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Abstract
When conducting accident analysis, the assessment of risk is one of the important links. Moreover, with regards
to crew training, risk cognition is also an important training subject. However, most of the existing researches
only rely on a single or a few data sources. It is necessary to fuse the collected multi-source data to obtain a more
comprehensive risk evaluation model. There are few studies on the three-dimensional (3D) multi-modal data-fusion-
based trajectory risk cognition. In this paper, a fuzzy logic-based trajectory risk cognition method is proposed based
on multi-model spatial data fusion and accident data mining. First, the necessity of multi-model spatial data fusion
is analysed and a data-fusion-based scene map is constructed. Second, a risk cognition model fused by multiple
factors, multi-dimensional spatial calculations as well as data mining results is proposed, including a novel ship
boundary calculation approach and newly constructed factors. Finally, a radar chart is used to illustrate the risk, and
a risk cognition system is developed. Experiment results confirm the effectiveness of the method. It can be applied
to train human operators of unmanned ship systems.

1. Introduction

Nowadays, shipping technology is evolving, equipping ships with faster speed, larger size as well as
more capabilities to handle dangerous goods. As a result, research on the navigation environment and
ship traffic accidents has attracted increasingly more attention. When conducting accident analysis,
stakeholders usually need to simulate the process of traffic accidents, analyse the cause of the accident
and assess responsibility. In this process, the assessment of risk is one of the important links. Moreover,
with regards to crew training, risk cognition is also an important training subject. Visual information
is of great significance for human cognition, since approximately 70% of the information obtained by
humans comes from vision. Based on the rapid development of computer graphics, three-dimensional
(3D) simulation is used to reproduce the actual ship accident process to clarify the motion state of each
participant in the accident. This method of accident responsibility judgment is becoming increasingly
more recognised. Currently, ship traffic accident reproduction dynamically simulates the trajectory and
motion of the accident ship based on the accident data records. Through the multi-angle observation
of the entire accident process, crews and experts can assess the cause of the accident, investigate the
mechanism, improve the risk cognition and provide the scientific basis for determining the responsibility.
In most applications, ship traffic accident reproduction mainly includes trajectory simulation, ship
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motion simulation and collision simulation. Trajectory simulation is mainly based on the Automatic
Identification System (AIS) data and Voyage Data Recorder (VDR) data. It usually provides the visual
scene of the accident area, simulates the environment effect and provides multi-angle observation of
the accident process. Based on the trajectory simulation, crews and experts can determine the ship’s
navigation status before the accident, analyse the ship’s behaviour and risk elements, and provide
guidance for avoiding accidents. In the entire process, risk analysis has been an important tool. The
risk assessment model and accident scene map greatly influence the crew’s cognition of accident risk.
The risk assessment model assists the crew to recognise the risk from the perspective of mathematical
calculation, while the accident scene map affects the crew’s cognition from the perspective of scene
perception.

As one of the major public hazards in the world, how to improve the risk analysis of a traffic accident
has become an important research topic (Liu et al., 2007). Especially how to improve the crew’s risk
cognition is of great importance. The coupling effect between the ship and external environment is
prominent during the navigation process. Restrictions and dependencies between various factors in the
accident process are very important for the accident reproduction. Therefore, the analysis of ship traffic
accidents needs to fully consider the influence of a ship’s own factors and external environmental factors.
The risk cognition model should strengthen the description of the surrounding environment, navigation
marks and waterways of the accident site, and combine these factors to improve risk assessment.
At present, the degree of collision risk can be used as the crew’s reflection on the objective existence
of collision risk. When determining the degree of collision risk, we should choose the factors that
characterise the ship’s collision risk, analyse the objective factors and establish a mathematical model
of the collision risk. Human factors, such as lookout negligence, manoeuvring error and fatigue, are
crucial causes of ship traffic accidents. When the ship passes through the bridge, if the crew is unfamiliar
with the bridge area or encounters bad weather, accidents often occur. In our opinion, on the one hand,
due to the unintuitive visualisation of the two-dimensional (2D) electronic navigational chart, crews
have to understand the traffic state and surrounding environment by interpreting the chart (users have to
generate a mental model of a map, rotate it and match it with the real world, and relate the symbols and
map features to real features); on the other hand, crews are not sufficiently aware of the risks. However,
a 3D model can significantly improve user’s awareness of the environment and cognition of the object
described by the 3D model.

At present, the construction of an accident scene map can not fully meet the needs of all-round
perception of the navigation environment. Usually, one way is to simulate the accident process by
constructing the accident scene based on a 2D electronic chart. However, this method loses a lot of
useful scene data. Additionally, it is difficult to realise accurate and effective 3D scene perception
and spatial analysis, especially in situations where different types of ship meet. Another method is
real environment simulation. However, this procedure does not integrate some useful data for spatial
analysis, such as a 2D electronic chart. Therefore, it is necessary to realise geometric correctness and
geographic reality of the integration of multi-modal and multi-scale navigation environment data in a
unified framework, and make full use of complementary multi-modal data to construct an all-round
perception of the navigation environment. Compared with our previous work (Liu et al., 2014), data
fusion is applied to the risk assessment, and 2D spatial analysis and 3D spatial analysis are integrated
in this paper. In our risk calculation model, we fuse 2D spatial analysis and 3D spatial analysis together,
such as yawing degree analysis and 3D collision detection calculation. We introduce a technical update
of fusion visualisation, propose an efficient bounding box calculation method, design a new method for
the crew to improve risk cognition of a ship collision accident and provide an intuitive visualisation for
the accident simulation. Furthermore, based on the 3D spatial data representation, the utilisation rate
of the screen space is greatly improved and the information that can be conveyed in a single screen is
richer. We develop a trajectory risk cognition system, which can provide new cognition and analysis
methods for the investigation of ship traffic accidents. This will enhance the risk cognition capabilities
of crews and experts. The contributions of the proposed method are summarised as follows:

https://doi.org/10.1017/S0373463322000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463322000066


The Journal of Navigation 301

• propose a data-fusion-based method for the accurate spatial calculation in the trajectory risk
reconstruction of the accident ship;

• design a trajectory risk cognition method that fuses multiple factors.

2. Related work

Based on the simulation technology and accident record data, ship traffic accident analysis first simulates
the motion state of the ship involved and the accident site, and then analyses the cause of the accident.
Through these analyses, the dangerous situation of the accident can be recognised. This will provide
guidance for future actions. There are two tasks that are important in the cognition analysis: one is risk
assessment and the other is scene map construction. However, the most current research on accident
analysis focuses on risk assessment and there is not enough attention toward scene map construction in
accident analysis.

In the aspect of the risk assessment research, researchers have done a lot of work. From the analysis
of existing researches and the summary of the review paper (Yan et al., 2015; Du et al., 2020; Huang
et al., 2020), risk assessment research mainly focuses on three aspects: statistical analysis methods,
physical abstract models and risk assessment models. The analysis of historical accident data is of
great significance for discovering the cause of the accident (Mao et al., 2010). After careful analysis of
the accident statistics in the Gulf of Finland during the past 10 years, Kujala et al. (2009) concluded
that ‘groundings and collisions are the dominant accident types in the Gulf of Finland’. Zhang et al.
(2013) analysed the accident database of Yangtze River based on the formal safety assessment theory.
They analysed the accidents according to the designed statistical indicators and gave the proportions
of different accident categories. Zaman et al. (2015) used probability modelling and consequence
modelling to conduct the risk analysis based on AIS data. They established the collision probability
according to traffic density, head-on, crossing and overtaking conditions. Based on the analysis of ten
years of ship accident data, Weng and Yang (2015) introduced two regression models to predict the
accident probability. Using the worldwide shipping accident records from 2001 to 2011, they analysed
the likelihood of fatal accidents and the number of mortalities in shipping accidents. Uǧurlu et al.
(2015) used fault tree analysis to investigate causal factors of the collision and grounding accidents of
oil tankers based on the corresponding data stored in Global Integrated Shipping Information System.
They also studied the significance degree of the initial events causing occurrence of accidents. Bye and
Aalberg (2018) combined correspondence analysis and F-tests in a logistic regression model to analyse
the Norwegian Maritime Directorate (NMA) accident database. Their model can predict whether the
accident is navigation-related or not. Chen et al. (2019) used an improved entropy weight TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution) model to analyse total-loss marine
accident based on the total-loss marine accident data they collect. They concluded that ‘the main
influential factors are foundering, stranding and fires/explosions’. The statistical method is one way
to explore the factors influencing the accident. However, such a method is mainly for managers and
lacks a process description of the accident from a micro-perspective and a detail analysis of the cause
of the accident. Thus, it does not provide useful guidance for the crew’s detail judgment. An abstract
physical method has been intensively investigated by many researchers, with the aim of better probing
the navigation risk. The ship domain method is commonly used (Wang et al., 2021). Smierzchalski and
Michalewicz (2000) treated the ship collision problem as a dynamic optimisation task. They introduced
a new version of the Evolutionary Planner/Navigator to generate a safe trajectory for the ship. Safe
distance and width of the dangerous area are chosen to assess the risk. Goerlandt and Kujala (2011)
used a spatio-temporal overlap check to detect collision candidates based on a micro-simulation model
and used a causation probability model to describe the ship collision risk. Their approach can provide
detailed information about the circumstances in which ships encounter each other. Qu et al. (2011) used
three indices to evaluate the ship collision risks: time-mean speed-based speed dispersion (a macroscopic
risk index), degree of acceleration and deceleration (a microscopic risk index), and number of fuzzy
ship domain overlaps. Base on Lloyd’s MIU AIS ship movement database and the three indices, they
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found the most risky legs in the Singapore Strait. Montewka et al. (2012) introduced a new ship
collision criterion called minimum distance to collision (MDTC) to assess the ship collision risk. They
used an iterative algorithm to calculate the criterion. Kim and Kim (2018) introduced an improved
navigation risk assessment model. The model fuses the ship’s dynamic domain with a collision risk
assessment formula, where the calculation of collision risk assessment formula is based on the length,
speed and manoeuvring capability of a ship. Although the display of calculation results of the ship
domain model is intuitive, the calculation results can not be directly mapped to actual decision-making
factors (can not be directly fed back to the cognitive process of the crew). In areas with a density of
ships, the ship domain method is likely to cause cognitive confusion. Moreover, it is difficult for the
ship domain model to measure all dangerous situations. In recent years, researchers have begun to use
the fuzzy mathematics method, back propagation (BP) neural network and grey correlation analysis to
study the calculation of ship navigation risk. The fuzzy mathematics method adopts the fuzzy theory
to determine the index based on the factors that affect the collision risk of ships, such as distance to
the closest point of approach (DCPA), time to the closest point of approach (TCPA), relative position
between ships, speed ratio of the ships, distance between ships. The fuzzy mathematics method is a
widely used method for decision-making in transportation systems (Wu et al., 2018, 2019, 2020). It is
easier to logically analyse the influence of various factors by using the fuzzy comprehensive evaluation
method. This is closer to human cognitive law. Based on input parameters such as DCPA and TCPA, the
BP neural network directly outputs the ship collision risk. It has the advantages of good self-learning
ability, small calculation error and reliable result. However, this method converges slowly and it is very
computationally expensive. Moreover, this method is highly dependent on samples. A set of training
samples is only applicable to the corresponding sea area. Therefore, the BP neural network method is not
a scalable method (Peng et al., 2012). The grey correlation analysis method is a relatively new method.
Although it does not calculate the specific value of the collision risk of a ship, it can calculate the
relative risk between multiple target ships and the own ship. This is the same as the risk index in the ship
collision avoidance system. It has the advantages of small amount of calculation, fast speed and accurate
result. However, this method is only suitable for a multi-ship encounter. This method can quickly and
accurately determine the collision avoidance sequence of multiple target ships (Li and Wang, 2011).
Combining data fusion methods to study the risk of ship collision has also been a research hotspot in
recent years. Based on the data processing of AIS and radar, and the analysis of ship collision avoidance
situation, Wu (2013) established a ship collision risk evaluation model. Aiming at the main accident
risks in the ship transportation system, such as collision, grounding, anchoring and drifting, Zhou et al.
(2013) proposed a quantitative calculation scheme for the collision risk of the marine ship transportation
network system based on the system simplification idea and information fusion technology. Most of
the existing researches only rely on a single or a few data sources, while there are many data sources
that have to be comprehensively considered, such as AIS, radar and video. It is necessary to fuse the
collected multi-source data to obtain a more comprehensive risk evaluation model.

Porathe (2006) proved that compared with traditional 2D charts, 3D charts could dramatically reduce
the number of human errors and improve the accuracy and efficiency of manoeuvring. In the aspect of
scene map construction research, scholars have made many attempts and discussions, and the direction
is gradually changing from 2D to 3D. The accident analysis relies on the construction of the accident
scene map. How to extract the accident record information to obtain the information needed in the
accident analysis calculation and fuse them in a unified framework is of great importance to the
construction of an accident scene map. Multi-model data fusion (especially multi-model data fusion
based on deep learning architecture) has become an active research area. Integrating multi-model data
to analyse ship traffic accidents has become an important method. However, under-researched aspects of
this work are the construction of the all-element scene and the lack of analysis research based on the all-
element scene. The all-element scene will provide more comprehensive information to assist accident
analysis. In recent years, with the development of theories and technologies of computer graphics and
the geographic information system (GIS), 3D geospatial information applications have been rapidly
developed. Information collection has become more convenient. At present, the use of 3D graphics
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simulation technology to construct an accident scene has become a trend, including constructing more
accurate 3D models based on actual ships, waterways and other elements, and refining and perfecting
the functions of user interaction modules. Under current trends, the key technologies for accident scene
map construction include 3D environment modelling technology, real-time rendering technology, GIS
technology, etc. Fan et al. (2018) proposed a method of integrating 3D simulation with a real ship driving
system and studied the ‘virtual–real’ and ‘dynamic–static’ ship navigation technologies and equipment,
which effectively integrated hydrological factors, terrain features, waterways, traffic dynamics and ship
driving information. Their research provides a multi-angle and multi-level visual display for the poorly
visible water traffic environment to enhance the crew’s ability to perceive the surroundings. Tang
(2009) deeply analysed the key issues of the fusion of sea and land geographic vector data, including
the unification of projection methods, the unification of coordinate systems and the fusion of object
representations, studied the matching algorithm of similar objects and discussed the uncertainty problem
of fusion results. Chybicki et al. (2009) fused AIS data, real-time radar data and remote sensing image
data with electronic chart data, and analysed the system architecture and technical solution for developing
a multi-source data fusion system. Kulawiak et al. (2010) studied the fusion of hydrological data and
remote sensing image data with electronic chart data, and constructed a web system for data visualisation.
Fischer and Bauer (2010) proposed an object-oriented method for fusion of target observations produced
by multiple heterogeneous sensors (mainly including aerial imagery, radar and AIS data), and used
simulation tools to evaluate different scenarios and sensor configurations. The experimental results fully
prove the importance of data fusion. Lager and Topp (2019) designed a remote monitoring system of
an unmanned autonomous ship under limited bandwidth communication conditions. The system uses
3D modelling and virtual reality technology to provide users with surrounding environment situational
awareness and collision detection functions. This greatly reduces the user’s cognition load. However,
multi-modal perception data fusion is not mature enough in ship traffic at present. There are few studies
on the 3D multi-modal data-fusion-based trajectory risk cognition.

Liu et al. (2014) proposed a 3D ship navigation and monitoring system based on multi-model spatial
data fusion. The proposed system fuses remote sensing image, electronic waterway map, terrain data, 3D
model and AIS data. Based on this spatial data organisation model, this paper deepens the research and
applies the model to trajectory risk reconstruction of ship collision accident. First, the algorithm frame-
work is presented. Second, the scene reconstruction method is introduced, including static information
reconstruction and dynamic data reconstruction. Third, the trajectory risk reconstruction algorithm is
described, including ship boundary calculation and risk calculation. We fuse 2D spatial analysis with
3D spatial analysis to provide a multi-dimensional risk assessment. Then, visualisation methods of the
risk are illustrated. Finally, a ship collision accident experiment is carried out to verify the effectiveness
of our approach.

3. Algorithm overview

In this paper, multi-factor analysis, multi-model data fusion and calculation, historical data mining and
data visualisation method are used to explore how to improve the crew’s risk cognition. Trajectory
risk cognition of ship collision accident is an important research in the field of ship traffic safety. The
accurate accident record information of ship collision accident is the basis of the risk reconstruction,
especially ship navigation data collected in real time. The trajectory risk reconstruction scheme of the
ship collision accident based on multi-model spatial data fusion and historical data mining designed in
this paper is shown in Figure 1.

The trajectory risk reconstruction proposed in this paper needs to collect and process more data in
the early stage, including not only the navigation data of the ship, but also the basic geographic data
and waterway data, such as terrain data, remote sensing image data, 3D entity model and electronic
navigational chart. First, the collected basic geographic data and waterway data are processed, and the
ship traffic accident scene that fuses multi-model information is reconstructed by the method described
in Section 4. Second, the ship traffic accident database is constructed. The collected ship navigation
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Figure 1. Solution flow.

data such as VDR, AIS are extracted, filtered and stored in the database. The ship traffic accident
database is used to manage accident-related data, including meteorological data, hydrological data, basic
information and track state data of the accident ship, information backup and encryption, etc. It can be
constructed based on a relational database or a graph database. Third, on the basis of data collection
and processing, a 3D model of the accident ship is built and the spatial calculation of trajectory risk
reconstruction of the accident ship is realised based on the data fusion method. Finally, visualisation
methods are designed to give an intuitive result. The trajectory risk reconstruction can assist the crews
and experts to recognise the risk and conduct the accident analysis. Parameter values of the method can
be modified according to expert experiences. Subsequently, the results can be stored in the ship traffic
accident database for later review and reference.

4. Scene reconstruction

This paper constructs a ship traffic accident scene which fuses multi-model spatial data based on 3D
computer graphics technology and spatial data processing technology. The specific construction process
is shown in Figure 2.

From the construction process in Figure 2, it can be seen that data involved in the scene reconstruction
mainly includes terrain data, remote sensing image data, 3D entity model and electronic navigational
chart. The mesh model based on multi-resolution terrain data is the basis of the simulation scene. It
fuses the sounding data extracted from the electronic navigational chart and is the bottom layer of the
scene (Liu et al., 2014). Then, the pyramid model is used to organise the remote sensing image data.
Based on texture mapping and viewpoint corresponding methods, the tiled and layered remote sensing
image data are mapped onto the bottom layer of the scene to form the basic scene of the ship traffic
accident. The 3D entity models used in the scene are built by 3D modelling software (such as 3DS MAX,
Sketchup) and oblique photography (such as ContextCapture). These data are also input to the scene
(Liu et al., 2016). The electronic navigational chart data are divided into three categories: entity object,
artificial vector information and sounding data. The entity object and sounding data are processed as
described above. The artificial vector information refers to the artificial navigation vector information
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Figure 2. Construction flow of the accident scene.

such as depth contour, depth area, anchor zone. We use the vector data fusion method to fuse these data
in the scene (Liu et al., 2015).

4.1. Static information

Based on the Automotive Intelligent Chart (AIC) 3D Electronic Chart Display and Information System
(ECDIS) proposed by Liu et al. (2014), we conduct further improvement research. With the development
of programmable rendering pipeline and graphics processing unit (GPU) hardware, we adopt the
advanced GPU rendering methods in our project, such as hybrid data representation, order independent
transparency and geometry clipmap. We have greatly enhanced the previous project in this paper. In
terms of fusion visualisation, we mainly make the following optimisations.

• For the category of basic scene data, which includes remote sensing images, terrain data, we use the
level of detail (LOD) method to organise this type of data. Terrain and riverbed data are used to build
the fundamental framework. Texture mapping is used to map remote sensing image tiles onto the
fundamental framework. A height map tile that contains the terrain data is also stored in the image
format. The GPU-based geometry clipmap method (Losasso and Hoppe, 2004) is used to render the
basic scene data. The geometry clipmap structure caches a square window of 𝑛 × 𝑛 samples within
each level. These windows correspond to a set of nested regular grids centred about the viewer. The
structure maintains triangles that are uniformly sized in screen space. This method provides a number
of advantages: simplicity of data structures, smooth visual transitions, steady rendering rate, graceful
degradation, efficient compression and runtime detail synthesis. To satisfy the need for texture
streaming of large rich environments, we use virtual texture (Mittring and GmbH, 2008) to manage
the texture memory. Only the actually required portions need to be uploaded. This is very efficient.

• For the category of terrain following objects, such as country boundaries, highways, etc., we use the
texturing method to accelerate the rendering of large-scale vector data. First, vector data are drawn
onto texture tiles in the fragment buffer. Then, these texture tiles are mapped onto the terrain by
texture mapping. This will avoid the interpolation calculation of vector and terrain and can greatly
improve the calculation efficiency.

• For the category of independent objects, such as labels, 3D entities, etc., we refer to the foveated
rendering method (Swafford et al., 2016) for rendering this type of data. We use hybrid data
representation (triangle mesh and displacement map) and data compression to describe entity
objects. This will reduce the memory consumption. The basic idea of foveated rendering is to render
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Figure 3. Shore view effect.

high-quality images in the foveated area and low-quality images in the peripheral area to save time
and cost. Rendering methods based on gaze point information usually use technologies such as
multi-texture and fragment programming to improve rendering performance.

• For the electronic navigational vector objects, the rendering method has also been improved. The
order independent transparency method (DFB algorithm) (Maule et al., 2014) is used to render this
data type. The transparency attribute of these vector objects such as depth contour, depth area,
anchor zone are realised more efficiently. This method can perform correct compositing for objects
with efficient memory management.

In terms of data modelling, we have also made improvements. We make full use of advanced data
modelling technologies, such as oblique photography and point cloud modelling technology. We select
different modelling methods according to the difficulty of data acquisition. For entities that are difficult
to collect laser point cloud information on the ground, oblique photography technology is used for data
acquisition, and then modelling processing is performed, such as denoising, singulation and trimming.
For entities that are easy to collect laser point cloud information on the ground, selection of the data
acquisition method is based on the data accuracy requirements: for entities that affect berthing and
unberthing, such as docks, laser point cloud technology is used for data acquisition and post-processing;
for other entities, oblique photography technology is adopted. Data obtained by oblique photography and
point cloud modelling technology can be reconstructed with mature software such as ContextCapture,
Trimble Realworks, and fused in our system based on our algorithms.

The reconstruction effects are shown in Figures 3–5. Figures 3 and 4 show the overwater view effect
of the ship traffic accident scene and Figure 5 shows the underwater view effect of the ship traffic
accident scene.

4.2. Dynamic data

For the dynamic data of ship traffic, such as ship positions and accident information, we fuse these data
into the accident scene. The reconstruction of trajectories of the accident ship consists of two parts:
trajectory point calculation and pose calculation. Trajectory point calculation is used to reconstruct the
linear motion of the ship, and the pose calculation is used to maintain the correct posture of the ship.

(1) Trajectory point calculation

The trajectory data of the accident ship stored in the ship traffic accident database are extracted
to perform the reconstruction. However, during the trajectory data collection process, there are some
problems in the data record of the accident ship such as large collection interval and missing data. Data
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Figure 4. Overwater view effect.

Figure 5. Underwater view effect.

jumping and unsynchronisation may occur. To achieve the synchronisation of trajectories of accident
ships and avoid the impact of missing data, trajectory detection and interpolation are needed. Based on
the previous position of the trajectory data, ship heading and speed information stored in the database,
a data-fusion-based recursive method is designed to fill in the missing data points of the encrypted data.
The calculation method is shown in Equation (1),

𝑃𝑖 = 𝑃bef (𝑖) + 𝑡 ∗ (𝛼 ∗ 𝑣 + 𝛽 ∗ 𝑟)√
𝛼2 + 𝛽2

, 𝑖 = 1, . . . , 𝑁,

such that
{
𝑃bef (1) = 𝑃start,
𝑃𝑁 = 𝑃end,

(1)

where 𝑃𝑖 is the position of the output point; 𝑃bef (𝑖) is the position of the previous point; 𝑡 is the
interpolation time interval; 𝑣 denotes the unit vector of the ship speed; 𝑟 denotes the unit vector of the
channel centreline or designed route segment; 𝑃start and 𝑃end represent the starting point and ending
point of the route segment, respectively; and 𝛼 and 𝛽 are weight coefficients. As can be seen in Equation
(1), this method fuses channel information or route information and turns the reconstruction problem
into a constraint calculation problem. Therefore, space and time calibrations of the data are achieved
and linear motion of the ship can be realised by dynamically refreshing the 3D spatial position of the
ship model according to the calculated trajectory point.
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Figure 6. 2D schematic diagram for the bounding box.

(1) Pose calculation

Pose calculation decomposes the transformation of pose change about a certain direction axis into
rotation transformations about the three coordinate axes of the local coordinate system of the 3D
ship model, that is, this calculation simulates the ship’s roll, pitch and yaw by constructing rotation
matrices about the three axes. The rotation angles are from the traffic accident database. In our system,
pitch corresponds to rotation about the 𝑋-axis, yaw corresponds to rotation about the 𝑌 -axis, and roll
corresponds to rotation about the 𝑍-axis. The rotation transformations can be calculated according to
Equations (2), (3) and (4), respectively. The rotation angle is positive when rotating counterclockwise,

𝑅𝑥 =

⎡⎢⎢⎢⎢⎣
1 0 0
0 cos(𝜃𝑥) − sin(𝜃𝑥)
0 sin(𝜃𝑥) cos(𝜃𝑥)

⎤⎥⎥⎥⎥⎦ , (2)

𝑅𝑦 =

⎡⎢⎢⎢⎢⎣
cos(𝜃𝑦) 0 sin(𝜃𝑦)

0 1 0
− sin(𝜃𝑦) 0 cos(𝜃𝑦)

⎤⎥⎥⎥⎥⎦ , (3)

𝑅𝑧 =

⎡⎢⎢⎢⎢⎣
cos(𝜃𝑧) sin(𝜃𝑧) 0
− sin(𝜃𝑧) cos(𝜃𝑧) 0

0 0 1

⎤⎥⎥⎥⎥⎦ , (4)

where 𝜃𝑥 , 𝜃𝑦 and 𝜃𝑧 represent the rotation angles about the 𝑋 , 𝑌 and 𝑍 axes, respectively.

5. Risk reconstruction

5.1. Ship boundary calculation

Collision detection is to determine whether there is a collision between two objects. It is an indispensable
part of ship accident reconstruction. The basic framework of the collision detection algorithm is to
perform preliminary detection first, and then gradually to refine intersection calculations. Object space-
based collision detection algorithms often use tree-type retrieval structures and bounding boxes to speed
up computation. The collision detection in this paper refers to the process for detecting the collision of 3D
models of accident participants in the ship traffic accident scene. Usually, the actual outlines of different
objects are different. A ship has a rectangle outline. A buoy has a cylindrical outline. For different outline
properties of objects, different bounding boxes are designed to accelerate the calculation of collision
detection in this paper, such as rectangular bounding box for ships and bridges, cylindrical bounding
box for buoys. There are two types of cuboid bounding box: axis-aligned bounding box (AABB) and
oriented bounding box (OBB), as shown in Figure 6.

The construction of an OBB bounding box relies on the spatial trend of the grid points of 3D model.
The OBB bounding box is a better approximation of the object and can provide more accurate results
when applied in the collision detection calculation. Moreover, when the pose of 3D model changes,
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Figure 7. Schematic diagram for the local coordinate system.

it is not necessary to recalculate the OBB bounding box of the model. In the field of trajectory risk
reconstruction, accuracy should be the primary condition. Therefore, we adopt the OBB bounding box
to accelerate the ship collision detection calculation. However, the common method of constructing an
OBB bounding box is relatively complicated. Covariance matrix, eigenvalue and eigenvector should be
calculated to determine the direction of the main axes. Moreover, because the distribution of grid points
of the 3D ship model is irregular, it is not accurate to use the eigenvector calculated by the covariance
matrix as the main axis.

We design a new method in this paper. By designing simple transformations, the calculation efficiency
of the OBB bounding box is greatly improved, especially during the real-time operation of the system.
Although there is no complicated mathematical formula, the clever and efficient design is very useful
in the actual system operation. Based on the ship’s heading angle 𝑎 recorded in the ship traffic accident
database, we calculate the three main axes (the local coordinate system of the ship model, as shown in
Figure 7) of the 3D ship model by normalisation, rotation transformation and translation transformation,
and use this coordinate system to build the OBB bounding box. The specific calculation process is as
follows.

First, obtain the normal direction of the main axis 𝑌𝑎 by unitising the ship position coordinate 𝐴;
Then, take a small step along the longitude direction to get point 𝐵, project point 𝐵 onto the tangent

plane at point 𝐴 to form a vector with point 𝐴 and unitise this vector to yield vector 𝑋 ′. At last, the
vector 𝑋 ′ is rotated about the main axis 𝑌𝑎 to obtain the main axis 𝑍𝑎 (the rotation angle is the heading
angle 𝑎);

Finally, the main axis 𝑋𝑎 is calculated by 𝑌𝑎 and 𝑍𝑎 using the right-handed spiral rule.
Compared with the common eigenvector calculation method of the OBB bounding box, the proposed

method is simple and can accurately calculate the local coordinate system characterising the 3D ship
model. The calculated coordinate system fully matches the spatial trend of the model. Based on the
local coordinate system, the OBB bounding box of the model can be directly calculated according to the
calculation method of the AABB bounding box. On the basis of the bounding box calculation, spatial
intersection calculation is performed to complete the collision detection.
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5.2. Data preprocessing

Before the loading of the 3D ship model, the model needs to be normalised. The normalisation calculation
scales the 3D ship model to the correct scale relative to the constructed 3D ship traffic accident scene. In
this paper, we use the reference object method. The first 3D ship model is normalised according to the
reference object in the scene. The normalisation of subsequent 3D ship models is based on the first 3D
ship model and the same reference calculation is carried out. Based on the ship traffic accident scene
and the ship size information stored in the traffic accident database, the specific calculation process is
as follows.

First, calculate the OBB bounding boxes of the 3D ship model and the reference object selected in
the accident scene.

Then, scale the 3D ship model according to the reference condition. The reference condition assumes
that the ratio of the diagonals of two OBB bounding boxes should be approximately equal to the ratio
of the physical sizes of the two objects.

After the normalisation process, the 3D ship model can be loaded into the accident scene. The
rotation and translation transformations also need to be performed according to the fusing method of
the entity model in the 3D scene (Liu et al., 2016).

5.3. Risk calculation

There are many factors that influence ship collision accidents, and it is necessary to reconstruct mean-
ingful factors for accident risk assessment, especially the factors that affect the crew’s cognition of risk
and the judgment of the next operation. Research results show that more than 80% of ship collision
accidents are caused by human error (Rothblum, 2000). We assume that human subjective factors have
the same influence in different environments. This paper focuses on the influence of objective factors.
We use the fuzzy comprehensive evaluation method to construct a fuzzy evaluation model that fuses
multiple factors and 2D and 3D spatial calculations. By analysing the accident data, factor extraction
and historical data mining are also used in the reconstruction of the risk of ship collision accidents.
This model can be mapped to the crew’s cognitive process. In this paper, we have collected a total
of 497 relatively complete ship collision accident reports from maritime investigation report websites.
The sources of accident reports include: Maritime Safety Administration of the People’s Republic of
China, Shanghai Maritime Safety Administration, Shandong Maritime Safety Administration, Nanjing
Maritime Safety Administration, Jiangsu Maritime Safety Administration, Australian Transport Safety
Bureau (ASTB), Marine Accident Investigation Branch (MAIB), The Danish Division for Investigation
of Maritime Accidents (DMA), National Transportation Safety Board of United States (NTSB) and New
Zealand Maritime Bureau (NZM). Furthermore, the visualisation method of the risk cognition model
designed in this paper allows the crew to better visually recognise the risk calculation process.

At present, the fuzzy mathematics methods mostly use five parameters to assess the risk: DCPA,
TCPA, orientation of the target ship relative to the own ship, speed ratio of the own ship and the target
ship, and distance between the own ship and the target ship. In this paper, we select several factors of
which the crew have a deep understanding to reflect the risk degree of the accident and construct more
comprehensive influencing factors based on the data fusion. We use five factors to evaluate the risk:
DCPA, TCPA, fusion of distance and yawing degree, relative bearing 𝐺 of the target ship relative to
the own ship, and fusion of ship density and speed ratio. Among them, DCPA and TCPA are the most
important factors influencing the ship risk, which can reflect the distance, relative speed and azimuth
of two ships. Smaller values of DCPA and TCPA will result in a greater collision risk. Most research in
the ship collision risk area takes DCPA and TCPA as parameters. Usually, the distance between the own
ship and the target ship can give a more intuitive calculation of the collision risk. We take the compound
factor of distance and yawing degree as a new parameter, which can not only express the influence of
distance on risk, but also the influence of yawing degree on risk. When the distance is smaller and the
yawing degree is larger, the value of this factor is higher, which reflects a higher degree of danger; on
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the contrary, it reflects a lower degree of danger. Incoming ships from different directions pose different
danger degrees to the ship. Generally speaking, the hazard degree of the starboard side is greater than
that of the port side, and the hazard degree before abeam is greater than that behind. Finally, we use the
compound factor of ship density and speed ratio as a new parameter. This factor considers not only the
influence of the target ship, but also the influence of surrounding ships. Based on the accident sample
data, the independence of the constructed influencing factors is verified through Pearson correlation
analysis.

We first need to determine the calculation of risk subordinating degree of each factor in the model.
In this paper, we assess the trajectory risk of a ship collision accident, without considering ship
manoeuvring factors such as the latest avoidance distance. Based on the ship boundary calculation and
ship domain concept, we design the method for calculating the risk subordinating degree of each factor.

(1) Risk subordinating degree function of DCPA

The risk caused by DCPA to the ship is obvious. A larger value will mean a smaller degree of risk.
Risk subordinating degree function of DCPA is as follows:

𝑈 (DCPA) =
⎧⎪⎪⎨⎪⎪⎩

1
2
− 1

2
sin

(
𝜋

𝐷
∗

(
DCPA − 𝐷

2

))
, if DCPA ≤ 𝐷;

0, if DCPA > 𝐷,
(5)

where 𝐷 is the absolutely safe encounter distance. When a large ship meets a small boat, the distance
calculation should be more accurate. We design a 3D distance fusion calculation method in this paper.
Moreover, accurate distance calculation can provide better support for the calculation of collision risk.
The calculation of the distance is divided into two cases based on the classical ship domain model
proposed by Fujii and Tanaka (1971). In the ship domain, the 3D OBB bounding box is used to calculate
the distance between two ships. First, 3D OBB bounding boxes of two ships are calculated. Then, the
principal axis projection and the minimum distance calculation are performed. Outside the ship domain,
we calculate the distance between the centre points of two ships. We stipulate that when𝑈 (DCPA) is 1,
the trajectory risk is 1.

(1) Risk subordinating degree function of TCPA

The risk caused by TCPA to the ship is also obvious. A larger value will mean a smaller degree of
risk. Risk subordinating degree function of TCPA is as follows:

𝑈 (TCPA) =
⎧⎪⎪⎨⎪⎪⎩

(
𝑇 − |TCPA|

𝑇

)2

, if |TCPA| ≤ 𝑇 ;

0, if |TCPA| > 𝑇,

(6)

where 𝑇 =
√
𝐷2 − DCPA2/𝑉𝑅, 𝑉𝑅 is the relative speed and 𝐷 is the absolutely safe encounter distance.

We stipulate that when 𝑈 (TCPA) is 1, the trajectory risk is 1. Based on the changing law of this factor
and the number of corresponding accidents and the experience of experts, we adopt a quadratic power
function.

(1) Risk subordinating degree function of the compound factor of distance and yawing degree

At present, most inland rivers adopt the traffic separation scheme (TSS). The impact of the ship’s
deviation from its navigation channel is significant. Moreover, through careful analysis of the ship’s
navigation characteristics, the close distance between the two ships does not mean a collision risk in
most cases. Our algorithm considers both inland navigation and maritime navigation. The deviation of
the ship from the routing or the centreline of the channel often indicates anomalies.

The regularity of accident attributes can be found by mining and analysing a large amount of accident
data. Based on the collected 497 investigation reports of ship collision accidents, we conduct an analysis
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Table 1. Distance classification.

Risk degree 5 4 3 2 1

Distance (nautical mile) 0·5 1 2 4 6
Number of accidents 272 78 44 32 10
Normalisation processing (min–max normalisation) 1 0·2595 0·1298 0·0840 0

of the accident distance factor and the risk degree through data correlation analysis and data fitting
analysis. Through statistical analysis of investigation reports, it is found that among 497 ship collision
accidents, 350 ship collision accidents relate to close distance (accounting for 70·4%). It can be seen
that the distance factor has a significant impact on the risk of ship collision. We classify the distance
and count the number of accidents within each interval, as shown in Table 1.

Through data fitting, the relationship between the distance and the collision risk is as follows:

𝑈 (𝑑) = 1·001 ∗ 𝑒−1·228∗𝑑 , (7)

where 𝑑 represents the distance between ships and𝑈 (𝑑) represents the collision risk degree. The fitting
function type is an exponential function. The variance and mean square error obtained are 0·009 and
0·055, respectively. The goodness of fitting and modified goodness of fitting are 0·9864 and 0·9818. It
is a good fitting function.

Two ships can be very safe even if they are relatively close in the same inland waterway lane. Based
on the electronic navigational chart data, we fuse the distance between two ships with yawing degree
and construct a compound factor. The risk subordinating degree function is as follows:

𝑈 (𝑑, 𝑤) =
{
𝛼 ∗ (𝑤/𝑊)2 + 𝛽 ∗𝑈 (𝑑), if 𝑤 ≤ 𝑊, 𝑑 ≤ 𝐷;
0, if 𝑑 > 𝐷,

(8)

where 𝑊 represents the width of the prescribed waterway; 𝑤 denotes the distance between the ship and
centreline of the lane; 𝐷 is the absolutely safe encounter distance; and 𝑑 is the distance between two
ships. Here, 𝛼 and 𝛽 are the normalised weight coefficients. For offshore cases, 𝛼 is larger, while for
inland cases, 𝛽 is larger. We stipulate that when 𝑈 (𝑑, 𝑤) is 1, the trajectory risk is 1.

(1) Risk subordinating degree function of relative bearing

Under the same conditions, incoming ships from different directions pose different danger degrees.
When the relative bearing of the incoming ship is 19◦ (the most dangerous situation), the risk subordi-
nating degree is set to 1. When the relative bearing of the incoming ship is 199◦ (the safest situation),
the risk subordinating degree is set to 0. The risk subordinating degree function (Zhou and Wu, 2004)
is as follows:

𝑈 (𝐺) = 1
2

(
cos(𝐺 − 19◦) +

√
440
289

+ cos2(𝐺 − 19◦)
)
− 5

17
, 0◦ ≤ 𝐺 < 360◦, (9)

where 𝐺 represents the relative bearing.

(1) Risk subordinating degree function of the compound factor of ship density and speed ratio

Through statistical analysis of the investigation reports, it is found that among the 497 ship collision
accidents, 134 ship collision accidents relate to the ship density factor (accounting for 27%). It can be
seen that the ship density factor also has a significant impact on the risk of ship collision. We classify
the ship density and count the number of accidents within each interval, as shown in Table 2.
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Table 2. Ship density classification.

Risk degree 5 4 3 2 1

Ship density (number of ships/km2) 4 6 8 9 11
Number of accidents 39 56 71 128 134
Normalisation processing (min–max normalisation) 0 0·1789 0·3368 0·9369 1

Through data fitting, the relationship between the ship density and the collision risk is as follows:

𝑈 (𝑞) = 0·002448 ∗ 𝑞2·542, (10)

where 𝑞 represents the ship density and𝑈 (𝑞) represents the collision risk degree. The fitting function type
is a power function. The variance and mean square error obtained are 0·1197 and 0·1998, respectively.
The goodness of fitting and modified goodness of fitting are 0·854 and 0·8053. It is a good fitting
function.

We use the ship density 𝑞 to describe the traffic flow, that is, the number of ships per km2. Based
on the calculation method of DCPA after the ship turns to avoid collision, the functional relationship
between DCPA and ship speed ratio can be obtained through appropriate assumptions and simplifications
(Zhou and Wu, 2004). According to this, we design the risk subordinating degree function as follows:

𝑈 (𝑞, 𝑘) = 𝛼 ∗𝑈 (𝑞) + 𝛽 ∗ 1
1 + 2

𝑘∗
√

𝑘2+1+2∗𝑘∗sin(𝐶)
, 0◦ ≤ 𝐶 < 180◦, (11)

where 𝑘 is the speed ratio; 𝐶 is the collision angle; and 𝛼 and 𝛽 are the normalised weight coefficients.
Finally, the ship’s trajectory risk is calculated as follows:

𝑉 = 𝑎DCPA ∗𝑈 (DCPA) + 𝑎TCPA ∗𝑈 (TCPA) + 𝑎𝑑,𝑤 ∗𝑈 (𝑑, 𝑤)
+ 𝑎𝐺 ∗𝑈 (𝐺) + 𝑎𝑞,𝑘 ∗𝑈 (𝑞, 𝑘). (12)

Based on the advice of experts, the normalised weight items are initially set to (0·35, 0·35, 0·1, 0·1,
0·1). They are dynamically adjusted based on the case feedback and expert opinions. Based on the data
mining, our method is capable of self-learning.

6. Application

6.1. Visualisation method

The primary task of visualisation is to accurately display and convey the information contained in the
data, and to provide effective auxiliary means to help users to understand the data. To present data
in an easy-to-understand manner, it is necessary to first convert the data into visual codes that are
easy to perceive. A radar chart, also called a spider chart, is one type of visual code that displays
multi-dimensional data in 2D form. It can quickly express the comparison of multiple indicators in the
same coordinate system. On the basis of the designed risk factors, we use a radar chart to express the
contribution of each factor in the assessment calculation and intuitively compare and analyse the factors
in the reconstruction process.

6.2. Application results

To demonstrate the application effect of the proposed model and system, we take the typical ship collision
accident ‘ship encounter’ as an example to carry out the trajectory risk reconstruction. Based on the
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Figure 8. Large-scale view of the scene.

Figure 9. View of the trajectory risk.

ship trajectory and pose data stored in the ship traffic accident database, scene and risk calculations are
used to realise the trajectory risk reconstruction of the two-ship collision accident. The location of the
case is the Yangtze River waterway. A ship loses control and causes the collision.

Figure 8 shows a large-scale view of the two-ship collision accident scene. The red circle indicates
the 3D model of the accident ship and the red arrow indicates the trajectory. When the trajectory is
selected, the system will highlight the trajectory in white.

Figure 9 shows a view of the trajectory risk reconstruction of a two-ship collision accident. The system
calculates the risk in real time. Moreover, the system gives a progress indication of the simulation. It
can be seen from the figure that the influence of factors is different under different conditions. As shown
in Figure 9(a), the risk subordinating degree of the relative bearing is bigger than the risk subordinating
degree of the compound factor of the distance and yawing degree and the risk subordinating degree of
the compound factor of the ship density and speed ratio. However, as the target ship loses control and
changes direction, the ship deviates from the channel and the risk subordinating degree of the compound
factor of the distance and yawing degree becomes increasingly bigger. The weighted risk subordinating
degree values of the four nodes in Figure 9 are listed in Table 3.
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Table 3. Risk subordinating degree.

Risk subordinating degree 𝑈 (DCPA) 𝑈 (TCPA) 𝑈 (𝑑, 𝑤) 𝑈 (𝐺) 𝑈 (𝑞, 𝑘)
Node (a) 0·3274 0·1385 0·0120 0·0708 0·0324
Node (b) 0·3490 0·2607 0·0267 0·0341 0·0324
Node (c) 0·3473 0·2789 0·0644 0·0263 0·0358
Node (d) 0·3500 0·3361 0·1547 0·0016 0·0358

Figure 10. Reconstruction of the falling process.

Figure 11. Ending of the falling process.

The law can also be obtained from the numbers, but it is not as intuitive as the graphical display. Our
calculation model can visually present the risk change process and all-round navigation environment to
the crew. The system can also give a reconstruction of the falling process, as shown in Figures 10 and 11.

To verify the effectiveness of the system, we also conduct user case experiments. We obtain a total
of 100 tests from seafarers and marine technology undergraduates of Shanghai Maritime University.
We compare the user risk cognition of a 2D electronic chart system, 3D navigation simulator and our
system under the same accident reconstruction situation and collect users’ satisfaction with the system.
By averaging the obtained satisfaction scores, the results are listed in Table 4.

It can be seen from the experimental results that this system can effectively assist users in risk
cognition of ship collision accidents.
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Table 4. User satisfaction degree.

System 2D chart system 3D navigation simulator Our system

Satisfaction degree 80% 85% 91%

7. Conclusion

This paper studies how to improve the crew’s risk cognition from the perspective of multi-source
data fusion and data mining, and provides the trajectory risk cognition method of a ship collision
accident. We make full use of multi-source information to provide visualisation and perform risk model
calculations. Traditionally, human decision-making is multi-factorial. When the crew has an all-round
perception of the navigation environment, it is easier to find the risk problem. Our method solves the
visualisation limitations caused by the 2D electronic navigational chart. It can provide integrated and
effective information support for experts in the analysis of ship traffic accidents, and provide a new
mode for the reproduction of ship traffic accidents. We perform extensive user experiments to evaluate
the effectiveness of the system. We invite a large number of industry practitioners and students of this
major to use our system. Users do the accident case study through our system and give a satisfaction
score based on a 100-point grading system. We count their satisfaction scores with the system. Through
a large number of user experiments, we have concluded that users show great interest in the system.
Compared with industry practitioners, students are more interested in the system. They are also more
satisfied. We think this may be because industry practitioners have received more training and can more
easily generate a mental model of a map and match it with the real world. However, although students
receive less training, our system can help them recognise the navigation environment and understand
risk situations faster.

However, the system for the trajectory risk cognition developed in this paper does not perform the
physical damage processing and analysis. Physical-based simulation technology can be used to improve
the simulation effect of the system, and the system can be migrated to a virtual reality (VR) display
device. Although it is very difficult to restore the actual physical change process of the ship in the
accident (complex fluid-structure coupling simulation calculations need to be solved), it can improve
users’ awareness of dangerous situations. Users can observe the ship’s status from any angle and
understand the changes of situation, which is not possible with accident videos. Furthermore, if users
can use a VR display device to immerse themselves in the accident scene, it can improve the user’s
experience. Users will achieve a deep understanding of the risk. Of course, this requires optimisation of
the computational efficiency to support a high refresh rate, and re-design of the system. Further work
has to be done in these two areas.
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Uǧurlu Ö., Köse E., Yıldırım U. and Yüksekyıldız E. (2015). Marine accident analysis for collision and grounding in oil tanker
using FTA method. Maritime Policy & Management, 42(2), 163–185.

Wang S. B., Zhang Y. J. and Hu X. (2021). Ship collision risk calculation method considering uncertainty of ship position
prediction. Chinese Journal of Ship Research, 16(1), 114–120.

Weng J. and Yang D. (2015). Investigation of shipping accident injury severity and mortality. Accident Analysis & Prevention,
76, 92–101.

Wu H. (2013). Design of ship collision avoidance terminal based on AIS/Radar fused information. Doctoral dissertation, Harbin
Engineering University.

Wu B., Yip T. L., Xie L. and Wang Y. (2018). A fuzzy-MADM based approach for site selection of offshore wind farm in busy
waterways in China. Ocean Engineering, 168, 121–132.

Wu B., Yip T. L., Yan X. and Soares C. G. (2019). Fuzzy logic based approach for ship-bridge collision alert system. Ocean
Engineering, 187, 106152.

Wu B., Cheng T., Yip T. L. and Wang Y. (2020). Fuzzy logic based dynamic decision-making system for intelligent navigation
strategy within inland traffic separation schemes. Ocean Engineering, 197, 106909.

Yan X., Wu B., Wang Y. and Wei X. (2015). Overview of development and current progress in maritime simulation research.
Journal of System Simulation, 27(1), 13–28.

Zaman M. B., Kobayashi E., Wakabayashi N. and Maimun A. (2015). Risk of navigation for marine traffic in the Malacca
Strait using AIS. Procedia Earth and Planetary Science, 14, 33–40.

Zhang D., Yan X., Yang Z., Wall A. and Wang J. (2013). Incorporation of formal safety assessment and Bayesian network in
navigational risk estimation of the Yangtze River. Reliability Engineering & System Safety, 118, 93–105.

Zhou J. and Wu C. (2004). Construction of the collision risk factor model. Journal of Ningbo University (NSEE), 17(1), 61–65.
Zhou M., Ge Q., Huang X., Liu Y. and Chen J. (2013). A novel scheme of identifying navigational risks for marine intelligent

traffic systems. Navigation of China, 36(04), 114–118+124.

Cite this article: Liu T, Wang S, Lei Z, Zhang J, Zhang X (2022). Trajectory risk cognition of ship collision accident based on fusion of multi-model
spatial data. The Journal of Navigation 75: 2, 299–318. https://doi.org/10.1017/S0373463322000066

https://doi.org/10.1017/S0373463322000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463322000066
https://doi.org/10.1017/S0373463322000066

	1 Introduction
	2 Related work
	3 Algorithm overview
	4 Scene reconstruction
	4.1 Static information
	4.2 Dynamic data

	5 Risk reconstruction
	5.1 Ship boundary calculation
	5.2 Data preprocessing
	5.3 Risk calculation

	6 Application
	6.1 Visualisation method
	6.2 Application results

	7 Conclusion

