations of this form that are isomorphic to E ′ is
exactly

p2 − 1

#Aut(E ′)
= NP − 1

#Aut(E ′)
.

Therefore,

#{E ∈ C : EP � E ′} = NP − 1

#Aut(E ′)
#{E ∈ C : EP = Ea,b}.

Suppose that E ∈ C such that EP = Ea,b, say E : Y 2 = X 2 +αX +β. Then either α ≡ a
(mod P) and β ≡ b (mod P) or Eα,β is not minimal at P. If E is not minimal at P, then
P4 | α and P6 | β. For a, b ∈ OK /P, we adapt the argument of [6, p. 192] in the obvious
manner to obtain the estimates

#{α ∈ OK : −A � [α]B � A, α ≡ a (mod P)} = V1(C)

NP
+ O

(
V1(C)

min1(C)
√

NP

)
,

#{β ∈ OK : −B � [β]B � B, α ≡ b (mod P)} = V2(C)

NP
+ O

(
V2(C)

min2(C)
√

NP

)
.

It follows that

#{E ∈ C : EP = Ea,b} = V(C)

NP2
+ O

(
V(C)

min(C)NP3/2
+ V(C)

min1(C) min2(C)NP
+ V(C)

NP10

)
,

where the last term in the error accounts for the curves which are not minimal at P.

5. Reduction of the average order to an average of class numbers

In this section, we reduce our average order computation to the computation of an average
of class numbers. Given a (not necessarily fundamental) discriminant D < 0, if D ≡ 0, 1
(mod 4), we define the Hurwitz–Kronecker class number of discriminant D by

H(D) :=
∑
k2|D

D
k2 ≡0,1 (mod 4)

h(D/k2)

w(D/k2)
, (10)
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where h(d) denotes the class number of the unique imaginary quadratic order of discriminant
d and w(d) denotes the order of its unit group.

A simple adaption of the proof of [17, theorem 4·6] to count isomorphism classes with
weights (as in [15, p. 654]) yields the following result, which is attributed to Deuring [7].

THEOREM 13 (Deuring). Let p be a prime greater than 3, and let r be an integer such
that p � r and r 2 − 4p2 < 0. Then∑

Ẽ/Fp2

#Ẽ(Fp2 )=p2+1−r

1

#Aut(Ẽ)
= H(r 2 − 4p2),

where the sum on the left is over the Fp2 -isomorphism classes of elliptic curves possessing
exactly p2 + 1 − r points and Aut(Ẽ) denotes the Fp2 -automorphism group of any repres-
entative of Ẽ .

PROPOSITION 14. Let r be any integer. If min(C) � √
x, then

1

#C
∑
E∈C

π
r,2
E (x) = nK

2

∑
3|r |<p�√

x
fK (p)=2

H(r 2 − 4p2)

p2
+ O (1) ,

where the sum on the right is over the rational primes p which do not ramify and which split
into degree two primes in K .

Remark 15. We do not place any restriction on r in the above, nor do we place any re-
striction on K except that the extension K/Q be Galois.

Proof. For each E ∈ C, we write π
r,2
E (x) as a sum over the degree two primes of K and

switch the order of summation, which yields

1

#C
∑
E∈C

π
r,2
E (x) = 1

#C
∑

NP�x
deg P=2

∑
E∈C

aP(E)=r

1 =
∑

NP�x
deg P=2

⎡
⎢⎢⎢⎣ 1

#C
∑

Ẽ/(OK /P)

aP(Ẽ)=r

#{E ∈ C : EP � Ẽ}

⎤
⎥⎥⎥⎦ ,

where the sum in brackets is over the isomorphism classes Ẽ of elliptic curves defined over
OK /P having exactly NP + 1 − r points.

Removing the primes with NP � (3r)2 introduces at most a bounded error depending on
r . For the primes with NP > (3r)2, we apply Theorem 13 and Lemma 12 to estimate the
expression in brackets above. The result is equal to

H(r 2 − 4NP)

NP
+ O

(
H(r 2 − 4NP)

[
1

NP2
+ 1

min(C)
√

NP
+ 1

min1(C) min2(C)

])
. (11)

Summing the main term of (11) over the appropriate P gives

∑
(3r)2<NP�x

deg P=2

H(r 2 − 4NP)

NP
= nK

2

∑
3|r |<p�√

x
fK (p)=2

H(r 2 − 4p2)

p2
,

where the sum on the right is over the rational primes p which split into degree two primes
in K .

https://doi.org/10.1017/S0305004112000631 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004112000631


508 KEVIN JAMES AND ETHAN SMITH

To estimate the error terms, we proceed as follows. For T > 0, let

H(T ) :=
∑

3|r |<p�T

H(r 2 − 4p2). (12)

Given a discriminant d < 0, we let χd denote the Kronecker symbol
(

d
·
)
. The class number

formula states that
h(d)

w(d)
= |d|1/2

2π
L(1, χd), (13)

where L(1, χd) = ∑∞
n=1 χd(n)/n. Thus, the class number formula together with the defini-

tion of the Hurwitz–Kronecker class number implies that

H(T ) �
∑

k�2T

1

k

∑
3|r |<p�T
k2|r2−4p2

p log p � T log T
∑

k�2T

1

k

∑
3|r |<p�4T

k|r2−4p2

1

� T log T
∑

k�2T

1

k

∑
a∈(Z/kZ)×

4a2≡r2 (mod k)

∑
p�4T

p≡a (mod k)

1.

We apply the Brun–Titchmarsh inequality [10, p. 167] to bound the sum over p and the
Chinese Remainder Theorem to deduce that

#{a ∈ (Z/kZ)× : 4a2 ≡ r 2 (mod k)} � 2ω(k),

where ω(k) denotes the number of distinct prime factors of k. The result is that

H(T ) � T 2 log T
∑

k�2T

2ω(k)

kϕ(k) log(4T/k)
� T 2 log T

∑
k�2T

2ω(k) log k

kϕ(k) log(4T )
� T 2. (14)

From this, we deduce the bounds∑
(3r)2<NP�x

deg P=2

H(r 2 − 4NP) �
∑

3|r |<p�√
x

H(r 2 − 4p2) = H(
√

x) � x,

∑
(3r)2<NP�x

deg P=2

H(r 2 − 4NP)√
NP

�
∑

3|r |<p�√
x

H(r 2 − 4p2)

p
=

∫ √
x

3|r |

dH(T )

T
�

√
x,

and ∑
(3r)2<NP�x

deg P=2

H(r 2 − 4NP)

NP2
�

∑
3|r |<p�√

x

H(r 2 − 4p2)

p4
=

∫ √
x

3|r |

dH(T )

T 4
� 1.

Using these estimates, it is easy to see that summing the error terms of (11) over P yields a
bounded error whenever min(C) � √

x .

6. Reduction to an average of special values of Dirichlet L-functions

In the previous section, we reduced the problem of computing the average order of π
r,2
E (x)

to that of computing a certain average of Hurwitz–Kronecker class numbers. In this section,
we reduce the computation of that average of Hurwitz–Kronecker class numbers to the com-
putation of a certain average of special values of Dirichlet L-functions. Recall that if χ is a
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Dirichlet character, then the Dirichlet L-function attached to χ is given by

L(s, χ) :=
∞∑

n=1

χ(n)

ns

for s > 1. If χ is not trivial, then the above definition is valid at s = 1 as well. As in the
previous section, given an integer d, we write χd for the Kronecker symbol

(
d
·
)
. We now

define

AK ,2(T ; r) :=
∑

k�2T
(k,2r)=1

1

k

∑
3|r |<p�T

fK (p)=2
k2|r2−4p2

L
(
1, χdk (p2)

)
log p, (15)

where the condition fK (p) = 2 means that p factors in K as a product of degree two prime
ideals of OK , and we put dk(p2) := (r 2 − 4p2)/k2 whenever k2 | r 2 − 4p2.

PROPOSITION 16. Let r be any odd integer. If there exists a constant C′
K ,r,2 such that

AK ,2(T ; r) = C′
K ,r,2T + O

(
T

log T

)
,

then
nK

2

∑
3|r |<p�√

x
fK (p)=2

H(r 2 − 4p2)

p2
= CK ,r,2 log log x + O(1),

where CK ,r,2 = (nK /2π)C′
K ,r,2.

Proof. Combining the class number formula (13) with the definition of the Hurwitz–
Kronecker class number, we obtain the identity

nK

2

∑
3|r |<p�√

x
fK (p)=2

H(r 2 − 4p2)

p2
= nK

4π

∑
3|r |<p�√

x
fK (p)=2

∑
k2|r2−4p2

dk (p2)≡0,1 (mod 4)

√
4p2 − r 2

kp2
L

(
1, χdk (p2)

)
. (16)

By assumption r is odd, and hence r 2 − 4p2 ≡ 1 (mod 4). Thus, if k2 | r 2 − 4p2, it
follows that k must be odd and k2 ≡ 1 (mod 4). Whence, the sum over k above may be
restricted to odd integers whose squares divide r 2 − 4p2, and the congruence conditions on
dk(p2) = (r 2 − 4p2)/k2 may be omitted. Furthermore, if � is a prime dividing (k, r) and
k2 | r 2 − 4p2, then

0 ≡ r 2 − 4p2 ≡ −(2p)2 (mod �2),

and it follows that � = p. This is not possible for p > 3|r | since the fact that � divides r
implies that � � r . Hence, the sum on k above may be further restricted to integers which
are coprime to r . Therefore, switching the order of summation in (16) and employing the
approximation

√
4p2 − r 2 = 2p + O (1/p) gives

nK

2

∑
3|r |<p�√

x
fK (p)=2

H(r 2 − 4p2)

p2
= nK

2π

∑
k�2

√
x

(k,2r)=1

1

k

∑
3|r |<p�√

x
fK (p)=2

k2|r2−4p2

L
(
1, χdk (p2)

)
p

+ O (1) .
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With AK ,2(T ; r) as defined by (15), the main term on the right-hand side is

nK

2π

∑
k�2

√
x

(k,2r)=1

1

k

∑
3|r |<p�√

x
fK (p)=2

k2|r2−4p2

L
(
1, χdk (p2)

)
p

= nK

2π

∫ √
x

3|r |

dAK ,2(T ; r)

T log T
.

By assumption, AK ,2(T ; r) = C′
K ,r,2T + O(T/ log T ). Hence, integrating by parts gives

nK

2π

∫ √
x

3|r |

dAK ,2(T ; r)

T log T
= nK

2π
C′

K ,r,2 log log x + O(1).

7. Reduction to a problem of Barban–Davenport–Halberstam Type

Propositions 14 and 16 reduce the problem of computing an asymptotic formula for

1

#C
∑
E∈C

π
r,2
E (x)

to the problem of showing that there exists a constant C′
K ,r,2 such that

AK ,2(T ; r) =
∑

k�2T
(k,2r)=1

1

k

∑
3|r |<p�T

fK (p)=2
k2|r2−4p2

L
(
1, χdk (p2)

)
log p = C′

K ,r,2T + O(T/ log T ). (17)

In this section, we reduce this to a problem of “Barban–Davenport–Halberstam type.”
Since every rational prime p that does not ramify and splits into degree two primes in K

must either split completely in K ′ or split into degree two primes in K ′, we may write

AK ,2(T ; r) =
∑

τ∈Gal(K ′/Q)
|τ |=1,2

AK ,τ (T ; r),

where the sum runs over the elements τ ∈ Gal(K ′/Q) of order dividing two, AK ,τ (T ; r) is
defined by

AK ,τ (T ; r) :=
∑

k�2T
(k,2r)=1

1

k

∑
3|r |<p�T(

K/Q

p

)
⊆Cτ

k2|r2−4p2

L
(
1, χdk (p2)

)
log p, (18)

and Cτ is the subset of all order two elements of Gal(K/Q) whose restriction to K ′ is equal
to τ . Thus, it follows that (17) holds if there exists a constant C(τ )

r such that

AK ,τ (T, r) = C(τ )
r T + O(T/ log T )

for every element τ ∈ Gal(K ′/Q) of order dividing two.

PROPOSITION 17. Let r be a fixed odd integer, let τ be an element of Gal(K ′/Q) of order
dividing two, and recall the definition of EK (x; Q, Cτ ) as given by (6). If

EK (T ; T/(log T )12, Cτ ) �
T 2

(log T )11
, (19)

then

AK ,τ (T ; r) = C(τ )
r T + O

(
T

log T

)
, (20)
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where

C(τ )
r = 2#Cτ

3nK

∏
�|r

(
�

� − (−1
�

)
) ∑

g∈Sτ

∞∑
k=1

(k,2r)=1

1

k

∞∑
n=1

(n,2r)=1

1

nϕK (mK nk2)

∑
a∈(Z/nZ)×

(a

n

)
#Cg(r, a, n, k)

(21)
and

Cg(r, a, n, k) = {b ∈ (Z/mK nk2Z)× : 4b2 ≡ r 2 − ak2 (mod nk2), b ≡ g (mod mK )}.

Proof. Suppose that d is a discriminant, and let

Sd(y) :=
∑
n�y

(n,2r)=1

χd(n).

Burgess’ bound for character sums [3, theorem 2] implies that∑
n�y

χd(n) � y1/2|d|7/32.

Since r is a fixed integer, we have that

|Sd(y)| =

∣∣∣∣∣∣∣∣
∑
m|2r

μ(m)
∑
n�y
m|n

χd(n)

∣∣∣∣∣∣∣∣
� y1/2|d|7/32,

where the implied constant depends on r alone. Therefore, for any U > 0, we have that∑
n>U

(n,2r)=1

χd(n)

n
=

∫ ∞

U

dSd(y)

y
�

|d|7/32

√
U

. (22)

Now, we consider the case when d = dk(p2) = (r 2 − 4p2)/k2 with (k, 2r) = 1 and
p > 3|r |. Since r is odd, it is easily checked that χdk (p2)(2) = (5/2) = −1, and χdk (p2)(�) =
(−1/�) for any prime � dividing r . Therefore, we may write

L(1, χdk (p2)) = 2

3

∏
�|r

(
1 −

(−1
�

)
�

)−1 ∞∑
n=1

(n,2r)=1

(
dk(p2)

n

)
1

n
,

the product being over the primes � dividing r . Since we also have the bound |dk(p2)| �
(2p/k)2, the inequality (22) implies that

AK ,τ (T ; r) = 2

3

∏
�|r

(
1 −

(−1
�

)
�

)−1 ∑
k�2T

(k,2r)=1

1

k

∑
n�U

(n,2r)=1

1

n

∑
3|r |<p�T(

K/Q

p

)
⊆Cτ

k2|r2−4p2

(
dk(p2)

n

)
log p+O

(
T 23/16

√
U

)
.

For any V > 0, we also have that∑
V <k�2T
(k,2r)=1

1

k

∑
n�U

(n,2r)=1

1

n

∑
3|r |<p�T(

K/Q

p

)
⊆Cτ

k2|r2−4p2

(
dk(p2)

n

)
log p � log T log U

∑
V <k�2T
(k,2r)=1

1

k

∑
m�T

k2|r2−4m2

1,
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where the last sum on the right runs over all integers m � T such that k2 | r 2 − 4m2. To
bound the double sum on the right, we employ the Chinese Remainder Theorem to see that

∑
V <k�2T
(k,2r)=1

1

k

∑
m�T

k2|r2−4m2

1 <
∑

V <k�2T
(k,2r)=1

1

k

∑
m�2T

k|r2−4m2

1 �
∑

V <k�2T
(k,2r)=1

#{z ∈ Z/kZ : 4z2 ≡ r 2 (mod k)}
k

T

k

� T
∑

V <k�2T

2ω(k)

k2
< T

∫ ∞

V

dN (y)

y2
�

T log V

V
,

where ω(k) is the number of distinct prime divisors of k and N (y) = ∑
k�y 2ω(k) � y log y.

See [16, p. 68] for example. Therefore, since including the primes p � 3|r | introduces an
error that is O(log U log V ), we have

AK ,τ (T ; r) = 2

3

∏
�|r

(
�

� − (−1
�

)
) ∑

k�V
(k,2r)=1

1

k

∑
n�U

(n,2r)=1

1

n

∑
p�T(

K/Q

p

)
⊆Cτ

k2|r2−4p2

(
dk(p2)

n

)
log p

+O

(
T 23/16

√
U

+ T log T log U log V

V
+ log U log V

)
.

If n is odd, the value of (dk(p2)/n) depends only on the residue of dk(p2) modulo n. Thus,
we may regroup the terms of the innermost sum on p to obtain

AK ,τ (T ; r) = 2

3

∏
�|r

(
�

� − (−1
�

)
) ∑

k�V
(k,2r)=1

1

k

∑
n�U

(n,2r)=1

1

n

∑
a∈(Z/nZ)×

(a

n

) ∑
p�T(

K/Q

p

)
⊆Cτ

4p2≡r2−ak2 (mod nk2)

log p

+O

(
T 23/16

√
U

+ T log T log U log V

V
+ log U log V

)
.

Suppose that there is a prime p | nk2 and satisfying the congruence 4p2 ≡ r 2 − ak2

(mod nk2). Since (k, r) = 1, it follows that p must divide n. Therefore, there can be at
most O(log n) such primes for any given values of a, k and n. Thus,

AK ,τ (T ; r) = 2

3

∏
�|r

(
�

� − (−1
�

)
)

×
∑
k�V

(k,2r)=1

1

k

∑
n�U

(n,2r)=1

1

n

∑
a∈(Z/nZ)×

(a

n

) ∑
b∈(Z/nk2Z)×

4b2≡r2−ak2 (mod nk2)

∑
p�T(

K/Q

p

)
⊆Cτ

p≡b (mod nk2)

log p

+O

(
T 23/16

√
U

+ T log T log U log V

V
+ U log U log V

)
.

(23)
We now make the choice

U := T

(log T )20
, (24)

V := (log T )4. (25)

Note that with this choice the error above is easily O(T/ log T ).
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Recall the definitions of Cτ and Sτ from Section 2. Then every prime p counted by the
innermost sum of (23) satisfies the condition that ((K ′/Q)/p) = τ , and hence it follows that
p ≡ g (mod mK ) for some g ∈ Sτ . Therefore, we may rewrite the main term of (23) as

2

3

∏
�|r

(
�

� − (−1
�

)
)∑

g∈Sτ

∑
k�V

(k,2r)=1

1

k

∑
n�U

(n,2r)=1

1

n

∑
a∈(Z/nZ)×

(a

n

) ∑
b∈(Z/mK nk2Z)×

4b2≡r2−ak2 (mod nk2)
b≡g (mod mK )

θ(T ; Cτ , mK nk2, b).

(26)
In accordance with our observation in Section 2, the condition that b ≡ g (mod mK ) en-
sures that the two Chebotarëv conditions ((K/Q)/p) ⊆ Cτ and p ≡ b (mod mK nk2) are
compatible. Therefore, we choose to approximate (26) by

T
2#Cτ

3nK

∏
�|r

(
�

� − (−1
�

)
) ∑

g∈Sτ

∑
k�V

(k,2r)=1

1

k

∑
n�U

(n,2r)=1

1

nϕK (mK nk2)

∑
a∈(Z/nZ)×

(a

n

)
#Cg(r, a, n, k),

(27)
where Cg(r, a, n, k) is as defined in the statement of the proposition.

For the moment, we ignore the error in this approximation and concentrate on the sup-
posed main term. The following lemma, whose proof we delay until Section 11, implies that
the expression in (27) is equal to C(τ )

r T + O(T/ log T ) for U and V satisfying (24) and (25).

LEMMA 18.
With C(τ )

r as defined in (21), we have

C(τ )
r = 2#Cτ

3nK

∏
�|r

(
�

� − (−1
�

)
) ∑

g∈Sτ

∑
k�V

(k,2r)=1

1

k

∑
n�U

(n,2r)=1

1

nϕK (mK nk2)

∑
a∈(Z/nZ)×

(a

n

)
#Cg(r, a, n, k)

+O

(
1√
U

+ log V

V 2

)
.

We now consider the error in approximating (26) by (27). The error in the approximation
is equal to a constant (depending only on K and r ) times∑

g∈Sτ

∑
k�V

(k,2r)=1,
n�U

(n,2r)=1

1

kn

∑
a∈(Z/nZ)×

(a

n

) ∑
b∈Cg(r,a,n,k)

(
θ(T ; Cτ , mK nk2, b) − #Cτ

nK ϕK (mK nk2)
T

)
.

We note that for each b ∈ (Z/mK nk2Z)×, there is at most one a ∈ (Z/nZ)× such that
ak2 ≡ 4b2 − r 2 (mod nk2). Therefore, interchanging the sum on a with the sum on b and
applying the Cauchy–Schwarz inequality, the above error is bounded by

∑
k�V

1

k

⎡
⎣∑

n�U

ϕ(mK nk2)

n2

⎤
⎦

1/2

⎡
⎢⎢⎢⎢⎣
∑
n�U

∑
g∈Sτ ,

b∈(Z/mK nk2Z)×
b≡g (mod mK )

(
θ(T ; Cτ , mK nk2, b) − #Cτ

nK ϕK (mK nk2)
T

)2

⎤
⎥⎥⎥⎥⎦

1/2

.

We bound this last expression by a constant times

V
√

log U
√
EK (T ; U V 2, Cτ ),
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where EK (T ; U V 2, Cτ ) is defined by (6). Given our assumption (19) and our choices (24)
and (25) for U and V , the proposition now follows.

8. Computing the average order constant for a general Galois extension

In this section, we finish the proof of Theorem 4 by computing the product formula (9)
for the constant CK ,r,2. It follows from Propositions 14, 16 and 17 that

CK ,r,2 = nK

2π
C′

K ,r,2,

where

C′
K ,r,2 =

∑
τ∈Gal(K ′/Q)

|τ |=1,2

C(τ )
r

and C(τ )
r is defined by

C(τ )
r = 2#Cτ

3nK

∏
�|r

(
�

� − (−1
�

)
) ∑

g∈Sτ

∞∑
k=1

(k,2r)=1

1

k

∞∑
n=1

(n,2r)=1

1

nϕK (mK nk2)

∑
a∈(Z/nZ)×

(a

n

)
#Cg(r, a, n, k).

We now recall the definition

c(g)
r =

∞∑
k=1

(k,2r)=1

1

k

∞∑
n=1

(n,2r)=1

1

nϕK (mK nk2)

∑
a∈(Z/nZ)×

(a

n

)
#Cg(r, a, n, k)

and note that

C(τ )
r = 2#Cτ

3nK

∏
�|r

(
�

� − (−1
�

)
) ∑

g∈Sτ

c(g)
r .

It remains then to show that

c(g)
r = nK ′

ϕ(mK )

∏
��2rmK

(
�
(
� − 1 − (−1

�

) )
(� − 1)

(
� − (−1

�

) )
) ∏

�|mK
��2r

K(g)
r , (28)

where the products are taken over the rational primes � satisfying the stated conditions,
recalling that K(g)

r was defined by

K(g)
r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
ν�(4g2−r2)+1

2 − 1

�
ν�(4g2−r2)−1

2 (� − 1)

if ν�(4g2 − r 2) < ν�(mK )

and 2 � ν�(4g2 − r 2),

�
ν�(4g2−r2)

2 +1 − 1

�
ν�(4g2−r2)

2 (� − 1)
+

(
(r2−4g2)/�ν�(r2−4g2)

�

)
�

ν�(4g2−r2)

2

(
� −

(
(r2−4g2)/�ν�(r2−4g2)

�

)) if ν�(4g2 − r 2) < ν�(mK )

and 2 | ν�(4g2 − r 2),

�
2
⌈

ν�(mK )

2

⌉
+1

(� + 1)

(
�

⌈
ν�(mK )

2

⌉
− 1

)
+ �ν�(mK )+2

�
3
⌈

ν�(mK )

2

⌉
(�2 − 1)

if ν�(4g2 − r 2) � ν�(mK ).
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By the Chinese Remainder Theorem and equation (4),

c(g)
r =

∞∑
k=1

(k,2r)=1

1

k

∞∑
n=1

(n,2r)=1

1

nϕK (mK nk2)

∑
a∈(Z/nZ)×

(a

n

)
#Cg(r, a, n, k)

= nK ′

∞∑
k=1

(k,2r)=1

1

k

∞∑
n=1

(n,2r)=1

1

nϕ(mK nk2)

∑
a∈(Z/nZ)×

(a

n

) ∏
�|mK nk2

#C (�)
g (r, a, n, k),

where the product is taken over the distinct primes � dividing mK nk2,

C (�)
g (r, a, n, k) := {b ∈ (Z/�ν�(mK nk2)Z)× : 4b2 ≡ r 2 − ak2 (mod �ν�(nk2)), b ≡ g

(mod �ν�(mK ))},

and ν� is the usual �-adic valuation. With somewhat different notation, the following evalu-
ation of #C (�)

g (r, a, n, k) can be found in [4].

LEMMA 19. Let k and n be positive integers satisfying the condition (nk, 2r) = 1. Sup-
pose that � is any prime dividing mK nk2. If � � mK , then

#C (�)
g (r, a, n, k) =

{
1 +

(
r2−ak2

�

)
if � � r 2 − ak2,

0 otherwise;

if � | mK , then

#C (�)
g (r, a, n, k) =

{
�min{ν�(nk2),ν�(mK )} if 4g2 ≡ r 2 − ak2 (mod �min{ν�(nk2),ν�(mK )}),
0 otherwise.

In particular,

#C (�)
g (r, 1, 1, k) =

⎧⎪⎨
⎪⎩

2 if � | kand � � mK ,

�min{2ν�(k),ν�(mK )} if � | mK and 4g2 ≡ r 2 (mod �min{2ν�(k),ν�(mK )}),
0 otherwise.

By Lemma 19 we note that if � is a prime dividing mK and � does not divide nk, then
#C (�)

g (r, a, n, k) = 1. We also see that #C (�)
g (r, a, n, k) = 0 if (r 2 − ak2, n) > 1. Finally, if

� | k and � � n, then

#C (�)
g (r, a, n, k) = #C (�)

g (r, 1, 1, k)

as ν�(nk2) = 2ν�(k) in this case. Therefore, using the formula ϕ(mn) = ϕ(m)ϕ(n)(m, n)/
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ϕ((m, n)), we have

c(g)
r = nK ′

∞∑
k=1

(k,2r)=1

1

k2ϕ(mK k)

∞∑
n=1

(n,2r)=1

ϕ ((n, mK k))

nϕ(n)(n, mK k)

∑
a∈(Z/nZ)×

(r2−ak2,n)=1

(a

n

) ∏
�|nk

#C (�)
g (r, a, n, k)

= nK ′

∞∑
k=1

(k,2r)=1

1

k2ϕ(mK k)

∞∑
n=1

(n,2r)=1

ϕ ((n, mK k))
∏

�|k
��n

#C (�)
g (r, 1, 1, k)

nϕ(n)(n, mK k)
ck(n)

= nK ′

ϕ(mK )

∞∑
k=1

(k,2r)=1

ϕ((mK , k))

(mK , k)k2ϕ(k)

∞∑
n=1

(n,2r)=1

ϕ ((n, mK k))
∏

�|k
��n

#C (�)
g (r, 1, 1, k)

nϕ(n)(n, mK k)
ck(n)

= nK ′

ϕ(mK )

∞∑
k=1

′ ϕ((mK , k))
∏

�|k #C (�)
g (r, 1, 1, k)

(mK , k)k2ϕ(k)

×
∞∑

n=1
(n,2r)=1

ϕ ((n, mK k)) ck(n)

nϕ(n)(n, mK k)
∏

�|(k,n) #C (�)
g (r, 1, 1, k)

.

(29)
Here ck(n) is defined by

ck(n) :=
∑

a∈(Z/nZ)×
(r2−ak2,n)=1

(a

n

) ∏
�|n

#C (�)
g (r, a, n, k), (30)

for (n, 2r) = 1, and the prime on the sum over k is meant to indicate that the sum is to be
restricted to those k which are coprime to 2r and not divisible by any prime � for which
#C (�)

g (r, 1, 1, k) = 0.

LEMMA 20. Assume that k is an integer coprime to 2r . The function ck(n) defined by
equation (30) is multiplicative in n. Suppose that � is a prime not dividing 2r . If � � kmK ,
then

ck(�
e)

�e−1
=

{
� − 3 if 2 | e,

− (
1 + (−1

�

))
if 2 � e.

If � | kmK , then

ck(�
e)

�e−1
= #C (�)

g (r, 1, 1, k)

{
� − 1 if 2 | e,

0 if 2 � e

in the case that ν�(mK ) � 2ν�(k); and

ck(�
e)

�e−1
= #C (�)

g (r, 1, 1, k)

(
(r 2 − 4g2)/�2ν�(k)

�

)e

�

in the case that 2ν�(k) < ν�(mK ). Furthermore, for (n, 2r) = 1, we have

ck(n) �
n

∏
�|(n,k) #C (g)

g (r, 1, 1, k)

κmK (n)
,

where for any integer N, κN (n) is the multiplicative function defined on prime powers by

κN (�e) :=
{

� if � � Nand 2 � e,

1 otherwise.
(31)
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Remark 21. Lemma 20 is essentially proved in [4], but we give the proof in Section 11
for completeness.

Using the lemma and recalling the restrictions on k, we factor the sum over n in (29) as
∞∑

n=1
(n,2r)=1

ϕ ((n, mK k)) ck(n)

nϕ(n)(n, mK k)
∏

�|(k,n) #C (�)
g (r, 1, 1, k)

=
∏

��2rmK k

⎡
⎣∑

e�0

ck(�
e)

�eϕ(�e)

⎤
⎦ ∏

�|mK k
(��2r)

⎡
⎣1 +

∑
e�1

(
1 − 1

�

)
ck(�

e)

�eϕ(�e)#C (�)
g (r, 1, 1, k)

⎤
⎦

=
∏

��2rmK k

F0(�)
∏

�|mK k
(��2r)

F (g)

1 (�, k)

=
∏

��2rmK

F0(�)
∏
�|mK
��2r

F (g)

1 (�, 1)
∏
�|k

��mK
(��2r)

F (g)

1 (�, k)

F0(�)

∏
�|(mK ,k)
(��2r)

F (g)

1 (�, k)

F (g)

1 (�, 1)

where for any odd prime �, we make the definitions

F0(�) := 1 −
(−1

�

)
� + 3

(� − 1)2(� + 1)
,

F (g)

1 (�, k) :=

⎧⎪⎪⎨
⎪⎪⎩

1 +
(

(r2−4g2)/�2ν�(k)

�

)

�−
(

(r2−4g2)/�2ν�(k)

�

) if 2ν�(k) < ν�(mK )and 4g2 ≡ r 2 (mod �2ν�(k)),

1 + 1
�(�+1)

if 2ν�(k) � ν�(mK )and 4g2 ≡ r 2 (mod �ν�(mK )).

Substituting this back into (29) and factoring the sum over k, we have

c(g)
r = nK ′

ϕ(mK )

∏
��2rmK

F0(�)
∏
�|mK
��2r

F (g)

1 (�, 1)

×
∏

��2rmK

⎛
⎝1 +

∑
e�1

F1(�, �
e)2ω(�e)

F0(�)�2eϕ(�e)

⎞
⎠∏

��2r
�|mK

⎛
⎝1 +

∑
e�1

(
1 − 1

�

)
#C (�)

g (r, 1, 1, �e)F (g)

1 (�, �e)

�2eϕ(�e)F (g)

1 (�, 1)

⎞
⎠.

Using Lemma 19 and the definitions of F0(�) and F (g)

1 (�, k) to simplify, we have
proved (28).

9. Pretentious and totally non-Abelian number fields

In this section, we give the definitions and basic properties of pretentious and totally non-
Abelian number fields.

DEFINITION 22. We say that a number field F is totally non-Abelian if F/Q is Galois
and Gal(F/Q) is a perfect group, i.e., Gal(F/Q) is equal to its own commutator subgroup.

Recall that a group is Abelian if and only if its commutator subgroup is trivial. Thus, in
this sense, perfect groups are as far away from being Abelian as possible. However, we adopt
the convention that the trivial group is perfect, and so the trivial extension (F = Q) is both
Abelian and totally non-Abelian. The following proposition follows easily from basic group
theory and the Kronecker–Weber Theorem [13, p. 210].
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PROPOSITION 23. Let F be a number field. Then F is totally non-Abelian if and only if
F is linearly disjoint from every cyclotomic field, i.e., F � Q(ζq) = Q for every q � 1.

DEFINITION 24. Let f be a positive integer. We say that a number field F is f -
pretentious if there exists a finite list of congruence conditions L such that, apart from a
density zero subset of exceptions, every rational prime p splits into degree f primes in F if
and only if p satisfies a congruence on the list L.

If F is a Galois extension and f � nF , then no rational prime may split into degree f
primes in F . In this case, we say that F is “vacuously” f -pretentious. In this sense, we say
the trivial extension (F = Q) is f -pretentious for every f � 1. The term pretentious is
meant to call to mind the notion that such number fields “pretend” to be Abelian over Q,
at least in so far as their degree f primes are concerned. Indeed, one can prove that the
1-pretentious number fields are precisely the Abelian extensions of Q, and every Abelian
extension is f -pretentious for every f � 1 (being vacuously f -pretentious for every f not
dividing the degree of the extension). The smallest non-Abelian group to be the Galois group
of a 2-pretentious extension of Q is the symmetric group S3 := 〈r, s : |r | = 3, s2 = 1, rs =
sr−1〉. The smallest groups that cannot be the Galois group of a 2-pretentious extension of
Q are the dihedral group D4 = 〈r, s : |r | = 4, s2 = 1, rs = sr−1〉 and the quaternion group
Q8 := 〈−1, i, j, k : (−1)2 = 1, i2 = j2 = k2 = i jk = −1〉.

PROPOSITION 25. Suppose that F is a 2-pretentious Galois extension of Q, and let F ′

denote the fixed field of the commutator subgroup of Gal(F/Q). Let τ be an order two
element of Gal(F ′/Q), and let Cτ be the subset of order two elements of G = Gal(F/Q)

whose restriction to F ′ is equal to τ . Then for any rational prime p that does not ramify in
F, we have that ((F ′/Q)/p) = τ if and only if p ≡ g (mod mF) for some g ∈ Sτ if and
only if ((F/Q)/p) ⊆ Cτ .

Proof. In Section 2, we saw that the first equivalence holds. Indeed, this is the definition
of Sτ . Furthermore, if ((F/Q)/p) ⊆ Cτ , then ((F ′/Q)/p) = ((F/Q)/p)|F ′ = τ , and so
p ≡ g (mod mF) for some g ∈ Sτ . Thus, it remains to show that if p ≡ g (mod mF) for
some g ∈ Sτ , then ((F/Q)/p) ⊆ Cτ .

Since F is 2-pretentious, there exists a a finite list of congruences L that determine, apart
from a density zero subset of exceptions, which rational primes split into degree two primes
in F . Lifting congruences, if necessary, we may assume that all of the congruences on the list
L have the same modulus, say m. Lifting congruences again, if necessary, we may assume
that mF | m. Since mF | m, it follows that Q(ζm) � F = F ′ by definition of F ′. As noted in
Section 2, the extension F(ζm)/Q is Galois with group

Gal (F(ζm)/Q)� {(σ1, σ2) ∈ Gal(Q(ζm)/Q) × G : σ1|F ′ = σ2|F ′ } . (1)

Let � : Gal(F/Q) → Gal(F ′/Q) be the natural projection given by restriction of auto-
morphisms. We first show that [F : F ′] = # ker � is odd, which allows us to deduce that
Cτ is not empty. For each σ ∈ G = Gal(F/Q), we let Cσ denote the conjugacy class
of σ in G. We note that (1) and the Chebotarëv Density Theorem together imply that for
each σ ∈ ker � the density of primes p such that p ≡ 1 (mod m) and ((F/Q)/p) = Cσ

is equal to (#Cσ /ϕF(m)nF) = nF ′#Cσ /ϕ(m)nF > 0. In particular, the trivial automorph-
ism 1F ∈ ker � , and so it follows by definition of 2-pretentious that at most a density
zero subset of the p ≡ 1 (mod m) may split into degree two primes in F . However, if
[F : F ′] = # ker � is even, then ker � would contain an element of order 2 and the same
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argument with σ replacing 1F would imply that there is a positive density of p ≡ 1 (mod m)

that split into degree two primes in F . Therefore, we conclude that [F : F ′] is odd. Now
letting σ be any element of G such that �(σ) = σ |F ′ = τ , we find that σ [F :F ′] ∈ Cτ , and so
Cτ is not empty.

Finally, let g ∈ Sτ be arbitrarily chosen, and let a by any integer such that a ≡ g
(mod mF). Again using (1) and the Chebotarëv Density Theorem, we see that the dens-
ity of rational primes p satisfying the two conditions p ≡ a (mod m) and ((F/Q)/p) ⊆ Cτ

is equal to #Cτ /ϕF(m)nF > 0. Since every such prime must split into degree two primes
in F and since a was an arbitrary integer satisfying the condition a ≡ g (mod mF), it fol-
lows from the definition of 2-pretentious that, apart from a density zero subset of exceptions,
every rational prime p ≡ g (mod mF) must split into degree two primes in F . Therefore, if
p is any rational prime not ramifying in F and satisfying the congruence condition p ≡ g
(mod mF), then ((F ′/Q)/p) = τ and ((F/Q)/p) = C ′ for some conjugacy class C ′ of
order two elements in F . Hence, it follows that ((F/Q)/p) = C ′ ⊆ Cτ .

10. Proofs of Theorems 7 and 8

In this section, we give the proof of Theorem 7 and sketch the alteration in strategy that
gives the proof of Theorem 8. The main tool in this section is a certain variant of the classical
Barban–Davenport–Halberstam Theorem. The setup is as follows. Let F/F0 be a Galois ex-
tension of number fields, let C be any subset of Gal(F/F0) that is closed under conjugation,
and for any pair of integers q and a, define

θF/F0(x; C, q, a) :=
∑

Np�x
deg p=1(
F/F0

p

)
⊆C

Np≡a (mod q)

log Np,

where the sum is taken over the degree one prime ideals p of F0. If F0(ζq) � F = F0, it
follows from the ideas discussed in Section 2 that

θF/F0(x; C, q, a) ∼ nF0 #C

nFϕF0(q)
x

whenever a ∈ G F0,q . The following is a restatement of the main result of [19].

THEOREM 26. Let M > 0. If x(log x)−M � Q � x, then

∑
q�Q

′ ∑
a∈Gk,q

(
θF/F0(x; C, q, a) − nF0 #C

nFϕF0(q)
x

)2

� x Q log x, (33)

where the prime on the outer summation indicates that the sum is to be restricted to those
q � Q satisfying F � F0(ζq) = F0. The constant implied by the symbol � depends on F
and M.

Proof of Theorem 7. In light of Theorem 4, it suffices to show that

EK (x; x/(log x)12, Cτ ) �
x2

(log x)11

for every element τ of order dividing two in Gal(K ′/Q).
By assumption, we may decompose the field K as a disjoint compositum, writing K =

K1 K2, where K1 � K2 = Q, K1 is a 2-pretentious Galois extension of Q, and K2 is totally
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non-Abelian. Let G1, G2 denote the Galois groups of K1/Q and K2/Q, respectively. We
identify the Galois group G = Gal(K/Q) with G1 × G2. Since K2 is totally non-Abelian, it
follows that G ′ = G ′

1 × G2, and hence K ′ = K ′
1 and mK = mK1 . Let C2,2 denote the subset

of all order two elements in G2 and let C1,τ denote the subset of elements in G1 whose
restriction to K ′ is equal to τ . Recalling that every element of Cτ must have order two in G,
we find that under the identification G = G1 × G2, we have

Cτ = {1} × C2,2

if |τ | = 1 and

Cτ = C1,τ × (
C2,2 � {1})

if |τ | = 2. Here we have used Proposition 25 with F = K1 and the fact that K ′ = K ′
1. We

now break into cases depending on whether τ ∈ Gal(K ′/Q) is trivial or not. First, suppose
that τ is trivial. Then for each a ∈ (Z/qmK Z)× such that a ≡ b (mod mK ) for some b ∈ Sτ ,
we have

θ(x; Cτ , qmK , a) − #Cτ

nK ϕK (qmK )
x =

∑
p�x

p≡a (mod qmK )(
K/Q

p

)
⊆Cτ

log p − #Cτ

nK ϕK (qmK )
x

= 1

nK1

∑
Np�x

deg p=1
Np≡a (mod qmK )(

K/K1
p

)
⊆C2,2

log Np − #C2,2

nK ϕK1(qmK1)
x

= 1

nK1

(
θK/K1(x; C2,2, qmK1, a) − nK1 #C2,2

nK ϕK1(qmK1)
x

)
.

Thus, we have that

EK (x; x/(log x)12, Cτ ) = 1

n2
K1

∑
q� x

(log x)12

∑
a∈G K1 ,qmK

(
θK/K1(x; C2,2, qmK1, a) − nK1 #C2,2

nK ϕK1(qmK1)
x

)2

.

We note that K1(ζqmK ) � K = K1 for all q � 1 since K2 is totally non-Abelian. Hence, the
result follows for this case by applying Theorem 26 with F0 = K1 and F = K .

Now, suppose that |τ | = 2. Then the condition ((K/Q)/p) ⊆ Cτ is equivalent to the two
conditions ((K1/Q)/p) ⊆ C1,τ and ((K2/Q)/p) ⊆ C2,2 � {1}. Using Proposition 25 and
the fact that K ′

1 = K ′, this is equivalent to the two conditions p ≡ b (mod mK ) for some
b ∈ Sτ and ((K2/Q)/p) ⊆ C2,2 � {1}. Hence, for each a ∈ (Z/qmK Z)× such that a ≡ b
(mod mK ) for some b ∈ Sτ , we have

θ(x; Cτ , qmK , a) − #Cτ

nK ϕK (qmK )
x = θK2/Q(x; C2,2 � {1}, qmK , a) − 1 + #C2,2

nK2ϕ(qmK )
x

as
#C1,τ

nK1ϕK1(qmK )
= nK1/nK ′

1

nK1ϕK1(qmK )
= 1

ϕ(qmK )
.

Thus, we have that

EK (x; x/(log x)12, Cτ ) =
∑

q� x
(log x)12

∑
a∈(Z/qmK Z)×

(
θK2/Q(x; C2,2 � {1}, qmK , a) − 1 + #C2,2

nK2ϕ(qmK )
x

)2

.
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Here, as well, we have that Q(ζqmK ) � K2 = Q for all q � 1 because K2 is totally non-
Abelian. Hence, the result follows for this case by applying Theorem 26 with F0 = Q and
F = K2.

Proof sketch of Theorem 8 In order to obtain this result, we change our strategy from the
proof of Theorem 4 slightly. In particular, if K ′ is ramified only at primes which divide
2r , then it follows that Q(ζq) � K = Q whenever (q, 2r) = 1. Therefore, we go back to
equation (23) in the proof of Proposition 17 and apply the Chebotarëv Density Theorem
immediately. Then we use Cauchy–Schwarz and Theorem 26 to bound the error in this
approximation.

11. Proofs of Lemmas

Proof of Lemma 18. It suffices to show that

c(g)
r =

∑
k�V

(k,2r)=1

1

k

∑
n�U

(n,2r)=1

1

nϕK (mK nk2)

∑
a∈(Z/nZ)×

(a

n

)
#Cg(r, a, n, k) + O

(
1√
U

+ log V

V 2

)

for each g ∈ Sτ , where c(g)
r is defined by (8). We note that since K is a fixed number field, it

follows that mK is fixed. Thus, using Lemma 19, Lemma 20 and equation (4), we have that

c(g)
r −

∑
k�V

(k,2r)=1

1

k

∑
n�U

(n,2r)=1

1

nϕK (mK nk2)

∑
a∈(Z/nZ)×

(a

n

)
#Cg(r, a, n, k)

�
∑
k�V

(k,2r)=1

∏
�|k #C (�)

g (r, 1, 1, k)

k2ϕ(k)

∑
n>U

(n,2r)=1

ck(n)

nϕ(n)
∏

�|(n,k) #C (�)
g (r, 1, 1, k)

+
∑
k>V

(k,2r)=1

∏
�|k #C (�)

g (r, 1, 1, k)

k2ϕ(k)

∞∑
n=1

(n,2r)=1

ck(n)

nϕ(n)
∏

�|(n,k) #C (�)
g (r, 1, 1, k)

�
∑
k�V

(k,2r)=1

∏
�|k #C (�)

g (r, 1, 1, k)

k2ϕ(k)

∑
n>U

(n,2r)=1

1

κmK (n)ϕ(n)

+
∑
k>V

(k,2r)=1

∏
�|k #C (�)

g (r, 1, 1, k)

k2ϕ(k)

∞∑
n=1

(n,2r)=1

1

κmK (n)ϕ(n)
.

(34)

where for any integer N , κN (n) is the multiplicative function defined by (31). In [5, p. 175],
we find the bound ∑

n>U

1

κ1(n)ϕ(n)
�

1√
U

.

Therefore,∑
n>U

1

κmK (n)ϕ(n)
=

∑
mn>U

(n,mK )=1
�|m⇒�|mK

1

κ1(n)ϕ(n)ϕ(m)
�

∑
m�1

�|m⇒�|mK

1

ϕ(m)

∑
n>U/m

1

κ1(n)ϕ(n)

�
1√
U

∑
m�1

�|m⇒�|mK

√
m

ϕ(m)
= 1√

U

∏
�|mK

(
1 + �

(� − 1)(
√

� − 1)

)

�
1√
U

.
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Similarly, using Lemma 19, we have that

∑
k>V

(k,2r)=1

∏
�|k #C (�)

g (r, 1, 1, k)

k2ϕ(k)
�

∑
m�1

�|m⇒�|mK

mK

m2ϕ(m)

∑
k>V/m

(k,2rmK )=1

2ω(k)

k2ϕ(k)

�
∑
m�1

�|m⇒�|mK

log(V/m)

m2ϕ(m)(V/m)2

� log V

V 2

∑
m�1

�|m⇒�|mK

1

ϕ(m)

= log V

V 2

∏
�|mK

(
1 + �

(� − 1)2

)

�
log V

V 2

as ∑
k>V

2ω(k)

k2ϕ(k)
=

∫ ∞

V

dN0(t)

t3
�

log V

V 2
,

where

N0(t) :=
∑
k�t

k32ω(k)

k2ϕ(k)
�

t

log t

∑
k�t

k32ω(k)/k2ϕ(k)

k
�

t

log t
exp

⎧⎨
⎩

∑
��t

2

� − 1

⎫⎬
⎭ � t log t.

Substituting these bounds into (34) finishes the proof of the lemma.

Proof of Lemma 20. The multiplicativity of ck(n) follows easily by the Chinese Re-
mainder Theorem. We now compute ck(n) when n = �e is a prime power and � � 2r .

If � � mK , then by Lemma 19,

ck(�
e) =

∑
a∈(Z/�eZ)×

(r2−ak2,�e)=1

(a

�

)e
#C (�)

g (r, a, �e, k)

= �e−1
∑

a∈(Z/�Z)×

(a

�

)e
(

r 2 − ak2

�

)2 [
1 +

(
r 2 − ak2

�

)]

= �e−1
∑

a∈Z/�Z

(a

�

)e
[(

r 2 − ak2

�

)2

+
(

r 2 − ak2

�

)]
.

(35)

If � | k, then this last expression gives

ck(�
e)

�e−1
= 2

∑
a∈Z/�Z

(a

�

)e = #C (�)
g (r, 1, 1, k)

{
� − 1 if 2 | e,

0 if 2 � e
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as (k, r) = 1. If � � k, then (35) gives

ck(�
e)

�e−1
=

∑
a∈Z/�Z

(a

�

)e
[(

r 2 − a

�

)2

+
(

r 2 − a

�

)]

=
∑

b∈Z/�Z

(
r 2 − b

�

)e
[(

b

�

)2

+
(

b

�

)]

=
⎧⎨
⎩

� − 3 if 2 | e,

−
(

1 +
(−1

�

))
if 2 � e.

Now, we consider the cases when � | mK . First, suppose that 1 � ν�(mK ) � 2ν�(k). Then
as ν�(mK ) � 2ν�(k) < e + 2ν�(k) = ν�(nk2), we have that 4g2 ≡ r 2 − ak2 (mod �ν�(mK )) if
and only if 4g2 ≡ r 2 (mod �ν�(mK )). Therefore,

#C (�)
g (r, a, �e, k) =

{
�ν�(mK ) if 4g2 ≡ r 2 (mod �ν�(mK )),

0 otherwise,
= #C (�)

g (r, 1, 1, k)

for all a ∈ (Z/�eZ)×. Since � | k and (k, r) = 1, it follows that � � r 2 − ak2 for all
a ∈ Z/�eZ. Whence, in this case,

ck(�
e)

�e−1
= 1

�e−1

∑
a∈Z/�eZ

(r2−ak2,�)=1

(a

�

)e
#C (�)

g (r, a, �e, k)

= #C (�)
g (r, 1, 1, k)

∑
a∈Z/�Z

(a

�

)e

= #C (�)
g (r, 1, 1, k)

{
� − 1 if 2 | e,

0 if 2 � e.

Now, suppose that 2ν�(k) < ν�(mK ). We write k = �ν�(k)k� with (�, k�) = 1, and let t =
min{ν�(mK ), e + 2ν�(k)}. Then t > 2ν�(k) and 4g2 ≡ r 2 − ak2 (mod �t) if and only if
ak2

� ≡ r 2 − 4g2/�2ν�(k) (mod �t−2ν�(k)). Combining this information with Lemma 19, we
have that

#C (�)
g (r, a, �e, k) =

{
�t if �2ν�(k) | r 2 − 4g2and ak2

� ≡ r2−4g2

�2ν�(k) (mod �t−ν�(k)),

0 otherwise.

In particular, we see that ck(�
e) = 0 if r 2 � 4g2 (mod �2ν�(k)). Suppose that r 2 ≡ 4g2
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(mod �2ν�(k)). Since (g, mK ) = 1 and � | mK , we have that

ck(�
e) =

∑
a∈Z/�eZ

(r2−ak2,�)=1

(a

�

)e
#C (�)

g (r, a, �e, k)

=
∑

a∈Z/�eZ

ak2�r2 (mod �)

ak2≡r2−4g2 (mod �t )

(a

�

)e
�t

=
∑

a∈Z/�eZ

ak2≡r2−4g2 (mod �t )

(a

�

)e
�t

=
∑

a∈Z/�eZ

ak2
�≡ r2−4g2

�2ν�(k) (mod �t−2ν�(k))

(
ak2

�

�

)e

�t

= �t
∑

a∈Z/�eZ

a≡ r2−4g2

�2ν�(k) (mod �t−2ν�(k))

(a

�

)e

= �t�e−t+2ν�(k)
(

(r2−4g2)/�2ν�(k)

�

)e
.

Therefore, in the case that � | mK and 2ν�(k) < ν�(mK ), we have

ck(�
e)

�e−1
= #C (�)

g (r, 1, 1, k)

(
(r 2 − 4g2)/�2ν�(k)

�

)e

�

since

#C (�)
g (r, 1, 1, k) =

{
�2ν�(k) if r 2 ≡ 4g2 (mod �2ν�(k)),

0 otherwise.
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