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Abstract

The (conditional or unconditional) distribution of the continuous scan statistic in a one-
dimensional Poisson process may be approximated by that of a discrete analogue via time
discretization (to be referred to as the discrete approximation). Using a change of measure
argument, we derive the first-order term of the discrete approximation which involves
some functionals of the Poisson process. Richardson’s extrapolation is then applied
to yield a corrected (second-order) approximation. Numerical results are presented to
compare various approximations.
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1. Introduction

The subject of scan statistics in one dimension as well as in higher dimensions has found
a great many applications in diverse areas ranging from astronomy to epidemiology, genetics,
and neuroscience. See [8] and [9] for a thorough review and comprehensive discussion of scan
distribution theory, methods, and applications. See also [10] for a collection of articles on
recent developments.

In the one-dimensional setting, let � be a (homogeneous) Poisson point process of intensity
λ > 0 on the (normalized) unit interval (0, 1]. For a specified window size 0 < w < 1 and
integers N ≥ k ≥ 2, we are interested in finding the conditional and unconditional probabilities

P(k; N, w) := P(Sw ≥ k | |�| = N) and P ∗(k; λ, w) := P(Sw ≥ k),

where |�| is the cardinality of the point set � (i.e. the total number of Poisson points) and

Sw = Sw(�) := max
0≤t≤1−w

|� ∩ (t, t + w]|,
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Approximations for the continuous scan statistic 305

the maximum number of Poisson points within any window of size w. The (continuous)
scan statistic Sw arises from the likelihood ratio test for the null hypothesis H0 : the intensity
function λ(t) = λ (constant) against the alternative Ha : λ(t) = λ+�1(a,a+w](t) for (unknown)
0 ≤ a ≤ 1 − w and � > 0, where 1A denotes the indicator function of a set A.

By applying results on coincidence probabilities and the generalized ballot problem (see [1]
and [16]), Huntington and Naus [13] and Hwang [14] derived closed-form expressions for
P(k; N, w) which involve summing up a large number of determinants of large matrices and,
hence, are, in general, not amenable to numerical evaluation. Later, by exploiting the fact that
P(k; N, w) is a piecewise polynomial in w with (finitely many) different polynomials of w in
different ranges, Neff and Naus [20] developed a more computationally feasible approach and
presented extensive tables for the exact P(k; N, w) for various combinations of (k, N, w) with
N ≤ 25. (More precisely, each number in the tables has an error bounded by 10−9.) Noting
that P ∗(k; λ, w) is a weighted average of P(k; N, w) over N (with Poisson probabilities as
weights), they also provided tables for P ∗(k; λ, w) with λ ≤ 16, where the error size for each
tabulated number varies depending on the combination of (k, λ, w). (The errors tend to be
greater for smaller values of w.) Huffer and Lin [11], [12] developed an alternative approach
(based on spacings) to computing the exact P(k; N, w).

Instead of finding the exact P ∗(k; λ, w), Naus [19] proposed an accurate product-type
approximation based on a heuristic (approximate) Markov property while Janson [15] derived
some sharp bounds. See also [7] for related results in a discrete setting. Treating the problem
as a boundary crossing for a two-dimensional random field, Loader [18] obtained effective
large deviation approximations for the tail probability of the scan statistic in one and higher
dimensions. For more general large deviation approximation results, see [2] and [21].

The continuous scan statistic Sw may be approximated by a discrete analogue via time
discretization. Specifically, assuming w = p/q (p, q relatively prime integers), partition the
(time) interval (0, 1] into n subintervals of length n−1, n a multiple of q. Each subinterval
(independently) either contains no point (with probability 1 − λ/n) or exactly one point (with
probability λ/n). Since a window of size w covers nw subintervals, as an approximation
to Sw, we define the discrete scan statistic S

(n)
w to be the maximum number of points within

any nw consecutive subintervals. For large n, P ∗(k; λ, w) = P(Sw ≥ k) may be approximated
by P(S

(n)
w ≥ k), which can be readily calculated using the Markov chain embedding method

(see [4], [5], [17]). Indeed, it is known that P(Sw ≥ k) − P(S
(n)
w ≥ k) = O(n−1) (see [6], [22]).

In Section 2, as n (multiple of q) tends to ∞, we derive the limit of n[P(Sw ≥ k) −
P(S

(n)
w ≥ k)], which involves some functionals of �. In order to establish this limit result,

we find it instructive to introduce a slightly different discrete scan statistic (denoted by S
′(n)
w )

which is stochastically smaller than Sw and S
(n)
w . With a coupling device, we derive the

limits of n[P(Sw ≥ k) − P(S
′(n)
w ≥ k)] and n[P(S

(n)
w ≥ k) − P(S

′(n)
w ≥ k)]. In Section 3, using

a change of measure argument, a similar result is obtained for the conditional probability
P(Sw ≥ k | |�| = N). Based on these limit results, Richardson’s extrapolation is then applied
to yield second-order approximations for the conditional and unconditional distributions of the
continuous scan statistic. In Section 4, numerical results comparing the various approximations
are presented along with some discussion.

2. The unconditional case

Recall the window size w = p/q with p and q relatively prime integers. For n = mq(m =
1, 2, . . . ), let Hn

i , i = 1, . . . , n, be independent and identically distributed (i.i.d.) with P(Hn
i =

0) = 1−λ/n and P(Hn
i = 1) = λ/n, and let In

i , i = 1, . . . , n, be i.i.d. with P(In
i = 0) = e−λ/n
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and P(In
i = 1) = 1 − e−λ/n. The i.i.d. Bernoulli sequence (Hn

1 , . . . , Hn
n ) approximates the

Poisson point process � by matching the expected number of points in each subinterval, i.e.

E(Hn
i ) = E

(∣∣∣∣� ∩
(

i − 1

n
,

i

n

]∣∣∣∣
)

= λ

n
.

On the other hand, the i.i.d. Bernoulli sequence (In
1 , . . . , I n

n ) approximates � by matching the
probability of no point in each subinterval, i.e.

P(In
i = 0) = P

(∣∣∣∣� ∩
(

i − 1

n
,

i

n

]∣∣∣∣ = 0

)
= e−λ/n.

The two discrete scan statistics S
(n)
w and S

′(n)
w are now defined in terms of the two Bernoulli

sequences as

S(n)
w = S

(n)
w,H := max

i=1,...,nw+1

i+nw−1∑
r=i

Hn
r , S′(n)

w = S
(n)
w,I := max

i=1,...,nw+1

i+nw−1∑
r=i

I n
r ,

where w := 1 − w. Since In
i is stochastically smaller than Hn

i and |� ∩ ((i − 1)/n, i/n]|,
it follows that S

(n)
w,I is stochastically smaller than Sw and S

(n)
w,H . In Sections 2.1 and 2.2

we derive limn→∞ n[P(Sw ≥ k) − P(S
(n)
w,I ≥ k)] and limn→∞ n[P(Sw ≥ k) − P(S

(n)
w,H ≥ k)],

respectively.

2.1. Matching the probability of no point

Since the Bernoulli sequence (In
1 , . . . , I n

n ) and � match in the probability of no point in
each subinterval, it is instructive to define (In

1 , . . . , I n
n ) in terms of � by

In
i = 1

{
� ∩

(
i − 1

n
,

i

n

]
	= ∅

}
, i = 1, . . . , n.

Thus, (In
1 , . . . , I n

n ) and � are defined on the same probability space. In particular, Sw ≥ S
(n)
w,I

with probability 1. For fixed w = p/q and for each (fixed) k = 2, 3, . . . , let α = P(A) and
αn = P(An), where A = Ak,w := {Sw ≥ k} and An = An,k,w := {S(n)

w,I ≥ k}.
Note that α = P ∗(k; λ, w), defined in Section 1. In order to derive the limit of n(α − αn)

as n → ∞, we need to introduce some functionals of �. Let M := |�|, which is a Poisson
random variable with mean λ. Writing � = {Q1, . . . , QM}, assume (with probability 1) that
0 < Q1 < · · · < QM < 1. Furthermore, assume (with probability 1) that w /∈ �, w =
1 − w /∈ �, and Qj ± w /∈ � for j = 1, . . . , M (i.e. Qj − Qi 	= w for all 1 ≤ i < j ≤ M).
Define the functionals ν(�) = ν({Q1, . . . , QM}) and ν̃(�) = ν̃({Q1, . . . , QM}) as

ν(�) :=
∑

{� : Q�<1−w}
1{Sw < k, |� ∩ (Q�, Q� + w]| = k − 2,

|� ∩ (t, t + w]| ≤ k − 2 for all t with Q� ≤ t ≤ Q� + w},

ν̃(�) :=
M∑

�=1

1
{
Sw < k, max

0≤t≤1−w
|(� ∪ {Q�}) ∩ (t, t + w]| = k

}
,

where � ∪ {Q�} is interpreted as a multiset with Q� having multiplicity 2.
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Theorem 2.1. For n = mq(m = 1, 2, . . . ),

lim
n→∞ n(α − αn) = 1

2λE[ν(�) + ν̃(�)].
Proof. Denoting the complement of An by Ac

n and noting that An ⊂ A, we have α − αn =
P(A)−P(An) = P(A∩Ac

n). For i = 1, . . . , n, let Ĩ n
i = |�∩ ((i −1)/n, i/n]|, the number of

Poisson points in the ith subinterval. Then Ĩ n
i = 0 implies In

i = 0 and Ĩ n
i ≥ 1 implies In

i = 1.
Consider the following disjoint events:

G1 = {Ĩ n
j ≤ 1, j = 1, . . . , n},

G2,i = {Ĩ n
i = 2, Ĩ n

j ≤ 1 for all j 	= i}, i = 1, . . . , n,

G3 = {Ĩ n
j = Ĩ n

j ′ = 2 for some j 	= j ′} ∪ {Ĩ n
j ≥ 3 for some j}.

We have

α − αn = P(A ∩ Ac
n ∩ G1) +

n∑
i=1

P(A ∩ Ac
n ∩ G2,i ) + P(A ∩ Ac

n ∩ G3). (2.1)

We claim that

P(A ∩ Ac
n ∩ G1) = 1

2

nw∑
i=1

P
(n)
i + O(n−2), (2.2)

n∑
i=1

P(A ∩ Ac
n ∩ G2,i ) =

n∑
i=1

P̃
(n)
i + O(n−2), (2.3)

P(A ∩ Ac
n ∩ G3) = O(n−2), (2.4)

where

P
(n)
i = P

(
Ac

n,

i+nw−1∑
r=i+1

In
r = k − 2, I n

i = In
i+nw = 1

)
, i = 1, . . . , nw, (2.5)

P̃
(n)
i = P

(
Ac

n, Ĩ
n
i = 2,

i′+nw−1∑
r=i′

In
r = k − 1 for some i′ with

1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n

)
, i = 1, . . . , n.

(2.6)

Since P(G3) = O(n−2), (2.4) follows easily. To prove (2.2), note that when Ĩ n
i ≤ 1 for all i

(i.e. on the event G1), each subinterval ((i − 1)/n, i/n] contains at most one Poisson point. If
Ĩ n
i = 1, denote the only Poisson point in ((i − 1)/n, i/n] by Q(i) whose location is uniformly

distributed over ((i − 1)/n, i/n]. When Ĩ n
i ≤ 1 for all i, in order for A ∩ Ac

n to occur, there
must exist some pair (i, i′) with i′ = i + nw such that

∑i′−1
r=i+1Ĩ

n
r = k − 2, Ĩ n

i = Ĩ n
i′ = 1, and

Q(i′) − Q(i) < w. So we have A ∩ Ac
n ∩ G1 = ⋃nw

i=1 G1,i , where, for i = 1, . . . , nw,

G1,i = Ac
n ∩

{
Ĩ n
j ≤ 1 for all j ,

i+nw−1∑
r=i+1

Ĩ n
r = k − 2, Ĩ n

i = Ĩ n
i+nw = 1,

and Q(i+nw) − Q(i) < w

}
.
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Since
∑

1≤i<j≤nwP(Ĩ n
i = Ĩ n

i+nw = Ĩ n
j = Ĩ n

j+nw = 1) = O(n−2), we have

P(A ∩ Ac
n ∩ G1) =

nw∑
i=1

P(G1,i ) + O(n−2) = 1

2

nw∑
i=1

P(G′
1,i ) + O(n−2), (2.7)

where G′
1,i = Ac

n ∩ {Ĩ n
j ≤ 1 for all j,

∑i+nw−1
r=i+1 Ĩ n

r = k − 2, Ĩ n
i = Ĩ n

i+nw = 1}. In (2.7), we

have used the facts that Ĩ n
1 , . . . , Ĩ n

n are independent and that given Ĩ n
i = Ĩ n

i+nw = 1, Q(i) and
Q(i+nw) are (conditionally) independent and uniformly distributed over ((i − 1)/n, i/n] and
((i + nw − 1)/n, (i + nw)/n], respectively, so that Q(i+nw) − Q(i) < w with (conditional)
probability 1

2 , which implies that P(G1,i ) = 1
2 P(G′

1,i ). For i = 1, . . . , nw, define

G′′
1,i = Ac

n ∩
{i+nw−1∑

r=i+1

In
r = k − 2, I n

i = In
i+nw = 1

}
, (2.8)

which is the event inside the parentheses on the right-hand side of (2.5), so that P (n)
i = P(G′′

1,i ).
Note that G′

1,i ⊂ G′′
1,i and that G′′

1,i \ G′
1,i is contained in {In

i = In
i+nw = 1, Ĩ n

j ≥ 2 for some j},
which has a probability of order n−3. By (2.7),

P(A ∩ Ac
n ∩ G1) = 1

2

nw∑
i=1

P(G′′
1,i ) + O(n−2) = 1

2

nw∑
i=1

P
(n)
i + O(n−2),

establishing (2.2).
To prove (2.3), let H = {Ij = Ij+nw = 1 for some 1 ≤ j ≤ nw}. On G2,i ∩ Hc, in order

for A ∩ Ac
n to occur, there must exist some i′ with 1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n such that∑i′+nw−1

r=i′ In
r = k − 1 (implying that

∑i′+nw−1
r=i′ Ĩ n

r = k). It follows that A∩Ac
n ∩G2,i ∩Hc ⊂

G′
2,i ⊂ A ∩ Ac

n ∩ G2,i , where

G′
2,i = Ac

n ∩
{
Ĩ n
i = 2, Ĩ n

j ≤ 1 for all j 	= i,

i′+nw−1∑
r=i′

In
r = k − 1 for some i′ with 1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n

}
.

Since P(G2,i ∩ H) = O(n−3), we have
∑n

i=1P(G2,i ∩ H) = O(n−2), implying that

n∑
i=1

P(A ∩ Ac
n ∩ G2,i ) =

n∑
i=1

P(G′
2,i ) + O(n−2) =

n∑
i=1

P(G′′
2,i ) + O(n−2),

where

G′′
2,i = Ac

n ∩
{
Ĩ n
i = 2,

i′+nw−1∑
r=i′

In
r = k − 1 for some i′ with 1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n

}
.

(Note that G′
2,i ⊂ G′′

2,i and G′′
2,i \G′

2,i is contained in the event {Ĩ n
i = 2, Ĩ n

j ≥ 2 for some j 	= i},
which has a probability of order n−3.) By (2.6), P̃

(n)
i = P(G′′

2,i ). This establishes (2.3).
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By (2.1)–(2.4), we have

α − αn = 1

2

nw∑
i=1

P
(n)
i +

n∑
i=1

P̃
(n)
i + O(n−2). (2.9)

For i = 1, . . . , nw, let P
′(n)
i = P(Fi ), where

Fi := Ac
n ∩

{i+nw−1∑
r=i+1

In
r = k − 2, I n

i = 1, I n
i+nw = 0,

sum of any nw consecutive In
r including r = i + nw is at most k − 2

}
.

We claim that
P

(n)
i

P
′(n)
i

= ρn for all i = 1, . . . , nw, (2.10)

where ρn := P(In
i+nw = 1)/P(In

i+nw = 0) = (1 − e−λ/n)/e−λ/n = eλ/n − 1. To establish the

claim, recall that P
(n)
i = P(G′′

1,i ), where G′′
1,i (see (2.8)) depends only on (In

1 , . . . , I n
n ). It is

instructive to interpret G′′
1,i as a collection of configurations (In

1 , . . . , I n
n ) = (h1, . . . , hn), where

(h1, . . . , hn) satisfies hj = 0 or 1 for all j , hi = hi+nw = 1, maxj=1,...,nw+1
∑j+nw−1

r=j hr < k,
and

∑i+nw−1
r=i+1 hr = k−2. Likewise, the eventFi is a collection of configurations (In

1 , . . . , I n
n ) =

(h′
1, . . . , h

′
n), where (h′

1, . . . , h
′
n) satisfies h′

j = 0 or 1 for all j , h′
i = 1, h′

i+nw = 0,
maxj=1,...,nw+1

∑j+nw−1
r=j h′

r < k,
∑i+nw−1

r=i+1 h′
r = k −2, and the sum of any nw consecutive h′

r

including r = i + nw is at most k − 2. It is readily seen that a configuration (In
1 , . . . , I n

n ) =
(h1, . . . , hn) is in G′′

1,i if and only if the configuration (In
1 , . . . , I n

n ) = (h′
1, . . . , h

′
n) is in Fi ,

where (h′
1, . . . , h

′
n) = (h1, . . . , hn) − ei+nw with ei+nw being the vector of 0s except for the

(i + nw)th entry being 1. The claim (2.10) now follows from the independence property of
In

1 , . . . , I n
n . By (2.10),

ρ−1
n

nw∑
i=1

P
(n)
i =

nw∑
i=1

P
′(n)
i =

nw∑
i=1

P(Fi ) = E[ν(n)(�)], (2.11)

where

ν(n)(�) :=
nw∑
i=1

1
{
Ac

n,

i+nw−1∑
r=i+1

In
r = k − 2, I n

i = 1, I n
i+nw = 0,

sum of any nw consecutive In
r including r = i + nw is at most k − 2

}
.

To deal with the terms P̃
(n)
i , i = 1, . . . , n, on the right-hand side of (2.9), let

P̃
′(n)
i := P

(
Ac

n, I
n
i = 1,

i′+nw−1∑
r=i′

In
r = k − 1 for some i′ with

1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n

)
.
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By an argument similar to the proof of (2.10), we have P̃
(n)
i /P̃

′(n)
i = ρ̃n for all i = 1, . . . , n,

where ρ̃n = P(Ĩ n
i = 2)/P(In

i = 1) = e−λ/n(λ/n)2/[2(1 − e−λ/n)]. So,

ρ̃−1
n

n∑
i=1

P̃
(n)
i =

n∑
i=1

P̃
′(n)
i = E[ν̃(n)(�)], (2.12)

where

ν̃(n)(�) :=
n∑

i=1

1
{
Ac

n, I
n
i = 1,

i′+nw−1∑
r=i′

In
r = k − 1

for some i′ with 1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n

}
.

Since ρn = λ/n + O(n−2) and ρ̃n = λ/(2n) + O(n−2), it follows from (2.9), (2.11), and
(2.12) that

n(α − αn) − 1
2λE[ν(n)(�) + ν̃(n)(�)] = O(n−1). (2.13)

Note that ν(n)(�) and ν̃(n)(�) converge almost surely to ν(�) and ν̃(�), respectively. Since

max{ν(n)(�), ν̃(n)(�)} ≤
n∑

i=1

1{In
i = 1} ≤ |�|,

we have, by the dominated convergence theorem, that E[ν(n)(�) + ν̃(n)(�)] converges to
E[ν(�) + ν̃(�)], which together with (2.13) completes the proof. �
Remark 2.1. With a little more effort, it can be shown that

E[ν(n)(�) + ν̃(n)(�)] − E[ν(�) + ν̃(�)] = O(n−1),

which together with (2.13) yields α−αn = Cαn−1+O(n−2), where Cα = 1
2λE[ν(�)+ ν̃(�)].

2.2. Matching the expected number of points

Recall that Hn
i , i = 1, . . . , n, are i.i.d. with P(Hn

i = 0) = 1 − λ/n and P(Hn
i = 1) = λ/n.

Let βn = P(Bn), where Bn := {S(n)
w,H ≥ k} = {maxi=1,...,nw+1

∑i+nw−1
r=i Hn

r ≥ k}.
Lemma 2.1. For n = mq(m = 1, 2, . . . ),

lim
n→∞

2n

λ2 (βn − αn) = −α +
∫ 1

0
P

(
max

0≤t≤1−w
|(� ∪ {u}) ∩ (t, t + w]| ≥ k

)
du.

Proof. Let Ln
i , i = 1, . . . , n, be i.i.d. and independent of In

1 , . . . , I n
n such that P(Ln

i = 0) =
(1 − λ/n)eλ/n = 1 − P(Ln

i = 1). Letting L̃n
i = max{In

i , Ln
i } and noting that P(L̃n

i = 0) =
P(In

i = 0 and Ln
i = 0) = 1−λ/n = P(Hn

i = 0), we have L(L̃n
1, . . . , L̃n

n) = L(Hn
1 , . . . , Hn

n ),
where L(V ) denotes the law of a random vector V , so that βn = P(Bn) = P(B̃n), where
B̃n = {maxi=1,...,nw+1

∑i+nw−1
r=i L̃n

r ≥ k}. Since In
i = 1 implies L̃n

i = 1, we have An ⊂ B̃n.
Letting Sn = ∑n

i=1L
n
i and noting that B̃n ∩ {Sn = 0} = An ∩ {Sn = 0}, and that

P(Sn = 0) = 1− λ2

2n
+O(n−2), P(Sn = 1) = λ2

2n
+O(n−2), P(Sn ≥ 2) = O(n−2),
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we have

βn = P(B̃n) = P(B̃n | Sn = 0)P(Sn = 0) + P(B̃n | Sn = 1)P(Sn = 1)

+ P(B̃n | Sn ≥ 2)P(Sn ≥ 2)

= P(An | Sn = 0)

(
1 − λ2

2n

)
+ P(B̃n | Sn = 1)

λ2

2n
+ O(n−2)

= αn

(
1 − λ2

2n

)
+ P(B̃n | Sn = 1)

λ2

2n
+ O(n−2). (2.14)

We claim that

lim
n→∞ P(B̃n | Sn = 1) =

∫ 1

0
P

(
max

0≤t≤1−w
|(� ∪ {u}) ∩ (t, t + w]| ≥ k

)
du, (2.15)

which together with (2.14) yields the desired result.
It remains to establish claim (2.15). Let Q be a random point which is uniformly distributed

on (0, 1] and independent of �. Let

Î n
i = 1

{
(� ∪ {Q}) ∩

(
i − 1

n
,

i

n

]
	= ∅

}
, i = 1, . . . , n.

It is readily seen that L(L̃n
1, . . . , L̃n

n | Sn = 1) = L(Î n
1 , . . . , Î n

n ), which implies that
P(B̃n | Sn = 1) = P(B̂n), where B̂n = {maxi=1,...,nw+1

∑i+nw−1
r=i Î n

r ≥ k}. Since 1B̂n

converges almost surely to 1{max0≤t≤1−w |(� ∪ {Q}) ∩ (t, t + w]| ≥ k}, we have

lim
n→∞ P(B̃n | Sn = 1) = lim

n→∞ P(B̂n) = P

(
max

0≤t≤1−w
|(� ∪ {Q}) ∩ (t, t + w]| ≥ k

)
,

from which claim (2.15) follows. This completes the proof of the lemma. �

Theorem 2.2. For n = mq(m = 1, 2, . . . ),

lim
n→∞

2n

λ2 (α − βn)

= 1

λ
E[ν(�) + ν̃(�)] + α −

∫ 1

0
P

(
max

0≤t≤1−w
|(� ∪ {u}) ∩ (t, t + w]| ≥ k

)
du.

Proof. Note that

2n

λ2 (α − βn) = 2n

λ2 (α − αn) − 2n

λ2 (βn − αn),

which together with Theorem 2.1 and Lemma 2.1 yields the desired result. �

Remark 2.2. It can be shown (see Remark 2.1) that α − βn = Cβn−1 + O(n−2), where

Cβ = Cα + 1

2
λ2α − λ2

2

∫ 1

0
P

(
max

0≤t≤1−w
|(� ∪ {u}) ∩ (t, t + w]| ≥ k

)
du.
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3. The conditional case

In this section, for given N ≥ k = 2, 3, . . . , we are interested in approximating

γ (N) := P(k; N, w) = P

(
max

0≤t≤1−w
|� ∩ (t, t + w]| ≥ k | M = N

)
, M := |�|.

Denoting by �N a set of N i.i.d. uniform random variables on (0, 1], we have L(�N) =
L(� | M = N) and γ (N) = P(EN), where EN := {max0≤t≤1−w |�N ∩ (t, t + w]| ≥ k}. As
in Section 2, with n = mq (m = 1, 2, . . . ), the interval (0, 1] is partitioned into n subintervals
of length n−1 so that a window of size w = p/q covers nw subintervals. As an approximation
to N points uniformly distributed on (0, 1], we randomly select N of the n subintervals and
assign a point to each of them. Let J n

i = 1 or 0 according to whether or not the ith subinterval
is selected (so as to contain a point). Then

∑n
i=1J

n
i = N . For hi = 0 or 1 with

∑n
i=1hi = N ,

we have PN(J n
i = hi, i = 1, . . . , n) = 1/

(
n
N

)
, where the subscript N in PN signifies there

are N 1s in J n
1 , . . . , J n

n . Unlike in Section 2 where (In
1 , . . . , I n

n ) is defined in terms of � so as
to allow for a coupling argument, here there is no natural way to define (J n

1 , . . . , J n
n ) and �N

on the same probability space. As no danger of confusion may arise, we will abuse notation
by using the same probability measure notation PN for both the probability space where �N

is defined, and the probability space where (J n
1 , . . . , J n

n ) is defined. Let

γ (N)
n = PN(EN

n ), (3.1)

where EN
n := {maxi=1,...,nw+1

∑i+nw−1
r=i J n

r ≥ k}.
Theorem 3.1. For N fixed and n = mq(m = 1, 2, . . . ),

lim
n→∞ n(γ (N) − γ (N)

n ) = 1
2N(N − 1)(γ (N−1) − γ (N)) + 1

2NE[ν(�) + ν̃(�) | M = N − 1].
Proof. The proof is similar to (but somewhat more involved than) that of Theorem 2.1.

Because of space limitation, we only sketch it here and refer the reader to [23] for further
details. For notational simplicity, the superscript N in EN and EN

n is suppressed. But to avoid
possible confusion, PN is not abbreviated to P as later a change of measure argument requires
consideration of PN−1. Let J̃i = |�N ∩ ((i − 1)/N, i/N ]|, i = 1, . . . , n, and define the
(disjoint) events

U1 = {J̃ n
j ≤ 1, j = 1, . . . , n}, U2 =

n⋃
i=1

U2,i , U2,i = {J̃ n
i = 2, J̃ n

j ≤ 1 for all j 	= i},

U3 = {J̃ n
j = J̃ n

j ′ = 2 for some j 	= j ′} ∪ {J̃ n
j ≥ 3 for some j}.

We have PN(U1) = 1 − N(N − 1)/(2n) + O(n−2), PN(U2) = N(N − 1)/(2n) + O(n−2),
and PN(U3) = O(n−2), so that

γ (N) = PN(EN) = PN(E) = PN(E | U1)PN(U1) + PN(E ∩ U2) + O(n−2). (3.2)

To deal with PN(E | U1), let Ẽn := {maxi=1,...,nw+1
∑i+nw−1

r=i J̃ n
r ≥ k} (which is contained

in E ). Note that L(J̃ n
1 , . . . , J̃ n

n | U1) = L(J n
1 , . . . , J n

n ) and that Ẽn depends on (J̃ n
1 , . . . , J̃ n

n )

in the same way that En = EN
n depends on (J n

1 , . . . , J n
n ) (see (3.1)). So we have PN(Ẽn | U1) =

PN(En) = γ
(N)
n and

PN(E | U1) = PN(Ẽn | U1) + PN(E ∩ Ẽ c
n | U1) = γ (N)

n + PN(E ∩ Ẽ c
n | U1). (3.3)
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If J̃ n
i = 1, denote the only point of �N in ((i −1)/n, i/n] by Q(i), whose location is uniformly

distributed over ((i−1)/n, i/n]. When J̃ n
i ≤ 1 for all i (i.e. on the event U1), in order for E ∩Ẽ c

n

to occur, there must exist some pair (i, i′) with i′ = i + nw such that
∑i′−1

r=i+1J̃
n
r = k − 2,

J̃ n
i = J̃ n

i′ = 1, and Q(i′) − Q(i) < w. So we have E ∩ Ẽ c
n ∩ U1 = ⋃nw

i=1U1,i where, for
i = 1, . . . , nw,

U1,i = Ẽ c
n ∩

{
J̃ n

j ≤ 1 for all j,

i+nw−1∑
r=i+1

J̃ n
r = k − 2, J̃ n

i = J̃ n
i+nw = 1, Q(i+nw) − Q(i) < w

}
.

Since
∑

1≤i<j≤nwPN(U1,i ∩ U1,j ) = O(n−2), we have

PN(E ∩ Ẽ c
n | U1) =

nw∑
i=1

PN(U1,i | U1) + O(n−2) = 1

2

nw∑
i=1

PN(U ′
1,i | U1) + O(n−2), (3.4)

where U ′
1,i = Ẽ c

n ∩{J̃ n
j ≤ 1 for all j ,

∑i+nw−1
r=i+1 J̃ n

r = k −2, J̃ n
i = J̃ n

i+nw = 1}, i = 1, . . . , nw.
In (3.4), we have used the fact that for any given hj = 0 or 1 (j = 1, . . . , n) with

∑n
j=1hj = N

and hi = hi+nw = 1, conditional on J̃ n
j = hj , j = 1, . . . , n, Q(i), and Q(i+nw) are

independent and uniformly distributed over ((i − 1)/n, i/n] and ((i + nw − 1)/n, (i +
nw)/n], respectively, so that Q(i+nw) − Q(i) < w with probability 1

2 , which implies that
PN(U1,i | U1) = 1

2 PN(U ′
1,i | U1).

Note that U ′
1,i , i = 1, . . . , n, depend only on J̃ n

1 , . . . , J̃ n
n . Since L(J̃ n

1 , . . . , J̃ n
n | U1) =

L(J n
1 , . . . , J n

n ), we have

PN(U ′
1,i | U1) = PN(Vi), i = 1, . . . , nw, (3.5)

where Vi = E c
n ∩ {∑i+nw−1

r=i+1 J n
r = k − 2, J n

i = J n
i+nw = 1}. (Note that Vi depends on

(J n
1 , . . . , J n

n ) in the same way that U ′
1,i depends on (J̃ n

1 , . . . , J̃ n
n ).)

We will simplify
∑nw

i=1PN(U ′
1,i | U1) = ∑nw

i=1PN(Vi) via a change of measure argument.
It is instructive to interpret the event Vi as a collection of configurations (J n

1 , . . . , J n
n ) =

(h1, . . . , hn), where (h1, . . . , hn) satisfies hr = 0 or 1 for r = 1, . . . , n,
∑n

r=1hr = N ,
maxj=1,...,nw+1

∑j+nw−1
r=j hr < k, and

∑i+nw−1
r=i+1 hr = k − 2, hi = hi+nw = 1. Let

V ∗
i =

{ n∑
r=1

J n
r = N − 1, max

j=1,...,nw+1

j+nw−1∑
r=j

J n
r < k,

i+nw−1∑
r=i+1

J n
r = k − 2, J n

i = 1, J n
i+nw = 0,

sum of any nw consecutive J n
r including r = i + nw is at most k − 2

}
.

We interpret the V ∗
i as a collection of configurations (J n

1 , . . . , J n
n ) = (h∗

1, . . . , h
∗
n), where

(h∗
1, . . . , h

∗
n) satisfies h∗

r = 0 or 1 for r = 1, . . . , n,

n∑
r=1

h∗
r = N − 1,

j+nw−1∑
r=j

h∗
r < k for j = 1, . . . , nw + 1,

i+nw−1∑
r=i+1

h∗
r = k − 2, h∗

i = 1, h∗
i+nw = 0,
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and the sum of any nw consecutive h∗
r including r = i +nw is at most k −2. If a configuration

(J n
1 , . . . , J n

n ) = (h1, . . . , hn) is in Vi , then the configuration (J n
1 , . . . , J n

n ) = (h∗
1, . . . , h

∗
n) is

in V ∗
i provided h∗

r = hr for all r 	= i + nw and hi+nw = 1, h∗
i+nw = 0. In other words, a

configuration is in Vi if and only if the configuration derived from it by replacing the (i +nw)th
entry with 0 is in V ∗

i . Note that the number of nonzero entries for a configuration in V ∗
i

is equal to N − 1. Recall that the notation PN (PN−1, respectively) denotes the probability
measure for (J n

1 , . . . , J n
n ) with

∑n
r=1J

n
r = N (

∑n
r=1J

n
r = N − 1, respectively). It follows

that PN(Vi)/PN−1(V
∗
i ) = (

n
N−1

)
/
(

n
N

) = N/(n − N + 1). Therefore,

(
n − N + 1

N

) nw∑
i=1

PN(Vi) =
nw∑
i=1

PN−1(V
∗
i ) = EN−1[ν(n)

1 (J n
1 , . . . , J n

n )], (3.6)

where

ν
(n)
1 (J n

1 , . . . , J n
n ) =

nw∑
i=1

1
{

max
j=1,...,nw+1

j+nw−1∑
r=j

J n
r < k,

i+nw−1∑
r=i+1

J n
r = k − 2,

J n
i = 1, J n

i+nw = 0, sum of any nw consecutive J n
r

including r = i + nw is at most k − 2

}
.

By (3.3)–(3.6),

PN(E | U1) = γ (N)
n + 1

2

N

n − N + 1
EN−1[ν(n)

1 (J n
1 , . . . , J n

n )] + O(n−2)

= γ (N)
n + N

2n
E[ν(�) | M = N − 1] + o(n−1), (3.7)

since limn→∞ EN−1[ν(n)
1 (J n

1 , . . . , J n
n )] = E[ν(�) | M = N − 1].

Another change of measure argument can be used to deal with PN(E ∩ U2) (see [23]),
yielding

PN(E ∩ U2) = N

2n
((N − 1)γ (N−1) + E[ν̃(�) | M = N − 1]) + o(n−1),

which together with (3.2) and (3.7) completes the proof. �

Remark 3.1. It can be shown (see Remarks 2.1 and 2.2) that γ (N) −γ
(N)
n = Cγ n−1 +O(n−2),

where Cγ = 1
2N(N − 1)(γ (N−1) − γ (N)) + 1

2NE[ν(�) + ν̃(�) | M = N − 1].
Remark 3.2. Note that αn and βn are weighted averages of γ

(N)
n over N with binomial

probabilities
(

n
N

)
pN

n (1 − pn)
n−N as weights, where pn = 1 − e−λ/n for αn and pn = λ/n

for βn. The limits limn→∞ n(α − αn) and limn→∞ n(α − βn) in Theorems 2.1 and 2.2 can be
formally derived from limn→∞ n(γ (N) − γ

(N)
n ) by interchanging limn and �N .

4. Numerical results and discussion

Using the Markov chain embedding method (see [4], [6], [17]), we compute the discrete
approximations αn, βn, and γ

(N)
n for various combinations of parameter values (k, w, λ) (the

unconditional case) and (k, w, N) (the conditional case). In Figure 1 we plot n(α − αn),
n(α − βn), and n(γ (N) − γ

(N)
n ) for n = 25(5)600 with k = 5, w = 0.4, λ = 8, and
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N = 8, where the superscript (N) in γ (N) and γ
(N)
n is suppressed for ease of notation.The exact

probabilities α = P ∗(k; λ, w) = P ∗(5; 8, 0.4) = 0.628 144 085 and γ (8) = P(k; N, w) =
P(5; 8, 0.4) = 0.780 861 440 are taken from [20]. By Theorems 2.1, 2.2, and 3.1, it follows that
n(α −αn), n(α −βn), and n(γ (N) −γ

(N)
n ) converge, respectively, to the limits Cα , Cβ , and Cγ

(see Remarks 2.1, 2.2, and 3.1). These limits were estimated by Monte Carlo simulation with
106 replications, resulting in Cα = 4.6322 ± 0.0096 (standard error), Cβ = 0.8297 ± 0.0167,
and Cγ = 2.7279±0.0114. In view of Remarks 2.1, 2.2, and 3.1, the rate of convergence, n−1,
for αn, βn, and γ

(N)
n can be improved to n−2 by using Richardson’s extrapolation. Specifically,

for w = p/q, suppose that n is even such that n/2 is a multiple of q. Letting α̃n := 2αn −αn/2,

β̃n := 2βn − βn/2, and γ̃
(N)
n := 2γ

(N)
n − γ

(N)
n/2 , we have α − α̃n = O(n−2), α − β̃n = O(n−2),

and γ (N) − γ̃
(N)
n = O(n−2). In Table 1 we present numerical results comparing αn, α̃n, βn,

and β̃n for the unconditional case. In Table 2 we compare γ
(N)
n and γ̃

(N)
n for the conditional

case.

Remark 4.1. In Tables 1 and 2, we have taken relatively large values of w = 0.2 and 0.4 since
the exact unconditional probabilities reported in [20] are less accurate for w < 0.2. It is shown
in Figure 1 that n(α − αn), n(α − βn), and n(γ (N) − γ

(N)
n ) monotonically approach Cα , Cβ ,

andCγ , respectively. In Table 1, βn is consistently more accurate thanαn, which is not surprising
since αn < min{α, βn}. According to Tables 1 and 2, when n doubles, the errors of αn, βn,
and γ

(N)
n decrease by roughly a factor of two while the errors of the corrected approximations

α̃n, β̃n, and γ̃
(N)
n decrease by (very) roughly a factor of four. Our limited numerical studies

6

5

4

3

2

1

0
100 200 300 400 500 600

n

n(α – αn)

n(γ –γn)

n(α –βn)

Cα

Cγ

Cβ

Figure 1: Plot of n(α − αn), n(α − βn), and n(γ − γn) for n = 25(5)600 with parameters w = 0.4,
k = 5, λ = 8, and N = 8.
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Table 1: The unconditional case.

Parameters n Exact

λ w k 25 50 100 200 400 α

4 0.2 3

αn 0.226 474 137 0.297 081 029 0.330 413 369 0.346 549 002 0.354 481 473

0.362322986

α − αn 0.135 848 849 0.065 241 957 0.031 909 617 0.015 773 984 0.007 841 513
α̃n 0.367 687 921 0.363 745 709 0.362 684 635 0.362 413 943

α − α̃n −0.005 364 935 −0.001 422 723 −0.000 361 649 −0.000 090 957
βn 0.269 466 265 0.321 289 109 0.342 964 036 0.352 912 780 0.357 682 871

α − βn 0.092 856 721 0.041 033 877 0.019 358 950 0.009 410 206 0.004 640 115
β̃n 0.373 111 952 0.364 638 964 0.362 861 523 0.362 452 963

α − β̃n −0.010 788 966 −0.002 315 978 −0.000 538 537 −0.000 129 977

4 0.2 4

αn 0.028 528 199 0.063 252 847 0.083 861 016 0.094 813 938 0.100 432 989

0.106 139 839

α − αn 0.077 611 640 0.042 886 992 0.022 278 823 0.011 325 901 0.005 706 850
α̃n 0.097 977 495 0.104 469 184 0.105 766 860 0.106 052 039

α − α̃n 0.008 162 344 0.001 670 655 0.000 372 979 0.000 087 800
βn 0.037 826 080 0.071 921 990 0.089 167 692 0.097 701 122 0.101 933 685

α − βn 0.068 313 759 0.034 217 849 0.016 972 147 0.008 438 717 0.004 206 154
β̃n 0.106 017 899 0.106 413 395 0.106 234 551 0.106 166 248

α − β̃n 0.000 121 940 −0.000 273 556 −0.000 094 712 −0.000 026 409

8 0.4 5

αn 0.400 190 890 0.524 770 327 0.579 159 623 0.604 320 002 0.616 397 532

0.628 144 085

α − αn 0.227 953 195 0.103 373 758 0.048 984 462 0.023 824 083 0.011 746 553
α̃n 0.649 349 765 0.633 548 918 0.629 480 382 0.628 475 061

α − α̃n −0.021 205 680 −0.005 404 833 −0.001 336 297 −0.000 330 976
βn 0.571 524 668 0.606 381 317 0.618 451 977 0.623 556 407 0.625 910 702

α − βn 0.056 619 417 0.021 762 768 0.009 692 108 0.004 587 678 0.002 233 383
β̃n 0.641 237 966 0.630 522 637 0.628 660 836 0.628 264 997

α − β̃n −0.013 093 881 −0.002 378 552 −0.000 516 751 −0.000 120 912

8 0.4 6

αn 0.156 407 681 0.278 520 053 0.341 202 440 0.372 097 133 0.387 351 968

0.402 452 588

α − αn 0.246 044 907 0.123 932 535 0.061 250 148 0.030 355 455 0.015 100 620
α̃n 0.400 632 426 0.403 884 826 0.402 991 826 0.402 606 803

α − α̃n 0.001 820 162 −0.001 432 238 −0.000 539 238 −0.000 154 215
βn 0.278 663 391 0.351 874 806 0.379 351 117 0.391 387 631 0.397 034 846

α − βn 0.123 789 197 0.050 577 782 0.023 101 471 0.011 064 957 0.005 417 742
β̃n 0.425 086 221 0.406 827 428 0.403 424 144 0.402 682 062

α − β̃n −0.022 633 633 −0.004 374 840 −0.000 971 556 −0.000 229 474

indicate that the corrected approximations are more accurate than the uncorrected ones for
n ≥ 50. Also in both tables, β̃100 (γ̃ (N)

100 , respectively) is about as accurate as/or more accurate
than β400 (respectively γ

(N)
400 ).

Remark 4.2. The anonymous referee of this paper raised an important question on the rel-
ationship among w, λ(N) and the convergence rate. While the convergence rate for the
uncorrected (respectively corrected) approximations is n−1 (respectively n−2), the error size
for the approximations αn, βn, γ

(N)
n , α̃, β̃n, and γ̃

(N)
n depends on w and λ(N) as well as on k

in a very complicated way. While addressing this issue in full detail would require extensive
analytical and numerical studies, we briefly present in Table 3 the values of n(α − βn) and
n2(α − β̃n) for n = 400, w ∈ {0.1, 0.2, 0.3, 0.4}, λ ∈ {1, 2, 4, 8}, and k ∈ {3, 5}. The
(absolute) value of n2(α − β̃n) is noticeably large for w = 0.1 and λ = 8, indicating that the
approximation β̃n is less accurate when w is small and λ is large.

Remark 4.3. The discrete approximations are usually computed using the Markov chain emb-
edding method. A drawback of this method is the requirement of a very large state space
(corresponding to a large computer memory space) for some practical applications. Indeed, it

https://doi.org/10.1017/jpr.2016.101 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.101


Approximations for the continuous scan statistic 317

Table 2: The conditional case.

Parameters n Exact

w k N 25 50 100 200 400 γ

0.2 4

6

γn 0.080 688 876 0.155 913 836 0.194 799 457 0.214 242 757 0.223 935 622

0.233 600 000
γ − γn 0.152 911 124 0.077 686 164 0.038 800 543 0.019 357 243 0.009 664 378

γ̃n 0.231 138 796 0.233 685 077 0.233 686 058 0.233 628 487
γ − γ̃n 0.002 461 204 −0.000 085 077 −0.000 086 058 −0.000 028 487

7

γn 0.166 798 419 0.294 914 521 0.354 660 825 0.383 179 030 0.397 084 766

0.410 752 000
γ − γn 0.243 953 581 0.115 837 479 0.056 091 175 0.027 572 970 0.013 667 234

γ̃n 0.423 030 623 0.414 407 129 0.411 697 234 0.410 990 502
γ − γ̃n −0.012 278 623 −0.003 655 129 −0.000 945 234 −0.000 238 502

8

γn 0.291 588 655 0.469 102 180 0.542 215 920 0.575 193 126 0.590 840 920

0.605 949 440
γ − γn 0.314 360 785 0.136 847 260 0.063 733 520 0.030 756 314 0.015 108 520

γ̃n 0.646 615 704 0.615 329 660 0.608 170 332 0.606 488 715
γ − γ̃n −0.040 666 264 −0.009 380 220 −0.002 220 892 −0.000 539 275

9

γn 0.448 718 168 0.651 907 101 0.723 414 803 0.753 448 974 0.767 220 941

0.780 225 536
γ − γn 0.331 507 368 0.128 318 435 0.056 810 733 0.026 776 562 0.013 004 595

γ̃n 0.855 096 034 0.794 922 506 0.783 483 145 0.780 992 907
γ − γ̃n −0.074 870 498 −0.014 696 970 −0.003 257 609 −0.000 767 371

0.4 5

6

γn 0.162 450 593 0.224 402 953 0.254 838 093 0.269 838 436 0.277 276 942

0.284 672 000
γ − γn 0.122 221 407 0.060 269 047 0.029 833 907 0.014 833 564 0.007 395 058

γ̃n 0.286 355 312 0.285 273 233 0.284 838 778 0.284 715 449
γ − γ̃n −0.001 683 312 −0.000 601 233 −0.000 166 778 −0.000 043 449

7

γn 0.371 395 881 0.463 718 058 0.504 028 994 0.522 865 538 0.531 971 853

0.540 876 800
γ − γn 0.169 480 919 0.077 158 742 0.036 847 806 0.018 011 262 0.008 904 947

γ̃n 0.556 040 235 0.544 339 929 0.541 702 083 0.541 078 168
γ − γ̃n −0.015 163 435 −0.003 463 129 −0.000 825 283 −0.000 201 368

8

γn 0.627 251 924 0.716 788 906 0.751 379 277 0.766 696 715 0.773 916 208

0.780 861 440
γ − γn 0.153 609 516 0.064 072 534 0.029 482 163 0.014 164 725 0.006 945 232

γ̃n 0.806 325 887 0.785 969 648 0.782 014 154 0.781 135 700
γ − γ̃n −0.025 464 447 −0.005 108 208 −0.001 152 714 −0.000 274 260

9

γn 0.864 220 071 0.918 826 852 0.936 992 617 0.944 511 915 0.947 942 424

0.951 173 120
γ − γn 0.086 953 049 0.032 346 268 0.014 180 503 0.006 661 205 0.003 230 696

γ̃n 0.973 433 633 0.955 158 381 0.952 031 214 0.951 372 933
γ − γ̃n −0.022 260 513 −0.003 985 261 −0.000 858 094 −0.000 199 813

was shown in [3] that to compute αn, βn, and γ
(N)
n using the Markov chain embedding method,

the minimum number of states required is
(

nw
k−1

)+1, which is enormous when nw is large and k

is not small. (It should be remarked that [3] was concerned with computation of the reliability
for the so-called d-within-consecutive-k-out-of-n system, which is equivalent to the discrete
scan statistic.) The corrected discrete approximations partially alleviate the requirement of
large memory space since a reasonable accuracy can be achieved with relatively small n.

Remark 4.4. Since the assumption of constant intensity plays a relatively minor role in the
proofs of Theorems 2.1, 2.2, and 3.1, the proof method can be extended to the setting of
nonhomogeneous Poisson point processes, which is relevant to computation of the power of
the continuous scan statistic. In the literature, there appears to be no general method available
for computing the exact power under general nonhomogeneous Poisson point processes. The
method of corrected discrete approximation may prove to be useful in such a setting as well as
in a multiple-window setting (see [22]).
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Table 3: Values for n(α − βn) and n2(α − β̃n) with fixed n = 400.

k = 3

w = 0.1 w = 0.2 w = 0.3 w = 0.4

n(α − βn)

λ = 1 0.109 466 0.162 936 0.182 359 0.183 382
λ = 2 0.681 630 0.782 077 0.688 400 0.554 156
λ = 4 3.007 367 1.856 046 0.889 771 0.318 677
λ = 8 4.757 807 0.419 619 −0.284 002 −0.385 443

n2(α − β̃n)

λ = 1 0.988 731 0.370 714 0.037 438 −0.129 136
λ = 2 2.851 580 −1.776 830 −2.686 059 −2.468 150
λ = 4 −20.107 224 −20.796 382 −10.384 765 −4.388 858
λ = 8 −144.200 096 −13.815 051 0.373 053 0.747 002

k = 5

n(α − βn)

λ = 1 0.000 299 0.001 929 0.005 073 0.009 257
λ = 2 0.008 114 0.044 062 0.097 558 0.150 669
λ = 4 0.185 741 0.694 806 1.052 768 1.126 564
λ = 8 2.891 219 4.290 922 2.499 797 0.893 353

n2(α − β̃n)

λ = 1 0.018 808 0.055 607 0.087 602 0.107 105
λ = 2 0.468 006 1.013 606 1.124 645 0.906 081
λ = 4 8.653 572 7.869 467 0.434 585 −4.666 294
λ = 8 70.164 359 −54.042 093 −47.939 426 −19.345 980

References

[1] Barton, D. E. and Mallows, C. L. (1965). Some aspects of the random sequence. Ann. Math. Statist. 36,
236–260.

[2] Chan, H. P. and Zhang, N. R. (2007). Scan statistics with weighted observations. J. Amer. Statist. Assoc. 102,
595–602.

[3] Chang, J. C., Chen, R. J. and Hwang, F. K. (2001). A minimal-automaton-based algorithm for the reliability
of Con(d, k, n) system. Methodol. Comput. Appl. Prob. 3, 379–386.

[4] Fu, J. C. (2001). Distribution of the scan statistic for a sequence of bistate trials. J. Appl. Prob. 38, 908–916.
[5] Fu, J. C. and Koutras, M. V. (1994). Distribution theory of runs: a Markov chain approach. J. Amer. Statist.

Assoc. 89, 1050–1058.
[6] Fu, J. C., Wu, T. L. and Lou, W. Y. W. (2012). Continuous, discrete, and conditional scan statistics. J. Appl.

Prob. 49, 199–209.
[7] Glaz, J. and Naus, J. I. (1991). Tight bounds and approximations for scan statistic probabilities for discrete

data. Ann. Appl. Prob. 1, 306–318.
[8] Glaz, J. and Naus, J. I. (2010). Scan statistics. In Methods and Applications of Statistics in the Life and Health

Sciences, ed. N. Balakrishnan. John Wiley, New Jersey, pp. 733–747.
[9] Glaz, J., Naus, J. and Wallenstein, S. (2001). Scan Statistics. Springer, New York.

[10] Glaz, J., Pozdnyakov, V. and Wallenstein, S. (eds) (2009). Scan Statistics. Birkhäuser, Boston.
[11] Huffer, F. W. and Lin, C.-T. (1997). Computing the exact distribution of the extremes of sums of consecutive

spacings. Comput. Statist. Data Anal. 26, 117–132.
[12] Huffer, F. W. and Lin, C.-T. (1999). An approach to computations involving spacings with applications to

the scan statistic. In Scan Statistics and Applications. eds J. Glaz and N. Balakrishnan, Birkhäuser, Boston,
pp. 141–163.

[13] Huntington, R. J. and Naus, J. I. (1975). A simpler expression for Kth nearest neighbor coincidence
probabilities. Ann. Prob. 3, 894–896.

[14] Hwang, F. K. (1977). A generalization of the Karlin–McGregor theorem on coincidence probabilities and an
application to clustering. Ann. Prob. 5, 814–817.

[15] Janson, S. (1984). Bounds on the distributions of extremal values of a scanning process. Stoch. Process. Appl.
18, 313–328.

[16] Karlin, S. and McGregor, G. (1959). Coincidence probabilities. Pacific J. Math. 9, 1141–1164.

https://doi.org/10.1017/jpr.2016.101 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.101


Approximations for the continuous scan statistic 319

[17] Koutras, M. V. and Alexandrou, V. A. (1995). Runs, scans, and urn model distributions: a unified Markov
chain approach. Ann. Inst. Statist. Math. 47, 743–776.

[18] Loader, C. (1991). Large deviation approximations to the distribution of scan statistics. Adv. Appl. Prob. 23,
751–771.

[19] Naus, J. I. (1982). Approximations for distributions of scan statistics. J. Amer. Statist. Assoc. 77, 177–183.
[20] Neff, N. D. and Naus, J. I. (1980). Selected Tables in Mathematical Statistics, Vol. VI. American Mathematical

Society, Providence.
[21] Siegmund, D. and Yakir, B. (2000). Tail probabilities for the null distribution of scanning statistics. Bernoulli

6, 191–213.
[22] Wu, T. L., Glaz, J. and Fu, J. C. (2013). Discrete, continuous and conditional multiple window scan statistics.

J. Appl. Prob. 50, 1089–1101.
[23] Yao, Y.-C., Miao, D. W.-C. and Lin, X. C.-S. (2017). Corrected discrete approximations for the conditional and

unconditional distributions of the continuous scan statistic. Preprint.Available at http://arxiv.org/abs/1602.02597.

https://doi.org/10.1017/jpr.2016.101 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.101

	1 Introduction
	2 The unconditional case
	2.1 Matching the probability of no point
	2.2 Matching the expected number of points

	3 The conditional case
	4 Numerical results and discussion
	References

