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A NOTE ON NORMALISED HEAT DIFFUSION FOR GRAPHS
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Abstract

We show that, on graphs which have precisely three distinct Laplacian eigenvalues, heat diffusion enjoys
a monotonic behaviour.
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1. Introduction

Let X be a finite connected graph. The heat kernel on X is given by

Ht = e−tL,

where L is the Laplacian on X and t ≥ 0 is the time variable. In [5], Regev and Shinkar
considered the question of whether X has monotonic normalised heat diffusion: that
is, whether the ratio

Ht(u, v)
Ht(u, u)

is monotonically nondecreasing, as a function of time, for every pair of vertices u
and v. Peres (2013) had asked whether this is always the case in a vertex-transitive
graph. This turns out to be too optimistic: the main result of Regev and Shinkar is that
there are Cayley graphs which do not have monotonic normalised heat diffusion. On
the other hand, McMurray Price [3] has shown that Cayley graphs of abelian groups
do have monotonic normalised heat diffusion. In [5], Regev and Shinkar also give
an example, based on an idea of Cheeger, of a regular graph which does not have
monotonic normalised heat diffusion. The example is a 4-regular graph on 10 vertices,
obtained as follows: consider the usual cube graph on eight nodes and cone off two
opposite faces by two additional vertices.

The vertex-transitivity assumption in the question raised by Peres is presumably
meant to enforce a constant diagonal for the heat kernel, that is, Ht(u, u) is independent
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of the choice of vertex u. This heat homogeneity holds if and only if X is walk regular
(see Theorem A.1 in the Appendix). Notable classes of walk-regular graphs include
vertex-transitive graphs, distance-regular graphs and regular graphs having at most
four distinct eigenvalues. We are thus led to the question of whether the latter class
enjoys monotonic normalised heat diffusion.

We obtain the following result.

Theorem 1.1. If X has three distinct Laplacian eigenvalues, then X has monotonic
normalised heat diffusion.

The regular graphs with three distinct Laplacian eigenvalues are precisely the
strongly regular graphs. Therefore, strongly regular graphs enjoy monotonic
normalised heat diffusion.

Somewhat surprisingly, monotonic normalised heat diffusion also holds for
nonregular graphs with three distinct Laplacian eigenvalues. Our favourite example of
such a graph is the so-called Erdős–Rényi orthogonality graph. Given a finite field F
with q elements, the graph ERq has the projective plane PG(2,F) = (F3)∗/F as its vertex
set. Two distinct vertices [x1, x2, x3] and [y1, y2, y3] are joined by an edge whenever
x1y1 + x2y2 + x3y3 = 0. The graph ERq has q2 + q + 1 vertices; q2 of them have degree
q + 1 and the remaining q + 1 have degree q. The Laplacian eigenvalues of ERq are
0 and q + 1 ±

√
q. Historically, the Erdős–Rényi graph first appeared in Turán-type

extremal graph theory, as a graph with many edges but no 4-cycles (see [4, Ch. 12] for
details). Several other constructions of nonregular graphs with three distinct Laplacian
eigenvalues were studied in [1].

We conclude this preamble by posing the following problem: do regular graphs
with four distinct eigenvalues enjoy monotonic normalised heat diffusion? It is likely
that this problem can be handled by a strategy similar to the one employed below, but
the computations are quite unwieldy.

2. Preliminaries

Let X be a finite connected graph having at least two vertices. The Laplacian on
X is a symmetric linear operator on the space of real-valued functions defined on the
vertex set V of X. This is a finite-dimensional space, endowed with the inner product

〈φ, ψ〉 =
∑
v∈V

φ(v) ψ(v).

The Laplacian, denoted by L, has matrix coefficients L(u, v) = 〈L1v,1u〉, for u, v ∈ V ,
given as follows: off-diagonally, L(u, v) = 0 if u , v are not adjacent and L(u, v) = −1
if u , v are adjacent; diagonally, L(u, u) = deg(u), the degree of u.

Let n = |V | denote the number of vertices of X. Then L has n nonnegative
eigenvalues, counted with multiplicities. The trivial eigenvalue λ = 0 admits the
constant function 1 as an eigenfunction and it is simple thanks to connectivity. On
the other hand, the nontrivial eigenvalues can, and usually do, have a high multiplicity.
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Let σ(L) denote the set of distinct eigenvalues of L. We then have the spectral
decomposition

L =
∑
λ∈σ(L)

λ Pλ,

where Pλ denotes the projection onto the λ-eigenspace. The projection P0,
corresponding to the trivial eigenvalue, is just the averaging operator given by
P0φ = (1/n)

∑
v∈V φ(v). In terms of matrix coefficients, P0(u, v) = 1/n for all u, v ∈ V .

The spectral decomposition for the Laplacian induces, by functional calculus, a
spectral decomposition for the heat kernel:

Ht = e−tL =
∑
λ∈σ(L)

e−tλ Pλ

for t ≥ 0. This formula makes it apparent that the heat kernel evolves from I = H0
towards P0 = limt→∞ Ht. We make significant use of the spectral decomposition of the
heat kernel, a perspective that is quite different from the approaches taken in [3, 5].

3. Proof of Theorem 1.1

We start with two facts that hold without any spectral hypothesis on X. The first
one is a well-known bound relating vertex degrees and Laplacian eigenvalues.

Lemma 3.1. The degree of each vertex u satisfies

min
0,λ∈σ(L)

λ ≤ deg(u), deg(u) + 1 ≤ max
λ∈σ(L)

λ.

The second fact says that normalised heat diffusion starts off in a nondecreasing
way.

Lemma 3.2. For any pair of distinct vertices u and v, the normalised heat diffusion

Ht(u, v)
Ht(u, u)

has nonnegative derivative at t = 0.

Proof. We need to show that

H′t (u, v)Ht(u, u) ≥ Ht(u, v)H′t (u, u)

at t = 0. We have H0(u, u) = 1 and H0(u, v) = 0, since H0 = I, so we are left with
checking that H′0(u, v) ≥ 0. Now, H′t = −LHt and, in particular, H′0 = −LH0 = −L.
Hence, H′0(u, v) = −L(u, v) ≥ 0, as desired. �

Assume now that X has three distinct Laplacian eigenvalues, say 0 < θ1 < θ2. Then
the heat kernel is given by

Ht = P0 + e−tθ1 Pθ1 + e−tθ2 Pθ2 .
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Let u and v be distinct vertices of X. In order to prove Theorem 1.1, we have to check
that the function

h(t) := H′t (u, v)Ht(u, u) − Ht(u, v)H′t (u, u)

satisfies h(t) ≥ 0 at all times t ≥ 0. One computes

et(θ1+θ2) h(t) =
θ1

n
(Pθ1 (u, u) − Pθ1 (u, v)) etθ2 +

θ2

n
(Pθ2 (u, u) − Pθ2 (u, v)) etθ1 − R, (∗)

where the remainder R is explicitly given by

R = (θ1 − θ2)(Pθ1 (u, u) Pθ2 (u, v) − Pθ1 (u, v) Pθ2 (u, u)).

Importantly, note that the remainder R is independent of t.

Lemma 3.3. Pθ1 (u, u) ≥ Pθ1 (u, v) and Pθ2 (u, u) ≥ Pθ2 (u, v).

This lemma addresses the coefficients appearing on the right-hand side of (∗). It
follows that g(t) = et(θ1+θ2) h(t) is increasing and so g(t) ≥ g(0) = h(0) for all t ≥ 0. As
h(0) ≥ 0, by Lemma 3.2, we deduce that h(t) ≥ 0 for all t ≥ 0.

Proof of Lemma 3.3. The two projections, Pθ1 and Pθ2 , can be determined from the
following system:

Pθ1 + Pθ2 = I − P0,

θ1Pθ1 + θ2Pθ2 = L.

The solution is

Pθ1 =
L − θ2(I − P0)

θ1 − θ2
, Pθ2 =

L − θ1(I − P0)
θ2 − θ1

.

Then one computes

Pθ1 (u, u) − Pθ1 (u, v) =
deg(u) − θ2 − L(u, v)

θ1 − θ2
,

Pθ2 (u, u) − Pθ2 (u, v) =
deg(u) − θ1 − L(u, v)

θ2 − θ1
.

Lemma 3.1 says, for the case at hand, that θ1 ≤ deg(u) and deg(u) + 1 ≤ θ2. It follows
that deg(u) − θ1 − L(u, v) ≥ 0 and deg(u) − θ2 − L(u, v) ≤ 0. This proves the lemma.

Appendix. Walk-regular graphs

A graph is walk regular if, for each k ≥ 2, the number of closed walks of length `
starting and ending at a vertex is independent of the choice of vertex. Taking ` = 2, we
see that a walk-regular graph is, in particular, regular. The notion of walk regularity,
as well as some of its basic properties, first appeared in [2].
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Theorem A.1. The following are equivalent:

(x) X is walk regular;
(a) Ak has constant diagonal for all k = 0, 1, . . . ;
(l) Lk has constant diagonal for all k = 0, 1, . . . ;
(h) Ht has constant diagonal for all t ≥ 0;
(p) Pλ has constant diagonal for all λ , 0.

Proof. The equivalence of (x) and (a), already noted in [2], comes from the fact that
Ak(u,u) counts the number of closed walks of length k starting and ending at a vertex u.

The equivalence of (a) and (l) is due, firstly, to the regularity of X, expressed by
the value k = 2 in (a), respectively the value k = 1 or k = 2 in (l). Then the relation
A + L = dI, where d is the degree of X, leads to Ak being a polynomial of degree k in
L, respectively Lk being a polynomial of degree k in A.

The equivalence of (l) and (h) is based on the power series formula

Ht(u, u) =

∞∑
k=0

(−1)kLk(u, u)
k!

tk

for each vertex u and all times t ≥ 0. If (l) holds, then the right-hand side is
independent of u and (h) follows. If (h) holds, then the left-hand side is independent
of u, so it can be seen as a function of t only. By the uniqueness of a power series
expansion, Lk(u, u) is independent of u for k = 0, 1, . . . .

The equivalence of (h) and (p) is based on the formula

Ht(u, u) =
∑
λ∈σ(L)

e−tλ Pλ(u, u)

for each vertex u and all times t ≥ 0. Clearly, then, (p) implies (h). The converse
implication comes from the fact that the scaled exponentials t 7→ e−tλ, for λ running
over σ(L), are linearly independent. �

From a heat kernel perspective, the main upshot is the equivalence of (x) and (h): a
graph is walk regular if and only if its heat kernel has constant diagonal at all times.

The verification of walk regularity, on the other hand, often exploits the equivalence
of (x) and (a). For example, walk regularity for distance-regular graphs can be shown
in this way [2]. Let us illustrate this perspective by discussing walk regularity for
regular graphs with few eigenvalues. If X is a regular graph with s distinct eigenvalues,
then there is a monic polynomial p of degree s − 1, the so-called Hoffman polynomial
of X, with the property that the matrix p(A) has constant entries. It follows that the
walk regularity of X is equivalent to As having constant diagonal for all k = 0, . . . , s − 2.
When s = 3 or s = 4, this clearly holds.
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