
J. Fluid Mech. (2014), vol. 761, R1, doi:10.1017/jfm.2014.653

Emergence of dispersion in shallow
water hydrodynamics via modulation
of uniform flow
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A new theory for the emergence of dispersion in shallow water hydrodynamics in two
horizontal space dimensions is presented. Starting with the key properties of uniform
flow in open-channel hydraulics, it is shown that criticality is the key mechanism for
generating dispersion. Modulation of the uniform flow then leads to model equations.
The coefficients in the model equations are related precisely to the derivatives of the
mass flux, momentum flux and mass density. The theory gives a new perspective –
from the viewpoint of hydraulics – on how and why key shallow water models like the
Korteweg–de Vries equation and Kadomtsev–Petviashvili equations arise in the theory
of water waves.
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1. Introduction

Criticality, uniform flows and bulk quantities such as the mass flux (Q), total head
(R) and flow force (S) are at the heart of the subject of open-channel hydraulics in
one space dimension (Henderson 1966; Abbott 1979). The key properties of uniform
flows (h0, u0), where h0 is the constant depth and u0 is the horizontal mean velocity,
are captured by the mass flux, total head and momentum flux,

Q= h0u0, R = gh0 +
1
2 u2

0, S = 1
2 h0u2

0 +
1
2 gh2

0, (1.1a−c)

where g is the gravitational constant and the fluid density is taken to be unity. Here
and henceforth (Q,R,S ) represent (Q, R, S) evaluated on a uniform flow.

There are various ways to define criticality of a uniform flow, but for the purposes
of this paper the most useful definition is in terms of the mass flux. The uniform flow
is critical if

Qu

∣∣
R fixed = 0, where Qu :=

∂Q

∂u0
(1.2)
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fixed

FIGURE 1. Mass flux versus uniform velocity for fixed total head.

(see figure 1). Fixed R determines h0 as a function of u0 and so

Qu

∣∣
R fixed =

1
g

(
R −

3
2

u2
0

)
= h0 −

u2
0

g
, (1.3)

recovering the usual ‘Froude number unity condition’. A curiosity in the theory of
open-channel hydraulics is that the second derivative of Q,

κ =Quu

∣∣
R fixed, (1.4)

evaluated at criticality is never considered. Here, κ is a curvature, its calculation in
this case is elementary, κ =−(3/g)u0, and there is no obvious reason why it might
be interesting.

However, remarkably, κ appears as the critical coefficient of the nonlinearity in
the Korteweg–de Vries (KdV) equation when dispersion emerges in shallow water
hydrodynamics. To show this, and its generalisation to two dimensions, it is useful
to establish how and why the KdV equation emerges from a uniform flow.

The traditional argument for the emergence of dispersion in shallow water, going
back to the paper of Korteweg & de Vries (1895), starts with a quiescent background
flow, the shallow water limit, small amplitude and the assumption that ‘amplitude
balances dispersion’. This latter assumption can be manifested by expanding the
governing equation in terms of two parameters (the dispersion parameter and the
amplitude parameter) and taking the limit to zero with their ratio constant. This
balancing takes place on a trivial background flow and leads to a two-way Boussinesq
equation. Unidirectionalisation is then the splitting of the Boussinesq equation into
left-running and right-running KdV equations. See § 13.11 of Whitham (1974) for a
discussion of this strategy for deriving the KdV equations. The standard form for the
two emergent KdV equations in dimensional coordinates is

Ut ±
√

gh0Ux +
3
2

UUx ±
h2

0

6

√
gh0Vxxx = 0, (1.5)

where V is a characteristic velocity. It is derived relative to a moving frame of
reference, with the frame speed c = ±

√
gh0. The ± signs here are an indication of

left- and right-running versions.
A new approach to the derivation of the KdV equation was presented in Bridges

(2013) based on modulation of the uniform flow near criticality. This modulation is
shown schematically in figure 2. In the modulation X= εx, T = ε3t and ε is a measure
of the distance from criticality. Carrying out the modulation results in the following
equation for q:

2MuqT +QuuqqX +K qXXX = 0, (1.6)

761 R1-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

65
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.653


Emergence of dispersion in shallow water

FIGURE 2. Modulation of the uniform flow.

where M is the mass density, evaluated on a uniform flow, with R fixed. If (x, z)
coordinates are used with z vertically upward, z = 0 the horizontal bottom and the
free surface at z = η(x, t), then the mass conservation law for the full water-wave
problem is

Mt +Qx = 0, M =
∫ η

0
dz, Q=

∫ η

0
u(x, z, t)dz, (1.7a−c)

with fluid density taken to be unity. For uniform flow, M = h0 = (1/g)(R − u2
0/2)

and so Mu = −(u0/g). Substituting the expressions for Mu, Quu and K = (h3
0/6)

into (1.6) and noting that u0=±
√

gh0 at criticality reduces it exactly to (1.5), except
that (1.6) is relative to a laboratory frame (but Galilean invariance assures that they
are equivalent).

The detailed derivation leading from u= u0+ ε
2q to the precise form (1.6) is given

in Bridges (2013). Substitution of the modulation ansatz into the governing equations,
and expansion of all terms in powers of ε, is straightforward. The key new idea
is how to relate the coefficients in the resulting KdV equation to the components
of the conservation law evaluated on the uniform flow. That theory relies on the
fact that the governing equations are deduced from a Lagrangian and the fact that
Noether’s theorem gives a precise connection in this setting between symmetries and
conservation laws. Indeed, since the Lagrangian symmetry connection is quite general,
it can be established that criticality, suitably generalised, is a universal mechanism
for the emergence of the KdV equation, and gives a rule for construction of the
coefficients (cf. Bridges 2013).

The purpose of this paper is to generalise the emergence of nonlinearity and
dispersion via modulation to the case of two horizontal space dimensions, giving a
new theory for the emergence of the Kadomtsev–Petviashvili (KP) equation. Given a
uniform flow (h0, u0, v0) the mass flux is now vector valued,

Q(u0, v0)= h0u0 and P(u0, v0)= h0v0, with gh0 +
1
2(u

2
0 + v

2
0)=R, (1.8)

and the generalisation of (1.6) is the KP equation,

2MuqT +QuuqqX +K qXXX +PvpY = 0 and qY = pX. (1.9)

The first three coefficients are the same as the KdV equation in (1.6), and the new
coefficient, Pv, is determined from the transverse mass flux (it is immediate from
(1.8) that Pv = h0 at criticality). The mass conservation law in three dimensions is

Mt +Qx + Py = 0, with P=
∫ η

0
v(x, y, t)dz, (1.10)

with P equal to P evaluated on a uniform flow.

761 R1-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

65
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.653


T. J. Bridges

The KP equation (1.9) arises due to modulation of the uniform flow near criticality,
but what is criticality in this case? The theory shows that the right generalisation is

Qu

∣∣
R fixed = 0 and Pu

∣∣
R fixed = 0. (1.11a,b)

The latter requirement does not appear in the classic hydraulics literature, but it
appears naturally as the required condition in the modulation theory. Evaluation of
the coefficients on the uniform flow gives the KP equation that is found in textbooks
(e.g. Dingemans 1997; Johnson 1997; Mei 1989; Osborne 2010).

There are three interesting precedents for the theory here. In Benjamin & Lighthill
(1954) the steady KdV equation is derived based on a perturbation of the uniform
flow, with the mass flux (Q), total head (Bernoulli constant) (R) and flow force
(S) playing a central role. However, the Benjamin–Lighthill theory is for the steady
problem only, and the coefficients in the KdV equation are not expressed in terms of
the properties of the uniform flow (for example, the coefficient of the nonlinearity is
not the curvature of Q). Moreover, in Benjamin & Lighthill (1954) it is the extension
to finite-amplitude waves of S, Q and R that is important, whereas here it is Q and
R evaluated on the uniform flow that is important.

The second precedent is Whitham modulation theory (WMT) (Whitham 1974).
Indeed, the modulation theory here can be considered as a generalisation of Whitham
modulation theory. If the modulation ansatz is changed so that the slow time variable
is T = εt, then WMT is obtained, which is a first-order partial differential equation
and dispersionless. To get dispersion the slow time scale needs to be changed and
degeneracy is necessary.

The third precedent is the classical method of multiple scales (e.g. Grimshaw
2005, and references therein). In this approach, an amplitude function A(X, T) which
multiplies the eigenfunction of the linear problem is introduced, where X and T are
slow space and time variables. A key in this approach is that a solvability condition
is central and generates the KdV equation at third order. This combination of multiple
scales and a solvability condition is particularly useful for deriving the KdV and KP
equations for other settings such as internal waves in stratified flow.

An outline of the paper is as follows. First, in §§ 2 and 3, the derivation of the KP
equation from modulation of two-dimensional uniform flows in the full water-wave
problem is sketched. In § 3.1 it is shown that the new KP equation agrees with the KP
equation in textbooks. A curiosity is that the theory works directly with the uniform
flows and the dispersion relation is never used. This missing link is surprising since
the dispersion relation is important is almost every derivation of model equations in
the theory of nonlinear waves. In § 4 it is shown that indeed the dispersion relation is
in the theory – it is implicit. Some discussion and concluding remarks are given in § 5.

2. Water waves and multi-dimensional uniform flows

Consider the inviscid irrotational water-wave problem in three dimensions (x, y, z, t)
with 06 z6 η(x, y, t) and velocity potential φ(x, y, z, t). The governing equations can
be deduced from Luke’s Lagrangian,

L =

∫∫∫
Ldxdydt, (2.1)

with

L=
∫ η

0

[
φt +

1
2

(
φ2

x + φ
2
y + φ

2
z

)
+ gz− R

]
dz, (2.2)
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Emergence of dispersion in shallow water

where R is the Bernoulli function. The Euler–Lagrange equations deduced from this
functional produce the governing equation for water waves (§ 13.2 of Whitham 1974).

As solutions of the full water-wave problem, uniform flows are

η(x, y, t)= h0 and φ(x, y, z, t)= θ = u0x+ v0y+ θ0. (2.3a,b)

Bernoulli’s equation then gives the expression for R in (1.8). For the time-dependent
problem the Bernoulli ‘constant’ depends on time, although here it is taken to be a
constant. (It is an interesting exercise to modulate the Bernoulli function as well, but
it leads to the same KdV equation – see the comments in § 5.)

The uniform flow is intrinsically connected to the symmetry a 7→ φ + a; that is,
the velocity potential is invariant under addition of an arbitrary constant. Although
this symmetry appears to be trivial physically, it generates via Noether’s theorem the
mass conservation law (Benjamin & Olver 1982), and it is modulation of the mass
conservation law that will result in the KP equation in (1.9).

2.1. Criticality of multi-dimensional uniform flows
The components of the mass conservation law are evaluated on the basic state
(h0, u0, v0) with h0 determined from the Bernoulli equation,

M (u0, v0) = h0 =
1
g

(
R −

1
2

u2
0 −

1
2
v2

0

)
,

Q(u0, v0) = h0u0 =
u0

g

(
R −

1
2

u2
0 −

1
2
v2

0

)
,

P(u0, v0) = h0v0 =
v0

g

(
R −

1
2

u2
0 −

1
2
v2

0

)
.


(2.4)

The generalisation of Qu

∣∣
R fixed is the matrix of first derivatives[

Qu Qv

Pu Pv

]
=

1
g

[
R − 3

2 u2
0 −

1
2v

2
0 −u0v0

−u0v0 R − 3
2 u2

0 −
1
2v

2
0

]
=

1
g

[
gh0 − u2

0 −u0v0

−u0v0 gh0 − v
2
0

]
, (2.5)

after substituting for R.
What is the appropriate generalisation of criticality? Setting the determinant to zero,

0= det
[
Qu Qv

Pu Pv

]
=

h0

g
(gh0 − (u2

0 + v
2
0)), (2.6)

recovers the usual Froude number unity condition with the two-dimensional velocity
field. Here, the generalisation of criticality is taken to be

0=Qu = gh0 − u2
0 and 0=Pu =−u0v0, (2.7a,b)

which gives a zero determinant but also retains the one-dimensional criticality. The
second condition identifies the x-direction as dominant. These conditions arise
naturally in the modulation theory leading to the KP equation, but are heretofore
unknown in the water-wave literature.
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3. Symmetry, modulation and the KP equation

The dependent variables in the water-wave problem are

U(x, y, z, t)=
(

h(x, y, t)
φ(x, y, z, t)

)
, (3.1)

with basic state

Û(θ, u0, v0)=

1
g

(
R −

1
2

u2
0 −

1
2
v2

0

)
θ

 , with θ = u0x+ v0y+ θ0, (3.2)

where θ0 is an arbitrary constant.
Now the modulation is introduced: a solution of the full water-wave problem is

proposed in the form

U(x, y, z, t)= Û(θ + εψ(X,Y,T, ε),u0+ ε
2q(X,Y,T, ε), v0)+ ε

3W(X,Y,T, z, ε), (3.3)

with
q=ψX, X = εx, Y = ε2y, T = ε3t. (3.4a−d)

The solution is an ansatz. It is substituted into the governing equations, everything is
expanded in powers of ε and the system is solved order by order, with a solvability
condition appearing at each order.

This expansion is to be contrasted with a classical multiple-scale formulation,

U(x, y, z, t)= Û(θ, u0, v0)+

∞∑
j=1

ε jWj(X, Y, T, z). (3.5)

In principle they are the same since the Û arguments in (3.3) can be expanded in
Taylor series and absorbed in something like the second term on the right-hand side
of (3.5). The advantage of (3.3) is that the derivatives of Û carry information that
feeds into the modulation equation.

Expanding out the terms in (3.3) gives the following expressions for (η, φ):

η = h0 −
u0

g
ε2q−

1
2g
ε4q2
+ ε3H(X, Y, T, ε),

φ = θ + εψ + ε3f (X, Y, T, z, ε);

 (3.6)

H and f are further expanded in powers of ε, up to third order. The expansions are all
substituted into the governing equations. The general result for the 2D case is given
in Bridges (2013), and so here just a sketch of the additional theory is given, with
the only new result being the appearance of Pv as the new coefficient of transverse
dispersion.

The terms proportional to ε0 and ε1 just recover the equations for the uniform flow,
and the second-order equation gives the homogeneous linearisation about the uniform
flow.

At third order the solvability condition requires Qu= 0, and gives the leading-order
terms for H, f ,

H1 = −
v0

g
ψY,

f1 = −
1
2 h2

0z2qX + α,

 (3.7)

where α is an arbitrary function of X, Y, T .
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Emergence of dispersion in shallow water

At fourth order, solvability requires Pv = 0. Establishing this follows the same
strategy (relating components of conservation laws via symmetry to the uniform flows)
as for Qu = 0 in Bridges (2013). The fourth-order solution is

H2 = −
1
g
ψT +

u0h2
0

2g
qXX −

u0

g
αX,

f2 = β,

 (3.8)

where β is an arbitrary function of X, Y, T .
At fifth order a linear system of the following form is found:

LW3 = ( )qT + ( )qXXX + ( )qqX + ( )ψYY . (3.9)

The coefficients in the first three terms are given in Bridges (2013), with the
coefficient of ψYY being new. Application of the solvability condition then gives

a1qT + a2qqX + a3qXXX + a4ψYY = 0. (3.10)

These coefficients are complicated expressions in terms of inner products. The key
next step is to use the connection between symmetry and conservation laws to give
simple expressions for the coefficients. In Bridges (2013) it is shown that a1=−2Mu,
a2=−Quu and a3=−K . A similar argument shows that a4=−Pv. Defining p=ψY
gives pX = qY and then (3.10) becomes

2MuqT +QuuqqX +K qXXX +PvpY = 0, (3.11)

completing the derivation of (1.9). The case where the dispersions have the same sign,
K Pv > 0, is KP-II and is the case associated with shallow water when gravity is
dominant. The case K Pv < 0 is KP-I and is a model in shallow water when surface
tension is dominant. It should be noted that when surface tension is present, the only
effect is on the coefficient K . Surface tension cannot affect the other coefficients
since they are determined by the uniform flow!

3.1. Comparison with the standard form of the KP equation
Evaluating the coefficients in the KP equation (1.9) on the uniform flow at criticality
and using the expressions for K and Pv from (4.4), it becomes(

−2
u0

g
qT − 3

u0

g
qqX +

h3
0

3
qXXX

)
X

+ h0qYY = 0, (3.12)

or, after dividing through by −2u0/g and imposing criticality, u0 =∓
√

gh0,(
qT +

3
2

qqX ±
√

gh0
h2

0

6
qXXX

)
X

±
1
2

√
gh0qYY = 0. (3.13)

The standard form for the two emergent KP equations in dimensional coordinates is

∂

∂x

(
±ηt +

√
gh0ηx +

1
2

√
g
h0
ηηx +

h2
0

6

√
gh0ηxxx

)
+

1
2

√
gh0ηyy = 0. (3.14)

This is the ‘height form’ of the KP equation. It is derived relative to a moving frame
of reference, with the frame speed c=±

√
gh0, and the background velocity field is
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T. J. Bridges

quiescent. The ± signs here are an indication of left- and right-running versions. A
derivation of this equation can be found in § 6.8 of Dingemans (1997) (see equation
(6.275c) on p. 776). The ‘velocity form’ of the KP equation is obtained by substituting
η= 3

√
(h0/g)u, giving

∂

∂x

(
ut ±

√
gh0ux +

3
2

uux ±
h2

0

6

√
gh0uxxx

)
±

1
2

√
gh0uyy = 0. (3.15)

It is this equation that corresponds to (3.13).

4. Implicit role of the dispersion relation

The dispersion relation, associated with the linearisation about the uniform flow,
does not play an explicit role in the modulation theory for emergence of the KP
equation. It is implicit. On replacing ∂T by −iω, ∂X by ik and ∂Y by i`, the linear
part of (1.9) becomes

− 2Muiω+ ikQu +K (ik)3 +Pvi
`2

k
= 0. (4.1)

This is just the leading-order expansion of the exact dispersion relation

(ω− ku0 − `v0)
2
= gκ tanh(κh0), κ =

√
k2 + `2. (4.2)

A calculation shows that

ωk = 0⇔Qu = 0 and ωk` = 0⇔Pu = 0. (4.3a,b)

This correspondence can be verified by direct calculation, but in fact can be proved
directly from the governing equations; however, it is outside the scope of this paper.
Carrying the calculation to higher order shows that

2Mu
1
6
ωkkk = δ

h3
0

3
= δK ,

kMuω`` = δh0 = δPv.

 (4.4)

where δ =
(
±(u0/

√
gh0)

)
. Since u0 = ±

√
gh0, δ can be taken to be unity. All

derivatives are evaluated at k= `= 0 except ω`` which is evaluated at `= 0 only. One
byproduct is that the coefficients of the classical dispersion relation for irrotational
water waves (4.2) can be given an interpretation in terms of the geometry of uniform
flows.

5. Concluding remarks

The main result in this paper is that the KP equation, the same KP equation that
appears in textbooks, arises due to a much simpler mechanism than previously thought,
and that mechanism is closely tied to classical hydraulics.

Since the mechanism involves starting with a Lagrangian with symmetry, and
looking for degeneracy of the flux vector of the attendant conservation law, the
theory should generalise to many other situations. For example, in Bridges (2013),
it is shown how the KdV equation can be found in many other situations. That theory
generalises to the KP equation.
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Emergence of dispersion in shallow water

Anywhere criticality appears in hydrodynamics, one can expect a generalisation of
the theory here to be developable. For example, the theory of criticality for two-layer
fluids (e.g. Bridges & Donaldson 2007) is manifestly more interesting, and the theory
in this paper can be suitably generalised to generate a theory for the emergence of
dispersion in that setting by modulating the two-layer uniform flow. Another example
is finite-amplitude criticality of Stokes waves (Bridges & Donaldson 2006).

Changing the scaling will change the modulation equation. For example, modulation
of the uniform flow with the ansatz (3.3) but with the scaling X= εx and T = ε2t will
generate a two-way Boussinesq equation, with coefficients determined by derivatives
of the uniform flow.

The basic state (2.3a,b) can be include time modulation, replacing θ with

θ = u0x+ v0y− rt+ θ0 (5.1)

and replacing the modulation (3.3) with

U(x, y, z, t)= Û(θ + εψ, u0 + ε
2q, v0, r+ ε4R)+ ε3W(X, Y, T, z, ε), (5.2)

with R=−ψT and ε4 chosen so that qT +RX = 0 is in balance. However, at fifth order
the same KP equation emerges. The full details of this derivation (and other possible
modulations like v0 7→ v0 + ε

3V) will be given elsewhere.
A moving frame can be included by introducing the transformation x 7→ x − ct,

where c is the frame speed. Examples in the 1 + 1 setting are discussed in Bridges
(2013).
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