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ON SUPERCRITICAL BRANCHING PROCESSES WITH EMIGRATION
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Abstract

We study supercritical branching processes under the influence of an independent and
identically distributed (i.i.d.) emigration component. We provide conditions under which
the lifetime of the process is finite or has a finite expectation. A theorem of Kesten–
Stigum type is obtained, and the extinction probability for a large initial population size
is related to the tail behaviour of the emigration.
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1. Introduction

Branching processes are a fascinating class of stochastic processes, which model the evolu-
tion of a population under the assumption that different individuals give birth to a random
number of children independently of each other. Timeless monographs, which present the
theory of classical branching processes, include [1], [10], and [28].

In the present article we will study the consequences of including an independent and
identically distributed (i.i.d.) emigration component between consecutive generations in the
supercritical regime. Intuitively speaking, the properties of this model are determined by
the interplay of two opposite effects, namely the explosive nature of supercritical branching
processes and the decrease in population size caused by emigration.

Formally, let ((ξn,j)j≥1, Yn)n≥1 denote a sequence of i.i.d. random variables. Assume that
(ξ1,j)j≥1 is i.i.d. and let ξ be an independent copy of the family (ξn,j)n,j≥1. Moreover, suppose
Y is an independent copy of (Yn)n≥1 and that both ξ and Y only take values in N0. Then we
define a branching process with emigration (Zn)n≥0 by setting Z0 := k ∈N and recursively

Zn+1 :=
( Zn∑

j=1

ξn+1,j − Yn+1

)
+
, n ≥ 0. (1.1)

Throughout this article we will focus on the supercritical case and, more precisely, assume
that

λ := E[ξ ] ∈ (1, ∞).
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Supercritical branching processes with emigration 735

Naturally, our study will concentrate on the extinction time

τ := inf{n ≥ 1 | Zn = 0}, where inf ∅ := ∞.

In Theorem 2.1, we verify that τ is almost surely finite if and only if E[log+ Y] = ∞. Moreover,
in Theorem 2.2, we show that E[τ ] < ∞ if

0 <
∑
n≥1

n∏
m=1

P
[
Y ≤ r(λ + ε)m]< ∞ for ε > 0 and r ∈ (0, ∞), (1.2)

and, under some additional assumptions, E[τ ] = ∞ provided that

∑
n≥1

n∏
m=1

P
[
Y ≤ rλmm−θ

]= ∞ for some θ ∈ (1, ∞), r ∈ (0, ∞). (1.3)

The precise statements of all of our results will be given in Section 2. In Theorem 2.3 we relate
the behaviour of the extinction probabilities

qk := P[τ < ∞ | Z0 = k], k ≥ 1,

to the tail behaviour of Y as k → ∞. We also present a strong limit theorem for the population
size Zn as n → ∞; see Theorem 2.4.

Our study is motivated by a simple observation, which links our model to subcritical
autoregressive processes. We will explain it in Section 3. To the best of our knowledge, this
connection has not been investigated in the literature so far.

While our criteria ensuring E[τ ] < ∞, respectively E[τ ] = ∞, are not exact, as illustrated
by the following example, the gap is quite narrow.

Example 1.1. Assume that there are c ∈ (0, ∞) and n0 ∈N with

P[Y > n] = c

log n
for all n ≥ n0.

Then E[log+ Y] = ∞ and hence τ < ∞ almost surely. If c > log λ, then by Raabe’s test, (1.2)
holds. If c ≤ log λ, then by the Gauss test, (1.3) holds.

Let us end this introduction by giving an overview of the literature dealing with branching
processes with emigration.

Vatutin [31] explored the critical case λ = 1 for Y ≡ 1 and σ 2 := var[ξ ] ∈ (0, ∞). He
showed that τ has a regularly varying tail with exponent −1 − 2/σ 2 and, if all moments of
ξ are finite, proved that 2Zn/nσ 2, conditioned on being positive, converges weakly to an expo-
nential distribution. These results were improved by Vinokurov [34] and Kaverin [13], and
more recently by Denisov, Korshunov, and Wachtel [5]. More generally, the approach of [5]
allows size-dependent offspring distribution and immigration.

More or less specific models of critical branching processes involving both immigration and
emigration were studied in [19], [36], and [37].

The present article and most of the above literature deals with specific cases of controlled
branching. This model was introduced by Sevastyanov and Zubkov [29], who classified even-
tual extinction for a control function of linear and polynomial growth. We also refer to the
related work by Zubkov [39, 40]. Yanev [35] generalized this model by assuming random i.i.d.
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736 G. BRAUN

control functions (ϕn)n≥1. Roughly speaking, the present article assumes ϕn(m) := (m − Yn)+,
m ∈N. For a recent monograph on controlled branching, see [32].

We also want to mention some results for models in continuous time. In this scenario the
population size changes if exactly one individual gives birth to a random number of children
or if an emigration event, sometimes called catastrophe, occurs. The case that each individual
has either 0 or 2 children would correspond to a birth-and-death process. In [21] and [24],
Pakes gave results for a catastrophe rate proportional to the population size. In [22], [23],
and [25], he studied this model with a size-independent emigration rate. In the supercritical
regime, he related the almost sure eventual extinction to the condition E[log+ Y] = ∞; see
[22, Theorem 2.1 and Corollary 3.1]. This was also verified by Grey [6], who proved the same
result for the time-discrete model of our present article under the assumption that (ξ1,j)j≥1 and
Y1 are independent. However, this independence condition can be avoided; see Theorem 2.1 of
the present article.

2. Preliminaries and statement of results

In the following we usually assume Z0 = k ∈N, λ ∈ (1, ∞), as well as:

(H1) There exists a strictly increasing sequence (kn)n≥0 in N, which satisfies k0 = k and
P
[∑kn

j=1 ξ1,k − Y1 = kn+1
]
> 0 for all n ∈N0, and

(H2) P
[∑n

j=1 ξ1,j − Y1 ≤ n − 1
]
> 0 for all n ≥ 1.

In some of our results, we will also need Grey’s restriction:

(IND) The random variables (ξ1,j)j≥1 and Y1 are independent.

Conditions (H1) and (H2) ensure that neither emigration nor branching will dominate each
other fully for the possibly rather small initial state, respectively for a large population size.

If λ > 1, then condition (H1) is always satisfied provided that the initial population Z0 =
k ∈N is chosen large enough. As similar arguments will occur in many of our proofs, let us
briefly explain how this can be verified. By truncation of the offspring distribution ξ (see also
Observation A.1 in Appendix A), we may restrict ourselves to the case λ < ∞. Choose ε > 0
with λ − ε > 1. Then, by the law of large numbers,

P

[
k∑

j=1

ξ1,j > (λ − ε)k

]
→ 0 for k → ∞.

In particular, we know that there exists K ∈N such that this probability is smaller than 1/2
for all k ≥ K. Moreover, we can choose N ∈N with P[Y1 ≥ N] < 1/2. Then, for all k ≥ K with
N < εk, we deduce

P[Z1 > k | Z0 = k] > 0.

So if λ > 1, then condition (H1) holds if Z0 = k is chosen large enough. On the other hand, we
know that condition (H2) holds, for example, in the case of P[ξ = 0] > 0 or if the emigration
distribution Y is unbounded and (IND).

Note that (H1) and (H2) are preserved if the value of Z0 = k ≥ 1 is increased. The state space
of (Zn)n≥0 may be affected by such a modification. However, this will not cause any problems
in our study.
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Supercritical branching processes with emigration 737

Let us give a final thought regarding (H1) and (H2). Consider a modification of the branch-
ing process (Zn)n≥0, in which the population gets revived with exactly k individuals upon
extinction. Then this renewal version of (Zn)n≥0 is a Markov chain, which is irreducible and
exhibits an infinite state space containing 0 if and only if both (H1) and (H2) are satisfied.
In [20], Pakes investigated this revived branching process when the emigration component
is absent but with a more general resetting mechanism upon extinction. Moreover, both the
subcritical and critical cases are studied in [20].

Theorem 2.1. τ < ∞ almost surely if and only if E[log+ Y] = ∞.

If the process (Zn)n≥0 dies out almost surely, it is natural to ask whether its expected lifetime
is finite or infinite.

Theorem 2.2. Assume E[log+ Y] = ∞.

(I) E[τ ] < ∞, provided that there are ε > 0 and r ∈ (0, ∞) with

0 <
∑
n≥1

n∏
m=1

P
[
Y ≤ r(λ + ε)m]< ∞.

(II) E[τ ] = ∞, provided that E
[
ξ1+δ

]
< ∞ for δ > 0, (IND), and

∑
n≥1

n∏
m=1

P
[
Y ≤ rλmm−θ

]= ∞ for θ ∈ (1, ∞), r ∈ (0, ∞).

If the process (Zn)n≥0 does not become extinct almost surely, one might try to understand the
distribution of τ and the extinction probabilities (qk)k≥1 in the case of a large initial population
size k ≥ 1. For this, we use Karamata’s concept of slow and regular variation and assume:

(REG) P[Y > t] varies regularly for t → ∞ with index α ∈ (0, ∞).

For a gentle introduction to slow and regular variation, we refer the reader to [18]. A mea-
surable function L : [0, ∞) → (0, ∞) is called slowly varying for t → ∞ if for all c ∈ (0, ∞)
we have L(ct)/L(t) → 1 as t → ∞. Moreover, a measurable function f : [0, ∞) → (0, ∞) is
regularly varying for t → ∞ if there exists α ∈R, t0 ∈ [0, ∞) and a slowly varying function L
satisfying f (t) = tαL(t) for all t ≥ t0. In this case the constant α ∈R is unique and −α is called
the index of f .

Theorem 2.3. Assume (REG) and let N ∈Z≥2 ∪ {∞}. Then

lim sup
k→∞

P[τ < N | Z0 = k] P[Y > k]−1 ≤
N−1∑
l=1

λ−αl.

Furthermore, if all exponential moments of ξ are finite, then

lim
k→∞ P[τ < N | Z0 = k] P[Y > k]−1 =

N−1∑
l=1

λ−αl.

By choosing N = ∞ in Theorem 2.3, we obtain results on the extinction probabilities
(qk)k≥1 for k → ∞.
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738 G. BRAUN

Besides τ and (qk)k≥1, one can also investigate the asymptotic behaviour of the process
(Zn)n≥0 conditioned on its non-extinction. Observe that the sequence Wn := λ−nZn, n ≥ 0, is a
non-negative supermartingale. Hence, as in the case without any migration, Doob’s martingale
convergence theorem yields the existence of the a.s. limit

W := lim
n→∞ Wn, and moreover 0 ≤E[W] ≤ k.

Theorem 2.4.

(a) P[W > 0] > 0 if and only if

E[ξ log+ ξ ] < ∞ and E[log+ Y] < ∞.

Furthermore, in this case, P[W > 0] = P[τ = ∞].

(b) Assume P[W > 0] > 0, P[ξ = λ] < 1 and (IND). Then

P[a < W < b] > 0 for all 0 ≤ a < b ≤ ∞.

The proofs of Theorem 2.1 and Theorem 2.2 are somewhat similar and are therefore
addressed together in Section 4. The arguments needed for Theorem 2.3 and Theorem 2.4
are different and slightly more technical, and are thus carried out separately in Sections 5
and 6.

3. Relation to the random difference equation

In this section we always assume ξ ≡ λ. Then (1.1) simplifies to

Zn+1 = (λZn − Yn+1)+, n ≥ 0.

Consider the process (Ẑn)n≥0 defined by Ẑ0 := Z0 = k and

Ẑn+1 := λẐn − Yn+1, n ≥ 0.

Then, by induction over n ≥ 0, we can verify Zn = (Ẑn)+ and

Ẑn = λnk −
n∑

j=1

λn−jYj.

Let m ∈N0. Then, for all n ≥ 0, we know that

P[Zn > m] = P[Ẑn > m] = P

[
λ−nm +

n∑
j=1

λ−jYj < k

]
(3.1)

= P

[
λ−nm +

n∑
j=1

λ−(n−j)λ−1Yj < k

]
= P[X̂n < k], (3.2)

where (X̂n)n≥0 is the autoregressive process defined by X̂0 := m and

X̂n+1 := λ−1X̂n + λ−1Yn+1, n ≥ 0.
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Supercritical branching processes with emigration 739

The study of this random difference equation was initiated by Kesten [16] in the more general
random-coefficient version

Xn+1 := An+1Xn + Yn+1, n ≥ 0,

where the sequence (An, Yn)n≥1 is typically assumed to be i.i.d. and independent of X0. The
Markov chain (Xn)n≥0 is sometimes called a perpetuity. For more information on this process,
we also refer to the monograph [3] and the exposition in [12, Chapter 2].

Formally, (3.1) and (3.2) establish that (Zn)n≥0 and (X̂n)n≥0 are dual Markov chains in the
sense of Siegmund; see [30].

Let A1 ≥ 0 and Y1 ≥ 0 in the following. In the contractive case E[log A1] < 0, it is well
known that the condition

E[log+ Y1] < ∞
is related to the existence of a stationary solution for (Xn)n≥0; see e.g. [33, Theorem 1.6] or
[3, Theorem 2.1.3]. This can be explained in the following way. Assume that Y0 := X0 has the
same distribution as Y1. Then, for fixed n ≥ 1, by exchangeability

Xn =
n∑

j=0

An · · · Aj+1Yj
d=

n∑
j=0

A1 · · · AjYj+1 = : X′
n,

and X′
n → X∞ almost surely for n → ∞, provided the limit

X∞ :=
∑
n≥0

A1 · · · AnYn+1

exists. If A1 ≡ λ−1 and Y1 ≥ 0, then the limit X∞ is almost surely finite if and only if
E[log+ Y] < ∞; see e.g. Lemma 4.1 in Section 4. Inserting m = 0 into (3.1) and (3.2) gives

P[τ = ∞] = lim
n→∞ P[Zn > 0] = lim

n→∞ P[X̂n < k] = P[X̂∞ < k], (3.3)

where

X̂∞ := λ−1
∑
n≥0

λ−nYn+1,

and we can recover the statement of Theorem 2.1 in this way. Moreover, consider (3.3) and the
following result, which was obtained by Grincevičius in [8].

Theorem 3.1. (Grincevičius.) Assume P[Y1 > t] varies regularly for t → ∞ with index α ∈
(0, ∞), E[Aα

1 ] < 1 and E[Aβ

1 ] < ∞ for β > α. Then

lim
k→∞ P[X∞ > k] P[Y1 > k]−1 =

∞∑
j=0

E[Aα
1 ]j.

In the specific case ξ ≡ λ and A1 ≡ λ−1, we can use this result to recover the asymptotic
formula for (qk)k≥1 as k → ∞ given Theorem 2.3. Note that X∞ and X̂∞ differ by the constant
λ−1, which explains why the limit in Theorem 2.3 is λ−α/(1 − λ−α) rather than 1/(1 − λ−α).
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740 G. BRAUN

It is worth mentioning that Grey questioned some parts of the original proof of Theorem 3.1
and gave a new, improved version in [7].

Finally, note that, in our case, all random variables involved in the definition of (X̂n)n≥0
are non-negative and hence Kellerer’s theory of recurrence and transience of order-preserving
chains is available; see [14] and [15]. By again inserting m = 0 into (3.1) and (3.2), we deduce
that

E[τ ] =
∑
n≥0

P[τ > n] =
∑
n≥0

P[Zn > 0] =
∑
n≥0

P[X̂n < k],

and hence conclude that E[τ ] = ∞ if and only if (X̂n)n≥0 is recurrent. A recent result by Zerner
[38] states that this is rather generally the case if and only if there exists b ∈ (0, ∞) with

∑
n≥1

n∏
m=1

P[Y1 ≤ bλm] = ∞.

Clearly, in the specific case ξ ≡ λ, this result characterizes the finiteness of E[τ ] exactly and
hence more precisely than Theorem 2.2.

Interestingly, Zerner’s criterion applies not only to general random-coefficient autoregres-
sive processes but also to rather general subcritical branching processes with immigration. For
many of these models, the existence of a stationary solution is related to a finite logarithmic
moment of the immigration; see [11] and [26].

4. Proofs of Theorem 2.1 and Theorem 2.2

As preparation, we start with two simple lemmas.

Lemma 4.1. Let (Un)n≥1 be i.i.d. non-negative random variables. Then

lim sup
n→∞

Un

n
=
{

0 if E[U1] < ∞,

∞ if E[U1] = ∞.

The proof of Lemma 4.1 follows directly from the Borel–Cantelli lemma; see also
[9, Chapter 6, Proposition 1.1]. Lemma 4.1 is known in the context of supercritical branch-
ing processes with immigration and can be used to obtain some of Seneta’s classical results on
whether immigration increases the speed of divergence; see also [27] and [4, Section 3.1.1].

We will also apply the following concentration estimate, which can be seen as a weaker but
more general form of Chebyshev’s inequality.

Lemma 4.2. Let (Vn)n≥0 denote a sequence of i.i.d. random variables and Sn := ∑n
j=1 Vj for

all n ≥ 1. Assume E[V1] = 0 and that there is δ ∈ (0, 1] with c := E
[|V1|1+δ

]
< ∞. Then

P[|Sn| > t] ≤ 2cnt−1−δ for all n ≥ 1 and t ∈ (0, ∞).

Proof. By the Marcinkiewicz–Zygmund inequality (see [9, Chapter 3, Corollary 8.2]),

E
[|Sn|1+δ

]≤ 2cn for all n ≥ 1.

Thus the claim follows by applying Markov’s inequality. �
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Supercritical branching processes with emigration 741

The branching process, which is obtained from (Zn)n≥0 by neglecting any emigration, will
be denoted by (Z′

n)n≥0. Formally, we set Z′
0 := k ≥ 1 and

Z′
n+1 :=

Z′
n∑

j=1

ξn+1,j, n ≥ 0.

We will also work with the stopping time

τ ′ := inf{n ≥ 1 | Z′
n+1 ≤ Yn+1}.

Observe that, by definition, Zn ≤ Z′
n and τ ≤ τ ′ almost surely.

Proof of Theorem 2.1. First, let E[log+ Y] = ∞. Choose ε > 0 and set

T := inf{n ≥ 1 | Z′
m ≤ (λ + ε)m for all m ≥ n}.

Then, for fixed n ≥ 1, Markov’s inequality gives

P
[
Z′

n > (λ + ε)n]≤ k

(
1 + ε

λ

)−n

.

Hence, by the Borel–Cantelli lemma, T < ∞ almost surely. Furthermore, applying Lemma 4.1
with Un := log+ Yn gives Yn ≥ (λ + ε)n for infinitely many n ≥ 1 almost surely. This yields
τ ≤ τ ′ < ∞ almost surely.

Secondly, let E[log+ Y] < ∞. By truncation of the offspring distribution (see
Observation A.1 from Appendix A), we can assume that the offspring distribution ξ is bounded
and σ 2 := var[ξ ] ∈ [0, ∞). Moreover, as (H1) and (H2) hold, we can choose Z0 = k large
enough to ensure that these conditions remain true after truncation.

Fix ε > 0 with λ1 := λ − 2ε > 1 and let λ0 := λ − ε. Then, for all n ≥ 1, consider the
following events:

An :=
{�λn

0∑
j=1

ξn+1,j ≥
(

λ − ε

2

)⌊
λn

0

⌋}
, Bn := {

Yn ≤ λn
1

}
.

For all n ≥ 1, we find that by Chebyshev’s inequality

P[Ac
n] ≤ P

[∣∣∣∣∣
�λn

0∑
j=1

ξ1,j − λ
⌊
λn

0

⌋∣∣∣∣∣> ε

2

⌊
λn

0

⌋]≤
(

ε

2

)−2
σ 2⌊
λn

0

⌋ .

Since λ0 > 1, due to the Borel–Cantelli lemma, almost surely only finitely many events Ac
n,

n ≥ 1, occur. On the other hand, by Lemma 4.1, we know that almost surely all but finitely
many events Bn, n ≥ 1, occur. Also note that (An)n≥1 is a sequence of independent events, and
so is (Bn)n≥1. All in all, we can fix n0 ∈N such that(

λ − ε

2

)⌊
λn

0

⌋− λn
1 ≥ ⌊λn+1

0

⌋
for all n ≥ n0 (4.1)

and

min(P[A], P[B]) >
1

2
, where A := ⋂

n≥n0
An, B := ⋂

n≥n0
Bn. (4.2)
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742 G. BRAUN

Note that the value of n0 does not depend on k. By using (4.2), we find

P[A ∩ B] = P[A] + P[B] − P[A ∪ B] ≥ P[A] + P[B] − 1 > 0.

Finally, by recalling (H1) and (H2), we can increase Z0 = k to ensure

P[C] > 0, where C := {
Zn0 ≥ ⌊λn0

0

⌋}
.

By inserting our construction of the events A and B and using (4.1), an inductive argument
yields Zn ≥ �λn

0 for all n ≥ n0 on the event A ∩ B ∩ C. Since the events A ∩ B and C are
independent by definition,

P[τ = ∞] ≥ P[A ∩ B ∩ C] = P[A ∩ B] P[C] > 0. �

In fact, a careful look at the second part of this proof reveals the following result, which we
need in the proof of Theorem 2.4.

Proposition 4.1. Assume E[log+ Y] < ∞. Then qk → 0 for k → ∞.

The proof of this proposition is left to the reader.

Proof of Theorem 2.2. (I) Since τ ≤ τ ′, it suffices to verify E[τ ′] < ∞. Fix ε > 0 and r ∈
(0, ∞) according to the assumption and set

T := inf{n ≥ 1 | Z′
m ≤ r(λ + ε)m−1 for all m ≥ n},

T̂ := inf{n > T | Yn > r(λ + ε)n}.
Then τ ′ ≤ T̂ almost surely by construction, and hence it suffices to prove E[T̂] < ∞. As in the
proof of Theorem 2.1, we know T < ∞ almost surely. For all n ≥ 1, by applying Markov’s
inequality we deduce

P[T = n] ≤ P
[
Z′

n−1 > r(λ + ε)n−2]≤ λk

r

(
1 + ε

λ

)−n+2

. (4.3)

Moreover, since ((ξn,j)j≥1), Yn)n≥1 is i.i.d., we know that

E[T̂] =
∑
n≥1

E[T̂ | T = n] P[T = n] =
∑
n≥1

(E[Tn] + n) P[T = n], (4.4)

where

Tn := inf
{
m ≥ 1|Yn+m > r(λ + ε)n+m}, n ≥ 1.

For all n ≥ 1, we have

E[Tn] = 1 +
∑
m≥1

P[Tn > m] = 1 +
∑
m≥1

m∏
l=1

P
[
Y ≤ r(λ + ε)n+l]

= 1 +
( ∑

m≥n+1

m∏
l=1

P
[
Y ≤ r(λ + ε)l])( n∏

l=1

P
[
Y ≤ r(λ + ε)l])−1

.
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Supercritical branching processes with emigration 743

Because of our choice of r ∈ (0, ∞), we conclude that 1 ≤E[Tn] < ∞ for all n ≥ 1. Observe
that we can insert this formula for E[Tn] into (4.4). Then, by using the estimate (4.3), we can
deduce E[T̂] < ∞ and the claim follows.

(II) First, note that by possibly increasing r ∈ (0, ∞), we can guarantee that there exists
n0 ∈N satisfying both rn−θ

0 < 1 and

P[Y ≤ κr] > 0, where κ := ∏
n≥n0

(
1 − rn−θ

) ∈ (0, 1).

Fix r ∈ (0, ∞) accordingly. By possibly increasing n0, which results in an increase of κ , and
by using our assumption, we can ensure

∑
n≥n0

n∏
l=n0

P
[
Y ≤ κrλll−θ

]= ∞. (4.5)

Fix η with (1 + δ)−1 < η < 1. Then, for all n ≥ n0, let

Nn := λn
(

1 + 1

n

) n∏
l=n0

(
1 − rl−θ

)
, fn := κληn, gn := κrn−θλn.

By possibly increasing n0 ∈N and recalling η < 1, for all n ≥ n0,

λ�Nn − �fn� ≥ λn+1
(

1 + 1

n

) n∏
l=n0

(
1 − rl−θ

)− κληnn − 2

≥ λn+1
(

1 + 1

n

) n∏
l=n0

(
1 − rl−θ

)− ληnn2
n∏

l=n0

(
1 − rl−θ

)

=
(

λn+1
(

1 + 1

n

)
− ληnn2

) n∏
l=n0

(
1 − rl−θ

)

=
(

λn+1 + λn+1

n + 1
+ λn+1

n(n + 1)
− ληnn2

) n∏
l=n0

(
1 − rl−θ

)

≥ λn+1
(

1 + 1

n + 1

) n∏
l=n0

(
1 − rl−θ

)
.

Moreover, by possibly increasing n0 ∈N, we can guarantee gn ≥ n for all n ≥ n0. So, by
inserting the definition of κ , for all n ≥ n0 we get

�gn+1� ≤ gn+1 + 1 ≤
(

1 + 1

n + 1

)
gn+1

< λn+1
(

1 + 1

n + 1

)( n∏
l=n0

(
1 − rl−θ

))
r(n + 1)−θ .

By combining the previous two estimates, for all n ≥ n0, we directly find

λ�Nn − �fn� − �gn+1� ≥ Nn+1. (4.6)
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For all n ≥ n0, we consider the event

Dn :=
{�Nn∑

j=1

ξn,j ≥ λ�Nn − �fn�
}

.

Since we assume E
[
ξ1+δ

]
< ∞, by Lemma 4.2 there is c ∈ (0, ∞) with

P[Dc
n] ≤ P

[∣∣∣∣∣
�Nn∑
j=1

ξ1,j − λ�Nn
∣∣∣∣∣> �fn�

]
≤ 2c�Nn

�fn1+δ
for all n ≥ n0.

Recalling our definition of Nn, fn, and η, and noticing that the events (Dn)n≥n0 are independent,
we obtain

P[D] > 0, where D := ⋂
n≥n0

Dn.

Consider the stopping time

T := inf{n > n0 | Yn > gn}.
Then, by definition of T and (gn)n≥0, we deduce from (4.5)

E[T] =
∑
n≥0

P[T > n] = n0 + 1 +
∑

n≥n0+1

n∏
l=n0+1

P
[
Y ≤ κrl−θλl]= ∞.

Finally, by (H1) and (H2), we may assume that the value of Z0 = k ≥ 1 is chosen large enough
to ensure that

P[C] > 0, where C := {Zn0 ≥ Nn0}.
Note that, by construction, C and D are independent events. All in all, by (4.6), we can deduce
that τ ≥ T on the event B := C ∩ D, which occurs with a positive probability. Finally, by (IND),

E[τ ] ≥E[τ1B] ≥E[T1B] =E[T | B] P[B] =E[T] P[B] = ∞. �

5. Proof of Theorem 2.3

For convenience, we split the proof of Theorem 2.3 into smaller parts by formulating and
separately proving the following two lemmas.

Lemma 5.1. Assume (REG). Then

C := lim sup
k→∞

qk P[Y > k]−1 ≤ λ−α

1 − λ−α
.

Lemma 5.2. Assume (REG) and that all exponential moments of ξ are finite. Moreover, let
N ∈Z≥2 ∪ {∞}. Then

lim inf
k→∞ P[τ < N | Z0 = k] P[Y > k]−1 ≥

N−1∑
l=1

λ−αl.
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Proof of Lemma 5.1. By truncation of the offspring distribution (see Observation A.1 from
Appendix A), we may assume that ξ is almost surely bounded and, in particular, has finite
exponential moments.

Let us verify C < ∞ as a first step. For this, choose ε > 0 with λ0 := λ − 2ε > 1 and set
λ1 := λ − ε. Then, by Lemma B.1 from Appendix B, there are c1, . . . , cN ∈ (0, ∞) such that
the sequence

x0 := 1, xn+1 :=
{

λ1xn − λn
0, n ≥ N,

λ1xn − cn+1, n ≤ N − 1,

is strictly positive and satisfies xn ≥ cn for c > 1 and all n ≥ 1. Furthermore, for all k ≥ 1, we
consider the events

Ak,n :=
{�kxn∑

j=1

ξn+1,j ≥ λ1kxn

}
, n ≥ 0, Ak :=

⋂
n≥0

Ak,n.

For all k ≥ 1, we have

qk = P[τ < ∞, Ak | Z0 = k] + P
[
τ < ∞, Ac

k | Z0 = k
]
, (5.1)

as well as

P
[
τ < ∞, Ac

k | Z0 = k
]≤∑

n≥0

P
[
Ac

k,n

]
.

By the Cramér–Chernoff method or a sub-Gaussian concentration estimate (see [2, Section 2.1
resp. Section 2.2]), and by our knowledge concerning the sequence (xn)n≥0,

P
[
τ < ∞, Ac

k | Z0 = k
]→ 0 for k → ∞

exponentially fast. Therefore, by applying condition (REG), we deduce

lim
k→∞ P

[
τ < ∞, Ac

k | Z0 = k
]
P[Y > k]−1 = 0,

and, by recalling (5.1), we further conclude

C = lim sup
k→∞

P[τ < ∞, Ak | Z0 = k] P[Y > k]−1.

Fix k ≥ 1 and let Z0 = k. Then, by construction of Ak and (xn)n≥0,

{τ < ∞} ∩ Ak ⊆
N−1⋃
n=1

{Yn > kcn+1} ∪
⋃
n≥N

{
Yn > kλn

0

}
,

since Z′
n ≥ kcn+1 for n < N and Z′

n ≥ kλn
0 on Ak. Consequently

C ≤
N−1∑
n=1

P[Yn > cn+1k] + P

[∑
n≥N

Ynλ
−n
0 > k

]
. (5.2)
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Note that on the one hand, due to (REG),

lim
k→∞

N−1∑
n=1

P[Y > cnk] P[Y > k]−1 =
N−1∑
n=1

c−α
n < ∞,

and on the other hand, by applying Theorem 3.1 with A1 ≡ λ−1
0 ,

lim sup
k→∞

P

[∑
n≥N

Ynλ
−n
0 > k

]
P[Y > k]−1 < ∞.

All in all, by (5.2) we conclude that C < ∞.
In the second step, fix 0 < δ < λ1 = λ − ε and set λ2 := λ1 − δ. Later we will let ε ↘ 0 and

δ ↘ 0, when λ1 ↗ λ and λ2 ↗ λ. For all k ≥ 1, we define the events

D1,k := {Y1 > λ1k}, D2,k := {δk ≤ Y1 ≤ λ1k} and D3,k := {Y1 < δk}.
For every k ≥ 1, given Z0 = k we can decompose {τ < ∞} by using the three events D1,k, D2,k,
and D3,k. From this decomposition we obtain

qk ≤ P[D1,k] + P[τ < ∞, D2,k | Z0 = k] + P[τ < ∞, D3,k | Z0 = k].

Let us introduce the notation qr := q�r for r ∈ (0, ∞). Note that the function r �→ qr is
monotone non-increasing with respect to r, and

P

[
n∑

j=1

ξ1,j ≤
(

λ − ε

2

)
n

]
→ 0 exponentially fast as n → ∞,

which can be verified, as in the first step, by the Cramér–Chernoff method or a sub-Gaussian
concentration estimate. By combining these two remarks with our assumption (REG), for all
ε > 0 and δ > 0,

lim sup
k→∞

P[Y > k]−1
P[τ < ∞, D2,k | Z0 = k]

= lim sup
k→∞

P[Y > k]−1
P[D2,k] P[τ < ∞ | D2,k, Z0 = k]

≤ lim sup
k→∞

P[Y > k]−1
P[Y ≥ δk]q(ε/2)k

= 0,

where for the last step we have also inserted our knowledge that C < ∞. Similarly, we can
verify

lim sup
k→∞

P[Y > k]−1
P[τ < ∞, D3,k | Z0 = k] ≤ lim sup

k→∞
P[Y > k]−1qλ2k.

All in all, and again by invoking (REG),

C = lim sup
k→∞

P[Y > k]−1qk

≤ lim sup
k→∞

P[Y > k]−1
P[Y > λ1k] + lim sup

k→∞
P[Y > k]−1qλ2k

= lim sup
k→∞

P[Y > k]−1
P[Y > λ1k] + lim sup

k→∞
P[Y > λ2k]qλ2k

P[Y > k] P[Y > λ2k]

≤ λ−α
1 + Cλ−α

2 .

Letting δ ↘ 0 and ε ↘ 0, C ≤ λ−α + Cλ−α and the claim follows. �
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Proof of Lemma 5.2. Because of monotonicity, it suffices to prove the claim for N < ∞. Fix
ε > 0. For all k ≥ 1 and l = 1, . . . , N − 1, define

Ak,l :=
{�k(λ+ε)l�∑

j=1

ξl,j ≤ k(λ + ε)l+1

}
, Ak :=

N−1⋂
l=1

Ak,l.

Then, for all l = 1, . . . , N − 1, P[Ac
k,l] → 0 for k → ∞ exponentially fast due to the Cramér–

Chernoff method. Hence, by (REG),

L−
N := lim inf

k→∞ P[τ < N|Z0 = k] P[Y > k]−1

= lim inf
k→∞ P[τ < N, Ak|Z0 = k] P[Y > k]−1.

By inserting the definition of both Ak of (Zn)n≥0, we further obtain

L−
N ≥ lim inf

k→∞ P
[∃l ∈ {1, . . . , N − 1} : Yl ≥ k(λ + ε)l, Ak

]
P[Y > k]−1.

Again, we combine (REG) with the fact that for all l = 0, . . . , N − 1, P[Ac
k,l] → 0 for k → ∞

exponentially fast. This gives us

L−
N ≥ lim inf

k→∞ P
[∃l ∈ {1, . . . , N − 1} : Yl ≥ k(λ + ε)l]

P[Y > k]−1.

Now, by applying the inclusion–exclusion principle, recalling that the sequence (Ym)m≥1 is
i.i.d. and working with (REG), we obtain

L−
N ≥

N−1∑
l=1

lim
k→∞ P

[
Y1 ≥ k(λ + ε)l]

P[Y > k]−1 =
N−1∑
l=1

(λ + ε)−αl.

The claim now follows by letting ε ↘ 0. �

Proof of Theorem 2.3. Because of both Lemma 5.1, which covers the case N = ∞, and
Lemma 5.2, it suffices to prove that, for fixed 2 ≤ N < ∞,

L+
N := lim sup

k→∞
P[τ < N | Z0 = k] ≤

N−1∑
l=1

λ−αl.

As in the proof of Lemma 5.1, we can assume that the offspring distribution is bounded and, in
particular, all exponential moments of ξ are finite. Let us verify, for arbitrary ε1 ∈ (0, 1) with
λ0 := λ − 2ε1 > 1,

L+
N ≤

N−1∑
l=1

λ−αl
0 . (5.3)

Let λ1 := λ − ε1 and define, for all k ≥ 1 and l = 1, . . . , N − 1, the events

Bk,l :=
{�kλl

1∑
j=1

ξl,j ≥ k

(
λ − ε1

2

)
λl

1

}
, Bk :=

N−1⋂
l=1

Bk,l.

https://doi.org/10.1017/jpr.2021.88 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.88


748 G. BRAUN

For all l = 1, . . . , N − 1, the Cramér–Chernoff method or a sub-Gaussian concentration
estimate implies that P[Bc

k,l] → 0 for k → ∞ exponentially fast, and hence

L+
N = lim sup

k→∞
P[τ < N, Bk | Z0 = k] P[Y > k]−1.

Consider the events

Ck := {∃l ∈ {1, . . . , N − 1} : Yl > kλl
0

}
, k ≥ 1.

Then, by (REG),

lim sup
k→∞

P[Ck] P[Y > k]−1 ≤ lim sup
k→∞

N−1∑
l=1

P
[
Yl > kλl

0

]
P[Y > k]−1

=
N−1∑
l=1

lim
k→∞ P

[
Y > kλl

0

]
P[Y > k]−1

=
N−1∑
l=1

λ−αl
0 ,

and hence, in order to obtain the inequality (5.3), it suffices to show that

lim
k→∞ P

[
τ < N, Bk, Cc

k | Z0 = k
]
P[Y > k]−1 = 0. (5.4)

Let ε2 ∈ (0, 1) and introduce, for all k ≥ 1, the random variable

Rk := #
{
l = 1, . . . , N − 1 | Yl ≥ ε2kλl

0

}
.

Then, since (REG) holds and (Ym)m≥1 is i.i.d., we easily obtain

lim sup
k→∞

P
[
τ < N, Bk, Cc

k, Rk ≥ 2 | Z0 = k
]
P[Y > k]−1 = 0. (5.5)

For a given ε1 > 0, choose 0 < ε2 < ε1/2. Then, for every k ≥ 1, by inserting the definition of
Bk, Rk and (Zn)n≥0, we can deduce that

P[τ < N, Bk, Rk = 0 | Z0 = k] = 0.

In particular, we obtain

lim sup
k→∞

P
[
τ < N, Bk, Cc

k, Rk = 0 | Z0 = k
]
P[Y > k]−1 = 0. (5.6)

Combining (5.5) and (5.6), in order to verify (5.4), we only need to show that

lim sup
k→∞

P
[
τ < N, Cc

k, Rk = 1 | Z0 = k
]
P[Y > k]−1 = 0. (5.7)

Let k ≥ 1 and l = 1, . . . , N − 1. Then let us introduce events B′
k,l,1, . . . , Bk,l,N−1 by

B′
k,l,r :=

{�kxr−1∑
j=1

ξr,j ≥ λ1kxr−1

}
, r = 1, . . . , N − 1,
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where x0 := 1 and

xr+1 := λ1xr − br, br :=
{

λr
0, r = l,

ε2λ
r
0, r �= l.

For all k ≥ 1, let B′
k denote the event that all events B′

k,l,r, l, r = 1, . . . , N − 1, occur. Then,
again by the Cramér–Chernoff method or the sub-Gaussian concentration inequality, we know
that

lim sup
k→∞

P
[
τ < N, Cc

k, Rk = 1 | Z0 = k
]
P[Y > k]−1

= lim sup
k→∞

P
[
τ < N, B′

k, Cc
k, Rk = 1 | Z0 = k

]
P[Y > k]−1.

According to Lemma B.2 from Appendix B, for every ε1 > 0 it is possible to choose ε2 > 0
small enough to ensure

P
[
τ < N, B′

k, Cc
k, Rk = 1 | Z0 = k

]= 0 for all k ≥ 1,

where we have inserted the definition of the events B′
k and Cc

k, as well as the definition of the
random variable Rk and of the process (Zn)n≥0. In particular, by choosing ε2 > 0 small enough,
(5.7) follows. �

6. Proof of Theorem 2.4

In the following we will again work with the branching process (Z′
n)n≥0, but more generally

assume Z′
0 = k′ ≥ 1 and possibly k �= k′. Let q′ ∈ [0, 1) denote the extinction probability of

(Z′
n)n≥0 given k′ = 1 and recall the existence of the almost sure martingale limit

W ′ := lim
n→∞ λ−nZ′

n ∈ [0, ∞).

By the Kesten–Stigum theorem [17], it is known that W ′ = 0 almost surely if and only if
E[ξ log+ (ξ )] = ∞. Moreover, if E[ξ log+ (ξ )] < ∞, then, given that (Z′

n)n≥0 survives forever,
W ′ > 0 almost surely.

Our main idea is to divide the population into two groups. Then, if the emigration is weak,
it may only affect one of these groups.

Lemma 6.1. (Decomposition.) Fix k0 > k with P[Z1 = k0] > 0 and k′ := k0 − k. Let Z(1)
1 := k,

Z(2)
1 := k′, and define, for all n ≥ 1, recursively,

Z(1)
n+1 :=

(Z(1)
n∑

j=1

ξn+1,j − Yn+1

)
+
, Z(2)

n+1 :=
Z(1)

n +Z(2)
n∑

j=Z(1)
n +1

ξn+1,j.

Then (
Z(1)

n

)
n≥1

d= (Zn)n≥0,
(
Z(2)

n

)
n≥1

d= (Z′
n)n≥0, (6.1)

and if (IND) holds, then the processes
(
Z(1)

n
)

n≥0 and
(
Z(2)

n
)

n≥0 are independent. Moreover, for
all n ≥ 1,

Zn = Z(1)
n + Z(2)

n on the event {Z1 = k0} ∩ {Z(1)
n > 0

}
, (6.2)

Zn ≥ Z(1)
n + Z(2)

n on the event {Z1 ≥ k0} ∩ {Z(1)
n > 0

}
. (6.3)
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Proof of Lemma 6.1. By construction,
(
Z(1)

n
)

n≥0 and
(
Z(2)

n
)

n≥0, are time-homogeneous
Markov chains with the same initial state and transition probabilities as (Zn)n≥0 and (Z′

n)n≥0,
respectively. Hence (6.1) holds.

By inserting the definitions of Z(1)
n and Z(2)

n , one can straightforwardly verify both (6.2) and
(6.3). The details are therefore omitted.

Finally, assume (IND) and let a1, a2, b1, b2 ∈N. Then, for all n, m ≥ 1,

P
[
Z(1)

n+1 = a2, Z(2)
m+1 = b2 | Z(1)

n = a1, Z(2)
m = b1

]
= P

[( a1∑
j=1

ξn+1,j − Yn+1

)
+

= a2,

a1+b1∑
j=a1+1

ξm+1,j = b2

]

= P

[( a1∑
j=1

ξn+1,j − Yn+1

)
+

= a2

]
P

[ a1+b1∑
j=a1+1

ξm+1,j = b2

]

= P
[
Z(1)

n+1 = a2 | Z(1)
n = a1

]
P
[
Z(2)

m+1 = b2 | Z(2)
m = b1

]
.

Hence transitions of
(
Z(1)

n
)

n≥1 and
(
Z(2)

n
)

n≥0 are independent and the claim follows by recalling
that the initial states are chosen constant. �

Proof of Theorem 2.4. (a) Let P[W > 0] > 0. Then P[τ = ∞] > 0, and hence by Theorem 2.1
we immediately obtain E[log+ Y] < ∞. Besides, using Zn ≤ Z′

n for Z0 = Z′
0 = k and applying

the classical Kesten–Stigum theorem (see [17]), we directly conclude E[ξ log+ ξ ] < ∞.
On the contrary, let us assume E[log+ Y] < ∞ and E[ξ log+ ξ ] < ∞. Then, due to

Theorem 2.1, P[τ = ∞] > 0, and hence it suffices to show that

P[W > 0] = P[τ = ∞].

In order to obtain this claim, we note that {W > 0} ⊆ {τ = ∞} and verify

P[W = 0, τ = ∞] = 0. (6.4)

By (H1) and (H2), we know that {τ = ∞} = {Zn → ∞} almost surely. Moreover, W is
monotone with respect to Z0 = k. Hence

P[W = 0, τ = ∞] ≤ lim inf
k→∞ P[W = 0 | Z0 = k] (6.5)

= 1 − lim sup
k→∞

P[W > 0 | Z0 = k]. (6.6)

Choose ε > 0 with λ − ε > 1 and set k0(k) := �(λ − ε)k for all k ≥ 1. Then, by the strong law
of large numbers,

lim sup
k→∞

P[Z1 ≥ k0(k) | Z0 = k] = 1 (6.7)

and k0(k) − k → ∞ for k → ∞. Fix k ≥ 1, k0 = k0(k) and assume Z0 = k. Then, by making use
of the notation introduced in Lemma 6.1 and (6.3),

P[W > 0] ≥ P[Z1 ≥ k0] P
[
∀n ≥ 0: Z(1)

n > 0, lim
n→∞ λ−nZ(2)

n > 0
]
. (6.8)
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Recalling (6.1) and Proposition 4.1, we know that

P
[∀n ≥ 0: Z(1)

n > 0
]= 1 − qk → 1 for k → ∞. (6.9)

On the other hand, by (6.1) and the Kesten–Stigum theorem [17],

P

[
lim

n→∞ λ−nZ(2)
n > 0

]
= P[W ′ > 0 | Z′

0 = k0(k) − k] = 1 − (q′)k0(k)−k,

and, since k0(k) − k → ∞ for k → ∞, we further obtain

lim
k→∞ P

[
lim

n→∞ λ−nZ(2)
n > 0

]
= 1. (6.10)

By combining (6.7), (6.9), and (6.10) with (6.8), we conclude

lim sup
k→∞

P[W > 0 | Z0 = k] = 1,

and hence (6.4) and the claim follow by recalling (6.5) and (6.6).
(b) First, let a = 0. Assume that there exists b ∈ (0, ∞) satisfying P[0 < W < b] = 0 and

P[0 < W < b + ε] > 0 for all ε > 0. Then we choose ε > 0 and δ > 0 with

b̃ := λ−1(b + ε) + δ < b. (6.11)

Also fix k0 > k with P[Z1 = k0] > 0 and again recall the notation from Lemma 6.1. Then, by
the decomposition (6.2) and (6.11),

P[0 < W < b̃] ≥ P[Z1 = k0] P
[

lim
n→∞ λ−nZ(1)

n ∈ (0, λ−1(b + ε)
)
, lim

n→∞ λ−nZ(2)
n < δ

]
.

By using (IND) and Lemma 6.1, we further deduce that

P[0 < W < b̃] ≥ P[Z1 = k0] P[0 < W < b + ε] P[0 < W ′ < λδ],

where we assume Z0 = k and Z′
0 = k0 − k. The first two probabilities on the right-hand side

of this inequality are positive by construction. The third factor is also positive. This follows,
for example, from the fact that W ′ has a strictly positive Lebesgue density on (0, ∞); see
e.g. [1, Chapter 1, Part C]. Consequently P[0 < W < b̃] > 0, which is a contradiction to our
assumptions on b ∈ (0, ∞). Hence the claim is true if a = 0.

For arbitrary a > 0, again fix k0 > k with P[Z1 = k0] > 0 and also ε > 0 with ε < b − a.
Then, by the same arguments as for a = 0, and again assuming Z0 = k and Z′

0 = k0 − k, we
obtain

P[a < W < b] ≥ P[Z1 = k0] P[0 < W < λε] P[λa < W ′ < λ(b − ε)].

Since we have verified the claim for a = 0, we know that the second factor on the right-hand
side of this inequality is positive. Our choice of ε implies that the third factor is also positive.
Hence, as for a = 0, we can indeed deduce P[a < W < b] > 0. �

Appendix A. Truncation of the offspring distribution

In some of our proofs we make use of the following observation.

Observation A.1. (Truncation of the offspring distribution.) Let (Zn)n≥0 denote a branching
process with emigration, which is defined recursively by (1.1) under the same assumptions as
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in Section 1. Moreover, let λ := E[ξ1,1] ∈ (0, ∞] and assume that the distribution of ξ1,1 is
unbounded. Then, for every s ∈ (0, ∞), there exists N ∈N with the following property. If we
define, for all n, j ≥ 1,

ξ̃n,j :=
{

ξn,j, ξn,j ≤ N,

N, ξn,j > N,

as well as Z̃0 := Z0 := k, and, recursively,

Z̃n+1 :=
( Z̃n∑

j=1

ξ̃n+1,j − Yn+1

)
+
, n ≥ 0,

then we arrive at a branching process with emigration (Z̃n)n≥0, which satisfies Z̃n ≤ Zn almost
surely for all n ≥ 0, has a bounded offspring distribution and, if λ = ∞, then s <E[ξ̃1,1] < ∞,
respectively 0 < λ −E[ξ̃1,1] < s, for λ < ∞. In particular, if τ̃ denotes the extinction time of
the process (Z̃n)n≥0, then τ ≥ τ̃ almost surely.

Moreover, if condition (IND), respectively (H2), is satisfied for the process (Zn)n≥0, then,
by construction, the corresponding condition also holds for (Z̃n)n≥0. Finally, if λ ∈ (1, ∞) and
s < λ − 1, then, as for the process (Zn)n≥0, we know that condition (H1) holds for (Z̃n)n≥0
provided Z0 = Z̃0 = k is chosen large enough.

Appendix B. Notes on the recursion xn+1 = axn − bn

The following claims can be proved by elementary arguments. We omit the details.

Lemma B.1. Let x0 := 1, a ∈ (1, ∞) and ε > 0 with a − ε1 > 1. Then there exists N ∈N and
c1, . . . , cN ∈ (0, ∞) such that for the sequence (xn)n≥0 defined by

xn+1 := axn − bn, where bn :=
{

(a − ε)n, n ≥ N,

cn+1, n ≤ N − 1,

there exists c > 1 with xn ≥ cn > 0 for all n ≥ 1.

Lemma B.2. Let N ∈N, x0 := 1, a ∈ (1, ∞) and ε1 > 0 with a − ε1 > 1. Then there exists
ε2 > 0 with the following property. For arbitrary l ∈ {1, . . . , N − 1}, the recursion

xn+1 := axn − bn, where bn :=
{

(a − ε1)l, n = l,

ε2(a − ε1)n, n �= l,

defines reals x1, . . . , xN with xj ≥ ε1 > 0 for all j = 1, . . . , N.
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