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In the present work, within the framework of thin film theory, we delineate the interaction
between the interfacial dynamics of thermal Marangoni flow and non-Newtonian rheology
by considering a spreading droplet over a non-isothermal substrate. The numerical
simulations, performed at different equilibrium contact angles (6,), dimensionless
thermocapillary strengths (8) and shear-dependent viscosities (n), reveal that the fluid
rheology nonlinearly influences the mechanisms of disjoining pressure and Marangoni
stress. Accordingly, three distinct spreading regimes for non-Newtonian drops arise.
Results indicate that the Marangoni film regime, having an approximate linear drop
shape, sustains at lower 6,, higher § and n ranges. Also, shear-thickening drops display
an early onset of thermocapillary time scale and a steeper advancing front, while
their shear-thinning counterparts retain a significant curvature for a much longer time.
Contrastingly, the droplet regime is identified by fixed shape and uniform speed (U)
at higher 6, and lower (B, n) combinations. Here, an intricate interplay between f
and n realizes a sharp increase in U for shear thinning compared with its invariance
for shear-thickening droplets. The transition regime appears as an intermediate regime
between the other two and involves multiple ruptured droplets. In all the regimes,
we observe slower (faster) spreading of shear-thinning (thickening) droplets than
the Newtonian droplets. In addition, the variations in n cause intense characteristic
modulations to spreading attributes like droplet morphology and transient spreading
behaviour, and also act as a switching mechanism between different spreading regimes.
These unique results may be utilized for superior control of non-isothermal biofluid
droplets in microfluidics.
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1. Introduction

The dynamics of spreading and wetting of droplets on solid substrates have a spectrum
of applications in industrial processes, such as painting and surface coatings on solid
substrates, spraying, lubrication, ink-jet printing and many more (Daniel & Berg 2006;
Bonn et al. 2009). Furthermore, the recent advancements in the lab-on-a-chip technology
have motivated researchers to find optimal strategies for effective manipulation of
microdroplets in view of their importance in broad-ranging bio-microfluidic processes,
specifically in drug delivery of ‘microbicides’ as anti-HIV agents (Hu & Kieweg 2012),
treatment of dry-eye syndrome caused by early onset of tear film rupture, analytical
detection, digital microfluidics and encapsulation of biological cells (Stone, Stroock &
Ajdari 2004; Braun 2012; Anna 2016), to name a few.

The spreading behaviour of sessile drops in the above-mentioned practical settings
is highly influenced by the surface tension at the liquid—air interface. Surface tension
manipulation using a temperature gradient at the solid substrate has been recognized as an
effective control mechanism for the movement and wetting of droplets along the surface.
This phenomenon is known as the thermocapillary or thermal Marangoni actuation of
droplets (Young, Goldstein & Block 1959; Subramanian & Balasubramaniam 2001). The
complex interfacial dynamics of droplet spreading over non-isothermal substrates have
prompted a number of experimental and theoretical investigations over the last few decades
(Ehrhard & Davis 1991; Brzoska, Brochard-Wyart & Rondelez 1993; Pratap, Moumen &
Subramanian 2008; Gomba & Homsy 2010; Sui 2014; Chaudhury & Chakraborty 2015;
Sui & Spelt 2015; Mac Intyre et al. 2018; Dominguez Torres et al. 2020; Xu et al. 2021).
The theoretical study of Ehrhard & Davis (1991) employed the lubrication approximation
of the Navier—Stokes equations by exploiting the disparity between the length scale of the
droplet along the spreading direction and the drop height. They concluded that cooling
the substrate along the length augments the spreading action. Furthermore, longitudinal
heating opposes the capillary driving force responsible for isothermal spreading,
emphasizing the importance of the heat transfer mechanism in regulating droplet motion.
In a later work, Ehrhard (1993) confirmed his numerical results and prescribed a power law
for the spreading rate in both isothermal and non-isothermal conditions. Many years later,
Chaudhury & Chakraborty (2015) discovered that thermocapillary-dominated spreading
is fundamentally distinct from capillary-dominated spreading and established two scaling
regimes for the transient spreading width of the droplet. In addition, the variation of
surfactant concentration on the droplet surface was also reported to significantly alter the
droplet migration and deformation characteristics (Leal 2007; Poddar, Bandopadhyay &
Chakraborty 2019a; Poddar et al. 2019b)

Any attempt to resolve the contact line dynamics is challenged by the diverging stress
condition near the contact line, known as the ‘contact line paradox’ (Snoeijer & Andreotti
2013). Several alternate routes had been suggested in the literature to address this moving
contact line singularity within the continuum hydrodynamics, with proper consideration
of the solid—fluid interaction (Snoeijer & Andreotti 2013). Among these, the models
based on the Navier slip boundary condition at the solid—liquid interface relieve the
singularity but come with the additional complexity of tracking the dynamic contact
angle (Ehrhard & Davis 1991; Ren, Trinh & Weinan 2015) in numerical calculations. A
model based on molecular interaction potential, on the other hand, alleviates the contact
line singularity by incorporating a realistically observed (Starov, Kalinin & Chen 1994;
Popescu et al. 2012) thin precursor film surrounding the drop. The latter approach not only
eliminates explicit tracking of the dynamic contact angle but also allows for specifying
an independent apparent contact angle. The precursor film approach was shown to be
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advantageous in a range of studies on wetting hydrodynamics under thermocapillary
actuation (Gomba & Homsy 2009, 2010; Mac Intyre et al. 2018). The numerical
investigation of Gomba & Homsy (2010) used the same approach to classify the diversified
spreading behaviours of a partially wetting drop in microgravity situations based on
widely contrasting drop morphologies induced by a combination of thermal Marangoni
stress and conjoining—disjoining pressure. Subsequently, Mac Intyre ez al. (2018) analysed
the effects of gravity and different forms of the molecular interaction potential. Their
results provided a comprehensive understanding of the earlier experimental observations
(Brzoska et al. 1993) on droplet elongation and a saturation droplet migration speed under
specific conditions.

Many industrial (Rafai, Bonn & Boudaoud 2004; Wang et al. 2007a,b) and biological
(Hwang, Litt & Forsman 1969; Walburn & Schneck 1976; Yu et al. 2011) fluids exhibit
complex mechanical responses when subjected to external forces, and a constant viscosity
can no longer describe their rheology. A significant volume of experimental (Carré &
Eustache 2000; Rafaier al. 2004; Wang et al. 2007a,b; Liang et al. 2009) as well as
theoretical (Starov et al. 1994; Flitton & King 2004; Miladinova, Lebon & Toshev 2004)
research was devoted to the spreading characteristics of isothermal droplets featuring
time-independent and inelastic rheological responses. One essential rheological aspect
of these fluids is the nonlinear variation of the shear stress with the strain rate (Poddar
et al. 2019a,c). Moreover, a branch of these fluids, known as the shear-thinning fluids,
were found to possess an exclusive quality of suppressing the diverging stress condition
at the contact line (Weidner & Schwartz 1994), a common problem associated with
Newtonian fluids. Rafaier al. (2004) were the first to present experimental results on the
spreading dynamics of polymeric solutions that are shear thinning in nature. They related
the power-law index of such fluids with the polymeric concentration and discovered that
the shear-thinning fluids spread at a slower rate than Newtonian fluids. Subsequently, the
work of Wang et al. (2007a) provided crucial insights into the spreading dynamics of both
shear-thinning and shear-thickening fluids. Combining experiments and a thin film-based
theory, they provided important information about film thickness and dynamic contact
angle for both the capillary and gravity-dominated regimes. Later, Starov et al. (2003)
adopted a self-similar solution approach to establish theoretical spreading rules for both
shear-thinning and shear-thickening fluids. In another work, Kheyfets & Kieweg (2013)
identified that shear-dependent rheology has a significant impact on the gravity-driven
spreading of microbicide gel on the vaginal epithelium.

Despite considerable interest in the literature on the capillary-dominated spreading of
non-Newtonian droplets, no attempt has been directed so far to investigate the interplay
between the thermocapillary driving force and the non-Newtonian rheology of a sessile
droplet. The intricate interfacial dynamics associated with the Marangoni flow are likely
to interact with the shear-dependent flow conditions in a unique fashion, calling for further
investigations. In the present work we address this issue through numerical simulations and
seek to gain a fundamental understanding of thermocapillary spreading of partially wetting
non-Newtonian droplets by employing an inelastic, time-independent power-law model for
fluid rheology. Our hydrodynamic analysis, premised on a thin film model, unveils the
dramatic influence of the non-Newtonian rheology on the spreading behaviour as well as
the morphology of non-isothermal drops.

We have analysed the final shape and migration behaviour of the droplets for various
practical combinations of the dimensionless thermocapillary strength, the power-law index
and the equilibrium contact angle. Accordingly, the spreading behaviours have been
categorized into three distinct regimes: Marangoni film, droplet and transition regimes.
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Even though a similar three regimes were reported previously for Newtonian droplets
(Gomba & Homsy 2010), the current work stands apart in bringing out the substantial
changes in droplet spreading that are exclusive to non-Newtonian fluids. Variation in the
power-law index (n), quantifying the fluid’s shear rate dependency, has been found to
have a two-step influence on spreading. Firstly, it creates severe distinctive modulations
in droplet form, height attained, time scales for transient spreading and many other
spreading attributes. Secondly, the parameter (1) serves as a switching mechanism
between different spreading regimens. We envisage that the fundamental understanding
of thermocapillary-driven non-Newtonian sessile drops obtained from the present study
will pave the way for designing efficient microfluidic devices that can handle complex
biofluids.

2. Mathematical formulation

The physical system considered here consists of a two-dimensional complex fluid droplet
with density o and viscosity fi that is deposited on a non-isothermal solid surface. We
have defined a planar Cartesian coordinate system (X, y) as shown in figure 1. Following
continuum hydrodynamics, the governing equations for the flow field (p, v) are the
continuity and Cauchy momentum equations

- [0V . o~ ..
V.-v=0 and p(E—l—v-Vv):V-T. (2.1a,b)
Here, T = —pl + T denotes the stress tensor, and the deviatoric stress T is related to the

strain rate tensor as T = 2/iD. The shear rate dependence of the fluid apparent viscosity
has been captured by the power-law constitutive relation, given by (Deen 1998; Garg et al.
2017)

n—1

() =mopiry| 2.2)

where 1/M denotes the characteristic deformation rate and g is the constant viscosity
of the Newtonian base fluid, which is recovered from the above equation for n = 1. The
exponent n is known as the power-law index, where n > 1, n =1 and n < 1 stand for
the shear-thickening (or dilatant), Newtonian and shear-thinning (or pseudoplastic) fluids,

respectively. In addition, y denotes the second invariant of the strain rate tensor D, i.e.

y = [%(b: b)]l/z, 2.3)

where
p=3[Vo+@oT]. 2.4)

It is worth noting that the term M appearing in (2.2) is different from the consistency
index that is commonly used in the power-law equation (Bird, Armstrong & Hassager
1987). Unlike the conventional form, the present equation (Garg et al. 2017) eliminates
the dependency of the reference scales of time, velocity and pressure on n (Gorla 2001),
thereby facilitating direct comparison of spreading characteristics of non-Newtonian and
Newtonian droplets.

The applicability of the power-law constitutive relation in two limiting flow conditions
has often been questioned. Firstly, it predicts infinite fluid viscosity for shear-thinning
fluids (n < 1) at locations in the flow domain where the shear rate (and, consequently,
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Figure 1. Schematics of a two-dimensional non-Newtonian sessile droplet with height (%, 7) and base width
W(@) on a flat substrate having a linear temperature distribution 7}, (). The temperature gradient at the drop—air
interface creates a surface tension gradient, triggering Marangoni flow, and subsequently, the drop moves along
the substrate. A constant film of equilibrium thickness }~1f surrounds the droplet. The drop has partially wetting
characteristics with a contact angle 6 at the solid-liquid interface.

the shear stress) becomes zero (Myers 2005). Although criticized for its unphysical
viscosity predictions at low shear rates (Acrivos, Shah & Petersen 1960; Myers 2005),
the same model was used for capturing the essential physics of the stress-dependent
rheology of thin films under a broad spectrum of practical circumstances, such as the
spreading of a drop over a solid substrate (Starov et al. 2003), a droplet flowing down
an inclined plane (Perazzo & Gratton 2003; Miladinova et al. 2004; Hu & Kieweg
2012; Ruyer-Quil, Chakraborty & Dandapat 2012; Noble & Vila 2013), blade coating
(Ross, Wilson & Duffy 1999), rupture of thin films (Garg et al. 2017), vaginal delivery
of microbicides (Kheyfets & Kieweg 2013) and so on. Along with this, in the present
work, the Marangoni stress condition at the free surface alleviates the anomalous infinite
viscosity condition due to the zero shear boundary conditions employed in a host of
earlier studies (Acrivos et al. 1960; Carré & Eustache 2000; Flitton & King 2004; Noble
& Vila 2013). Secondly, according to the ‘contact line paradox’ for Newtonian fluids, a
diverging shear rate is predicted at the moving contact line (Snoeijjer & Andreotti 2013).
Contrastingly, the viscosity mathematically goes to zero for shear-thinning fluids, thus
avoiding the thermodynamically inconsistent diverging dissipation condition. However,
laboratory experiments suggest that the viscosity asymptotically attains the value of the
solvent viscosity instead of becoming zero. Rafaier al. (2004) showed that the length scale
for this transition is ~100 nm, which is of the same order of magnitude as the zone of
intermolecular forces. Now, the molecular film thickness 4, chosen in the present study
(details in § 3) remains above the viscosity transition length scale, rendering the power-law
model both physically and mathematically consistent in the present scenario.

The liquid—air interface at § = A(X,7) is subject to the normal and tangential stress
balance conditions

>
-
>

— iy, (2.5a)
V7, (2.5b)

~>
I
~>

n-T-

where 7, 7 are the outward unit normal and tangential vectors at the interface, respectively;

and & = —V - 71 denotes the mean curvature of the interface.
At the interface between the drop and the solid surface (y = 0) the no-slip and the
no-penetration conditions apply, i.e.

u(x,0,) =0 and ¥(%0,7) =0, (2.6a,b)
951 A42-5
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where #, v are the fluid velocity components parallel and normal to the solid surface. Now,
the kinematic boundary condition at the free surface is given by

Df of . -,
D=4V =0, 27

where f(%, 5,1 =5 — h(x, 7).
The molecular interaction between the solid and liquid has been modelled with a
disjoining—conjoining pressure term (Derjaguin & Kusakov 1936; Mitlin & Petviashvili

1994) I1(h) of the form
~ 3 ~ 2
7—F (’“—) —<h—f) , 2.8)
h h

where 7, is the energetically favoured thickness of the molecular film (Gomba & Homsy
2009). Thus, the total pressure within the drop can be written as

5 _3%h -
P=—V@—H, (2.9)

where the first term represents the Laplace pressure as a consequence of the
interface curvature, and the second term stands for the disjoining pressure I7(h) due
to van-der-Waals interaction at the solid-liquid interface. This model alleviates the
singularity at the contact line of the drop by incorporating an experimentally observed
thin (~10-100nm) precursor film ahead of the drop (Starov et al. 1994; Hoang &
Kavehpour 2011; Popescu et al. 2012). Also, for the partially wetting systems, the

equilibrium contact angle is related to the intermolecular forces through the term K as
K =29(1 — cos(6,)) /h.

It is worth mentioning that mathematical calculations predict a diverging shear rate
at the contact line, i.e. ); — 00. Thus, the power-law model for the shear-thinning
fluids (n < 1) gives a zero viscosity (see (2.2)) in the contact line zone so that the
viscous dissipation remains finite (Weidner & Schwartz 1994; Rafaier al. 2004), keeping
the model thermodynamically consistent. Interestingly, this suppression of contact line
singularity occurs without using a disjoining pressure or slip model, and the contact line
movement remains possible. However, accommodation of the partially wetting conditions
(6, > 0) necessitates considering the conjoining—disjoining pressure (I7). Moreover, the
present model facilitates developing a general analysis framework for shear-thinning,
shear-thickening and Newtonian fluids.

The surface tension at the liquid—air interface has been considered to vary with the
temperature as (Leal 2007)

7 =7 — 6T —To), (2.10)

where 7 represents the surface tension at 7 = T} and the positive constant o denotes the
temperature gradient of surface tension. This thermally induced gradient in surface tension

causes Marangoni stress at the interface, given as
ay  apaT
=Y _ VO 2.11)

0x 9T 0x

In order to capture the spreading characteristics of the drop under the realm
of long-wave/lubrication approximation (Leal 2007; Eddi, Winkels & Snoeijer 2013;
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Chaudhury & Chakraborty 2015), the following conditions in terms of the lubrication
parameters are to be satisfied (Deen 1998), i.e.

(he/w)?> < 1 and Re(h./w) < 1, (2.12a,b)

where &, is the maximum droplet height, W is the equilibrium foot width of the droplet

and Re is the Reynolds number, defined as Re = pUh./fio. Here, U represents the
characteristic spreading speed of the drop, fip is the viscosity of the Newtonian base
fluid and p is the density of the fluid. Typical values of different dimensional quantities
can be estimated from the reported experiments of Pratap et al. (2008): jip = 107> Pas,
p=1000kgm=3, h. <03mm, 1.2mm <w <32mm and 200 < U < 800 ums~".
We have considered w = 2R, where R is the droplet footprint radius obtained from
literature. Consequently, the lubrication parameters are found within the acceptable limits,
ie. (he/w)? < 0.063 and Reh. /W < 0.06, thereby justifying the lubrication approximation
in the present work.

Under the lubrication approximation, the inertia term in the Cauchy momentum
equation (v - Vo in (2.1)) becomes negligible. Such a flow regime is dominated by the
viscous and capillary effects. This approximation can be exploited to derive a single
time-dependent differential equation for droplet height (%, 7). Ideally, the lubrication
theory was developed for vanishing contact angles at the drop-solid interface. Thus,
its application in partial wetting conditions, especially when the contact angle is 40°
or higher, is questionable since the ratio /i may not be necessarily small. However,
results of lubrication theory were compared against the full Navier—Stokes simulations
for a multitude of flow problems involving contact angles as high as 40°, and, only small
deviations were reported (Goodwin & Homsy 1991; Mitlin & Petviashvili 1994; Schwartz
& Eley 1998; Perazzo & Gratton 2004; Diez & Kondic 2007; Chaudhury & Chakraborty
2015). The analysis of Perazzo & Gratton (2004) revealed that, for high contact angles, the
lubrication theory is not so accurate in predicting the detailed velocity field. However,
the global flow properties like the cross-section of the thin film, volumetric flow rate

0= foh u dy (2.18) and average velocity are in close agreement with the full Navier—Stokes
solution. They attributed this dramatic agreement to the redistribution of momentum
without alterations in its total value. As a result, the inaccuracies of velocity distribution
cancel out, leading to almost accurate average values.

We consider small drop sizes for which the surface tension dominates the gravity-driven
deformation and spreading of the drop (Leal 2007). The gravity effect is neglected when
the Bond number (Bo), defined as the ratio between the horizontal gradient of hydrostatic

pressure and the capillary force, i.e. Bo = pgh.R/7, remains much less than unity. Pratap
et al. (2008) performed experiments for a wide range of surface tension gradients and
drop sizes 0.6 mm < R < 1.6mm, fzc < 0.3 mm and found Bo in the range of 1073-1072.
Similarly, Schwartz & Eley (1998) performed numerical simulations with and without
the inclusion of gravity effects and found that, for a footprint radius R < 4 mm, the
gravity effects are unimportant for spreading on a horizontal substrate. On the other
hand, the assumption of negligible gravity effect has practical relevance in microgravity
conditions that are observed in many of the experiments conducted in orbiting space
aircrafts (Subramanian & Balasubramaniam 2001).

Under the lubrication approximation, it is reasonable to consider that the thermal Péclet
number is very small and conduction remains the dominant heat transfer mode within the
drop (Oron & Rosenau 1994; Gomba & Homsy 2010). Thus, the thermal field in the drop
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fluid is governed by the energy equation

3T
— =0, (2.13)
0y2
which is complemented by the boundary conditions
aty=0: T=T,, (2.14a)
- - 9T .
aty=h: —kl? = Hoo(T — Too)- (2.14b)
y

Here, l~<1 is thermal conductivity of the liquid, Too is the ambient temperature and H o is
the convective heat transfer at the interface. Thus, the temperature field within the drop is
obtained as

7= 7, — v = To)Hoob/ki (2.15)

1+ Hooh/ki

Again using the lubrication approximation, it has been found that Heo3/k;, Hooh/ki <
1 (Ehrhard & Davis 1991; Chaudhury & Chakraborty 2015), leading to T ~ T, (%).
Motivated by the high thermal conductivity of the widely used substrate materials,
e.g. silicon (Brzoska et al. 1993), we assume a linearly varying surface temperature
distribution, such that

ﬂ =T. (2.16)

ox
Substituting the above expression for temperature gradient (2.16) and using (2.10) in (2.11),
we get the expression for Marangoni stress as T = —o I, which is > 0. Therefore, the
tangential stress boundary condition (2.5b) takes the form

Tzl = T (2.17)

Next, we non-dimensionalize the variables by choosing the following characteristic
scales: Xe = ye = a, le = pxi/yohd = pea/yo, pe = y0/a, fe = 110, te = X¢/te = Yo/ 1o
and M, = y./u.. Here, a = \/yo/pg is the capillary length scale. Note that the present
characteristic time scale is the capillary time scale and it differs from its Newtonian
counterpart defined in many earlier studies (Gomba & Homsy 2010; Chaudhury &
Chakraborty 2015) only by a factor of three. In what follows, we drop the © from different
quantities and work only with their dimensionless forms.

Using the continuity (2.1a) and the no-penetration condition (2.6b) in (2.7), we can
derive the following form of the kinematic boundary condition (Leal 2007):

oh 90

— 4+ = =

at  ox
Here the flow rate is defined as Q = foh udy. Upon using the constitutive relation

introduced in (2.2) and using the no-slip condition (2.6a,b), the x component of the flow
velocity (u) is obtained as (details in § A)

Ml/n—l n
= g o= B g =] 2a9)
X

where p, denotes the axial pressure gradient dp/dx. Also, we have introduced a
dimensionless thermocapillary number 3, defined as 8 = 7 /p. = Ta/yy. It was reported
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that for the thin film dynamics of Newtonian drops under thermocapillary action, the

streamwise flow velocity is a linear superposition of two driving forces, namely a

Poiseuille flow induced by the pressure gradient py and a shear flow originating from the

Marangoni stress 7 at the free surface (Brzoska et al. 1993). In strong contrast, the velocity

profile in (2.19) suggests a nonlinear coupling of these driving mechanisms, the resultant

of which is dictated both by the power-law index (n) and the thermocapillary number (8).
Consequently, the flow rate is given by

2

1
: {81742 1 —pul 17 (B = hpo) |

_ pql/n—1 1
Q=M |:(n+1)(2n+1)p)2€

n h
— —|B — hp, 1/"“] 2.20
D) e |B — hpxl (2.20)

Using the above form of Q in (2.18) yields the following highly nonlinear partial
differential equation:

Oh et

2 1
- - [”—— {81742 1 — hpu /1 (B — hp) |

(n+1)2n+1) p?

n h
_ - —h 1/n+1] =0.
n+ 1) pe |8 Pyl

Equation (2.21) serves as the governing equation for the evolution of the free surface height
h(x, t). Substituting n = 1 in the above equation recovers the form of the same equation
derived earlier for Newtonian fluids (Gomba & Homsy 2010). It is noteworthy that the
modulus sign in different terms of (2.21) has to be retained throughout the calculations
(Ross et al. 1999) to capture both the physical scenarios: 8 > hp, and < hp,. Moreover,
the nonlinear contribution of the term (8 — hp,) in the equation embodies a stark contrast
in the coupling behaviour of the Marangoni and viscous stresses against the backdrop
of the linear superposition of different effects in the Newtonian counterpart of the same
equation (Gomba & Homsy 2010; Mac Intyre et al. 2018).
Here, the dimensionless pressure profile within the thin film is

(2.21)

a%h
p=—-=—1Mh), (2.22)
ox

where the dimensionless disjoining pressure I7(h) is given as

=[]

with KC = (2(1 — cos(6,)) /) (x2/h2).

It is to be noted that the shear-dependent rheology influences both the capillary and
thermocapillary effects. Although (2.10) suggests that the surface tension is not affected
by the power-law viscosity through the parameter n, the capillary pressure term (2.9)
inherently contains the effect of n through the droplet curvature 3°4/dx>. Along similar
lines, the thermocapillary strength, represented by the parameter 8, is independent of n.
Nevertheless, the actual influence of 8 on the fluid flow and drop profile is not independent
from n, as described in (2.19) and (2.21), respectively.
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3. Solution methodology

The governing equation (2.21) coupled with (2.22) has been solved numerically using
the finite element package COMSOL Multiphysics® v.6.0. Periodic boundary conditions
have been applied for the variables 4 and p at the two ends of the computational domain
(Schwartz et al. 2001; Mac Intyre et al. 2018). The length of the computational domain
has been chosen between 200 and 400, as required to capture the essential physics
of droplet spreading and deformation. The PARDISO (parallel direct sparse solver for
clusters) solver has been deployed for solving the system of linear algebraic equations
arising from the discretization. The pressure gradient term p, in the denominator of the
second term of (2.21) poses an additional numerical hurdle for the solver. This issue
has been tackled by adding a very small number eps ~ 10~1 to p, whenever it reaches
an exact zero. The converged simulation results for the Newtonian fluids (n = 1) have
been compared with the finite-difference results of Gomba & Homsy (2010) and finite
element results of Mac Intyre et al. (2018) in figure S-1(a—c) of the supplementary material
available at https://doi.org/10.1017/jfm.2022.900. An excellent agreement between the
present numerical simulations and the known results can be found in these figures for three
distinct values of the equilibrium contact angle (6, = 5°, 10° and 30°) and different times
(7). It has been observed that an increased shear-thinning (n < 1) behaviour takes lesser
computational time than the Newtonian case, and the converse happens for an intensifying
shear-thickening (n > 1) nature of the fluid.

The choice of a realistic value of the molecular film thickness 71* ~ 10nm demands
a computational mesh size in the same range, i.e. Ax ~ 1075-107> to ensure sufficient
spatial resolution in the moving contact line region (Diez & Kondic 2001; Gaskell
et al. 2004; Gomba & Homsy 2010); however, this increases the computational cost
to an unacceptable level. To optimize the computational performance, Gomba and
co-workers (Gomba & Homsy 2010; Mac Intyre et al. 2018) showed that a choice of
h,. =~ 0.01 provides optimized computational performance without affecting the overall
flow behaviour in the thermocapillary spreading of Newtonian drops. Accordingly, we
choose h, = Ax = 0.01 throughout the simulations.

The breakup of a thin sessile drop is characterized by its rupture into multiple drops
connected by ultra-thin films (Gomba & Homsy 2009; Mac Intyre et al. 2018). Both
surface tension and intermolecular forces at the interface play crucial roles in dictating the
time and intensity of this rupture. The presently reported numerical simulations account
for these physical aspects by using a widely adopted form (Derjaguin & Kusakov 1936;
Mitlin & Petviashvili 1994; Gomba & Homsy 2009) of molecular interaction potential
(2.8) that models both attractive (destabilizing) and repulsive (stabilizing) forces at the
interface. This consideration gives rise to an equilibrium film thickness ., enabling the
numerical framework to provide a solution of the lubrication equation (2.21) for all time
and, thus, model the formation of multiple connected drops.

The initial condition has been chosen as the steady-state profile of the drop shape
without temperature gradient (8 = 0) as derived by Gomba & Homsy (2009). This choice
of initial condition is motivated by the physically consistent drop shape parameters, such
as the initial apparent contact angle (6,) between the liquid and the solid surface, the
maximum height of the drop surface (A,,,4,) and the cross-sectional area (A) of the drop,
which can be related to the absorbed film thickness around the drop (/y) in its equilibrium
condition. Intending to follow a consistent comparison basis for the results with different
power-law indices (), we have chosen identical initial conditions for drops with different
n.
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4. Results and discussions

In this section we demonstrate the results obtained from the numerical simulations and
focus on the intricate interplay between the thermocapillary actuation mechanism and the
shear-dependent fluid rheology. The values of the different parameters used to perform
these simulations are chosen in coherence with the relevant experimental literature.
Experiments related to thermocapillary actuation of non-Newtonian droplets reported the
surface tension at the reference temperature (%) in the range of 2 x 1072-5 x 1072 Nm™!
(Wang et al. 2007a,b). Similarly, the measurements of Chen et al. (2005), Brzoska et al.
(1993) and Pratap et al. (2008) suggest that the temperature gradient of surface tension
is in the range 6 ~ 107°-10~* N'm~! °C, and the longitudinal temperature gradient is in
the range of 37/9% ~ 102—10% °K m~'. We choose the parameter M = [io with regard to
recovering the Newton’s law of viscosity from the constitutive relation in (2.2) in the limit
of n = 1. The capillary length scale is calculated to be in the range a ~ 10741073 m.
Based on different practical ranges of the dimensional quantities, we have chosen the
different dimensionless parameters in the following ranges: 8 =~ 0.001 to 0.03 and M ~
14. The cross-sectional area of the two-dimensional droplets has been approximated from
the experimentally measured radius of the three-dimensional droplets to obtain .4 ~ 10
(Brzoska et al. 1993; Gomba & Homsy 2010). The values of the power-law index n are
considered in the range 0.4-1.6, motivated by the rheological responses of various natural
as well as synthetic polymeric solutions and particulate suspensions (Rafaiet al. 2004;
Wang et al. 2007a,b; Kheyfets & Kieweg 2013).

4.1. Summary of non-Newtonian spreading regimes

In figure 2 we present the different spreading regimes observed due to variations in
the power-law index n, equilibrium contact angle 6, and the thermocapillary number 3.
Figure 2 conveys the key message of this work. In the subsequent sections we describe
the different spreading regimes and provide physical justifications for the central findings.
The Newtonian spreading regimes reported earlier (Gomba & Homsy 2010) have been
highlighted in the above regime maps. Classification of the dynamical phase regimes
has been achieved after reflecting on the results of the numerical simulation for a wide
range of parameter sets (8, n, 6,). Similar to Gomba & Homsy (2009), three regimes
of droplet spreading were identified, viz., the Marangoni film regime, transition regime
and the droplet regime, the distinguishing features of which are mentioned below. For
numerical demarcation, if the speeds of leading and trailing edges of the drop have a
relative difference of less than 1 % throughout the period of droplet spreading, then such a
drop is categorized under the droplet regime. On the contrary, when the relative difference
in the speeds is higher than the said tolerance, and the droplet gradually splits into multiple
parts, it has been identified as the transition regime. Usually, the droplet develops a linear
profile at the beginning, and after further spreading, the film ruptures and splits into
multiple droplets from its rear. The complex transient behaviour and film rupture pose
a difficulty in characterizing the droplet spreading in the transition regime. Finally, the
droplets under the Marangoni film regime are those having a high speed difference at
the two edges, but do not split into multiple droplets, and have the characteristic linear
profile. In this case, the leading front of the droplet moves at a faster (identified by the said
tolerance) velocity than the rear; hence, the width of the droplet increases with time. The
trailing edge has a characteristic capillary ridge and exhibits a linear profile, with its slope
decreasing over time.
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Figure 2. Regime maps depicting the various modes of droplet spreading in the n — 6, plane (6, in degrees) for
thermocapillary numbers (a) B = 0.001, (b) g = 0.007 and (c) B = 0.03. The points inside the black dashed
rectangles denote the Newtonian (n = 1) results reported by Gomba & Homsy (2010). Due to difference in the
non-dimensionalization schemes, the parameter § is related to the parameter B defined in Gomba & Homsy
(2010) by the relation 8 = 2B/3.

Furthermore, we have checked the regimes reported in figure 2 with s, = 0.005 and
found no change in the regime boundaries. Lowering the A, values has an effect only
in the transition regime (defined in §4.4), where the number of split drops and their
shapes vary and have no effect on the spreading behaviour of droplets in other regimes,
thereby justifying the choice of A, in the current numerical simulations much above the
experimentally observed molecular film thickness.

4.2. Non-Newtonian effects on Marangoni films

Figure 3(a) illustrates the axial variation of the free surface profile at time r = 3 x 10*
and for different values of the power-law index n. It is observed that a shear-thickening
(n = 1.4) drop spreads much faster than a Newtonian drop, while a shear-thinning droplet
(n = 0.6) moves at a slower pace. The observed nature of relative speeds for different
non-Newtonian drops is against the intuitive prediction that the speed of the contact
line should reduce due to a corresponding decrease in viscous resistance offered by
shear-thinning fluids. Nevertheless, the experimental observations of Rafai et al. (2004)
under isothermal conditions support our findings. They pointed out that the flow near
the contact line region gets accelerated due to the amplified shear-thinning effect. At
the same time, this acceleration mechanism is counteracted by the escalating shear
rates in this zone, causing faster displacement of the corner points in the contact line
region. Thus, the contact angle is lowered, and subsequent suppression of the driving
mechanism for spreading results. As a cumulative effect, the contact line moves at a slower
pace.

A distinguishing feature of drop shape found in the above figure is a linear bulk
region, bearing similarity with the formation of a capillary ridge in Marangoni films
(Kalliadasis, Kiyashko & Demekhin 2003; Sauleda et al. 2022). The droplet’s shape near
the advancing front becomes steeper with the augmented shear-thickening nature of the
fluid. The shear-thinning drop (n = 0.6) has been found to show a significant deviation
from the original curvature, while its Newtonian (n = 1) and shear-thickening (n = 1.4)
counterparts have already developed a linear shape in the bulk region. The physical
mechanism behind this behaviour is described below.
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Figure 3. (a) Droplet profiles at time instant f = 3 x 10* for different power-law indices n. (b) Scaled droplet
height (hﬂl/ n MI=1/m)y versus axial distance relative to the rear contact point (x — xp) at large times. Other
parameters are A = 10, 8 = 0.007, 8, = 5°. The dotted lines indicate the asymptotic linear profile in each
case. (¢) Variation of the normalized slope of the droplet shape in the asymptotic regime on the (n, §) plane.

4.2.1. Asymptotic solution

To gain physical insight into the spreading kinematics, we appeal to (2.20). The relative
importance of different terms can be estimated by defining a variable & = hp’/B, which
gives the following alternative form of the flow rate:

2
— aql/n=1,1/n;2 n 1 e/
0=M"""p h|:—(n+1)(2n+1)_$2{1 1= - )
n 1
_ S 11 _ g(n+1)/n
—(n+1)§|1 & } 4.1)

Now, far from the leading and trailing edges of the drop the curvature is negligible, giving
rise to a negligible contribution of the capillary pressure term in the total pressure. Not
only that, the term /C in (2.23) turns out to be negligible due to a small value of the
equilibrium contact angle 6,. This indicates a diminishing disjoining—conjoining pressure
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term in (2.22). Consequently, the limit & = hp’/B — 0 is reached, which is also verified

from the numerical simulations. Thus, a binomial expansion of |1 — &|®+D/" allows us to
write the asymptotic form of (2.21) in the limit § — 0 as

dh 9 | h?
mL o /n=1gim™ ) _ g 4.2
T (M P ) ’ *-2)

signifying a Marangoni stress dominated spreading regime. Following Gomba & Homsy
(2010), a self-similar solution of the above equation can be derived as

X — Xp

h = MUn=Tg1/n;’

(4.3)

where xq is the initial position of the rear contact angle. Thus, in this linear regime the

droplet height can be represented using a scaled variable hB'/" / M!~1/" that superimposes
the dynamics for different power-law fluids and thermocapillary numbers, as shown in
figure 3(b). The figure also shows that, with the increase in time, the drop height reduces,
further indicating the dominance of the linear profile for a larger portion of the drop
volume.

It is also inferred from (4.3) that a point on the free surface with height 4 has a velocity
U = dx/dt = M!/"=1gl/np highlighting the effect of the power-law index on the drop
speed. The asymptotic free surface profile /(x, ) depicted by (4.3) is shown with dashed
lines for all the cases shown in figure 3(a). It is prominent that the accuracy of the
asymptotic prediction spans a wider portion of the drop with increasing values of the
power-law index n. This indicates a long-lasting contribution of the capillary pressure for
the shear-thinning fluids compared with other fluids and explains the greater resistance to
shape change offered by shear-thinning fluids.

The slope of the droplet in the asymptotic regime (S) can be approximated from (4.3) as
S = 0h/dx = M'=1/ng=1/n=1 The slope S for the non-Newtonian drops, normalized
by the slope of a corresponding Newtonian drop at the same time (Sy), has been
shown as a function of both the thermocapillary number 8 and power-law index n in
figure 3(c). It shows that increasing the strength of the Marangoni stress, quantified by
increasing f3, causes a decrease in slope, representing the higher spreading rates with
high thermocapillary strength for the same value of n. On the other hand, a decreasing
slope predicts reducing values of the maximum free surface height & with increasing g,
a finding in accordance with the qualitative observations related to Newtonian Marangoni
films (Kalliadasis et al. 2003).

A triangular approximation of the drop area A in the bulk region yields

B w(xr — xp) B w2
A= 2M1/n—1[81/nt - 2M1/n—1[81/nt’ (4.4)
with x¢ and x, being the locations of the front (or advancing) and rear (or receding) contact
lines, and w denoting the base width of the drop, defined as w = x¢ — x,. From (4.4) the
width can be expressed as

w=C(B, A, M, )i, 4.5)

where C = QAMY/=1g1/m1/2 and « = 1/2 are the prefactor and the spreading
exponent for droplet spreading. The asymptotic expression for w(¢) is observed to match
well with the actual numerical data, as shown in figure 4(a). The functional form of w(z)
suggests that in the thermocapillary regime the exponent for spreading () does not depend
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Figure 4. (a) Time evolution of the droplet base width w for different n. The dotted lines indicate the
corresponding asymptotic curve in each case obtained from (4.5). Other parameters are A = 10, 8 = 0.007
and 0, = 5°. (b) Contour map for the droplet foot width at # = 2.1 x 10° normalized with respect to its initial
value (w/wp) on the n—f plane. Time evolution of the velocity of the peak height (¢) and its axial position
(d), for a different power-law index n. Insets show time variation of hpeqr (¢) and Xpear (d). A time interval
At = 1000 has been used in the calculations of the peak velocity components from the numerical results.

on the power-law index, whereas the prefactor (C) is a function of n. This observation is
in contrast with the spreading characteristics of power-law fluids in the capillary regime
(King 2001; Starov et al. 2003; Rafaiet al. 2004) where the spreading exponent also
depends on n. This contrast is a consequence of the fact that the thermocapillary-driven
spreading is intrinsically different from the capillary regime of spreading, distinguished
by the asymmetry in the drop shape about a central plane, even for a two-dimensional
droplet.

In order to unveil the time scalings of a non-Newtonian, non-isothermal spreading
drop, we have plotted the time evolution of the droplet base width w for changing
values of the parameter n in figure 4(a). Unlike the thermocapillary regime, where we
have derived o = 1/2, the capillary regime spreading characteristics were reported as
w~t* with o = n/(5 + 2n) (Starov et al. 2003). This law dictates the spreading in
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early times where the linear profile assumption is not applicable, and the drop curvature
effect has a significant role to play. In this connection, figure 4(a) depicts that the
critical time for the onset of the large time behaviour (4.5) is higher for shear-thinning
fluids, signifying prolonged capillary-dominated spreading characteristics. Conversely,
the pure thermocapillary dominance commences much earlier for shear-thickening
drops. The spreading extent of the drop has been quantified by the droplet foot
width normalized with respect to its initial value, i.e. w/wqg (obtained from (4.5)),
is shown in figure 4(b). The increasing nature of w/wg with both 8 and n reflects
that both the increasing thermocapillary intensity and the shear-thickening nature
induce greater speeds to the advancing contact line x; than the receding contact
line x,.

The velocity of the peak point of the free surface profile (xpear, hpeax) sheds light
onto the time dependence of the spreading. The velocity components of the peak
point (Upeak, Vpeak), as delineated in figures 4(c) and 4(d), have been approximated as
differences between successive elements of the xpeqr(f) and hpeqr(f) data obtained from
the numerical simulations. A time interval At = 1000 has been used in these calculations.
The initial rise in peak (see inset of figure 4¢) signifies a critical competition between
the capillary-dominated spreading and viscous effect within the early time zone. As time
increases, the thermocapillary effect becomes significant and the capillary driving force
is suppressed. In effect, a corresponding decrease in the peak position is observed. The
negative values of vertical peak velocity Vjeq for different fluids physically signify a
falling droplet height with time as it spreads along the surface. Finally, the peak saturates
to a constant height, represented by its constant velocity (Upeak, Vpeak) after a certain
time of spreading. For shear-thickening fluids, the initial viscous prominence is more
significant due to increasing velocity gradients, and the competitive behaviours of the
viscous and thermocapillary effects are observed up to a much longer time than that of
the Newtonian or shear-thinning fluids. This is reflected in the sharp gradients of Upeqx (?)
and V)eai (1) curves till much longer times for shear-thickening fluids. These sharp changes
mark the transition from the early time capillary regime to the large time thermocapillary
regime (Chaudhury & Chakraborty 2015). In this connection, a qualitatively similar sharp
transition was reported earlier by Ren et al. (2015) for contact line velocity in the capillary
spreading of a Newtonian drop.

4.2.2. Onset of new Marangoni film regimes

In addition to causing characteristic modulations to the drop profiles within the Marangoni
film regime itself, the shear-dependent rheology is capable of instigating Marangoni films
in place of a different spreading regime observed for Newtonian fluids. One such case
is demonstrated in figure S-2 of the supplementary material, which depicts the gradual
development of the profile of a shear-thickening drop with n = 1.4 into a Marangoni film
from a transition regime spreading of drops having n < 1.1 (refer to figure 2a).

Again, comparing the regime maps in figure 2(a—c), it is found that the Marangoni film
regime emerges at a high value of the power-law index (n.,), which is dependent on the
parameter 8. On the other hand, the Marangoni film zone is restricted upto a lower range of
6, for lower values of §. For example, the Marangoni zone has been observed till §, = 5°
for 8 = 0.001 and 0.007, however, the same zone spreads upto 6, = 10° for § = 0.03.
The physics responsible for such behaviour can be explained with due consideration that
the effect of disjoining pressure is suppressed to a greater extent for high 8. At the same
time, the competition between the disjoining pressure and the Marangoni effect is severely
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Figure 5. (a) Axial position (x) versus height of the droplet () att = 3 x 10* for different power-law indices
n. The dotted and solid lines correspond to the cases with = 0.01 and B = 0.007, respectively. (b) Variation of
the constant droplet velocity U with n for a different thermocapillary number B. Other parameters are A = 10
and 6, = 40°.

influenced by the shear dependence of the viscosity, giving rise to critical power-law
indices n;.

4.3. Non-Newtonian effects in uniform droplet motion

For a high contact angle value, the curvature effect is significant, and the droplet profile
can no longer be approximated as a Marangoni film. This can be perceived as the
manifestation of a strengthened disjoining—conjoining pressure at high contact angles
that competes with the Marangoni stress in determining the curvature. Figure 5(a) shows
the droplet profiles at = 3 x 10* with 6, = 40° for different power-law indices () and
thermocapillary numbers (). The numerical simulations in this parametric zone predict
that the droplet advances with a constant velocity U and retains almost the same shape
during the movement. Such a condition implies equal velocities of the drop’s advancing
and receding contact lines. We show that the non-Newtonian rheology strongly influences
the uniform droplet migration speed, as evident from the different locations attained for
fluids having different power-law indices. Compared with a Newtonian fluid, the uniform
droplet speed U enhances for shear-thickening fluids, while a speed reduction occurs for
shear-thinning fluids. It is to be noted that the analytical approximation of drop speed
derived earlier for Newtonian fluids (Brzoska et al. 1993; Pratap et al. 2008) is not feasible
in the present scenario owing to the nonlinearity associated with the power-law model.

An intricate interplay between the thermocapillary effect and the shear-dependent
viscous effects in deciding the droplet migration speed is portrayed in figure 5(b). It shows
that the rate of increase in U with n is higher for n < 1, while in the region n > 1, the
droplet gradually reaches a constant velocity U. In addition, for high §, the velocity has
an overall increase, but it saturates faster than in lower § cases. Such observations can be
substantiated by considering that the fluid rheology affects the mechanisms of disjoining
pressure and the Marangoni stress differently for varied strengths of the parameter g, and
the resultant effect is reflected accordingly.
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4.3.1. Onset of new droplet regimes

For some high values of 8 (e.g. B = 0.03,6, =30° in figure 2c), the droplet shows
uniform motion for some shear-thinning fluids, while the transition regime sets in at a
critical high value of n.,, which is again dependent on the equilibrium contact angle 6,.
Figure S-3 of the supplementary material shows one such instance. In this case, the drop
peak initially falls, but retains a steady shape after a certain time. Here, the early time
behaviour is greatly influenced by the intermolecular force at the drop—substrate interface
and the drop shape tends to flatten. However, with an increase in time, the thermocapillary
force is modified by the shear-thinning effect to such an extent that the intermolecular
force is overpowered. Consequently, the destabilization of the thin film at the interface is
suppressed, and the droplet shape remains intact.

The regime maps in figure 2 illustrate a common trend that for all the g values
considered, decreasing the power-law index has the effect of pushing the drop into the
‘droplet’ regime. It is observed from figure 2(a) that beyond the critical equilibrium contact
angle 6., = 10° the droplet regime is the only regime that can occur with g = 0.001.
However, this critical angle becomes 6., = 20° for § = 0.007, and 6., > 40° for 8 = 0.03,
as depicted by figures 2(b) and 2(c), respectively. This observation suggests that the
dominance of the disjoining pressure in preserving the drop shape is diversely intervened
by the fluid rheology depending on the strength of the Marangoni stress.

4.4. Non-Newtonian effects in the transition zone

It has been discussed in the preceding sections how the complex rheology can influence
the different governing mechanisms responsible for the Marangoni film or the droplet
regime of spreading. Now, it is found from figure 2(a—c) that the above two spreading
regimes are separated by another spreading zone, defined here as the ‘transition’ regime.
This spreading regime is characterized by rupturing of the main droplet body into multiple
sister droplets or the advancement of the drop with an irregular shape without rupture,
which cannot be classified either as a ‘droplet’ or ‘Marangoni film’. In this intermediate
regime both the Marangoni stress and the disjoining—conjoining pressure terms turn out
to be of comparable magnitude. As a result, the droplet eventually ruptures and splits into
multiple smaller droplets that follow the parent droplet body. This being the case for a
Newtonian droplet, the shear-dependent rheology modulates both these mechanisms in a
complex and interconnected fashion for non-Newtonian droplets. Figure 6(a) describes the
time evolution of a shear-thickening droplet for 6, = 20° and 8 = 0.007 in the transition
regime where the droplet ruptures into multiple smaller droplets.

Under certain circumstances, the shear-thinning fluids can also show transition
behaviour (see figure 6b), which is characteristically different from the corresponding
transition behaviour for a Newtonian drop (refer to figure 6¢). These figures also suggest
that at low B and 6, rupturing of the droplet is delayed for a shear-thinning fluid.
Notably, the drop behaves like a single entity with irregular shape for n = 0.6 even upto
a large time r = 6 x 10°, as elucidated in figure 6(b). For Newtonian fluids the transition
regime commences at a fixed intermediate contact angle (6;-) when the thermocapillary
number (f) is held fixed. However, the non-Newtonian droplets show a more involved
transition characteristic such that the critical transition contact angle 6, depends on the
power-law index n. Figure 2(a) shows that, for a low thermocapillary number g = 0.001,
the transition region appears in the phase map for a narrow range of contact angles
in the zone 6, < 10°. In comparison to this, the high B cases in figures 2(b) and 2(c)
show broader ranges of 6,, resulting in transition behaviour, ranging upto 6, &~ 40° in the
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Figure 6. Time evolution of the droplet in the transition regime (a) 6, = 20°, 8 = 0.007 and n = 1.6;
(b) 0, = 5°, 8 =0.001 and n = 0.6; and (¢) 6, = 5°, 8 = 0.00l and n = 1.

last case. It is also revealed from the regime map in figure 2(a) that, for 6, = 5°, the droplet
eventually ruptures till n < 1.1 instead of developing Marangoni films. Thus, in this zone,
the effect of the power-law index on Marangoni stress plays a minor role compared with
its effect on the disjoining pressure. On the other hand, for n > 1.1, the shear-thickening
effect makes the Marangoni stress so strong that the droplet mimics the behaviour of a
Marangoni film.

4.4.1. Onset of new transition regimes

Figures 7(a) and 7(b) highlight two contrasting spreading characteristics with varying
power-law index n for moderate (8 = 0.007) and high (8 = 0.03) thermocapillary
numbers, respectively. While, for § = 0.007, the emergence of transition characteristics
with shear-thickening fluids is preceded by droplet characteristics with lower n values,
the B = 0.03 case exhibits a transition behaviour for all ranges of n considered. Our
simulations disclose that in this parametric zone the shear-thickening fluids exhibit
a greater tendency of droplet rupture than the other fluid types. This is reflected in
figure 7(b), which shows a greater number of ruptured droplets for n = 1.4 than n = 1
and 0.6 cases.
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Figure 7. Axial position (x) versus height of the droplet (/) for different power-law indices n, at (a)
B =0.007 and (b) B = 0.03. Other parameters are t = 4 x 104, A = 10 and 6, = 20°.

Another type of new transition characteristics emerge in figure 2(c) for shear-thinning
fluids (0.4 < n < 0.7) with 6, = 10° and B = 0.03. It shows that n values beyond this
range facilitate the development of Marangoni films. Here, we find a tendency of early
droplet rupture near the trailing edge as the parameter n is lowered in the zone 0.4 <
n < 0.7. An example of this behaviour is portrayed in figure S-4 of the supplementary
material. This observation is in sharp contrast with the pronounced ‘transition’ tendency of
shear-thickening fluids as observed in the high contact angle zone 6, = 25° in figure 2(c).
These opposing effects of power-law index 7 on the onset of transition regime for a distinct
parameter set (6, f) reiterates the contrasting influence of fluid rheology on the competing
mechanisms, namely the conjoining—disjoining pressure and the Marangoni stress.

5. Conclusions and remarks

We have developed a mathematical model to explore the rich interfacial dynamics of a
thermal gradient-driven sessile drop having shear-dependent viscosity, relevant to diverse
industrial and biological flow scenarios. The momentum equation coupled with the
incomprehensibility condition has been solved using the lubrication approximation, along
with a conjoining—disjoining pressure model to tackle the contact line singularity. The flow
field has been shown to be a nonlinear composition of a power-law Poiseuille flow and a
shear flow triggered by the interfacial driving force of Marangoni flow. Consequently, the
numerical solution of the governing equations has been found to agree reasonably well
with an asymptotic analytical solution derived in limiting scenarios.

A systematic analysis of the droplet profiles for varying droplet wettability,
thermocapillary strength and the shear dependence of viscosity enabled us to categorize
the droplet spreading features into three distinct regimes, namely (i) the Marangoni film
regime, where the droplet attains a linear profile similar to a capillary ridge; (ii) the droplet
regime, where the droplet migrates at a constant speed with almost the same shape; and
(iii) the transition regime, where the droplet either ruptures or moves with an irregular
shape.

The reported results related to the Marangoni film regime reveal that at a low value of
the equilibrium contact angle, the Marangoni effect overpowers the weakened disjoining
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pressure, resulting in negligible curvature of the droplet. In addition, it has been inferred
from the regime maps for both low and high B (figure 2a,c) that a high value of the
power-law index is responsible for a greater tendency for the conversion to the Marangoni
film regime from the transition regime. It has been found that a shear-thickening droplet
has a steeper advancing front, whereas its shear-thinning counterpart retains a significant
curvature for a much longer time. Moreover, a shear-thinning (thickening) droplet spreads
at a slower (faster) rate than a Newtonian droplet. This behaviour has been linked
to opposing causes of flow acceleration at the contact line area and contact angle
reduction. We also discovered that the capillary- and thermocapillary-driven spreading
mechanics are prominent at various time scales for the non-Newtonian fluids studied.
The thermocapillary-dominated spreading behaviour sets in at a much earlier time for
shear-thickening fluids (figure 4a). Furthermore, the time variation of the droplet peak
(figure 4c,d) unravels that the shear-thickening fluid property makes the initial viscous
stresses a dominant participant till a much longer time during its interaction with the
thermocapillary stresses, causing sharp gradients in the time evolution of peak point
velocity.

The droplet regime occurs at a high equilibrium contact angle 6,. In this regime a
strengthened disjoining—conjoining pressure prevents the droplet from attaining a linear
shape, and the droplet migrates at a uniform speed U with almost the same shape. The
regime maps illustrate that decreasing the power-law index has the effect of retaining the
drop within the ‘droplet’ regime. In effect, the onset of this regime does not commence at
a fixed value of 6, when the rheology deviates from that of a Newtonian fluid. While some
shear-thinning fluids cause uniform droplet motion, the transition regime sets in beyond
a critical power-law index. While certain shear-thinning fluids induce uniform droplet
motion, the transition regime kicks in after a threshold power-law index. Not only this, the
minimum equilibrium contact angle (6.,) required for preserving the droplet shape shows
a steady increase with 8. For example, 6., = 10°, 20° and 40° with 8 = 0.001, 0.007 and
0.03, respectively. We have further highlighted an enhancement (attenuation) of U in the
n>1(n < 1) cases (figure 5b). An intricate interplay between the thermocapillary effect
and the shear-dependent viscous effects decides the droplet speed. For high values of j,
the droplet velocity has an overall increase, but it gradually reaches a constant value at a
faster rate. On the other hand, U increases with the power-law index n. The rate of increase
of U with n is high for shear-thinning fluids, while saturation of U has been observed with
the shear-thickening rheology.

In the intermediate transition regime, the Marangoni stress and the disjoining pressure
terms are comparable. The nonlinear interaction of these effects in the case of
non-Newtonian fluids greatly influences the drop spreading characteristics. In conditions
with low 8 and 6, values, a delayed rupturing of the droplet takes place for shear-thinning
fluids (figure 6b). The regime maps show that the transition zone is extended for a larger
span of 6, with an increase in 8. In addition, an overall higher tendency of shear-thickening
fluids has been revealed due to high chances of droplet rupture. In contrast, for some
low 6, and high B8 combinations, the rising power-law indices do not ensure transition
characteristics, rather the Marangoni film is encountered (see, e.g. figure S-4).

To summarize, we have unraveled the unique characteristics of the different spreading
regimes that are engendered due to a highly nonlinear impact of the non-Newtonian
rheology on the competitive effects of Marangoni stress and conjoining—disjoining
pressure. It is worth noting that the results of the power-law model should be used
cautiously when the shear rate is low. For a more comprehensive study in the future,
focusing on the shear rate dependent fluid rheology, Carreau or other such models
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(Bird et al. 1987; Myers 2005) may be employed to overcome the shortcomings of
the power-law model by incorporating finite zero and infinite shear rate viscosities.
Furthermore, an enhanced understanding of other non-Newtonian effects, for example,
normal stresses in fluids (Rafaier al. 2004) remains an exciting arena to explore and may
complement the different aspects of the present work. We conjecture that the incorporation
of gravity effects in the present problem set-up may have interesting consequences like
enhanced spreading rates (Karapetsas et al. 2014), elongation of droplets (Brzoska et al.
1993), etc.

The present model stands as a first attempt to identify the complicated interplay between
the thermocapillary effects and the non-Newtonian rheology on droplet spreading,
considering the two-dimensional droplet as the representation of the symmetry plane
passing through the maximum thickness of the original three-dimensional drop, similar
to a host of earlier works on Newtonian droplets (Ehrhard & Davis 1991; Gomba &
Homsy 2010; Sui 2014; Chaudhury & Chakraborty 2015; Mac Intyre et al. 2018). However,
inferences drawn from the current study should be used with caution when comparing to
experiments due to the assumed two-dimensional shape in simulations, whereas actual
drops are three-dimensional. A two-dimensional droplet model was found to describe
the experimental results with great accuracy for the uniform droplet regime (Chen
et al. 2005), supporting our considerations. Conversely, due to the presence of another
radius of curvature in three dimensions, the capillary stress is expected to be different
for three-dimensional drops, particularly in the Marangoni film regime. In addition,
the droplet rupture in two- and three-dimensional scenarios could differ, indicating the
need for detailed three-dimensional simulations to validate the droplet characteristics
in the transition regime. We intend to address these complicated issues arising in a
three-dimensional droplet in future studies.

Given the flexibility of tuning both the shear-thinning and shear-thickening properties
of polymeric fluids by using different combinations of the base fluid and the solute (Wang
et al. 2007b), the current theoretical insights may open up new avenues for experimental
exploration. Besides, the reported distinct droplet behaviours due to shear-dependent fluid
viscosity may be correlated for accurate extraction of the complex rheological properties
of the working fluid. Finally, the technological advancements in thermal gradient-based
control in droplet microfluidics (Nguyen, Pang & Huang 2006; Won, Lee & Song 2017)
may be coupled with the fundamental understanding of the complex rheological responses
of the spreading droplets developed in the present work toward designing efficient
microfluidic systems used for enhanced manipulation of complex biofluids.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.900.
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Appendix A. Detailed derivation of flow velocity and flow rate
The two-dimensional Cauchy momentum equation (2.1a) takes the form

% = @ (A1)
ay 0x’

Integrating with respect to y from 3 = / to 7 gives
T l5 = Tol; = BaF = e (A2)
Since Tyy|; = 7 (2.17), we can write
Toly =P+ 1, where ¢y = —hp.+ 1. (A3)

Applying the lubrication approximation, the power-law constitutive equation (2.2) can be
used in the above equation to yield
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Again integrating from y = 0 to y and using the no-slip condition lead to
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Thus, the expression for flow rate becomes
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