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We consider a class of nonlinear dynamic economic models in which the actual
realizations of a certain variable (e.g., price) depend on the agents’ expectations about
this variable. We define a consistent expectations equilibrium (CEE) by the property
that the sample average and the sample autocorrelations of the realizations of the actual
law of motion equal the average and the autocorrelations of the perceived law of motion.
Along a CEE agent’s expectations are thus self-fulfilling in terms of the observable
sample average and sample autocorrelations. Restricting ourselves to the case in which
beliefs are described by an AR(1) process, we study existence and stability of three
different types of CEE: steady-state, two-cycle, and chaotic. We illustrate how these
equilibria can emerge in the nonlinear cobweb model. Learning dynamics based on
sample average and sample autocorrelations are introduced and stability of CEE under
this learning process is investigated.
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1. INTRODUCTION

Most models in economics and other social sciences involve a description of human
behavior. In economics, one usually postulates that human beings (or, in more
general terms, economic agents) behave in a rational way whereby rationality is
meant to cover two different aspects. The first one is that agents behave optimally
in any given situation. For example, they maximize their utility or their profit.
The second aspect of rationality is that agents form expectations about the future
in a way that is not systematically wrong. Most economists seem to agree on
how to formulate optimizing behavior, but there are various opinions on how one
should model the second aspect of rationality. This paper suggests that agents form
expectations about future variables in such a way that their beliefs areconsistent
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with the observed realizations in a linear statistical sense. In other words, it is
supposed that agents act like econometricians using linear statistical techniques
and, in doing so, they do not make systematic forecasting errors.

A dynamic economic model is always an expectations feedback system: expec-
tations affect actual dynamics and actual dynamics feed back into the expectations
scheme. Since its introduction by Muth (1961), and its application to macroeco-
nomics by Lucas (1971), the Rational Expectations Hypothesis (REH) has become
the predominant paradigm in expectation formation in economics. The REH as-
sumes that an agent’s subjective expectation of a future variable equals the objective
expectation of that variable conditional on the information available to the agent
at the time the expectation is formed. In applications of the REH, it usually is
assumed that the information available to the agents includes the market equilib-
rium equations. A rational expectations equilibrium (REE) is a fixed point of this
expectations feedback system. Despite its undeniable appeal as a normative model
of expectation formation, the REH has been criticized for various reasons. For
example, some scholars have pointed out that the REH assumes unrealistic com-
puting power for the agents: In most nonlinear market equilibrium models, even
if agents knew all equilibrium equations, it would be impossible to compute the
REE analytically and it would require quite an effort to do it numerically. Others
have argued that knowledge about the model equations is already too extreme an
assumption. In the recent literature on bounded rationality it has been claimed that
the REH in fact assumes that the agents in the model know more about the model
than the model builders themselves [Sargent (1993, p. 21)]. As an alternative, it
has been suggested that it be assumed that the agents do not necessarily know the
market equilibrium equations, but that they base their beliefs only on observations
of actual time series. For example, the agents might behave like econometricians
and compute their expectations from actual time-series observations in the past,
e.g., by ordinary least-squares regressions [see, e.g., Bray (1982), Bray and Savin
(1986), Marcet and Sargent (1989), Woodford (1990), Bullard (1994), or Evans and
Honkapohja (1995)]. Under this assumption it may or may not be the case that a
REE is the asymptotic outcome of such a learning process.

The present paper introduces the notion ofconsistent expectations equilibrium
(CEE) in nonlinear dynamic economic models. The key feature of a CEE is that
agents’ expectations of a certain variable are consistent with the realizations of that
variable in the sense that their sample average and their sample autocorrelations
are the same. For example, suppose that the agents believe that prices follow a
stochastic low-order AR(k) process and thus predict that tomorrow’s price will
be some linear combination of past prices. Given this belief, a certain time path
of actual prices will be realized through market clearing. We call this time path
of equilibrium prices a CEE if its sample average and its sample autocorrelation
function equal the average and the autocorrelation function, respectively, of the
AR(k) belief process. Stated differently, a CEE is a fixed point of the expectations
feedback system in terms of theobservablesample average and sample autocor-
relations. CEE is thus an equilibrium concept for which beliefs are self-fulfilling
in a linear statistical sense.
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This paper deals with the existence, the possible structures, and the stability of
CEE. We show that in the simple class of nonlinear dynamic models with a cobweb
demand-supply structure, at least three types of CEE are possible given an AR(1)
belief: steady-state, two-cycle, and chaotic. The simple steady-state and the two-
cycle CEE are asymptotically equal to REE. In our framework, however, the strong
conclusions drawn from the REH can be obtained without assuming that the agents
have any knowledge about the underlying market equilibrium equations. Instead,
these conclusions follow simply from the assumption that the agents have an AR(1)
belief that is consistent with actual observations. The more complicated chaotic
CEE are not REE, not even in the long run. In those equilibria, agents do make
mistakes, but these mistakes are not systematic: The sample average and sample
autocorrelations of the chaotic equilibrium prices and of the belief coincide. Thus,
if the agents use linear statistical tests, they are not able to distinguish between the
actual chaotic price sequence and their stochastic AR(1) belief. As a consequence,
they do not have any reason for deviating from their simple predictor and the
situation qualifies as an equilibrium. The most important difference between the
notion of CEE and REE is that, in the former, the agents do not need any knowledge
about the underlying market equilibrium equations. This is also the case, e.g., for
adaptive expectations. Contrary to applications of adaptive expectations, however,
we assume consistency between the beliefs and the actual observations. In a CEE,
agents would not be able to detect any discrepancy between their model [the AR(1)
belief] and reality (the actual price sequence) if they only use linear statistical
techniques.

We consider two different types of stability notions that are relevant for CEE.
The first one captures the robustness of a CEE with respect to small perturbations
of the initial state variable (e.g., the price), but does not allow for perturbations of
the parameters describing the belief process. The second stability notion involves
a learning process that is based upon sample average and sample autocorrelations.
In the learning process, the parameters describing the AR(1) belief are updated as
additional observations become available. The learning scheme is closely related
to, but not identical to ordinary least-squares learning. For each of the three types
of CEE (steady-state, two-cycle, and chaotic), we provide examples in which the
CEE is stable in the learning dynamics. We also provide examples with multiple
stable CEE. In that case, the initial state variable together with the initial belief
parameters determine which CEE eventually will be learned.

Finally, we relate the present work to some other recent contributions in expec-
tations formation and learning. Our approach fits well into the bounded rationality
literature because the agents base their expectations upon time-series observa-
tions and adapt their beliefs accordingly. In particular, the concept of consistent
expectations originates from three closely related papers. Grandmont (1994) in-
troduces the notion of aself-fulfilling mistake, in which agents incorrectly believe
that prices follow a stochastic process whereas the actual dynamics are generated
by a deterministic chaotic process that is indistinguishable from white noise by
linear statistical tests. Sorger (1998) constructs an explicit example of such a self-
fulfilling mistake in an overlapping-generations model with physical capital. In
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that example, the agents believe that the interest rates form a sequence of in-
dependent and identically distributed random variables (i.i.d. r.v.’s), whereas the
actual dynamics of the interest rates are described by a chaotic tent map with zero
autocorrelations at all lags. The example is a special case of our more general
CEE concept, which applies to nonzero autocorrelations as well. Hommes (1998)
investigates autocorrelation functions of forecasting errors in the cobweb model
with naive, adaptive, and low-order AR(k) expectations when price fluctuations
are chaotic, and calls a forecasting rule consistent when these (chaotic) errors have
zero autocorrelations. The present paper can be viewed as an attempt to build the
results of Hommes (1998) and Sorger (1998) into a more general framework.

Our approach, in fact, is somewhat similar in spirit to some of the early rational
expectations literature, in which attempts have been made to put restrictions on
the parameters of simple forecasting rules, as in Muth (1960) and Sargent (1971);
see also the discussion by Sargent (1993, pp. 18–19). In particular, our approach
is related to the concept of quasi-rational expectations introduced by Nerlove et al.
(1979, Ch. XIII), in which the expectations about both exogenous and endogenous
variables are given by those predictors that minimize the mean squared prediction
errors in an ARIMA model. However, our focus is on the deterministic feed-
back between (linear) expectations and (nonlinear) actual dynamics. More recent
related work on bounded rationality and expectation formation includes the ratio-
nal belief equilibria of Kurz (1994), the pseudo rational learning of Marcet and
Nicolini (1995), the expectational stability and adaptive learning rules of Evans
and Honkapohja (1994, 1995), the perfect predictors of B¨ohm and Wenzelburger
(1996), and the adaptive rational equilibrium dynamics of Brock and Hommes
(1997a, b). Stability and instability of adaptive learning processes have been in-
vestigated by Grandmont and Laroque (1991), Bullard (1994), Grandmont (1994),
Chatterji and Chattopadhyay (1996), and Sch¨onhofer (1996). See Marimon (1996)
for an overview of the recent learning literature.

The paper is organized as follows: Section 2 presents a general definition of
CEE’s. Section 3 focuses on existence and stability of simple, that is, steady-state
or two-cycle CEE’s, whereas Section 4 deals with complicated, chaotic CEE. A
learning process based on sample average and sample autocorrelations is intro-
duced in Section 5. Section 6 applies the CEE concept to nonlinear versions of the
familiar cobweb model. Section 7 concludes.

2. DEFINITION OF CEE

In this section we introduce the notion of CEE for a simple, general class of models,

pt = F
(

pe
t

)
, (1)

wherept represents the endogenous variable (henceforth referred to as the price)
at datet and pe

t represents agents’ expected price for periodt , formed at date
t − 1. The familiar cobweb demand-supply model is of this type. For example,
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Bray and Savin (1986) and Fourgeaud et al. (1986) have investigated the dynamics
of the linear cobweb model with boundedly rational agents using an OLS learning
scheme. In the present paper, the mapF in (1) is nonlinear.

To explain how the agents form the price expectationpe
t , we specify the infor-

mation that is available to them at the time that this expectations is formed. We
assume that agents donotknow market equilibrium equations, and thus are not able
to use them in forming their expectations. Instead, agents form expectations based
only on time-series observations. We assume that the agents know all past prices
p0, p1, . . . , pt−1, that they believe that prices follow a simple linear stochastic
process, and that expectations are homogeneous across agents. More specifically,
we assume that all agents believe that prices are generated by a stochastic AR(1)
process,pt =α+β(pt−1−α)+ εt , whereα andβ are real numbers,β ∈ [−1, 1],
andεt an i.i.d. process with zero mean. At this point, we assume that the belief
parametersα andβ are fixed over time and known to (or believed to be known
by) the agents. In Section 5, we consider the more general case in which the belief
parameters are unknown to the agents and change over time according to a learn-
ing process as additional observations become available. Note that the parameter
α is the limit, ast approaches infinity, ofE(pt ), i.e.,α is the long-run average
of the belief process. Given this perceived law of motion, the unique predictor or
forecasting rule forpt that minimizes the squared prediction errors is given by

pe
t = α + β(pt−1− α). (2)

The expected price is therefore the constantα (the long-run average price) plus
the constantβ (the first-order autocorrelation coefficient) times the deviation of
the previous price from the long-run average.

Assuming that agents use the linear predictor (2), theimplied actual law of
motionfor model (1) is

pt = Fα,β(pt−1) := F(α + β(pt−1− α)). (3)

Now recall that the empirical or sample average of a time series(pt )
∞
t=0 is defined

as [see, e.g., Box et al. (1994)]

p̄ = lim
T→∞

1

T + 1

T∑
t=0

pt

and the empirical or sample autocorrelation coefficients are given by

ρ j = lim
T→∞

cj,T

c0,T
, j ≥ 1,

where

cj,T = 1

T + 1

T− j∑
t=0

(pt − p̄)(pt+ j − p̄), j ≥ 0.
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In the special case in which the time series is constant, the definition ofρ j involves
an indeterminate expression and all sample autocorrelations can be defined asβ j

for someβ ∈ [−1, 1].1 We are now ready for the definition of a CEE.

DEFINITION 1. A triple {(pt )
∞
t=0;α, β}, where(pt )

∞
t=0 is a sequence of prices

andα andβ are real numbers, β ∈ [−1, 1], is called a consistent expectations
equilibrium if

(i) The sequence(pt )
∞
t=0 satisfies the implied actual law of motion(3).

(ii) The sample averagēp is equal toα.
(iii) For the sample autocorrelation coefficientsρ j , the following is true:

a. If (pt )
∞
t=0 is a convergent sequence, thensgn(ρ j )= sgn(β j ), j ≥ 1.

b. If (pt )
∞
t=0 is not convergent, thenρ j =β j , j ≥ 1.

Property (i) in the definition of CEE simply states that the sequence(pt )
∞
t=0 is the

price sequence generated by the implied actual law of motion, provided that agents
use the forecasting rule (2). Condition (ii) requires that the sample average of the
actual time-series equals the expected average of the stochastic AR(1) belief. In
formulating the equivalence of autocorrelation coefficients of actual and antici-
pated prices, we have to distinguish between two cases: (a) the price sequence
converges to some steady state or (b) it does not. In the second case, condition (iii)
(b) states that the sample autocorrelation coefficients of the actual realizations are
exactly the same as the autocorrelation coefficients of the perceived law of motion,
i.e., the AR(1) belief process. In the case in which the price sequence converges to
a steady state, we make the weaker requirement that autocorrelation coefficients
of observations and beliefs have the same sign. The reason for weakening the con-
dition is related to the indeterminacy of the autocorrelation coefficients of a time
series converging to a constant.2

Summarizing, a CEE is a price sequence and an AR(1) belief process such
that the expectations are self-fulfilling in terms of the observable sample average
and sample autocorrelations. Stated differently, along a CEE, expectations are not
systematically wrong in a linear statistical sense and, using time-series observations
only, the agents would have no reason to deviate from their belief.

The definition of CEE can be generalized easily to higher-order belief processes,
e.g., AR(k) processes withk ≥ 2. Here we restrict ourselves to AR(1) beliefs,
because this allows already for rich dynamical behavior. We show that, given an
AR(1) belief, there are at least three possible types of CEE:

• steady-state, in which the price sequence(pt )
∞
t=0 converges to a steady-state pricep∗;

• two-cycle, in which the price sequence(pt )
∞
t=0 converges to a period-2 cycle{p∗1, p∗2}

with p∗1 6= p∗2;3
• chaotic, in which the price sequence(pt )

∞
t=0 is chaotic.

Which of these cases occurs in a particular model depends on the mappingF . We
refer to steady-state and two-cycle CEE as simple CEE.
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3. SIMPLE CEE

In this section we first study which belief parametersα andβ correspond to simple
CEE, i.e., to steady-state and two-cycle CEE. Next, we explore the relation between
simple CEE and fixed points of the functionF . We prove that, in the case in which
the functionF is monotonic, the only possible bounded CEE are simple CEE.
Finally, we define stability of simple CEE and derive stability conditions.

THEOREM 1.

(i) If {(pt )
∞
t=0;α, β} is a steady-state CEE converging to p∗, thenα= p∗ and p∗ is a

fixed point of F.
(ii) If {(pt )

∞
t=0;α, β} is a two-cycle CEE converging to{p∗1, p∗2}, thenα= (p∗1 + p∗2)/2

andβ =−1. Furthermore, both p∗1 and p∗2 are fixed points of F.

Proof.

(i) Whenever limt→∞ pt exists, the sample averagēp must be equal to this limit. To-
gether with condition (ii) of Definition 1, this implies thatα= p∗. The actual price
dynamics (3) therefore ispt = F(p∗ + β(pt−1− p∗)). Becausep∗ must be a steady
state of this difference equation it follows thatp∗ is a fixed point ofF .

(ii) Analogously to case 1, it can be seen thatα= p̄= (p∗1 + p∗2)/2. Using this it is
also straightforward to show that limT→∞ c0,T =−limT→∞ c1,T = (p∗1−p∗2)

2/4. This
implies thatρ1=−1 and it follows from condition (iii)(a) of Definition 1 thatβ =−1.
The actual dynamics therefore are given bypt = F(p∗1 + p∗2 − pt−1). It is easy to
see that{p∗1, p∗2} is a two-cycle of this difference equation if and only if bothp∗1 and
p∗2 are fixed points ofF . This concludes the proof of the theorem.

Theorem 1 shows that, along a simple CEE, in the long run, prices will be close
to the set of fixed points ofF . In this regard it is worth mentioning that a perfect-
foresight equilibrium in model (1) is any price sequence(pt )

∞
t=0 such that, at each

datet , pt equals one of the fixed points of the mapF . We therefore conclude that the
long-run behavior of simple CEE is the same as the long-run behavior of some REE.
The following result proves a partial converse to this statement and Theorem 1, in
showing that we can always construct CEE when we know the fixed points ofF .

THEOREM 2.

(i) Assume that p∗ is a fixed point of the map F and define pt = p∗ =α for all t . For
anyβ ∈ [−1, 1] it follows that{(pt )

∞
t=0;α, β} is a steady-state CEE.

(ii) Assume that p∗1 and p∗2 are two different fixed points of the map F and define p2t = p∗1
and p2t+1= p∗2 for all t ,α= (p∗1+ p∗2)/2,andβ =−1. Then{(pt )

∞
t=0;α,β} is a two-

cycle CEE.

Proof.

(i) If α= p∗ is a fixed point ofF , then the constant sequence(p∗, p∗, p∗, . . .) satisfies
the actual dynamics (3) so that condition (i) in Definition 1 is satisfied. Conditions
(ii) and (iii) of Definition 1 hold trivially.
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(ii) If α= (p∗1 + p∗2)/2 andβ =−1, where p∗1 and p∗2 are fixed points ofF , then
the periodic sequence(p∗1, p∗2, p∗1, p∗2, . . .) satisfies the actual dynamics (3) so that
condition (i) of Definition 1 is satisfied. Conditions (ii) and (iii) of Definition 1 again
are verified easily.

We call a CEE{(pt )
∞
t=0;α, β} bounded if the sequence(pt )

∞
t=0 is bounded.

Theorem 3 proves that the only bounded CEE in model (3) with a monotonic
function F are simple CEE.

THEOREM 3. Let {(pt )
∞
t=0;α, β} be a bounded CEE.

(i) If the map F is increasing, then {(pt )
∞
t=0;α, β} is either a steady-state CEE or a

two-cycle CEE.
(ii) If the map F is decreasing, then{(pt )

∞
t=0;α, β} is a steady-state CEE. Moreover, it

holds thatβ = 0.

Proof.

(i) Assume thatF is increasing and let{(pt )
∞
t=0;α, β} be a bounded CEE. First, consider

the case 0≤ β ≤ 1. In that case the actual law of motion,Fα,β , in (3) is nondecreasing.
Hence,(pt )

∞
t=0 must be monotonic and, because it is bounded, it must converge to

a steady-statep∗. Thus, the CEE is a steady-state CEE. Next, consider the case
−1≤ β ≤ 0. In this case the actual law of motion,Fα,β , is nonincreasing. Together
with the boundedness of(pt )

∞
t=0, this implies that the price sequence either converges

to a steady-statep∗ or to a two-cycle{p∗1, p∗2} with p∗1 6= p∗2. This concludes the
proof of part (i).

(ii) Suppose thatF is decreasing and consider the bounded CEE{(pt )
∞
t=0;α, β}. First

assume 0≤ β ≤ 1. In that case, the actual law of motionFα,β is nonincreasing. As
before, this implies that prices either converge to a steady state or to a two-cycle.
The latter cannot be a CEE, however, because the sample autocorrelation coefficient
at the first lag,ρ1, would be−1, which leads to a contradiction in condition (iii)(b)
of Definition 1 (note thatβ was assumed to be nonnegative). Therefore, the CEE
must be a steady-state CEE. Because the actual law of motion is nonincreasing, the
sample autocorrelation of{pt }∞t=0 at the first lag cannot be positive, i.e., it holds that
ρ1 ≤ 0. According to property (iii)(a) in Definition 1, we have sgn(β)= sgn(ρ1) ≤ 0.
Because we have assumed thatβ ≥ 0, it follows thatβ = 0.

Next, assume that−1≤β ≤ 0, in which caseFα,β is nondecreasing. As be-
fore, we conclude that the price sequence(pt )

∞
t=0 must converge so that the

CEE is a steady-state CEE. Furthermore, becauseFα,β is nondecreasing the price
sequence must be monotonic and the sample autocorrelation coefficient at the
first lag,ρ1, must be nonnegative. According to property (iii)(a) of Definition 1,
sgn(β)= sgn(ρ1) ≥ 0. Because we have assumed thatβ ≤ 0, we conclude that
β = 0. This concludes the proof of part (ii) of the theorem.

The long-run behavior of prices in a steady-state CEE is characterized by the
limit price p∗. We write{(p∗);β} for the steady-state CEE in which the price se-
quence is constant and equal top∗.Notice that, for any steady-state CEE converging
to p∗, the belief parameterα coincides withp∗ and therefore can be dropped from
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the notation. The long-run behavior of prices in a two-cycle CEE is characterized
by the two different limit pricesp∗1 andp∗2. We write{(p∗1, p∗2)} for the two-cycle
CEE in which the price sequence is exactly periodic and alternates between the
two valuesp∗1 and p∗2. Because the corresponding belief parameters are uniquely
determined byα= (p∗1 + p∗2)/2 andβ =−1, they have been dropped from the
notation. Note that both{(p∗);β} and{(p∗1, p∗2)} are (perfect-foresight) REE. We
now introduce a stability notion for these simple CEE.

DEFINITION 2.

(i) {(p∗);β} is said to be alocally stablesteady-state CEE if there exists an open
neighborhood U⊂ R of p∗ such that, for all initial prices p0 ∈ U , the triple
{(pt )

∞
t=0;α, β}, whereα= p∗ and(pt )

∞
t=0 is the unique price sequence satisfying the

implied actual dynamics(3), is a CEE andlim t→∞ pt = p∗.
(ii) {(p∗1, p∗2)} is said to be alocally stabletwo-cycle CEE if there exists an open neigh-

borhood U ⊂ R of {p∗1, p∗2} such that, for all initial prices p0 ∈ U, the triple
{(pt )

∞
t=0;α, β}, whereα= (p∗1 + p∗2)/2, β =−1, and(pt )

∞
t=0 is the unique price se-

quence satisfying the implied actual dynamics(3), is a two-cycle CEE converging
to {p∗1, p∗2} (orbital convergence; see note3).

Note that, in the stability definition above, the belief parametersα andβ are
fixed. Local stability of a steady-state or a two-cycle CEE therefore means that
the common AR(1) belief described by the parametersα andβ is self-fulfilling
(in terms of sample average and sample autocorrelation) for an open set of initial
pricesp0. In Section 5, we discuss a different and more general stability concept,
which we call learnability, dealing with the robustness of CEE with respect to
perturbations of both the state variables and the belief parameters. The following
result gives conditions for the stability of steady-state and two-cycle CEE.

THEOREM 4. Assume that F is continuously differentiable.

(i) Let {(p∗);β} be a steady-state CEE.
(a) If β = 0, then{(p∗);β} is locally stable.
(b) If F ′(p∗) > 0 and|β| < F ′(p∗)−1, then{(p∗);β} is locally stable.
(c) If F ′(p∗) < 0, then{(p∗);β} is locally stable if and only ifβ = 0.

(ii) A two-cycle CEE{p∗1, p∗2} is locally stable if|F ′(p∗1)F ′(p∗2)| < 1.

Proof.

(i)(a) Let U be any open neighborhood ofp∗. The actual dynamics withα= p∗ and
β = 0 are given bypt = F(p∗)= p∗. The unique price sequence of this difference
equation emanating fromp0 is(p0, p∗, p∗, . . .). It is straightforward to see that the
sample average of this sequence(pt )

∞
t=0 is p∗ and that all sample autocorrelation

coefficients of(pt )
∞
t=0 are equal to 0. Consequently,{(pt )

∞
t=0; p∗, 0} is a steady-

state CEE converging top∗.
(i)(b) Assume thatF ′(p∗) > 0 and|β| < F ′(p∗)−1. The actual dynamics withα= p∗

are given bypt = F(p∗ + β(pt−1 − p∗))= Fp∗,β (pt−1). The mapFp∗,β has the
fixed point p∗ andF ′p∗,β (p

∗)=βF ′(p∗). Let U be an open neighborhood ofp∗
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such that|F ′p∗,β (p)| < 1 for all p ∈ U . If β > 0, thenFp∗,β is increasing onU and
0< F ′p∗,β (p) < 1 for all p ∈ U . Consequently, for each initial statep0 ∈ U , the
unique time series(pt )

∞
t=0 satisfying the actual dynamics converges monotonically

to p∗. This implies that all sample autocorrelation coefficients are positive and
it follows that {(pt )

∞
t=0; p∗, β} is a steady-state CEE. Alternatively, ifβ < 0,

thenFp∗,β is decreasing onU and−1 < F ′p∗,β (p) < 0 for all p ∈ U . For each
initial statep0 ∈ U , the unique time series(pt )

∞
t=0 satisfying the actual dynamics

converges top∗ in the form of damped oscillations. That is,pt − p∗ changes its
sign in every period. This implies that all sample autocorrelation coefficientsρ j

satisfy sgn(ρ j )=β j and it follows that{(pt )
∞
t=0; p∗, β} is a steady-state CEE.

(i)(c) If F ′(p∗) < 0, it follows as in the proof of Theorem 3(ii) that a price sequence
with initial state p0 close top∗ that converges top∗ can only be a CEE when
β = 0. This proves the necessity ofβ = 0. Sufficiency follows from part (i)(a).

(ii) Forα= (p∗1+p∗2)/2 andβ =−1 the actual dynamics (3) are given bypt = F(p∗1+
p∗2 − pt−1). According to Theorem 1, bothp∗1 and p∗2 are fixed points ofF , and
{p∗1, p∗2} is a two-cycle of the actual dynamics. The condition|F ′(p∗1)F ′(p∗2)| < 1
implies that this periodic solution locally asymptotically stable. Consequently,
there exists an open neighborhoodU of {p∗1, p∗2} such that, for all initial prices
p0 ∈ U , the unique solution(pt )

∞
t=0 of (3) converges to the two-cycle{p∗1, p∗2}.

This, in turn, implies that the sample average of(pt )
∞
t=0 is α and that the sample

autocorrelation coefficient at lagj is equal to(−1) j . Thus,{(pt )
∞
t=0;α, β} is a

two-cycle CEE and it follows that the two-cycle CEE{(p∗1, p∗2)} is locally stable.

4. CHAOTIC CEE

In addition to the simple steady-state and two-cycle CEE discussed in Section 3,
much more complicated CEE can arise even if the agents have a simple AR(1)
belief. In fact, an important motivation for the present paper was the question
whether chaotic equilibria without systematic forecasting errors can arise in dy-
namic economic models with simple (linear) forecasting rules. It is well known
that simple nonlinear deterministic models can generate chaotic time paths with
random-looking behavior. In particular, chaotic time series may have zero autocor-
relations at all lags and, therefore, from a linear statistical point of view, chaos may
be indistinguishable from pure white noise. On the other hand, not every chaotic
time series has zero autocorrelations. Properties of the typical sample autocorrela-
tion coefficients of chaotic processes are far from being well understood and only
recently have statisticians started exploring autocorrelation functions of chaotic
processes. For many chaotic time series, the sample autocorrelation coefficients
are exponentially decaying, very much like the autocorrelation coefficients of a
weakly stochastic process [Bunow and Weiss (1979) and Hall and Wolff (1993);
see Hommes (1998) and Hommes and van Eekelen (1996) for autocorrelation
coefficients of chaotic price fluctuations in the cobweb model]. There seems to
be only one class of chaotic processes in the literature, in which the autocorrela-
tion structure is completely understood: For so-called asymmetric tent maps, the
sample autocorrelation coefficients of chaotic time paths coincide exactly with
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the autocorrelation functions of stochastic AR(1) processes [Sakai and Tokumaru
(1980)]. We briefly discuss this example here because it will be used several times
throughout the paper.

Theasymmetric tent mapis the continuous, piecewise linear mapTβ,[a,b] :[a, b] 7→
[a, b] defined as

Tβ,[a,b](x)=


2

1+ β (x − a)+ a if a ≤ x ≤ a+ 1+ β
2

(b− a)

2

1− β (b− x)+ a if a+ 1+ β
2

(b− a) < x ≤ b,

where−1<β <+1. The map is expanding; that is, in absolute value, its slope is ev-
erywhere greater than 1. The properties of the piecewise linear difference equation

pt = Tβ,[a,b](pt−1) (4)

are well understood. In particular, the following properties are known:

1. For any integerj ≥ 1, equation (4) has a periodic orbit of periodj . All periodic orbits
are unstable. The union of all periodic orbits is dense in [a, b].

2. For Lebesgue almost all initial statesp0 ∈ [a, b], the trajectory of (4) is aperiodic
and dense in the interval [a, b].

3. The uniform distribution on the interval [a, b] is ergodic and invariant underTβ,[a,b] .
4. For Lebesgue almost all initial statesp0 ∈ [a, b], the sample average of the trajectory

of (4) is p̄= limT→∞ 1
T+1

∑T
t=0 pt = (a+ b)/2.

5. For Lebesgue almost all initial statesp0 ∈ [a, b], the sample autocorrelation coeffi-
cient at lagj of the corresponding trajectory of (4) isρ j =β j .

Property 1 follows easily by studying the graph of the mapT ( j )
β,[a,b] , i.e., the map

Tβ,[a,b] composed with itselfj times. Property 2 can be shown by using symbolic
dynamics [see, e.g., Devaney (1989)]. Property 3 is well known from ergodic theory
[see, e.g., Lasota and McKay (1985)]. Property 4 is an immediate consequence of
property 3 and the ergodic theorem, stating that time averages equal space averages.
Property 5 has been proven by Sakai and Tokumaru (1980). Notice that, according
to properties 1–4, both from a topological and a measure theoretic point of view,
the dynamics ofTβ,[a,b] andTβ ′,[a,b] , β 6=β ′, are equivalent.4 However, property 5
shows that the sample autocorrelation coefficients depend upon the parameterβ.
Figure 1 shows the graphs ofTβ,[0,1], for β =−0.7, β = 0, andβ = 0.7. From a
graphical analysis, it should be intuitively clear that a chaotic trajectory generated
by the tent map withβ = 0.7 must have a positive first-order autocorrelation,
whereas for a chaotic trajectory of (4) withβ =−0.7, the first-order autocorrelation
coefficient must be negative.

The following lemma is used several times throughout the paper to construct
chaotic CEE.

LEMMA 1. Let real numbers a, b, γ , andδ be given such that a< b, γ 6= 0,
andδ ∈ (−1, 1). Furthermore, defineα= (a+b)/2. Then there exist real numbers
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A) B)

C)

FIGURE 1. Chaotic fluctuations for asymmetric tent maps: (A)β =−0.7, (B) β = 0 (no
autocorrelations), and (C)β = 0.7.

A, B,C, D with A> 0 and C> 0 such that the continuous and piecewise linear
map G: R→ R defined by

G(x) =
{

Ax− B if x ≤ (B+ D)/(A+ C)

−Cx+ D if x ≥ (B+ D)/(A+ C)

satisfies G(α + γ (x − α)) = Tδ,[a,b](x) for all x ∈ [a, b].

Proof. First, assume thatγ > 0. In that case we choose

A = 2

γ (1+ δ) , C = 2

γ (1− δ) ,

B = 2

γ (1+ δ) [α + γ (a− α)] − a,

D = 2

γ (1− δ) [α + γ (b− α)] + a.
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With these definitions, verification thatα + γ (a − α) < (B + D)/(A + C)
andα + γ (b− α) > (B + D)/(A+ C) is straightforward. Therefore, we have
G(α + γ (a− α))= A[α + γ (a− α)] − B=a andG(α + γ (b− α))=−C[α +
γ (b− α)] + D=a. Finally, (d/dx)G(α + γ (x − α))|x=a= Aγ = 2/(1+ δ) and
(d/dx)G(α+γ (x−α))|x=b=−Cγ =−2/(1−δ). Thus, we have shown that both
the values and the slopes of the functionG(α+ γ (x− α)) at the pointsx=a and
x= b coincide with the corresponding values and slopes of the functionTδ,[a,b] .
Because both functions are piecewise linear, it follows that the function coincide
for all x ∈ [a, b].

In the case in whichγ < 0, a completely analogous argument can be used by
choosing

A = − 2

γ (1− δ) , C = − 2

γ (1+ δ) ,

B = − 2

γ (1− δ) [α + γ (b− α)] − a,

D = − 2

γ (1+ δ) [α + γ (a− α)] + a.

This completes the proof of the lemma.

As an immediate consequence of this lemma, we obtain the following result.

THEOREM 5. Let real numbersα andβ be given such thatβ ∈ (−1, 1) and
β 6= 0. There exists a continuous and piecewise linear function F such that(3)
has uncountably many chaotic CEE{(pt )

∞
t=0;α, β}.

Proof. Choose any numbersaandbsuch thata < band(a+b)/2=α. Applying
Lemma 1 withγ = δ=β, we see that there exists a piecewise linear functionF
such thatFα,β(p)= F(α + β(p− α))= Tβ,[a,b](p) holds for all p ∈ [a, b]. The
implied actual law of motion (3) coincides therefore with the tent map dynamics
(4). From properties 1–5 of the tent map dynamics, it follows that, for Lebesgue
almost all initial statesp0 ∈ [a, b], the actual price sequence is chaotic, its sample
average coincides with(a+b)/2=α, and its autocorrelation coefficients are given
by ρ j =β j . Thus, all conditions of Definition 1 are satisfied and the theorem is
proved.

In contrast to a steady-state or a two-cycle CEE, a chaotic CEE is not a REE, not
even in the long run. The existence of chaotic CEE is caused by the similarity of
certain chaotic processes to stochastic processes. Because the basic rationality as-
sumption of the CEE concept implies that agents using linear statistical techniques
cannot distinguish between these processes, there is no way they could ever detect
that they are constantly making forecasting mistakes. Those mistakes are self-
fulfilling and fully consistent with their own model of the world [see Grandmont
(1994)]. The stability definition that we introduced for the simple steady-state and
the two-cycle CEE cannot be generalized directly to the case of chaotic CEE. For
example, in the case of chaotic dynamics on a compact setA, the set of unstable

https://doi.org/10.1017/S1365100598008013 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100598008013


                   

300 CARS HOMMES AND GERHARD SORGER

periodic points is typically dense inA, so that in general there does not exist an
open set of initial states exhibiting chaotic dynamics. For chaotic CEE, we there-
fore present a slightly different stability notion, which we call observability. The
definition of observability uses the concept of a chaotic attractor. For the sake of
completeness, we first define chaotic attractors and then observability of chaotic
CEE.

In the literature, there exist several definitions of a (chaotic or strange) attractor.
See Milnor (1985) for a general discussion of the concept of an attractor, and
Guckenheimer and Holmes (1983, pp. 256–259) or Palis and Takens (1993, pp.
138–148) for a discussion of strange or chaotic attractors. We use the following
definition.

DEFINITION 3. Let f : X 7→ X be a continuous mapping where X⊆ Rk. A
non-empty and compact set A⊆ X is called anattractorof the dynamical system
xt+1= f (xt ) if the set A isinvariantunder f, that is, f (A) ⊆ A, and if every open
neighborhood U⊂ Rk of A contains a set B with positive Lebesgue measure such
that B∩ A=∅ and such that

(i) for all initial states p0 ∈ B, it holds thatlim t→∞ inf{‖pt − p‖|p ∈ A}=0 and
(ii) there exists an initial state p0 ∈ B such that the orbit(pt )

∞
t=0 is dense in A.

An attractor A is called achaoticattractor if, in addition,

(iii) for any pair of different initial states p0 and q0 in B with corresponding trajectories
(pt )

∞
t=0 and (qt )

∞
t=0, it holds thatlim inf t→∞ ‖pt − qt‖=0 and lim supt→∞ ‖pt −

qt‖ > 0.

The invariance property implies that, for an initial state on the attractorA, the
entire orbit is contained in the attractor. Property (i) means that every neighbor-
hood of the attractor contains a large set (in the sense that it has positive Lebesgue
measure) of initial states converging to the attractor. The existence of a dense tra-
jectory as specified in (ii) is also called topological transitivity and ensures that the
attractor is indecomposable. Simple examples of attractors satisfying properties (i)
and (ii) are a stable steady state, a stable periodic orbit, or a quasiperiodic attractor.
The additional condition (iii) is the key feature of a chaotic attractor and can be
interpreted as sensitive dependence on initial conditions for a large set of initial
states. We are now ready to state the definition of observability of chaotic CEE.

DEFINITION 4. Let A⊂R be a non-empty and compact set. The triple{A;
α, β} is called anobservablechaotic CEE if A is a chaotic attractor for the
implied actual law of motion(3) and, if for all initial states p0 ∈ B (where B has
the same meaning as in Definition3), the triple{(pt )

∞
t=0;α, β} is a CEE.

An observable chaotic CEE{A;α, β} thus occurs with positive probability with
respect to the set of initial states, given that agents share the common AR(1) belief
with parametersα andβ.

In Sections 3 and 4, we have shown that for the simple class of models (1),
there exist steady-state CEE, two-cycle CEE, and chaotic CEE. We believe that
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these are the only possible CEE for the general class of dynamic models (1), as
long as we restrict ourselves to AR(1) beliefs. In particular, it is quite clear that,
given an AR(1) belief, there cannot exist a periodic CEE with period different
from 1 or 2. This is so because such a periodic price sequence cannot have sample
autocorrelation coefficients that are identical to those of an AR(1) process. It is
worth mentioning, however, that periodic CEE with periods larger than two may
be obtained in the case of an AR(2) belief.

5. SAMPLE AUTOCORRELATION (SAC) LEARNING

The definition of a CEE involves a fixed AR(1) belief described by the parametersα

andβ. The agents are supposed to adhere to this belief over the entire time horizon
and the consistency of the implied actual dynamics with the belief can be verified
only if the entire price sequence is known. In the present section, we consider the
more flexible situation in which agents change their forecasting function within the
class of AR(1) beliefs, and update their belief parametersαt andβt as additional
observations become available. This leads to a natural learning scheme that is
based on sample average and sample autocorrelation coefficients and that fits our
framework of CEE.

For any finite set of observations{p0, p1, . . . , pt }, the finite sample average is
given by

αt = 1

t + 1

t∑
i=0

pi , t ≥ 1, (5)

and the finite-sample first-order autocorrelation coefficient is given by [see Box
et al. (1994)]

βt =
∑t−1

i=0(pi − αt )(pi+1− αt )∑t
i=0(pi − αt )2

, t ≥ 1. (6)

When, in each period, the belief parameters are updated according to their sample
average and sample first-order autocorrelation, the (temporary) law of motion (1)
becomes

pt+1= Fαt ,βt (pt )= F(αt + βt (pt − αt )), t ≥ 0. (7)

We call the dynamical system (5)–(7) the actual dynamics withsample autocor-
relation learning(SAC learning). The SAC-learning process is related to, but not
identical to, OLS learning.5 The initial state for the system (5)–(7) can be any triple
(p0, α0, β0) with β0 ∈ [−1, 1]. It is straightforward to check that, independently
of the choice of these initial values, it always holds thatβ1=−1/2 and that the
first-order sample autocorrelationβt ∈ [−1, 1] for all t ≥ 2.

The SAC-learning dynamics (5)–(7) is a high-dimensional, nonlinear, and non-
autonomous system.6 Few results concerning the stability of such systems are
available. Therefore, we investigate the stability of the learning dynamics mainly
numerically.7 In the application of the cobweb model in Section 6, we support our
numerical findings with graphical analysis.
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We are now ready to introduce a second stability notion for the long-run out-
comes of simple CEE, which we call learnability. In the definition of local stability
(Section 3, Definition 2) the belief parametersα andβ were fixed over time. Learn-
ability is an extension of this stability notion to the SAC-learning dynamics, that
is, to the case in which the belief parameters are continually updated. Thus, learn-
ability encompasses robustness with respect to perturbations of the state variable
as well as the belief parameters.

DEFINITION 5.

(i) A steady-state CEE{(p∗);β} is learnable,if there exists an open neighborhood
U ⊂R3 of (p∗, p∗, β) such that, for all initial states (p0, α0, β0)∈U , the
corresponding unique trajectory of the SAC-learning dynamics(5)–(7) satisfies
limt→∞ pt = lim t→∞ αt = p∗.

(ii) A two-cycle CEE{(p∗1,p∗2)} is called learnable,if there exists an open neighbor-
hood U ⊂ R3 of {(p∗i , α,−1) | i = 1, 2} with α= (p∗1 + p∗2)/2 such that, for all
initial states(p0, α0, β0) ∈ U , the corresponding unique trajectory of the SAC-
learning dynamics(5)–(7) satisfieslim t→∞ p2t = p∗1, limt→∞ p2t+1= p∗2 (or vice
versa), limt→∞ αt = (p∗1 + p∗2)/2, and lim t→∞ βt =−1.

The definition says that a steady-state or a two-cycle CEE is learnable if there
exists an open set of initial statesp0 and initial belief parametersα0 and β0,
for which the SAC-learning dynamics converge to that steady-state or two-cycle.
Notice that the definition of learnability of a steady-state CEE does not require
that the sample autocorrelation coefficientβt converge; this is in accordance with
the definition of a steady-state CEE for which the coefficientβ is arbitrary. In
numerical simulations, we typically observed that, if the SAC-learning dynamics
converge to a steady state, the variableβt also converges but the limit depends on
the initial state.

For the same reasons already mentioned in the context of stability, a formal
definition of learnability in the case of chaotic CEE is more complicated.

DEFINITION 6. Let A ⊂ R be a compact set. The triple{A;α, β} is called
a learnablechaotic CEE if A is a chaotic attractor of the implied actual law of
motion (3) and if, for every open neighborhood U⊂ R3 of {(p, α, β)|p ∈ A},
there exists a set B⊂ U with positive Lebesgue measure such that, for all initial
states(p0, α0, β0) ∈ B, the corresponding unique trajectory of the SAC-learning
dynamics(5)–(7) satisfies

(i) lim t→∞ αt =α and lim t→∞ βt =β,
(ii) lim t→∞ inf{|pt − p||p ∈ A}=0,

(iii) (pt )
∞
t=0 is aperiodic and dense in A.

Stated informally, a chaotic CEE is learnable if, in the SAC-learning process,
the belief parametersαt andβt converge to constants and the pricept converges
to a chaotic attractor whenever the initial belief parameters and the initial state are
chosen from a certain set with positive measure. At first sight, it may seem special to
have a dynamic system in which certain variables do converge to constants, whereas
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other variables do not converge to a constant. We emphasize, however, that in the
SAC-learning dynamics, the role of the state variablept is quite different from the
role of the belief parametersαt andβt , both mathematically and economically. In
particular, if the pricept remains bounded, then both the changes in the average
αt and the changes in the first-order sample autocorrelationβt tend to zero as
time t goes to infinity. This implies that, in the case of bounded prices, the belief
parameters(αt , βt ) are slow variables in the SAC-learning dynamics. On the other
hand, at datet the state variablept is generated by the temporary law of motion
Fαt ,βt in (7). After some transient phase, the SAC-learning process thus may be
viewed as a price-generating system with a slowly changing law of motion. A
CEE arises when the belief parameters converge to constants, that is, when the
temporary law of motionFαt ,βt converges to a limiting actual law of motionFα,β .
This limiting law of motion Fα,β remains unknown to agents and it doesnot
coincide with the limiting perceived law of motion and its corresponding linear
forecasting rulepe

t+1=α+β(pt −α). We see that there are at least three possible
outcomes of the learning process with converging belief parameters, namely that
the corresponding limiting law of motionFα,β has a stable steady state, a stable
two-cycle, or a chaotic attractor. In the case of a steady state or a two-cycle, the
limiting perceived law of motion and its corresponding linear forecasting rule
perfectly predict the steady state or the two-cycle, respectively. In the case of a
chaotic CEE, the limiting linear forecasting rule for the chaotic price series is
correct in terms of sample average and sample autocorrelations.

At this point, a few remarks seem to be in order concerning the (in)stability
of the related OLS-learning scheme in a deterministic expectations feedback con-
text. First, in most of the related literature on instability of OLS learning [e.g.,
Grandmont and Laroque (1991), Grandmont (1994), Bullard (1994), Chatterji and
Chattopadhyay (1996), and Sch¨onhofer (1996)], the averageαt is excluded from
the learning dynamics. It seems that this is mainly done for analytical tractability.
In particular, by excluding the sample averageαt from the updating scheme, both
for OLS- and SAC-learning, it is easy to write down a set of three autonomous dif-
ference equations that describe the learning dynamics (cf. note 6), and the analysis
would be simplified considerably. However, we believe that, in real markets, the
average of the state variables may be at least as important for expectation formation
as the autocorrelations or other regression coefficients. Therefore, at the expense
of analytical tractability, we have deliberately chosen to includeαt in the SAC-
learning dynamics. As a consequence, we have to investigate the learning dynamics
mainly by numerical tools. Using the graphs of the temporary law-of-motion map-
pings Fαt ,βt , however, it is possible to obtain some theoretical insight into the
SAC-learning dynamics, especially concerning possible long-run outcomes.

Second, the stability or instability of the OLS-learning process seems to be
related to the range of allowableβ-values, or, as Grandmont (1994) puts it, to the
range of real trends that traders are willing to extrapolate out of past deviations from
equilibrium. Stated differently, the (in)stability of OLS-learning depends upon the
range of the projection facility, that is, the interval [−µ1, µ2] of allowableβt -values
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[see Marcet and Sargent (1989)]. In this respect, there is an important difference
between OLS and SAC learning. For SAC learning,βt ∈ [−1, 1] holds for allt
because, for any time series, the (first-order) sample autocorrelation is between
−1 and 1. In contrast, for OLS learning,βt may be outside the interval [−1, 1].
Grandmont and Laroque (1991) and Grandmont (1994) show that local instability
of a steady state may arise when the range of trends that traders are willing to
extrapolate is sufficiently large. Moreover, in the global OLS-learning dynamics,
the periodic learning equilibria detected by Bullard (1994) and the chaotic learning
equilibria found by Sch¨onhofer (1996) are characterized by switching between a
stable phase with|βt |< 1 and an unstable phase with|βt |> 1. Along these learning
equilibria, prices are unbounded and agents keep running OLS regression on an
unbounded price series. In all cases that we consider, prices remain bounded. In
fact, SAC learning may be seen as OLS learning with the projection facility [−1, 1]
and thus may be interpreted in the sense that traders believe in a stationary (or at
least nonexplosive) AR(1) process. In particular, our focus is on unstable cases in
which the bounded prices do not converge to a steady state but to a cycle or a strange
attractor, whereas the belief parameters do converge to constant values. Such an
outcome of the SAC-learning dynamics represents a situation in which agents
believe that prices follow a stationary AR(1) process, whereas prices fluctuate
endogenously on a bounded attractor.

The numerical simulations presented in Section 6 indicate that all three types of
long-run CEE behavior (i.e., steady states, two-cycles, and chaos) can be learnable.
Multiple learnable CEE may even coexist in simple examples.

6. COBWEB MODEL

In this section we investigate existence and learnability of CEE for the nonlinear
cobweb model. The cobweb model has played an important role in economic
dynamics, in particular with respect to the role of expectation formation. For
example, Ezekiel (1938) investigated the cobweb model with naive expectations,
Nerlove (1958) with adaptive expectations, and Muth (1961) used the model for
introducing rational expectations. The cobweb model describes market equilibrium
prices for a single commodity that is produced with a fixed production lag of one
period. Market equilibrium pricept is determined by

D(pt ) = S
(

pe
t

)
, (8)

whereD is the demand curve,S the supply curve, andpe
t the producers’ price ex-

pectation formed in periodt−1. As usual, we assume that the demand functionD
is strictly decreasing and, hence, invertible. Denoting byD−1 the inverse demand
function and rewriting (8) aspt = D−1[S(pe

t )], one sees that the cobweb model is
of type (1).

6.1. Monotonic Case

In this subsection we consider the case in which the supply curve is monotonically
increasing. When demand is decreasing and supply is increasing, there exists a
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unique market-clearing pricep∗ defined by the intersection of the demand and
supply curves. Because in this case the mapF(p)= D−1[S(p)] is decreasing, it
follows from Theorems 1 and 3 in Section 3, that the only bounded CEE are steady-
state CEE converging top∗ and that the corresponding belief parameters must
equalα= p∗ andβ = 0. Hence, in the cobweb model with monotonic demand and
supply, the only AR(1) belief that is not systematically wrong ispt = p∗ + εt . All
other AR(1) beliefs are inconsistent with the actual price sequences they generate
in the sense that the sample average and sample autocorrelation coefficients of
the belief process are different from those of the actual realizations. Such beliefs
would be abandoned even by boundedly rational agents observing only the sample
average and sample autocorrelations. In other words, in the cobweb model with
monotonic demand and supply, the only bonded CEE are price series converging
to the unique REE.

Let us now investigate the SAC-learning process in the nonlinear cobweb model
to see whether the unique steady-statep∗ (i.e., the REE) is learnable. We would like
to emphasize that this is a nontrivial problem because simple expectation schemes
may lead to complicated, chaotic price fluctuations even if both demand and supply
are monotonic functions. For example, Hommes (1991, 1994, 1998) shows that, in
the case of adaptive expectations8 of the formpe

t = (1−w)pe
t−1+wpt−1, and in the

case of simple linear AR(2) or AR(3) expectation rules, chaotic price fluctuations
can arise even when demand and supply are monotonic.

In all of our simulations of the SAC-learning process in the cobweb model with
decreasing demand and increasing supply, all bounded price series converge to
the unique steady-state pricep∗. In most cases, the convergence is so fast that
the prices get close to the steady-statep∗ within five or even fewer iterations.
Only in cases in which the market is very unstable, i.e.,S′(p∗)/D′(p∗) ¿ −1,
convergence to the steady state may be slow and may occur only after a long,
possibly erratic transient. Figure 2 shows two typical time series of prices and
updated belief parameters in the SAC-learning dynamics in the cobweb model
with a linear demand curveD(p)= 2 − p/4 and a nonlinear (but monotonic)
supply curveSλ(pe)= 1+ tanh(λpe). In Hommes (1994) it has been shown that,
for sufficiently high values ofλ, the corresponding cobweb model with adaptive
expectations leads to chaotic price fluctuations. Figure 2 shows that, in the long
run, in the SAC-learning dynamics such fluctuations do not occur. Even for a
strongly nonlinear supply function withλ= 10 (Figure 2A), convergence to the
steady statep∗ is fairly fast. Forλ= 1000, the supply curve is almost vertical at
the steady state. In that case, convergence to the steady state still occurs but only
after a long (chaotic) transient phase (see Figure 2B).

The intuition behind the stability of the SAC-learning process is as follows:
When prices fluctuate around the steady state, the belief parameterαt will not be
too far fromp∗ after a few time periods. Moreover, as long as the first-order sample
autocorrelationβt is positive, actual prices exhibit (up and down) oscillations
around the steady-statep∗, which leads to negative first-order autocorrelation and
a decrease inβt . On the other hand, ifβt < 0, actual prices exhibit a monotonic
movement toward (or away from) the steady-statep∗ such that the first-order
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A) λ= 10, x0 = 2.00, α0 = 2.00, β0 = 1.00

B) λ= 1000, x0 = 1.00, α0 = 1.00, β0 = 1.00

FIGURE 2. SAC-learning dynamics in cobweb model, with nonlinear, monotonic supply
curveSλ(x)= 1+ tanh(λx): (A) strong nonlinearity (λ= 10), (B) very strong nonlinearity
(λ= 1000).

autocorrelation tends to become positive andβt increases. Ast becomes large,
only small changes inβt can arise. This suggests thatβt eventually will converge
with a limit close to zero. Onceβt is sufficiently close to zero (withαt close to
p∗), such that|βt S′(p∗)/D′(p∗)| ≤ 1, prices rapidly converge top∗.9

In summary, we conclude that, in the nonlinear cobweb model with decreasing
demand and increasing supply, the unique steady-statep∗ is learnable. In the
case of a bounded supply curve,p∗ seems to be globally stable in the SAC-
learning dynamics in all of our simulations (usually with fast convergence). For the
nonlinear, monotonic cobweb model, we thus arrive at the same conclusion as Bray
and Savin (1986), who studied a linear cobweb model with OLS learning where
agents regress prices on an exogenous random variable. In our CEE approach,
agents employ an average as well as the first-order autocorrelation in predicting
prices. Our numerical results show that the unique steady-state REE is stable
under learning. If demand is decreasing and supply is increasing, the constant
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belief pt = p∗ + εt is the only AR(1) belief for which expectational errors are not
systematically wrong in terms of average and sample autocorrelation. Thus, in a
cobweb world with monotonic demand and supply, agents are able to learn the
unique REE even without any knowledge of the underlying market equilibrium
equations, simply by observing the sample average and sample autocorrelations.

6.2. Nonmonotonic Example

Next, we construct an example of a cobweb model with chaotic CEE. From the
results in Section 6.1, it follows that this requires a nonmonotonic supply function
(we continue to assume that the demand function is invertible). We first construct
an example in which we can show by analytical means that chaotic CEE exist
and then we simulate the SAC-learning process in this example. We consider this
nonmonotonic cobweb model mainly as a didactical toy model to illustrate the
intuition behind CEE and to investigate convergence to different types of CEE in
the SAC-learning process.

THEOREM 6. Let α andβ be real numbers such thatα > 0, β ∈ (−1, 1),
β 6= 0. There exists a monotonic demand function D:[0,∞) 7→ [0,∞) and a
piecewise linear supply function S:[0,∞) 7→ [0,∞) such that the cobweb model
(8) has uncountably many chaotic CEE{(pt )

∞
t=0;α, β}.

To prove the theorem, we use the following simple lemma.

LEMMA 2. Let a, b, β, x0 be real numbers such that a< b, β ∈ (−1, 1), and
x0 ∈ [a, b]. Consider the unique trajectory(xt )

∞
t=0 satisfying the tent map dynam-

ics xt+1= Tβ,[a,b](xt ) with initial condition x0 and the unique trajectory(yt )
∞
t=0

of the upside-down tent map dynamics yt+1=a + b − T−β,[a,b](yt ) with initial
condition y0=a+ b− x0. Then it holds that the sample averagesx̄ andȳ satisfy
ȳ=a+ b− x̄ and the sample autocorrelation coefficients of the two trajectories
coincide.

Proof. We claim thatyt =a+ b− xt holds for all t . For t = 0, this follows
directly from the assumptions. Now assume that it holds for somet . Then, we have

yt+1 = a+ b− T−β,[a,b](yt )=a+ b− T−β,[a,b](a+ b− xt )

= a+ b− Tβ,[a,b](xt )=a+ b− xt+1.

The claim follows therefore by induction. It is obvious that the propertyyt =a+b−
xt implies ȳ=a+ b− x̄. Therefore, we obtain(yt − ȳ)(yt+ j − ȳ)= (xt − x̄)×
(xt+ j − x̄), which apparently implies that the autocorrelation coefficients of(xt )

∞
t=0

and(yt )
∞
t=0 coincide. This concludes the proof of the lemma.

Proof of Theorem 6. Applying Lemma 1 in Section 4 witha= 0,b= 2α,γ =β,
andδ=−β, it follows that there exists a piecewise linear mapG : R 7→ R such
that

G(α + β(x − α))= T−β,[0,b](x) (9)
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holds for all x ∈ [0, b]. Now, definepl = min{α + β(x − α) | x ∈ [0, b]} and
pu= max{α + β(x − α) | x ∈ [0, b]}. Note that 0< pl < pu < b and that (9)
implies thatG(pl )=G(pu)= 0. BecauseG is strictly increasing to the right of its
kink, we must haveG(0) < 0. We specify

D(p) =
{

b− G(0)− p if 0 ≤ p ≤ b− G(0),

0 if p ≥ b− G(0),

and

S(p) =
{

G(p)− G(0) if 0 ≤ p ≤ pu,

ε(p− pu)− G(0) if p ≥ pu,

whereε is an arbitrary nonnegative number. Note thatD is strictly decreasing
whenever it is strictly positive and thatS is piecewise linear with three linear
segments. Ifpt−1 ∈ [0, b] then it follows thatα + β(pt−1 − α) ∈ [ pl , pu] and,
therefore,

S(α + β(pt−1− α)) = G(α + β(pt−1− α))− G(0) ∈ [−G(0), b− G(0)].

Thus, definingF = D−1 ◦ S, we obtain

pt = F(α + β(pt−1− α)) = b− G(α + β(pt−1− α)) = b− T−β,[0,b](pt−1).

The actual dynamics under the belief parametersα and β therefore are given
by an upside-down tent map. From Lemma 2 and the properties of the tent map
dynamics, it follows that, for Lebesgue almost all initial pricesp0 ∈ [0, b], the
sample average of actual prices isα and the sample autocorrelation coefficient at
lag j is given byβ j . For any of those initial prices, therefore, we have a chaotic
CEE and the proof is complete.

Example

Choosing belief parametersα= 2 andβ = 4/5 and following the construction used
in the proof of Theorem 6, one obtains

D(p) =
{

9− p if 0 ≤ p ≤ 9,

0 if p ≥ 9,

and

S(p) =


(25/2)p if 0 ≤ p ≤ 18/25,

10− (25/18)p if 18/25≤ p ≤ 18/5,

5+ ε[ p− (18/5)] if p ≥ 18/5.
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The functionp 7→ F(p)= D−1(S(p)) is given by

F(p) =


9− (25/2)p if 0 ≤ p ≤ 18/25,

(25/18)p− 1 if 18/25≤ p ≤ 18/5,

4− ε[ p− (18/5)] if 18/5≤ p ≤ 18/5+ 4/ε,

0 if p ≥ 18/5+ 4/ε.

By construction, this example has uncountable many chaotic CEE with belief pa-
rametersα= 2 andβ = 4/5. Let us explore the existence of other, simple CEE first.
It is straightforward to check that the mapF has three fixed points atp∗1= 2/3,
p∗2= 18/7, and p∗3= (20+ 18ε)/(5 + 5ε). Applying Theorem 2, we conclude
that there exist three steady-state CEE corresponding to the three fixed points
p∗1, p∗2, andp∗3, and three two-cycle CEE corresponding to the three pairs of dif-
ferent fixed points{p∗1, p∗2}, {p∗1, p∗3}, and {p∗2, p∗3}. We haveF ′(p∗1)=−25/2,
F ′(p∗2)= 25/18, and F ′(p∗3)=−ε. According to Theorem 4, the steady-state
CEE {(p∗1);β} and {(p∗3);β} are locally stable if and only if the belief param-
eterβ is equal to zero, whereas the steady-state CEE{(p∗2);β} is locally stable if
|β| < 18/25. The two-cycle CEE{(p∗1, p∗2)}, on the other hand, is unstable be-
cause|F ′(p∗1)F ′(p∗2)|> 1, whereas the two-cycle CEE{(p∗1, p∗3)} and{(p∗2, p∗3)}
are locally stable ifε is sufficiently small. Thus, in this example, there exist (stable)
steady-state CEE, (stable) two-cycle CEE, and infinitely many chaotic CEE at the
same time.

To which of these CEE will the SAC-learning process converge? Figure 3 illus-
trates the typical behavior observed in simulations of the SAC-learning dynamics
for smallε. The results can be summarized as follows:

• For initial states withp0=α0 ≈ p∗1, convergence to the steady-statep∗1 occurs (Figure
3A).
• For initial states withp0=α0 ≈ p∗2, convergence to the steady-statep∗1 occurs after a

(possibly long) transient phase with price fluctuations similar to those of the chaotic
CEE withα= 2 andβ = 4/5 (Figure 3B).
• For initial states withp∗2 < p0 6= α0 and β0=−1, two possibilities have been

observed:
—there is a first transient phase with prices close to the steady-statep∗2, followed by
a second transient phase with price fluctuations similar to those of the chaotic CEE
with α= 2 andβ = 4/5, and finally convergence to the steady-statep∗3 (Figure 3C);
—there is a transient phase with prices close to the steady-statep∗2 but, eventually,
convergence to the two-cycle{(p∗1, p∗3)} (Figure 3D).

These numerical simulations suggest that the steady-state CEE{(p∗1);β} and
{(p∗3);β} as well as the two-cycle CEE{(p∗1, p∗3)} are learnable. On the other hand,
the steady-state CEE{(p∗2);β}, the two-cycle CEE{(p∗1, p∗2)} and{(p∗2, p∗3)}, and
the chaotic CEE withα= 2 andβ = 4/5 all seem to be unstable in the learning dy-
namics; in none of our simulations of the SAC-learning process have we observed
convergence to one of these CEE.
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A) x0 = 0.65, α0 = 0.65, β0 = 1.00

B) x0 = 2.55, α0 = 2.55, β0 = 1.00

FIGURE 3. Typical outcomes of SAC-learning dynamics in cobweb model, with nonmono-
tonic supply curve, for different initial states (p0, α0, β0): (A) convergence to steady-state
CEE p∗1; (B) convergence to steady-state CEEp∗1, after long chaotic transient; (C) un-
stable steady-state CEEp∗2, chaotic transient, and convergence to steady-state CEEp∗3;
(D) learning to believe in the two-cycle CEE{(p∗1, p∗3)}.

Figure 4 shows graphs of the implied actual law of motion mappingFα,β or its
second iterateF (2)

α,β for different values of the belief parametersα andβ. These
graphs suggest why certain CEE are learnable whereas others are not and thus
provide some intuition for the highly nonlinear, nonautonomous SAC-learning
dynamics. Recall that, ifαt =α andβt =β, the next pricept+1 is generated by the
temporary law of motionFα,β , that is,pt+1= Fα,β(pt ). Because in the long run,
the belief parametersαt andβt are slow variables, the graphs of the mapsFα,β are
useful in understanding the price dynamics in the SAC-learning process during
phases in which(αt , βt ) ≈ (α, β).

Figure 4A shows the graph of the second iterateF (2)
α,β for α= (p∗1 + p∗3)/2 and

β =−1 and illustrates that the two-cycle CEE{(p∗1, p∗3)} is stable. There is a (large)
open set of initial statesp0 from which convergence to the two-cycle occurs. If
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C) x0 = 3.00, α0 = 2.50, β0 = −1.00

D) x0 = 3.50, α0 = 2.50, β0 = −1.00

FIGURE 3. (Continued.)

the belief parametersαt andβt are different from, but close to,α= (p∗1 + p∗3)/2
andβ =−1, respectively, then the temporary mapFαt ,βt still has a stable two-
cycle. This suggests that, once(αt , βt ) is sufficiently close to [(p∗1 + p∗3)/2,−1],
the SAC-learning dynamics will lock into the two-cycle{p∗1, p∗3} (see also the
corresponding time series in Figure 3D). Figure 4B shows the graph of the second
iterateF (2)

α,β with α= (p∗2+ p∗3)/2 andβ =−1 orβ =−1/2, respectively. Although
the two-cycle CEE{p∗2, p∗3} is stable according to Theorem 2, it does not seem to
be learnable. In none of our simulations of the SAC-learning dynamics have we
ever observed convergence to{p∗2, p∗3}. A possible explanation for this is that, in
the SAC-learning dynamics, one always hasβ1=−1/2. Figure 4B shows that, for
α= (p∗2 + p∗3)/2 andβ =−1/2, the implied actual law of motion does not have a
stable two-cycle, but a stable steady state instead. Apparently, in the SAC-learning
process,βt does not get close enough to−1 to lock into the self-fulfilling two-
cycle{p∗2, p∗3}. We expect that in a slightly different learning scheme, in which the
updating ofβt would occur on a slower timescale or where more weight would be
given to the old belief parameterβt−1 (especially in the initial stage of the learning

https://doi.org/10.1017/S1365100598008013 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100598008013


                  

312 CARS HOMMES AND GERHARD SORGER

A) α = 2.33, β = −1.00 B) α = 3.29

C) α = 2.57 D) α = 2.00, β = 0.80

FIGURE 4. Implied actual laws of motion for nonmonotonic cobweb model, for different
belief parametersα andβ: (A) α= (p∗1 + p∗3)/2 andβ =−1, stable two-cycle with large
basin of attraction; (B)α= (p∗2+p∗3)/2 andβ =−1, two-cycle with small basin of attraction;
(C)α= p∗2 and different values ofβ, F ′(p∗2) > 1, and the steady-state CEE is not learnable.
(D) α= 2, β = 0.8, chaotic CEE not learnable due to one-sided stable steady-statep∗ = 4.

process), the first-order sample autocorrelation would gain enough momentum to
move toward−1, thus triggering convergence to the two-cycle CEE{p∗2, p∗3}.

Figure 4C shows the graphs ofFα,β for α= p∗2 and differentβ-values and
suggests why the steady-statep∗2 is not learnable. Suppose thatαt ≈ p∗2 and we
take an initial statep0 close top∗2. If βt is negative, up-and-down price oscillations
aroundp∗2 would arise, the stability of which is determined by the absolute value
of βt F ′(p∗2). BecauseF ′(p∗2) > 1, the corresponding first-order autocorrelation
would become smaller thanβt so thatβt would decrease. Asβt decreases, the
instability of the up-and-down price fluctuations aroundp∗2 becomes stronger.
Whenβt gets close enough to−1 andαt is still close top∗2, the SAC-learning
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process is likely to settle down to the two-cycle{p∗1, p∗3} as in Figure 3D. On the
other hand, ifβt would be a small positive value, then monotonic convergence to
p∗2 would arise. BecauseF ′(p∗2) > 1, the corresponding first-order autocorrelation
would become larger thanβt , so thatβt would increase. Asβt increases beyond
1/F ′(p∗2)= 18/25, the steady-statep∗2 becomes unstable and prices move away
from p∗2. They can either increase and eventually converge to the stable steady-
statep∗3, or they could decrease for some time until they enter an erratic phase in
which prices fluctuate irregularly in the interval [0, p∗2], and finally escape to the
stable steady-statep∗3 as in Figure 3C.

Let us finally discuss learnability of chaotic CEE. Figure 4D shows the graph
of the implied actual law of motionFα,β for α= 2 andβ = 4

5. Notice that, in this
case, the mapFα,β is exactly an upside-down asymmetric tent map on the interval
[0, p∗2] and, by construction, there exists an uncountable set of chaotic CEE. The
graph in Figure 4D suggests why these chaotic CEE are not learnable: The map
F2,4/5 has a one-sided stable steady-statep∗ = 4. If, at some datet , αt > 2 and/or
βt >

4
5, the corresponding temporary law of motionFαt ,βt has a stable fixed point

p∗> 4. As a consequence, the SAC-learning dynamics may easily lock into the
steady-statep∗3= (20+ 18ε)/(5+ 5ε).

The chaotic CEE constructed in Theorem 6 therefore are not learnable. The
question arises whether agents can learn a chaotic CEE. Figure 5A illustrates that,
for a somewhat larger parameter valueε= 1/4, convergence of the SAC-learning
process to a chaotic CEE can arise. For this largerε-value, the two-cycle CEE
{(p∗1, p∗3)} is not stable anymore because|F ′(p∗1)F ′(p∗3)| =25/8> 1. In the SAC-
learning dynamics, the belief paramers(αt , βt ) seem to converge to(2.22,−0.94)
whereas price fluctuations remain chaotic. Notice that this chaotic CEE is different
from the one that we constructed in Theorem 6. Figure 5B shows the graph of the
law of motionFα,β for α= 2.22 andβ =−0.94. It is a piecewise linear map with
two critical points. Figure 5C shows thatF (8)

α,β (i.e., the mapFα,β iterated eight
times) is uniformly expanding. Therefore, the results of Lasota and Yorke (1973)
apply and it follows that the mapFα,β has a unique ergodic invariant measure
that is absolutely continuous with respect to Lebesgue measure. Consequently, if
αt = 2.22 andβt =−0.94 were fixed over time, the sample average and sample
autocorrelations would exist and would be the same for Lebesgue almost all initial
states. Apparently, the SAC-learning dynamics have settled down to a learnable
chaotic CEE.

In summary, our numerical simulations as well as the graphical analysis show
that steady-state, two-cycle, and chaotic CEE can be learned in the SAC-learning
process. Our results suggest that, in nonlinear cobweb-type models, the learnability
condition for a steady-state CEE{(p∗);β} is F ′(p∗) < 1. This condition coincides
with the stability condition of Bray and Savin (1986) for the linear cobweb model
under OLS learning. Our results also suggest that the learnability condition for a
two-cycle CEE{(p∗1, p∗2)} is |F ′(p∗1)F ′(p∗2)| < 1.10 The precise conditions under
which chaotic CEE are learnable remain unclear, but our numerical simulations
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A) x0 = 3.50 α0 = 2.50 β0 = −1.00

B) α = 2.22 β = −0.94 eps= 0.25 C) α = 2.22 β = −0.94 eps= 0.25

FIGURE 5.Learning to believe in chaos in nonmonotonic cobweb model, withε= 0.25: (A)
(αt , βt ) → (2.22,−0.94), whereas price fluctuations are chaotic; (B) implied actual law
of motion forα= 2.22 andβ =−0.94; (C) eight iterations of implied actual law of motion
for α= 2.22 andβ =−0.94; the mapF8

2.22,−0.94 is expanding.

suggest that learning to believe in chaos can occur with positive probability, that
is, from a set of initial states of positive measure.

7. CONCLUDING REMARKS

There seems to be a growing consensus that the rational expectations hypothesis
is an extremely strong rationality assumption concerning expectation formation of
economic agents, which may at best hold only in the long run. As a consequence,
the literature on alternativebounded rationalitymodels for expectation formation
and learning processes in economic modeling is growing rapidly. As Sargent (1993)
emphasizes, one of the key features of this new approach is that boundedly rational
agents base their expectations on time-series observations and not on (unknown)
market equilibrium equations. Boundedly rational agents behave like econometri-
cians: They learn, adapt, and update parameters in their perceived law of motion in
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accordance with observed realizations. We would like to make some final remarks
on how the CEE concept fits into the bounded-rationality literature.

A large part of this literature [e.g., Bray (1982), Bray and Savin (1986), Marcet
and Sargent (1989)] deals withlinear stochasticmodels. Both the perceived law
of motion and the implied actual law of motion are linear, and fluctuations are
driven by stochastic exogenous shocks. The parameters of the implied actual law
of motion are a (possibly nonlinear) function of the parameters of the perceived
law of motion. A REE is a fixed point of the mapping from the perceived law
of motion to the actual law of motion. In a REE the actual law of motion thus
coincides exactly with the perceived law of motion. A similar remark applies to the
nonlinear stochastic models investigated, for example, by Evans and Honkapohja
(1994, 1995), and to the sunspot literature [e.g., Azariadis and Guesnerie (1986),
or Woodford (1990)]. Attention generally is focused on cases in which the beliefs
are self-fulfilling in the sense that the perceived law of motion exactly coincides
with the implied actual law of motion.

Our approach deviates in an important aspect from the (linear) stochastic ap-
proach. Our perceived law of motion is linear, but our actual law of motion is
nonlinear. In this way we attempt to model (a significant part of) economic fluctu-
ations byendogenous nonlinear dynamics, in which agents form expectations in a
simple way based onlinear forecasting rules. Obviously, in general, there cannot
exist parameter values for which the linear perceived law of motion and the im-
plied nonlinear actual law of motion coincide. Hence, the perceived law of motion
always will bedifferentfrom the (unobserved) actual law of motion. However, we
have shown that, given a linear perceived law of motion, there can exist a large
set of actual realizations of the implied nonlinear actual law of motion such that,
for the agents who only observe time series, the actual realizations are consistent
with their linear stochastic perceived law of motion. Along a CEE, both sample
average and sample autocorrelations of the realizations of the nonlinear actual law
of motion coincide with the average and the autocorrelation of the linear stochas-
tic perceived law of motion. The linear forecasting rules thus are self-fulfilling in
terms of average and autocorrelations. In such a case, boundedly rational agents
who use linear statistical techniques would have no reason to deviate from their
simple linear forecasting rule. Obviously, one might impose additional consistency
requirements using other observable time-series characteristics, but the sample av-
erage and sample autocorrelation should give a useful start and may be seen as
important observable characteristics of first-order approximate forecasting rule of
an irregularly fluctuating variable.

In an economic model with rational expectations, the starting point often is the
extreme assumption that the agents have perfect knowledge about the underly-
ing market equilibrium equations. In contrast, consistent expectations are based
on another perhaps extreme assumption, namely that the agents use very simple
(linear) forecasting rules. It is rather surprising that for a general class of nonlinear
dynamic models, these simple linear forecasting rules neednot be systematically
wrong and can be correct in terms of average and autocorrelation.
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We have restricted attention to the case in which the perceived law of motion
is a linear stochastic AR(1) process. In that case, we have shown existence of
three different types of CEE: steady states, two-cycles, and chaotic CEE. We also
have presented numerical simulations, supported by graphical analysis, that the
SAC-learning process can converge to each of these types of CEE. Multiple CEE
may coexist, and the learning process can exhibit path dependence, i.e., the final
outcome of the learning process may depend upon initial belief parameters.

In the case of a steady-state or a two-cycle CEE, the long-run outcome of the
implied actual nonlinear law of motion coincides exactly with the linear forecasts
made by the agents. These simple CEE thus are long-run REE that are triggered
by a simple AR(1) belief. Moreover, the simple steady-state and two-cycle CEE
are learnable in a large number of cases. In the (unstable) cobweb model with
monotonic demand and supply, in all of our simulations of the SAC-learning
dynamics, convergence to the steady-state CEE occurred.

In addition to the simple CEE, we also have shown the existence of complicated
chaotic CEE. Chaotic CEE are not REE, not even in the long run, but chaotic
equilibrium paths have exactly the same sample average and sample autocorre-
lation function as the linear stochastic perceived law of motion. These chaotic
CEE arise because, from a linear statistical viewpoint, the chaotic realizations of
the nonlinear actual law of motion are indistinguishable from the linear stochastic
perceived law of motion. Along a chaotic CEE, agents do make forecasting errors,
but the forecasting errors are not systematic, because the linear forecasting rules
are correct in terms of sample average and autocorrelations.

Endogenous dynamics and the instability of learning also has been studied
by Grandmont and Laroque (1991), Grandmont (1994), and Chatterji and
Chattopadhyay (1996). These studies focus on local instability however, whereas
we have focused on global instability. The global instability of learning processes
also has been studied by Bullard (1994) and Sch¨onhofer (1996). In these studies
the OLS-learning process doesnotconverge but, instead, learning equilibria arise
in which the belief parameters exhibit periodic or chaotic fluctuations.11 In con-
trast, along chaotic CEE the learning process does converge, that is, in the SAC
dynamics the parameters of the perceived law of motion do converge to constants,
whereas the state variable keeps fluctuating. In particular, learning to believe in
chaos occurs where the parameters of the perceived law of motion converge and
the corresponding limiting actual law of motion has a chaotic attractor.

A number of extensions of our CEE concept seem to be worth pursuing. First, we
apply the CEE concept to other general classes of dynamic models, for example,
pt = F(pe

t+1) and pt = F(pt−1, pe
t ) [Hommes and Sorger (1998)]. The first class

includes the overlapping-generations (OLG) model (without capital). The only
difference with the cobweb-type models is the timing of expectation formation, but
this different timing leads to a number of different results. The steady-state and the
two-cycle CEE seem to be the most likely outcomes of the SAC-learning dynamics
in the OLG model (without capital). Even in the presence of a strong income effect,
and chaotic perfect-foresight cycles as in Grandmont (1985), convergence of the
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SAC-learning process to a steady-state or a two-cycle CEE seems to occur in all
simulations. The steady-state and the two-cycle REE are, in fact, special cases of
two-state stationary sunspot equilibria in which some of the transition probabilities
equal zero or one [see, e.g., Azariadis and Guesnerie (1986)]. Self-fulfilling sunspot
equilibria occur if all agents coordinate, or learn to coordinate, their beliefs on
the same stochastic sunspot variable. Woodford (1990) has shown that learning
to believe in sunspots can occur; that is, for an open set of initial states, learning
processes such as OLS may converge to sunspot equilibria. Because of randomness,
the self-fulfilling sunspot equilibria may be very complicated and coordination
on an erratic sunspot variable, even if possible with positive probability, may
be viewed as unlikely in a many-agent world. The CEE concept with a simple
AR(1) predictor may be a theoretical explanation of coordination onsimpleperfect
foresight outcomes in a many-agent world.

In the second class of dynamic models,pt = F(pt−1, pe
t ), there is dynamic

feedback from both the previous actual price and the expected price. An application
is, for example, an OLG model with capital. An important question is whether, in
this more general class of models, learning to believe in chaos, that is, convergence
to a chaotic CEE, is more likely.

Another topic for future work would be an extension of CEE to a linear AR(2)
perceived law of motion, which may lead to periodic CEE with any periodq >
2 and also to quasiperiodic CEE. Dynamic economic models in which traders
use AR(2) forecasting rules thus may lead to all possible attractors in nonlinear
dynamics: stable steady states, stable cycles of arbitrary period, quasiperiodic as
well as strange attractors. Another possible extension may be to consider simple
nonlinearforecasting rules. For example, piecewise linear predictors, where traders
believe prices to go up forN consecutive periods before dropping by a certain
amount, may play a role in financial markets.

One might argue against our CEE concept, by saying that there exist simplenon-
linear time-series techniques that could distinguish easily between the realizations
of the nonlinear actual law of motion and the linear stochastic perceived law of
motion. In fact, for all examples presented in this paper, a simple phase-space plot
(pt , pt+1)would reveal immediately that prices are generated by a one-dimensional
(chaotic) map and not by a stochastic AR(1) model. However, in more compli-
cated two- and higher-dimensional models, this simple phase-space reconstruction
would not work. One could argue that, in higher-dimensional cases, one might still
use Takens’ embedding theorem and try to compute characteristics such as the cor-
relation dimension or the Lyapunov exponents of a possibly underlying strange
attractor of the unknown law of motion. Unfortunately, all of these techniques are
very sensitive to (dynamic) noise, sample size, and method of aggregation; see
Brock and Dechert (1991), Brock et al. (1991), and Barnett et al. (1997) for a dis-
cussion. We have focused for analytical tractability on extremely simple examples
that indeed could be detected by these nonlinear techniques even in the presence
of a small amount of noise. However, in more realistic cases, the methods become
very sensitive to noise. In practice it may be impossible to distinguish between a
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noisy chaotic and a (linear) stochastic time series, and prediction based on sample
average and sample autocorrelations may be the most reasonable thing to do.

NOTES

1. Alternatively, one might define the autocorrelation coefficients of a constant sequence to be zero
at all lags. However, when we introduce the stability notion for a steady-state CEE in Section 3, it will
be more convenient to allow the autocorrelation coefficients of a constant sequence to be of the more
general formβ j for someβ ∈ [−1, 1].

2. Assume, for example, a linear modelF(p)=ap, 0 < a < 1, and consider belief parameters
α= 0 andβ ∈ [−1, 1]. It is easy to see that the actual dynamics (3) generates a time series(pt )

∞
t=0

with pt → 0 and sample autocorrelation coefficient(aβ) j at lag j . Imposing the equality of sample
autocorrelation coefficients as in condition 3b of the definition would implyaβ =β and, hence,β = 0.
However, whenF is nonlinear, the sample autocorrelation coefficients of a convergent trajectory of (3)
depend, in general, on the initial valuep0 and may be consistent with otherβ values between−1 and
1 or with no suchβ value at all.

3. Here we mean orbital convergence, that is,p2t → p∗1 and p2t+1→ p∗2, or vice versa. Because
p∗1 6= p∗2, the sequence(pt )

∞
t=0 is not convergent in the usual sense.

4. More specifically,Tβ,[a,b] andTβ ′,[c,d] aretopologically equivalent; that is, there exists a home-
omorphismh : [a, b] 7→ [c, d] such thath ◦ Tβ,[a,b] = Tβ ′,[c,d] ◦ h. The homeomorphismh is a one-
to-one mapping from orbits generated byTβ,[a,b] onto orbits generated byTβ ′,[c,d] .

5. The OLS estimate forα is identical to (5). The OLS estimate forβ is slightly different
from (6), namelyβt = [

∑t−1

i=0
(pi − p̄−t )(pi+1− p̄+t )]/[

∑t−1

i=0
(pi − p̄−t )2] for t ≥ 2, where p̄−t =

(1/t)
∑t−1

i=0
pi and p̄+t = (1/t)

∑t

i=1
pi . See also the discussion on differences between SAC and

OLS learning at the end of this section.
6. The way we stated the SAC-learning dynamics, it is not an ordinary difference equation because

αt andβt depend on all previous prices. It is shown in the Appendix that one can rewrite the system in
a recursive form(pt+1, αt+1, nt+1, zt+1)=8(pt , αt , nt , zt , t, p0), such thatnt/zt =βt for all t . The
SAC-learning dynamics therefore can be considered as a four-dimensional nonautonomous system.

7. Marcet and Sargent (1989) and Evans and Honkapohja (1995) analyze the stability of OLS
learning in a class of linear and nonlinear stochastic models by relating the stability of the OLS
dynamics to the stability of an associated ordinary differential equation. However, their approach cannot
be applied here, because we deal with expectations and learning feedback in a nonlinear deterministic
framework.

8. Adaptive expectations are sometimes referred to as fixed coefficient learning, because at each
date the expected price is updated by a fixed proportion of the forecasting error, into the direction of
the most recently observed actual price.

9. βt remains in a small neighborhood of zero but does not necessarily converge to zero; see note 2.
10. For the steady-state CEE, this condition coincides with the weakE-stability condition for a

stationary sunspot equilibrium (SSE) near a steady state, whereas for the two-cycle CEE, this condition
coincides with the strongE-stability condition for an SSE near a two-cycle; see Evans and Honkapohja
(1994, 1995).

11. In both cases, along the learning equilibria the price sequence is unbounded, since inflation arises
because of a constant growth of the money supply. Agents run OLS regression on these unbounded
price sequences. To our best knowledge there are no global results concerning periodic or chaotic
dynamics in the OLS-learning scheme with regression on bounded variables.
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APPENDIX

Define nt =
∑t

i=0(pi − αt )
2 and zt =

∑t−1
i=0(pi − αt )(pi+1 − αt ). Obviously, we have

βt = zt/nt for all t . The actual dynamics (7) therefore can be written as

pt+1 = 81(pt , αt , nt , zt ) := F(αt + (zt/nt )(pt − αt )).

Together with (5), this implies that

αt+1 = 82(pt , αt , nt , zt , t) := t + 1

t + 2
αt + 1

t + 2
81(pt , αt , nt , zt ).
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Finally, it is straightforward to verify that

nt+1 = 83(pt , αt , nt , zt , t) := nt + t + 1

t + 2
[αt −81(pt , αt , nt , zt )]

2

and

zt+1 = 83(pt , αt , nt , zt , t, p0)

:= zt + [81(pt , αt , nt , zt )− αt ]

[
pt + p0

t + 2
− t2 + 5t + 5

(t + 2)2
αt

− 1

(t + 2)2
81(pt , αt , nt , zt )

]
.

The above equations provide a recursive form of the SAC-learning dynamics.
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