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In this paper, several properties of a class of trees presenting preferential attachment
phenomenon—plane-oriented recursive trees (PORTs) are uncovered. Specifically, we
investigate the degree profile of a PORT by determining the exact probability mass func-
tion of the degree of a node with a fixed label. We compute the expectation and the
variance of degree variable via a Pólya urn approach. In addition, we study a topological
index, Zagreb index, of this class of trees. We calculate the exact first two moments of the
Zagreb index (of PORTs) by using recurrence methods. Lastly, we determine the limiting
degree distribution in PORTs that grow in continuous time, where the embedding is done
in a Poissonization framework. We show that it is exponential after proper scaling.

Keywords: degree distribution, plane-oriented recursive trees, Poissonization, Pólya urn, prefer-
ential attachment, Zagreb index

1. INTRODUCTION

In graph theory, a tree refers to a connected structure with no cycles [6, p. 24]. A random
recursive tree is an unordered labeled tree with label set such that there exists an increasing
unique path from the root (the most primitive node labeled with 1) to the node labeled
with j for all 2 ≤ j ≤ n. This class of uniform recursive trees was proposed in the late
1960s and has found applications in a plethora of areas, such as spread of epidemics [29],
genealogy [30], and the pyramid scheme [18].

In this paper, we consider a class of nonuniform random recursive trees—plane-oriented
recursive trees (PORTs). A plane-ordered recursive tree is a tree in which descendants of
each node are ordered. At time n ≥ 1, we denote the structure of a PORT as Tn, that is, a
PORT consisting of n nodes. The tree Tn is obtained by starting with a single node labeled
with 1 (i.e., root). Upon each insertion point n ≥ 2, a node labeled with n joins into the
tree, connected by a directed edge emanating out of an existing node, which results in an
increase of the outdegree of the selected node by 1 as well as an increase of the indegree
of the newcomer (the node labeled with n) by 1; the probability of the newcomer adjoint
to the node labeled with i, for 1 ≤ i ≤ n − 1, in Tn−1 is proportional to the degree of the
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recruiter (the node labeled with i). The key feature of this class of trees is that a parent
node (recruiter) with higher degrees is more attractive to newcomers, which coincides with a
manifestation of the economic principles—“the rich get richer” and “success breeds success.”

Precursory research on PORTs traced back to the late 1980s and the early 1990s. The
exact and asymptotic moments of two degree profile random variables, the number of nodes
of a given degree and the degree of a fixed node, were investigated in [35]. The distribution of
the depth of nodes was determined by Mahmoud [25]. The exact and asymptotic distribution
of leaves (terminal vertices) in PORTs and subtrees (branches) were studied by Mahmoud
et al. [28]. The asymptotic average of internal path length was characterized by Chen and
Ni [10]. Several concentration results were developed by Lu and Feng [24]. More recently,
PORTs again caught researchers’ attention since its evolutionary characteristic coincides
with a network property of great interest in the community—preferential attachment [5].
Hence, PORTs are also known as preferential attachment trees in the literature; e.g., [20,23].
The joint asymptotic distribution of the numbers of nodes of different outdegrees in PORTs
was shown to be normal by Drmota et al. [11] and Janson [22]. Several other limiting
results for PORTs were presented in Hwang [21]. A slightly different random graph model
accounting for self loops was considered in Bollobás et al. [8], where the degree distribution
was determined and a power-law was developed. In Avrachenkov and Lebedev [3], the
authors studied a generalized network model with applications to webpage ranking called
PageRank; specifically, the distribution of subtree sizes, the heights of nodes in subtrees,
and several distance-based properties were investigated.

The rest of this paper is organized as follows. We begin with introducing some notations
and preliminaries in Section 2. In Section 3, we determine the exact distribution of the degree
of a node with a fixed label. More specifically, we develop the probability mass function
via an elementary approach—two-dimensional induction—in Section 3.1 and calculate its
moments by exploiting a Pólya urn model in Section 3.2. In Section 4, we look into the
Zagreb index for this class of trees. This section is split into two parts. In Section 4.1, we
compute the mean and variance of the Zagreb index of PORTs via recurrence methods, while
in Section 4.2, we study the convergence of the Zagreb index. In Section 5, we investigate
the degree profile of PORTs embedded into continuous time. We find that the asymptotic
distribution of the degree variable under the Poissonization framework is exponential. Lastly,
we address some concluding remarks and propose some future work in Section 6.

2. NOTATIONS AND PRELIMINARIES

Let Dn,j be the degree of the node with label j in Tn, for 1 ≤ j ≤ n. Let Fn denote the
σ-field generated by the first n stages of Tn. Many results in this paper are given in terms
of gamma functions, Γ(·); see a classic text [12, p. 47] for its definition and fundamental
properties. For a nonnegative integer z, the double factorial of z is z!! =

∏�z/2�−1
i=0 (z − 2i),

with the interpretation of 0!! = 1. The Pochhammer symbol for the rising factorial is defined
as

〈x〉k = x(x + 1) · · · (x + k − 1)

for any real x and nonnegative integer k, with the interpretation of 〈x〉0 = 1. The Kronecker
delta function of two variables s and t, denoted by δs,t, equals 1 for s = t ; 0, otherwise. The
little o and big O notations define relations between two real-valued functions f(x) and g(x).
We have f(x) = o(g(x)) equivalent to limx→∞(f(x)/g(x)) = 0 provided that g(x) �= 0; on
the other hand, f(x) = O(g(x)) if there exists M > 0 and x0 ∈ R such that |f(x)| ≤ M |g(x)|
for all x ≥ x0. Generalized hypergeometric functions are defined in terms of Pochhammer
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symbols of rising factorials; that is,

pFq(a1 . . . , ap; b1 . . . , bq; z) =
∞∑

s=0

〈a1〉s · · · 〈ap〉s
〈b1〉s · · · 〈bq〉s

zs

s!
.

Much of the study in this paper relies on an extensively studied probabilistic
model—Pólya urn model. We give quick words about Pólya urns. A two-color Pólya urn
scheme is an urn containing balls of two different colors (say white and blue). At each point
of discrete time, we draw a ball from the urn at random, observe its color and put it back
in the urn, then execute some ball additions (or removals) according to predesignated rules:
If the ball withdrawn is white, we add a white balls and b blue balls; otherwise, the ball
withdrawn is blue, in which case we add c white balls and d blue balls. The dynamics of
the urn can, thus, be represented by the following replacement matrix:

(
a b
c d

)
,

in which the rows from top to bottom are indexed by white and blue, and the columns from
left to right are also indexed by white and blue. We refer the interested readers to [26] for
a text-style elaboration of Pólya urns.

3. DEGREE DISTRIBUTION

In this section, we investigate the degree profile of PORTs, that is, the distribution of the
degree variable Dn,j for a fixed 1 ≤ j ≤ n. First, we determine the distribution of Dn,j by
developing the exact expression of its probability mass function. Next, we characterize its
behavior by looking into the first two moments.

3.1. Probability Mass Function

To determine the probability mass function of Dn,j , we separate the cases of {j ≥ 2} and
{j = 1} for clarity. When j = 1, the random variable Dn,j = Dn,1 refers to the degree of
the root of Tn. The root is the originator of the tree, so it has no parent. The root is the
only node in the tree that has indegree 0.

Proposition 1: For a fixed 2 ≤ j ≤ n, we have

P(Dn,j = d) =
Γ(d)Γ

(
j − 1

2

)∑d−1
i=0

(−1)iΓ(n−1− i
2 )

Γ(i+1)Γ(d−i)Γ(j−1− i
2 )

Γ
(
n − 1

2

) , (1)

for d = 1, 2, . . . , n − j + 1.

Proof: We prove the proposition by a two-dimensional induction on n ≥ j and d ≥ 1. The
proof progresses in the style of filling an infinite lower triangular table, in which the rows
are indexed by n and the columns are indexed by d. A (similar) graphic interpretation of
the method can be found in [37, p. 69]. We initialize the first column and the diagonal of
the table to be the basis of the induction. The event of {Dn,j = 1} for all n ≥ j is that the
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node labeled with j is never chosen as a parent for any newcomer since its first appearance
in the tree till time n. Thus, we have

P(Dn,j = 1) =
2j − 2
2j − 1

× 2j

2j + 1
× · · · × 2n − 4

2n − 3
=

Γ(n − 1)Γ
(
j − 1

2

)
Γ
(
n − 1

2

)
Γ(j − 1)

.

On the other hand, the event of {Dn,j = n − j + 1} for all n ≥ j is that the node labeled
with j is selected as parents for newcomers at all points from j + 1 to n. It follows that

P(Dn,j = n − j + 1) =
1

2j − 1
× 2

2j + 1
× · · · × n − j

2n − 3

=
Γ(n − j + 1)Γ

(
j − 1

2

)
2n−jΓ

(
n − 1

2

) .

We assume that Eq. (1) holds for all d up to row (n − 1) in the table. Noticing that
the degree of the node labeled with j increases at most by one at each point, we have

P(Dn,j = d) =
d − 1
2n − 3

P(Dn−1,j = d − 1) +
2n − 3 − d

2n − 3
P(Dn−1,j = d)

=
d − 1
2n − 3

Γ(d − 1)Γ
(
j − 1

2

)∑d−2
i=0

(−1)iΓ(n−2− i
2 )

Γ(i+1)Γ(d−1−i)Γ(j−1− i
2 )

Γ
(
n − 3

2

)

+
2n − 3 − d

2n − 3

Γ(d)Γ
(
j − 1

2

)∑d−1
i=0

(−1)iΓ(n−2− i
2 )

Γ(i+1)Γ(d−i)Γ(j−1− i
2 )

Γ
(
n − 3

2

)
=

Γ(d)Γ
(
j − 1

2

)
Γ
(
n − 1

2

)
[

1
2

d−2∑
i=0

(−1)iΓ
(
n − 2 − i

2

)
Γ(i + 1)Γ(d − 1 − i)Γ

(
j − 1 − i

2

)

+
(

n − d

2
− 3

2

) d−1∑
i=0

(−1)iΓ
(
n − 2 − i

2

)
Γ(i + 1)Γ(d − i)Γ

(
j − 1 − i

2

)
]

=
Γ(d)Γ

(
j − 1

2

)
Γ
(
n − 1

2

)
[

d−2∑
i=0

(
n − 2 − i

2

)
(−1)iΓ

(
n − 2 − i

2

)
Γ(i + 1)Γ(d − i)Γ

(
j − 1 − i

2

)
+
(

n − d

2
− 3

2

)
(−1)d−1Γ

(
n − d

2 − 3
2

)
Γ(d)Γ

(
j − d

2 − 3
2

)
]

.

This is equivalent to Eq. (1) stated in the proposition. �

The probability mass function of Dn,j is given by the sum of an alternating sequence.
We split the total sum into two parts: a partial sum of odd indices and a partial sum of even
indices. We then, respectively, evaluate the two partial sums to obtain an alternative expres-
sion of the probability mass function of Dn,j . The result is given in terms of generalized
hypergeometric functions, presented in the next corollary.
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Corollary 2: For a fixed 2 ≤ j ≤ n, we have

P(Dn,j = d) =
Γ(d)Γ

(
j − 1

2

)
Γ
(
n − 1

2

)
(

Γ(n − 1)3F2
2−d
2 , 1−d

2 , 2 − j 1
2 , 2 − n1

Γ(d)Γ(j − 1)

− Γ(n − 3
2 )3F2

3−d
2 , 2−d

2 , 5
2 − j 3

2 , 5
2 − n1

Γ(d − 1)Γ
(
j − 3

2

)
)

.

The first generalized hypergeometric function (on the top row) in the result stated in
Corollary 1 can be further simplified for small choices of j. We present the probability mass
functions of Dn,j for j = 2,3 as examples:

P(Dn,2 = d) =
1

(2n − 3)Γ
(
n − 1

2

) [√π

(
n − 3

2

)
Γ(n − 1)

− (d − 1)Γ
(

n − 1
2

)
3F2

3 − d

2
,
2 − d

2
,
1
2

3
2
,
5
2
− n1

]
;

P(Dn,3 = d) =
3

(2n − 3)Γ
(
n − 1

2

) [√π

(
n − 3

2

)
d2 − 3d + 2n − 2

4
Γ(n − 2)

− (d − 1)Γ
(

n − 1
2

)
3F2

3 − d

2
,
2 − d

2
,−1

2
3
2
,
5
2
− n1

]
.

Simplifications for the probability mass function of Dn,j for higher values of j are also
available, done in a similar manner.

Next, we look at the degree distribution of the root of a PORT. For j = 1, the probability
mass function of Dn,j (i.e., Dn,1) cannot be directly derived from Eq. (1). Notice that the
main difference between the root and other nodes is that the root has indegree 0, while each
of the other nodes has indegree 1. Thus, we can tweak Eq. (1) by substituting d by d + 1,
and then letting j = 1. Under such setting, we find that the probability mass function of
Dn,1 can be substantially simplified to the following neat and closed form.

Proposition 3: The probability mass function of the root of a PORT is given by

P(Dn,1 = d) =
d(2n − d − 3)!

2n−d−1(n − d − 1)!(2n − 3)!!
, (2)

for d = 1, 2, . . . , n − 1.

Proof: Recall Eq. (1), and set j = 1. Replacing d with d + 1 in the equation, we have

P(Dn,1 = d) =
Γ(d + 1)Γ

(
1
2

)∑d
i=0

(−1)iΓ(n−1− i
2 )

Γ(i+1)Γ(d+1−i)Γ(j−1− i
2 )

Γ
(
n − 1

2

) .

Reimplementing the strategy of writing the total sum into partial sums with respect to
odd indicies and even indicies, we apply the Euler’s reflection formula to gamma functions
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and obtain

P(Dn,1 = d) =
Γ(d + 1)Γ

(
1
2

)
Γ
(
n − 1

2

)
⎛
⎜⎝ ∑

i is even
0≤i≤d

Γ
(
n − 1 − i

2

)
Γ(i + 1)Γ(d + 1 − i)Γ

(
j − 1 − i

2

)

−
∑

i is odd
0≤i≤d

Γ
(
n − 1 − i

2

)
Γ(i + 1)Γ(d + 1 − i)Γ

(
j − 1 − i

2

)
⎞
⎟⎠

=
Γ(d + 1)Γ

(
1
2

)
Γ
(
n − 1

2

) 2d+1Γ(d + 1 − n)
4nΓ(d)Γ(d + 3 − 2n) cos(nπ)

=
d(2n − d − 3)Γ(2n − d − 3)2n

22n−d−1(n − d − 1)Γ(n − d − 1)(2n − 3)!!

=
d(2n − d − 3)!

2n−d−1(n − d − 1)!(2n − 3)!!
.

�

The probability mass function of Dn,1 in Proposition 2 agrees with that derived in [38].
The proof in [38] requires massive algebraic computations and simplifications, whereas the
proof given in this paper appears more concise and succinct.

3.2. Moments

In general, the probability mass function (c.f. Eq. (1)) is unwieldy for moment computations.
Alternatively, we appeal to a two-color Pólya urn model [26] to calculate the mean and
variance of Dj,n. Imagine that there is an urn containing balls of two colors (white and
blue). Let Wn be the degree of the node labeled with j (white balls) at time n ≥ j, and Bn

be the total degree of all the other nodes (blue balls). At time (n + 1), if the node labeled
with j is selected, Wn increases by one, and Bn also increases by one, which is contributed
by the edge incident to the node labeled with (n + 1); if any other node is selected, Bn

increases by two. This dynamic can be represented by the following replacement matrix:

(
1 1
0 2

)
. (3)

This Pólya urn scheme appropriately interprets the mechanism of preferential attach-
ment, as, upon the insertion at time point n + 1, the probability of the node labeled with
j being selected is exactly Wn/(Wn + Bn). Another equivalent approach to modeling the
dynamics of degree change is to employ an extended PORT. The basic idea is to fill all the
gaps in the original tree with external nodes, which represent insertion positions. We omit
the details in this section but will revisit this strategy in the sequel.

The replacement matrix (c.f. Matrix (3)) is triangular, so the Pólya urn associated with
this kind of replacement matrix is called triangular Pólya urn. Triangular urns are well
studied, and the moments of white balls are explicitly characterized in [42, Thm. 3.1]. We
exploit those results to get the following proposition.
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Proposition 4: For a fixed 1 ≤ j ≤ n and n ≥ 2, we have

E[Dn,j ] =
Γ(n)Γ

(
j − 1

2

)
Γ
(
n − 1

2

)
Γ(j)

− δj,1,

Var[Dn,j ] = − Γ2(n)Γ2
(
j − 1

2

)
Γ2
(
n − 1

2

)
Γ2(j)

− Γ(n)Γ
(
j − 1

2

)
Γ
(
n − 1

2

)
Γ(j)

+
4n − 2
2j − 1

.

We discover that when n is large, both E[Dn,j ] and Var[Dn,j ] experience phase tran-
sitions. To compute the asymptotic expectation and variance, we apply the Stirling’s
approximation to the expectation and variance of Dn,j in Proposition 3. As n → ∞, we
have

E[Dn,j ] ∼
Γ
(
j − 1

2

)
Γ(j)

n1/2, (4)

Var[Dn,j ] ∼
(

4
2j − 1

− Γ2
(
j − 1

2

)
Γ2(j)

)
n − Γ

(
j − 1

2

)
Γ(j)

n1/2, (5)

where “∼” is a standard notation standing for “asymptotic equivalence”; that is,
given well-defined real-valued functions f(n) and g(n), f(n) ∼ g(n) is equivalent to
limn→∞(f(n)/g(n)) = 1. We keep the second highest order term (i.e., the term that involves
n1/2) in the asymptotic variance of Dn,j because it makes a contribution when j grows in
the linear phase (with respect to n). We reapply the Stirling’s approximation to Eqs. (4)
and (5), respectively, and obtain the next corollary.

Corollary 5: As n → ∞, we have

E[Dn,j ] ∼
{

(Γ(j − 1/2)/Γ(j))n1/2, for fixed j,

(n/j)1/2, for j → ∞,

and

Var[Dn,j ] ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
4

2j − 1
− Γ2(j − 1/2)

Γ2(j)

)
n, for fixed j,

n/j, for j → ∞, j = o(n),
1/θ − 1/

√
θ, for j/n = θ, 0 < θ < 1.

The formulation of E[Dn,j ] coincides with that developed in [35]. In addition, Var[Dn,j ]
is also reported in [35], where it is presented in terms of a sum of binomial coefficients. In
this paper, we provide an alternative approach to determining E[Dn,j ] and Var[Dn,j ], and
both of them are in neat and closed forms.

4. ZAGREB INDEX

A topological index of a graph quantifies it by turning its structure into a number. Capturing
structures in numbers allows researchers to compare graphs according to certain criteria.
There are many possible indices that can be constructed for static and random graphs. Each
index tends to capture certain features of the graphs, such as sparseness, regularity, and

https://doi.org/10.1017/S0269964820000261 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000261


846 P. Zhang

centrality. Examples of indices that have been introduced for random graphs include the
Zagreb index [13], the Rand́ıc index [16], the Wiener index [17,31], the Gini index [4,40],
and a topological index measuring graph weight [41].

In this section, we investigate the Zagreb index for the class of PORTs. Zagreb index was
first introduced by Gutman and Trinajstić [19] in 1972. It has been a popular topological
index to study molecules and complexity of selected classes of molecules in mathemati-
cal chemistry [32] and to model quantitative structure–property relationship (QSPR) and
quantitative structure–activity relationship (QSAR) in chemoinformatics [36]. We refer the
readers to [33] and the references therein for a concise review of the Zagreb index and its
applications.

In the field of (random) graph theory, a series of research papers were recently produced
to look into the Zagreb index of various classes of random trees, including random recursive
trees (RRTs) [13], scale-free trees [14], and (generalized) b-ary recursive trees [15]. Motivated
by these sources, we compute the Zagreb index of PORTs in this section and compare the
result with that of RRTs.

4.1. Mean and Variance

The Zagreb index of a graph is defined as the sum of the squared degrees of all the nodes
therein. Given a PORT at time n, Tn, its Zagreb index is thus given by

Zn = Zagreb(Tn) =
n∑

j=1

D2
n,j ,

where Dn,j , again, is the degree of the node labeled with j in Tn. Let I(n, j) indicate the
event that the node labeled with j is selected at time n. In the next proposition, we present
the exact expectation of Zn as well as a weak law.

Proposition 6: The mean of the Zagreb index of a PORT at time n ≥ 1 is given by

E[Zn] = 2(n − 1)(Ψ(n) + γ),

where Ψ(·) is the digamma function, and γ is the Euler’s constant. As n → ∞, we have

Zn

n log n

P−→ 2.

Proof: Upon the insertion taking place at time point n, we have the following recurrence
of Zn conditional on Fn−1 and I(n, j):

Zn = Zn−1 + (Dn−1,j + 1)2 − D2
n−1,j + 1, (6)

where the terms ((Dn−1,j + 1)2 − D2
n−1,j) altogether indicate the contribution by the node

labeled with j (to the Zagreb index) by the degree increase, and the last term 1 comes from
the contribution by the newcomer (the node labeled with n). We simplify Eq. (6) and take
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the expectation with respect to I(n, j) to get

E[Zn |Fn−1] = Zn−1 + 2
n−1∑
j=1

Dn−1,j × P(I(n, j)) + 2

= Zn−1 + 2
n−1∑
j=1

Dn−1,j × Dn−1,j

2(n − 2)
+ 2

= Zn−1 +

∑n−1
j=1 D2

n−1,j

n − 2
+ 2

=
(

1 +
1

n − 2

)
Zn−1 + 2.

Taking another expectation on both sides, we receive a recurrence on the mean of Zn,
namely

E[Zn] =
n − 1
n − 2

E[Zn−1] + 2.

This recurrence is well defined for n ≥ 3, so we can set the initial condition at E[Z2] =
Z2 = 2. Solving the recurrence, we obtain the result stated in the proposition. Notice
that the result is well defined for all n ≥ 1, albeit the developed recurrence is undefined
for n = 2.

As n → ∞, we have Ψ(n) ∼ log n. Hence, we obtain the following convergence in L1-
space:

Zn

n log n

L1−→ 2.

This convergence takes place in probability as well. �

Toward the computation of the second moment of Zn, we consider a new topological
index that is the sum of cubic degrees of nodes in a graph. Let Yn =

∑n
j=1 D3

n,j be such an
index of Tn. In the next lemma, we derive the mean of Yn, and a weak law as well.

Lemma 7: The mean of Yn of a PORT at time n ≥ 2 is given by

E[Yn] =
32Γ(n + 1/2)√

πΓ(n − 1)
− 6(n − 1)

(
Ψ(n) + γ +

8
3

)
.

As n → ∞, we have

Yn

n3/2

P−→ 32√
π

.

Proof: We consider a recurrence for Yn conditional on Fn−1 and I(n, j), mimicking that
for Zn in Eq. (6) as follows:

Yn = Yn−1 + (Dn−1,j + 1)3 − D3
n−1,j + 1

= Yn−1 + 3D2
n−1,j + 3Dn−1,j + 2.
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Taking the expectation with respect to I(n, j), we get

E[Yn |Fn−1] = Yn−1 + 3
n−1∑
j=1

D2
n−1,j ×

Dn−1,j

2(n − 2)
+ 3

n−1∑
j=1

Dn−1,j × Dn−1,j

2(n − 2)
+ 2

= Yn−1 +
3

2(n − 2)
Yn−1 +

3
2(n − 2)

Zn−1 + 2.

Take another expectation on both sides and plug in the result of E[Zn−1] to receive a
recurrence on E[Yn]:

E[Yn] =
2n − 1

2(n − 2)
E[Yn−1] + 3(Ψ(n − 1) + γ) + 2

=
2n − 1

2(n − 2)

(
2n − 3

2(n − 3)
E[Yn−2] + 3(Ψ(n − 2) + γ) + 2

)

+ 3(Ψ(n − 1) + γ) + 2

=

(
n − 1

2

) (
n − 3

2

)
(n − 2)(n − 3)

E[Yn−2] + 3
(

n − 1
2

n − 2
Ψ(n − 2) + Ψ(n − 1)

)

+
(

n − 1
2

n − 2
+ 1
)

(3γ + 2)

=
Γ
(
n + 1

2

)
√

πΓ(n − 1)

(
n−1∑
k=2

√
πΓ(k)(3Ψ(k) + 3γ + 2)

Γ
(
k + 3

2

) +
8
3

)
,

after plugging in the initial value E[Y2] = Y2 = 2.
We utilize mathematical induction to show

n−1∑
k=2

√
πΓ(k)(3Ψ(k) + 3γ + 2)

Γ
(
k + 3

2

) =
88
3

− 2
√

πΓ(n)(3Ψ(n) + 3γ + 8)
Γ
(
n + 1

2

) . (7)

For better readability, we present the details in Appendix A. The result stated in the
lemma follows after simple algebra.

It is obvious that the right-hand side of Eq. (7) converges to 88/3 as n tends to infinity
since the asymptotic of the latter term is 0 according to the Stirling’s approximation. To
compute the limit of Yn, we again apply the Stirling’s approximation to the gamma functions
in the expression of E[Yn] to get

E[Yn] =
32√
π

n3/2 + O(n log n).

Thus, we obtain an L1 convergence for Yn/n3/2 as well as a weak law. �

Note that in Lemma 1, the expression of E[Yn] is well defined for n ≥ 2. As n → 1,
Γ(n − 1) in the denominator of the first term approaches infinity, and (n − 1) in the second
term approaches 0, rendering E[Yn] → 0. This is consistent with the fact of E[Y1] = Y1 = 0,
as there is an isolated node in the tree.

We are now ready to calculate the second moment of Zn as well as the variance of Zn.
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Proposition 8: The second moment of the Zagreb index of a PORT at time n ≥ 1 is given
by

E[Z2
n] = 4(n log n)2 + 8γ(n2 log n) +

(
16 + 4γ2 − 2π2

3

)
n2 + O(n3/2),

and the variance of Zn is

Var[Zn] =
(

16 − 2π2

3

)
n2 + O(n3/2).

Proof: We revisit the almost-sure recurrence for Zn in Eq. (6) and square both sides to
get

Z2
n = Z2

n−1 + 4D2
n−1,j + 4 + 4Zn−1Dn−1,j + 4Zn−1 + 8Dn−1,j .

Averaging it out with respect to I(n, j), we have

E
[
Z2

n |Fn−1

]
= Z2

n−1 + 4
n∑

j=1

D2
n−1,j ×

Dn−1,j

2(n − 2)
+ 4

+ 4Zn−1

n∑
j=1

Dn−1,j × Dn−1,j

2(n − 2)
+ 4Zn−1

+ 8
n∑

j=1

Dn−1,j × Dn−1,j

2(n − 2)

= Z2
n−1 +

2
n − 2

Yn−1 + 4 +
2

n − 2
Z2

n−1 + 4Zn−1 +
4

n − 2
Zn−1

=
n

n − 2
Z2

n−1 +
2

n − 2
Yn−1 +

4(n − 1)
n − 2

Zn−1 + 4.

The recurrence for E[Z2
n] is thus obtained by taking the expectation of the formula

above on both sides and by plugging in the results of E[Yn] and E[Zn]; that is,

E[Z2
n] =

n

n − 2
E[Z2

n−1] +
64Γ

(
n − 1

2

)
√

πΓ(n − 1)
+ 4(2n − 5)(Ψ(n − 1) + γ) − 28

=
n

n − 2
E[Z2

n−1] + qn,

where qn denotes the latter terms in the above recurrence relation for brevity. This is a
simple linear recurrence relation, the solution of which is

E[Z2
n] =

n

n − 2

(
n − 1
n − 3

E[Z2
n−2] + qn−1

)
+ qn

=
n(n − 1)

(n − 2)(n − 3)
E[Z2

n−2] +
n

n − 2
qn−1 + qn

= n(n − 1)

(
n−1∑
k=2

qk+1

k(k + 1)
+ 2

)

after plugging in the initial value E[Z2
2 ] = Z2

2 = 4. Simplify the summand qk/(k(k + 1)) to
get

64Γ
(
k + 1

2

)
√

πΓ(k + 2)
+

4(2k − 3)Ψ(k)
k(k + 1)

+
4(2k − 3)γ − 28

k(k + 1)
. (8)
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Our next task is to evaluate the sum of the three parts over k from 2 to (n − 1) one
after another. Details of the computations are given in Appendix B. The stated result
presents the exact expressions of a few highest order terms and include the remainder in a
big O notation. The orders of these leading terms and their corresponding coefficients are
determined by applying the Stirling’s approximation to gamma functions and the fact that

Ψ(n) = log n − 1
2n

+ O

(
1
n2

)
,

Ψ(1, n) =
1
n

+ O

(
1
n2

)
.

In what follows, we obtain the variance of Zn by computing E[Z2
2 ] − E

2[Zn]. �

Notice that Z2
n converges to 4(n log n)2 in L1-space as well as in probability, both

directly from the continuous mapping theorem. Besides, we would like to point out that
we derive the exact solution of E[Z2

2 ] but do not present it in the manuscript for better
readability. However, the exact expression of the second moment of Zn is available upon
request.

4.2. Investigation of Asymptotic Behavior

In this section, we exploit a martingale formulation to investigate the asymptotic behavior
of Zn. Based on the recurrence developed in the Proof of Proposition 4, we assert that {Zn}n

is not a martingale array. Consider the following transformation such that the transformed
random variables, Mn, form a martingale.

Lemma 9: For n > 1, the sequence consisting of

Mn =
2

n − 1
Zn − 4(Ψ(n) + γ)

is a martingale (with respect to Fn).

Proof: We consider two constant sequences {αn}n and {βn}n such that the following
martingale property holds for all n ≥ 3.

E[αnZn + βn |Fn−1] = αnE[Zn |Fn−1] + βn

=
αn(n − 1)

n − 2
Zn−1 + 2αn + βn

= αn−1Zn−1 + βn−1.

This produces two recurrences on αn and βn, respectively,

αn =
n − 2
n − 1

αn−1 and βn = βn−1 − 2αn,

with arbitrary choices of initial conditions. We thus obtain the following solutions

αn =
2

n − 1
and βn = −4(Ψ(n) + γ),

by choosing initial conditions α3 = 1 for the former and β1 = 0 for the latter, respectively.
As a matter of fact, the result stated in the lemma is well defined for all n > 1. �
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Noting that the martingale Mn is equivalent to

Mn =
Zn − E[Zn]
(n − 1)/2

,

we have

E[Mn] = 0 and E[M2
n] =

Var[Zn]
(n − 1)2/4

∼ 64 − 8π2

3
< +∞,

leading to the fact that {Mn}n is a mean-zero and square-integrable martingale. Accord-
ing to the Doob’s martingale convergence theorem, there exists an L2-measurable random
variable, to which Mn converges almost surely, leading to an almost-sure convergence of Zn

after proper scaling.

Remark 10: The authors of [13] proved that the limit distribution of the Zagreb index
of RRTs is normal with mean 6n and variance 8n. However, asymptotic normality does
not exist for PORTs. It is evident that the limit distribution of the Zagreb index of
PORTs is right skewed, as the Pearson’s moment coefficient of skewness is always positive
[39, Thm. 2].

5. POISSONIZED PLANE-ORIENTED RECURSIVE TREES

Many real structures do not grow in discrete time, but in continuous time. In this section,
we study PORTs embedded into continuous time. The embedding is done by changing
the interarrival times between node additions from equispaced discrete units to more gen-
eral renewal intervals. The author of [2] suggests to use exponential random variables as
interarrival time. Under this choice, a count of the arrival points constitutes a Poisson
process [34]. Hence, such embedding is commonly called Poissonization [1]. The advantage
of Poissonization is that the underlying exponential random variables (interarrival times)
share an appealing property—the memoryless property.

We elaborate the growth of a Poissonized PORT by employing an extended graph
analogous to that for RRTs [27], that is, extended PORT, as mentioned in Section 3.2.
Under the Poissonization framework, each external node is endowed with an independent
clock that rings in Exp(1). When the clock of an external node rings, a newcomer joins in
the tree, and is connected with the node (in the original tree) that carries that external
node by an edge. Then, all the new gaps are filled by new external nodes instantaneously.
Upon each renewal, the clocks of existing external nodes are reset owing to the memoryless
property, and the new external nodes come endowed with their own independent clocks. We
do not consider the time loss of the execution of node additions. Thus, this growth process
is Markovian.

To investigate the degree distribution of the node labeled with j, we assume that t0, the
time of its first appearance in the tree, is finite. At this point, there is 1 external node carried
by the node labeled with j, and we paint it white; Meanwhile, there is a total of (2j − 3)
external nodes carried by all the other nodes, and we paint them blue. In the two-color
Pólya urn framework, the dynamic of ball addition (at each renewal point) is analogous
to that for the discrete-time counterpart, so it also can be represented by Matrix (3). The
feature of preferential attachment is reflected in the number of external nodes adjacent to
the nodes from the original tree. Let W (t) and B(t) be the numbers of white and blue balls
(external nodes) at time t ≥ t0, respectively. Noting that W (t) is exactly equal to the degree
of the node labeled with j at time t, we thus place our focus on the distribution of W (t).
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Recall that Matrix (3) is triangular, so the associated (Poissonized) Pólya urn process
is called the triangular Pólya process. This class of urn models was recently investigated
by [9]. In this source, the moment generating function of W (t) in a more general framework
was developed. Under our specific setting, we present the moment generating function of
W (t) in the next proposition.

Proposition 11: At time t ≥ t0, the moment generating function of W (t) is given by

φW (t)(u) =
eu−(t−t0)

1 − (1 − e−(t−t0))eu
.

This result is obtained directly from [9, Lemma 4.3] by plugging in appropriate param-
eters. Then, the rth moment of W (t) can be derived from φW (t)(u) for all r ≥ 1. The
expression of the rth moment of W (t) is available but not in a closed form, rather in a
partial sum of an alternating sequence involving Stirling numbers of the second kind and
gamma functions. Thus, we do not present all the moments of W (t) in this paper, but
only the first two moments (after simplifications) and accordingly the variance in the next
corollary.

Corollary 12: At time t, the first moment, second moment, and variance of W (t),
respectively, are

E[W (t)] = et−t0 ,

E[W 2(t)] = 2e2(t−t0) − et−t0 ,

Var[W (t)] = e2(t−t0) − et−t0 .

Noticing that the probability distribution of a random variable is uniquely deter-
mined by its moment generating function provided that it exists, we give the asymptotic
distribution of W (t) after proper scaling in the next theorem.

Theorem 13: As t → ∞, we have

W (t)
et

d−→ Exp
(

1
et0

)
.

Proof: Using the moment generating function of W (t), we derive the moment generating
function of W̃ (t) = W (t)/et−t0 as follows:

φW̃ (t)(u) = E[e(u/et)W (t)] =
eu/et−t0−(t−t0)

1 − (1 − e−(t−t0))eu/et−t0
,

which converges to 1/(1 − u) as t → ∞. Noticing that 1/(1 − u) is the moment generating
function of Exp(1), we thus, by Billingsley [7, Thm. 30.1, pp. 342], have

W (t)
et−t0

d−→ Exp(1).

The result stated in the theorem follows from the scaling property of exponential random
variables. �
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6. CONCLUDING REMARKS

In this section, we add some concluding remarks and propose some future work. In this
paper, we investigate three properties of PORTs. First, we determine the degree distribution
of a node with a fixed degree by developing its probability mass function. Additionally, we
compute the first two moments by exploiting a two-color triangular urn.

Second, we look into the Zagreb index of the class of PORTs. We calculate the exact
mean and variance via recurrence methods. We formulate a martingale to characterize the
asymptotic behavior of the index. We show that it converges almost surely to a finite random
variable after proper scaling, but there does not exist a Gaussian law. We plan, in the future,
to investigate many other topological indices, such as the Gini index and the Randić index,
for PORTs.

Last, we study the degree profile of PORTs embedded into continuous time, so-called
Poissonized PORTs. We interpret the growth of Poissonized PORTs by introducing extended
trees. The exact moment generating function of the degree variable is determined. We show
that the asymptotic distribution of the degree variable scaled by et is exponential.
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APPENDIX A

Lemma 14: For n ≥ 3, we have

n−1∑
k=2

√
πΓ(k)(3Ψ(k) + 3γ + 2)

Γ
(
k + 3

2

) =
88

3
− 2

√
πΓ(n)(3Ψ(n) + 3γ + 8)

Γ
(
n + 1

2

) . (A.1)

Proof: We show the stated result by induction. For the base, that is, n = 3, the left-hand side of
and the right-hand side of Eq. (A.1) are equal; that is,

√
πΓ(2)(3Ψ(2) + 3γ + 2)

Γ
(
2 + 3

2

) =
8

3
=

88

3
− 2

√
πΓ(3)(3Ψ(3) + 3γ + 8)

Γ
(
3 + 1

2

) .

We assume that Eq. (A.1) holds for n. In the inductive step, we get

n∑
k=2

√
πΓ(k)(3Ψ(k) + 3γ + 2)

Γ
(
k + 3

2

) =
88

3
− 2

√
πΓ(n)(3Ψ(n) + 3γ + 8)

Γ
(
n + 1

2

)
+

√
πΓ(n)(3Ψ(n) + 3γ + 2)

Γ
(
n + 3

2

)
=

88

3
+

√
πΓ(n)(−6nΨ(n) − 6 − 6γn − 16n)

Γ
(
n + 3

2

)
The proof is completed by applying its well-known recurrence relation for the digamma

function: Ψ(n + 1) = Ψ(n) + 1/n. �

APPENDIX B

Lemma 15: For the three parts in Eq. (8), we take the sum over k from 2 to (n − 1), and respectively
get

n−1∑
k=2

64 Γ
(
k + 1

2

)
√

πΓ(k + 2)
= 48 − 128 Γ

(
n + 1

2

)
√

πΓ(n + 1)

n−1∑
k=2

4(2k − 3)Ψ(k)

k(k + 1)
= 4(Ψ2(n + 1) + 3Ψ(n + 1) + Ψ(1, n + 1) + 2)

− 12(n − 1)Ψ(n)

n
− 2π2 + 12γ2 − 54γ + 60

3
,

n−1∑
k=2

4 (2k − 3) γ − 28

k(k + 1)
= 8γΨ(n) + 8γ2 − 18γ − 14 +

4(5γ + 7)

n
,

where Ψ(1, x) := (d/dx)Ψ(x) is the first derivative of digamma function Ψ(x), known as the first-
order polygamma function.

Proof: To begin with, we introduce two notations. Let Hk :=
∑k

j=1(1/j) be the kth order

harmonic number and H2,k :=
∑k

j=1(1/j2)be the generalized kth order harmonic number,
respectively.
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The computation of the first sum is based on the following well-known identity for gamma
functions:

n∑
k=1

Γ(k + a)

Γ(k + b)
=

(n + b)Γ(n + a + 1)

(a − b + 1)Γ(n + b + 1)
− bΓ(a + 1)

(a − b + 1)Γ(b + 1)
,

for a, b ∈ R, a �= b − 1. Set a = 1/2 and b = 2 to get

n−1∑
k=2

64Γ
(
k + 1

2

)
√

πΓ(k + 2)
=

64√
π

( ∞∑
k=1

Γ
(
k + 1

2

)
Γ(k + 2)

−
√

π

4
− Γ

(
n + 1

2

)
Γ(n + 2)

)

=
64√
π

(
−2(n + 2)Γ

(
n + 3

2

)
Γ(n + 3)

+
3
√

π

4
− Γ

(
n + 1

2

)
Γ(n + 2)

)

=
64√
π

(
−2 Γ

(
n + 1

2

)
Γ(n + 1)

+
3
√

π

4

)
.

We then look at the third sum and then the second sum. We can divide the third sum into
two parts:

n−1∑
k=2

4(2k − 3)γ − 28

k(k + 1)
=

n−1∑
k=2

8γ

k + 1
−

n−1∑
k=2

12γ + 28

k(k + 1)
. (B.1)

It is obvious that
n−1∑
k=2

1

k + 1
=

n∑
k=1

1

k
− 1 − 1

2
= Hn − 3

2

and
n−1∑
k=2

1

k(k + 1)
=

n−1∑
k=2

(
1

k
− 1

k + 1

)
=

1

2
− 1

n
.

Eq. (B.1) can be simplified to

n−1∑
k=2

4 (2k − 3) γ − 28

k(k + 1)
= 8γ

(
Hn − 3

2

)
− 4(3γ + 7)

(
1

2
− 1

n

)
,

which is equivalent to the stated results by considering the well-known relation between digamma
functions and harmonic numbers: Hn−1 = Ψ(n) + γ.

Lastly, we compute the sum of the second part. At first, we present two useful identities for
harmonic numbers in the next lemma.

Lemma 16: Let Hk :=
∑k

j=1(1/j) be the kth order harmonic number and H2,k :=
∑k

j=1(1/j2) be
the generalized kth order harmonic number, respectively. We have

n∑
k=1

Hk−1

k + 1
=

H2
n+1 − H2,n+1

2
+

1

n + 1
− 1,

n∑
k=1

Hk−1

k(k + 1)
= −nHn−1 − n2 + 1

n(n + 1)
.

The proofs for both are straightforward by via mathematical induction and the definition of
harmonic numbers. Hence, we omit the tedious algebra.
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Again, we consider the relation between digamma functions and harmonic numbers, that is,
Hk−1 = Ψ(k) + γ, and then further divide the second sum into four parts to get

n−1∑
k=2

4(2k − 3)Ψ(k)

k(k + 1)
=

n−1∑
k=2

4(2k − 3)(Hk−1 − γ)

k(k + 1)

=

n−1∑
k=2

8Hk−1

k + 1
−

n−1∑
k=2

12Hk−1

k(k + 1)
−

n−1∑
k=2

8γ

k + 1
+

n−1∑
k=2

12γ

k(k + 1)
.

The computations of the former two can be done by applying the identities in Lemma B.2,
whereas the computations of the latter two can be handled in a similar manner as the third
sum. Putting everything together, we obtain the stated result by converting harmonic numbers to
digamma and polygamma functions according to the following relation:Ψ(n) = Hn−1 − γ, Ψ(1, n +
1) = π2/6 − H2,n. �
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