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We consider the efficiency of thrust-producing inextensible membranes with variable
bending rigidities. The present study is a numerical investigation of the thrust
generation and flow-field characteristics of a two-dimensional flapping flexible
membrane, fixed at its leading edge. To study the time-dependent response of the
membranes, a fluid/structure solver that couples a compact finite-difference immersed
boundary method flow solver with a thin-membrane structural solver was developed.
Using a body-fitted grid, external forcing to the structure is calculated from the
boundary fluid dynamics. A systematic series of runs of the fluid/structure solver was
performed in order to obtain a clear picture of the thrust-producing characteristics of
membranes with bending rigidities ranging between EI = 5 × 10−6 and EI =2 × 10−5

and structural mass coefficients between ρsh = 0.01 and ρsh = 0.04, for a Reynolds
number of Re = 851.
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1. Introduction
Fish use predominant oscillatory movements in order to propel themselves.

Gray (1933) noted that fish swimming movement could be mainly described as a
combination of two wave-like phenomena. One is cyclic change of the curved shape
of the body showing a lateral wave of curvature running in the caudal direction, and
the other is every single point of the body performing, in consequence of the wave of
lateral curvature on the body, a sinusoidal track in a horizontal plane. Thus, a flexible
membrane problem is of interest parallel to the swimming fish, since the backbone
motion of fish species is essentially similar to that of the travelling wave. Lighthill was
the first to study the fluid dynamics of fish swimming with a theory for evaluating
reactive forces between an undulating fish body and the water surrounding it (see
Lighthill 1970, 1975). Before that, Wu (1961, 1971) had shed light on the inviscid
hydrodynamics of fish-like propulsion.

More recent research has turned attention to fish and their aquatic counterparts for
inspiration in designing compact and efficient autonomous and unmanned underwater
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vehicles (e.g. Bandyopadhyay et al. 1997; Triantafyllou, Triantafyllou & Yue 2000;
Anderson & Chabra 2002; Bandyopadhyay 2005). Historically, experimental studies
on unsteady thrust production have focused on the use of an aerofoil in steady
forward motion with a combination of harmonic heaving and pitching to produce
thrust, see Koochesfahani (1989) and Anderson et al. (1998). The reason an aerofoil
has been typically used for experimental studies is that it represents a reasonable
approximation to the lunate tail of the larger groups of fish, classified as swimming
in Caringiform mode, see Lighthill (1975). A foil in steady forward motion and
a combination of harmonic heaving and pitching motions produces thrust through
the formation of a flow downstream from the trailing edge, which when averaged
over one period of oscillation has the form of a jet. The harmonic motion of the
foil causes unsteady shedding of vorticity from the trailing edge, while there are
also particular conditions that cause the formation of leading-edge vortices. The
interaction between the unsteady vorticity shed by the foil and the wake dynamics
which results in the formation of patterns of large-scale eddies has been shown
through several visualizations, see for example Koochesfahani (1989). As would be
expected, the number of vortices formed per half-cycle varies with the amplitude and
frequency of the motion and the shape of the waveform (Koochesfahani 1989). When
thrust is generated by an oscillating foil, the wake behind it has an average velocity
profile with the form of a jet. This jet flow is associated with a staggered array
of vortices moving downstream from the foil, closely resembling the von Kármán
vortex street behind bluff objects, but with reverse rotational direction (Triantafyllou,
Triantafyllou & Grosenbaugh 1993). Triantafyllou, Triantafyllou & Gopalkrishnan
(1991) have shown that optimal creation of a jet occurs at non-dimensional frequencies
corresponding to the maximum spatial growth of the unstable average jet flow behind
the foil, and that the propulsive efficiency reaches a maximum under these conditions.
Studies of the two-dimensional wake patterns behind flapping foils and live and
robotic swimming fish have been performed both experimentally and numerically.
Extensive reviews of this research can be found in the literature (Triantafyllou, Techet
& Hover 2004; Triantafyllou et al. 2005). More recently, Schnipper, Andersen & Bohr
(2009) experimentally investigated the wake structures produced by a symmetric foil
performing pitching oscillations in a vertically flowing soap film. The frequency and
amplitude of the oscillation were varied over a wide range, and the wake types were
mapped out in a phase diagram spanned by the width-based Strouhal number and
the dimensionless amplitude.

Buchholz & Smits (2006) visualized wakes produced by a rigid panel of aspect
ratio AR =0.54, pitching about its leading edge in a free stream at Reynolds number
Rec = 640. In Buchholz & Smits (2008), the thrust performance was investigated for
the same configuration and using different aspect ratio panels. For Rec = O(104),
thrust coefficient was found to depend primarily on Strouhal number St and the
aspect ratio of the panel AR. Propulsive efficiency was sensitive to aspect ratio only
for AR less than 0.83. Nevertheless, the magnitude of the peak efficiency of a given
panel with variation in Strouhal number varied inversely with the amplitude to span
ratio A/S, while the Strouhal number of optimum efficiency increased with increasing
A/S. Peak efficiencies between 9 % and 21 % were measured.

Limited studies have been performed examining the effects of flexibility on unsteady
thrust production. Jiménez et al. (2003) studied experimentally the wake structures
issuing from flexible panels with an aspect ratio of AR = 0.27. The panels were
actuated to approximate streamwise travelling waves, and it was shown that for the
symmetry plane, a vortex was shed into the wake near the peak displacement of the
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trailing edge. Along with this vortex, another vortex was formed from the shedding
of a shear layer as the trailing edge swept across the wake. This vortex formed a
counter-rotating vortex pair with the following vortex shed in the subsequent half-
cycle. Prempraneech, Hover & Traintafyllou (2003) utilized aerofoils of relatively high
stiffness to investigate flexibility effects on efficiency and thrust production. Compared
to the rigid foil control, flexible foils were found to be in general more efficient. It was
also found that at Strouhal numbers greater than 0.30, aerofoil flexibility resulted in
a decrease in the thrust coefficient relative to the stiff case. Work by Liao et al. (2003)
pointed to practical propulsion applications of using harmonically driven pitching
flexible membranes. This problem also has interest from a aero-elasticity point of view.

A flat plate is the simplest aerofoil. It is simple to build and a propulsion system
based on a flat plate, either rigid or flexible, would be extremely attractive for
engineering applications. A flat plate pitching at the leading edge, while not necessarily
the most efficient flapping propulsive device, is the simplest in terms of geometry and
lends itself well to comparison with inviscid theory and simple iteration of the effects
of foil stiffness. Early analytical work on two-dimensional waving plates as a model
for the swimming of fish was performed by Wu (1961). By fully deriving the potential
flow field as a result of a prescribed motion, Wu (1961) was able to make predictions
about efficiency and thrust as a function of the nature of the kinematic motion of the
plate. A key result was that the thrust is higher for plates with longer wavelengths and
the trend was for efficiency to increase as the wavelength of the plate decreases. This
implies that the rate of decrease in thrust is slower than the rate of decrease in power
as the wavelength decreases. This result has important consequences for the current
study as the oscillation wavelength of the flexible plate is obviously shorter than the
rigid one. Wu (1961) showed that the thrust coefficient of the rigid plate is higher
than the travelling wave, while the efficiency of the travelling wave case is higher than
the rigid case. In Allen & Smits (2001), a simplified description of the motion of a
flexible membrane was obtained by fitting the experimental data with solutions of the
Euler–Bernoulli beam equation. It was shown that the modal contributions start to
decay significantly past mode 4 and hence the motion of the flexible membrane can
be described by a fairly compact data set.

In the present paper, we consider the two-dimensional flexible membrane problem
in an unbounded fluid domain. The effects of structural mass coefficient and bending
rigidity on the system propulsion ability are examined. To examine the full nonlinear
problem, we developed a coupled fluid–structure method of the Navier–Stokes
equations and geometrically nonlinear structural equations. We purposely limited
the present work to a one degree-of-freedom pitching pattern in order to limit
the number of free parameters and focus on the fundamental effect of solid mass
coefficient and rigidity on the thrust performance.

2. Problem statement
We consider the problem of a thin membrane that is clamped at the leading edge

and free on the trailing edge. The pitching angle at the leading edge is harmonically
oscillated and interacts with a uniform incompressible viscous free-stream flow U∞
in an unbounded domain, as shown in figure 1. The membrane is considered to
be sufficiently thin such that its thickness and variation with length do not have
an impact on the results. The structural properties of the membrane in this two-
dimensional study are the length L, mass per length ρs and bending rigidity EI ,
where E is Young’s modulus and I the second moment of inertia.
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L

U∞

Figure 1. Depiction of the problem of the harmonically oscillating flexible flat plate with
length L in a uniform free-stream flow U∞. The membrane is clamped at the leading edge and
free on the trailing edge.

The equation of motion for a two-dimensional membrane is (Connell & Yue 2007)

ρsh
∂2x
∂t2

− ∂

∂s

(
T (s)

∂x
∂s

)
+ EI

∂4x
∂s4

= F, (2.1)

where s is the Lagrangian coordinate along the length of the membrane, x is the
body position vector fixed at the leading edge, ρs is the structural density, h is the
membrane thickness, T (s) is the tension in the body, and EI is the structural bending
rigidity. Fluid coupling comes through the forcing term defined as

F = [�τ ]n, (2.2)

where n is the upward-pointing normal and [�τ ] is the difference between the
fluid-dynamic stress tensor at the top and bottom of the body.

The fluid dynamics are obtained as the solution to the incompressible fluid
momentum and mass conservation equations, the Navier–Stokes equations, written
as

∂u
∂t

+ (u · ∇)u = ν∇2u − ∇p + f , (2.3)

∇ · u = 0. (2.4)

The influence of the membrane motion is effected on the fluid through the boundary
condition given by

v =
∂x

∂t
(2.5)

on the membrane boundary.

3. Fluid/structure coupled numerical model
We developed a coupled fluid–structure method to study the coupled nonlinear

problem of flapping aero-elastic structures. The fluid-dynamic solver is a finite-
difference solution to the Navier–Stokes equations solved with an immersed boundary
method using a body-fitted auxiliary grid. Fluid-dynamic forcing on the body
surface is calculated and used as input to a finite-difference structural-dynamic
solver. The structural solver is geometrically nonlinear and able to take on arbitrary
configurations. Both solvers are explicit and use a Runge–Kutta fourth-order time-
discretization scheme.
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3.1. Immersed boundary fluid solver

The unsteady incompressible form of the continuity and Navier–Stokes equations for
a Newtonian fluid was considered:

∇ · u = 0, (3.1)

∂u
∂t

+ (u · ∇)u = ν∇2u − ∇p, (3.2)

where u is the fluid velocity, p is the pressure divided by density, and ν is the
kinematic viscosity of the fluid. The momentum equations are spatially discretized
on a staggered mesh by finite differences and all derivatives are evaluated with
implicit fourth-order compact finite difference schemes. The fourth-order-accurate
Runge–Kutta scheme was used for temporal discretization. In the developed two-
dimensional (2-D) immersed boundary method, an implementation of the forcing of
Mohd-Yusof (1997) was used in order to implement the immersed boundary. The
immersed boundary flow solver is described in detail by Ferreira de Sousa, Pereira &
Allen (2009).

3.1.1. Validation and verification of the immersed boundary fluid solver

Validation of the method will be performed through comparison with experimental
results from Dickinson & Götz (1993). The reference experimental results considered
two-dimensional starting flow about a flat plate of length L. The transition from
rest to a fixed translational velocity of 0.1 m s−1 was done by a constant acceleration
of 0.625 m s−2, which for a kinematic viscosity of 2.6 × 10−5 m2 s−1 gives a Reynolds
number of Re = 192. It is shown that for this experiment, the forces on the flat
plate reach a steady state after they have travelled seven chord lengths for angles
of attack lower than 13.5◦. These results were compared with steady-state results
obtained by the present method. The computational domain considered spans over
0 < x, y < 0.80 m and the chord length is c = 0.2 m. A grid with 4012 nodes was used
and the time step was set to �t =0.001 s. To be consistent with the conventional
definition of lift and drag in aerofoil theory, the forces are decomposed into drag, CD ,
anti-parallel to the flow at infinity, and lift, CL, orthogonal to the flow at infinity.

Comparisons with experimental results of Dickinson & Götz (1993) for the force
coefficients after two chord lengths are presented in figure 2. Direct plots of the
force coefficients against angle of attack are shown for angles of attack smaller than
or equal to 9◦, which is an appropriate comparison in the context of the present
study. Force coefficients for this configuration encompassing a full range of angles of
attack were earlier reported by Ferreira de Sousa et al. (2009). Figure 2(a) shows the
comparison between the results obtained with the present method and the reference
experimental results for CL. The data for CL are also compared to the predictions of
thin aerofoil theory. The overall agreement between the two data sets is very good.
As expected, the present method predicts higher lift coefficients for the lower angles
of attack, more in line with thin aerofoil theory. Figure 2(b) shows the comparison
for the drag coefficient CD . Again, the agreement with experimental results is good,
with the present method being capable of capturing the trend of the variation of the
drag coefficient with angle of attack.

Verification of the method was performed via systematic grid convergence testing
in Ferreira de Sousa et al. (2009). Comparing results of the present method for the
L2 norm with the grid convergence results for Fadlun et al. (2000) and Zhang &
Zheng (2007) showed that the present method represents a clear improvement, with
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CL CD
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(a) (b)

Dickinson & Gotz (1993)
Present results
Thin foil theory
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Present results

Figure 2. Comparison with experimental results of (a) the lift and (b) drag coefficients for
angles of attack smaller than 10◦. Results after two chord lengths.

the convergence of the L2 norm being significantly better than second-order. Note
that the grid convergence results provide only one way to determine the approximate
order of accuracy of the current immersed boundary method, and we are not trying
to resolve the issue of convergence of immersed boundary-like methods. The overall
convergence issue involving interface jumps, like those encountered in the present
method, was studied by Tornberg & Engquist (2004). The fact that the maximum
error converges with a first-order slope obviously affects the results for the global
norm L2. Therefore, even if the formal order of accuracy for the finite difference
schemes is fourth-order, that is not completely recovered in the global results because
of the maximum error first-order convergence. This is the reason why the method
achieves approximately third-order accuracy for the L2 norm. It should be noted that
even if these error convergence results are lower than the formal order of accuracy
for the finite difference schemes used in the spatial discretization of the momentum
equations, the verified order of accuracy for the present method is significantly better
than the second-order accurate methods (that necessarily have first-order convergence
for the L∞ norm as well, Tornberg & Engquist 2004).

3.2. Structural solver

A finite-difference structural solver is developed, which allows for arbitrary orientation
and configuration of the membrane. The equations of motion are derived in Cartesian
coordinates and are equivalent to those used for the structural component by Zhu
& Peskin (2002) and Connell & Yue (2007), permitting arbitrary configuration and
orientation of the body:

ρsh
∂2x
∂t2

− Eh
∂

∂s

((
1 −

(
∂x
∂s

· ∂x
∂s

)−1/2
)

∂x
∂s

)
+ EI

∂4x
∂s4

= F (3.3)

with boundary conditions

x = 0,
∂x
∂s

= f (t) for s = 0, (3.4)

−Eh

(
1 −

(
∂x
∂s

· ∂x
∂s

)−1/2
)

∂x
∂s

+ EI
∂3x
∂s3

= 0,
∂2x
∂s2

= 0 for s = L, (3.5)
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Figure 3. (a) Loop-closing event at the free end of a chain hanging under the influence of
gravity and harmonically forced horizontally at the attached end. (b) The entire length of the
chain.

where s is the Lagrangian coordinate along the length. The structural equation (3.3)
is solved with an explicit second-order finite difference formulation in space and a
fourth-order Runge–Kutta time discretization.

3.2.1. Validation of the structural solver

For validation of the structural solver, we consider a chain-like body pinned at one
end and swinging under the influence of gravity. The problem of harmonically forcing
a hanging chain horizontally at its attached end was used to compare simulations
obtained using our method to experiments and numerical studies by Howell &
Triantafyllou (1993) and Gobat, Grosenbaugh & Triantafyllou (2002). The success of
the comparison was gauged by its success in capturing an initial loop-closing event
observed experimentally.

Figure 3 shows the present simulation result with the body closing on itself
at t = 3.38 s. The simulation was performed for N = 101 grid points in order to
demonstrate the results of the structural solver for the number of grid points typically
used in the fluid–structure calculations. The plot showing the entire length of chain
displays the very small scale of the loop. Such tight loop closing is far beyond the
expected requirements of the coupled fluid–structure solver (Connell & Yue 2007).

3.3. Principal parameters

We define the power coefficient CP as

CP =
P

1
2
ρSU 3

(3.6)

and the average thrust force, F , is non-dimensionalized as follows, to provide the
thrust coefficient:

CT =
F

1
2
ρSU 2

, (3.7)

where ρ denotes the fluid density, S denotes the area of the foil and U the x component
of the velocity.
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The propulsive efficiency η is defined to be the ratio of useful power over input
power, so that

η = CT /CP . (3.8)

Using a momentum balance around the flapping foil that neglects the fluctuating
quantities and variation in pressure terms, and assuming a uniform flow upstream
velocity profile, results in an estimation of the force in the streamwise direction of the
aerofoil of

CT =
2

C

∫ ∞

−∞

U

U∞

(
U

U∞
− 1

)
dy. (3.9)

This integral represents a statement of conservation of momentum and has been
used extensively to evaluate the mean thrust coefficient on oscillating foils; see
Koochesfahani (1989) and Anderson et al. (1998).

The drag force acting on the membrane and the power needed for it to be propelled
are directly relevant to this study. The total drag force on the wavy foil consists of
a friction drag and a form drag due to pressure distribution. Considering an element
of the surface along the upper side of the plate ds = [dx2 +dy2]1/2, its tangential
direction is t =(−dx, dy)/ds and the wall-normal direction is n= (dy, dx)/ds. The
total force per unit length f can be expressed as

fx = f f
x + f p

x fy = f f
y + f p

y , (3.10)

where (f f
x , f f

y ) is the friction force per unit length and (f p
x , f p

y ) is the pressure force
per unit length.

The total power PT required for the propulsive motion of the membrane consists of
two parts. One is the swimming power PS , required to produce the lateral oscillation
of the flexible plate, and is defined as

PS = −
∮ (

fx

dx

dt
+ fy

dy

dt

)
ds, (3.11)

where
∮

denotes integration along the membrane surface. The other is the power
needed to overcome the drag force, and is represented as PD:

PD = U

∮
(fx) ds. (3.12)

Thus, the total power is PT = PS + PD .
The Strouhal number is defined as

St =
f A

U
, (3.13)

where A denotes the characteristic width of the jet flow created. Since this is unknown
before calculations are made, A is taken to be equal to the total excursion (peak to
peak) of the trailing edge of the membrane. The parameter St could also be referred
to as the reduced frequency, in analogy with bluff-body wake studies. Here we follow
the nomenclature of Triantafyllou et al. (1991), because the jet flow generated behind
oscillating foils is convectively unstable, hence there is no mode competition between
a natural mode and an imposed frequency, and St serves to underline the importance
of this number to the instability properties of the jet flow (Triantafyllou et al. 1993)
and hence to the vortical patterns formed (Anderson et al. 1998).

The principal parameters in this problem, in addition to the bending rigidity and
structural mass coefficient of the membrane, are
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(i) the maximum pitching angle at the leading edge αmax and
(ii) the pitching frequency f .

4. Results
We use the coupled fluid/structure numerical model to investigate the fully

nonlinear coupled dynamics of the pitching flexible membrane. Our goal is to
understand the behaviour of the pitching membrane dynamics and its dependence
on the relevant non-dimensional parameters. Our regime of interest is in the limit of
high bending rigidity (as close as possible to the fully stiff plate), where the elastic
deformation of the membrane may result in an increase of the thrust efficiency.

Simulations are initiated with the body straight and at an angle of attack of 1◦.
The initial flow condition is of a steady uniform flow. As the simulation starts, the
leading edge pitches harmonically, with the angle of attack increasing linearly to the
maximum angle of attack inside the first two cycles. Around 10 cycles are needed for
both structural and fluid flow periodic steady states to be achieved.

We performed three distinct analyses, by varying one parameter while keeping the
remaining two constant:

(i) EI = constant, ρsh = constant and varying the maximum leading-edge angle
αmax .

(ii) EI = constant, αmax = constant and varying the structural mass coefficient ρsh.
(iii) ρsh = constant, αmax = constant and varying the bending rigidity EI .

4.1. Maximum leading-edge angle αmax

By varying the one degree of freedom of the system under analysis, for a given rigidity
and mass coefficient, we can quantify the structural response to the linear increase in
pitching amplitude. For the case of EI = 1 × 10−5 and ρsh = 0.01, we present in figures
4–6 the results from a series of simulations through a range of maximum leading-edge
angles αmax and two pitching frequencies f . For each angle, we present four plots,
namely the membrane shape at 0.1 Hz intervals for two cycles after steady state is
achieved; a time history of the 2-D tail position for ten cycles; vorticity contours of
the pitching membrane wake for the fully developed flow and the temporal evolution
of the thrust coefficient CT .

For αmax = 6◦ (figure 4), and looking at both the membrane shape and the
cross-stream tail position, we can see that the structural evolution is marked by
a pronounced bending around one-half of the chord, which causes a delay for
which the tail position reaches its peak. The corresponding vortex wake exhibits an
alternating vortex pattern. The alternating vortices are formed at the trailing edge of
the membrane, and released close to the maximum tail position for each half-cycle.
This alternating vortex wake is responsible for inducing thrust, as can be verified
by the temporal evolution of the thrust coefficient CT plot in figure 4(d ). As αmax

increases, the structural response is essentially the same, but obviously with a larger
amplitude. For αmax = 8◦ (figure 5), and looking at the temporal evolution of the
thrust coefficient CT plot in figure 5(d ), we can see that the transient thrust coefficient
reaches peaks that increase with increasing αmax .

Figure 6 shows the four plots for αmax = 6◦ and f = 2Hz. When comparing
these results with those for the same value of αmax but f = 1 Hz (figure 4), we
note a noticeable difference in the membrane structural response, with the marked
bending occurring closer to the trailing edge. This causes a smaller tail excursion and
consequently smaller values for the peak transient thrust coefficient.
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Figure 4. (a) Membrane shape, (b) tail position, (c) vorticity field and (d ) thrust coefficient.
Here EI = 1 × 10−5, ρsh =0.01 and αmax = 6◦; f = 1 Hz.

In figure 7, the averaged results for one cycle of the fully developed flow are
presented for the case of EI =1 × 10−5 and ρsh = 0.01. Four different plots shown are
tail amplitude evolution with αmax , tail amplitude evolution with St , thrust coefficient
CT and power CP with St and efficiency η with St . Tail amplitude remains roughly
the same with increased pitching frequency, which means that both thrust and power
requirements go up as well as frequency increases. For the same αmax , efficiency is
higher for the higher-frequency case. As expected, the thrust coefficient increases for
increased αmax , but with this increase comes the cost of increased power requirements.
As such, efficiency decreases with increasing αmax .

For the case of EI = 2 × 10−5 and ρsh = 0.01, we present in figure 8 the results for
the simulation with αmax =6◦ and f = 1 Hz. Once again, four plots are presented: the
membrane shape at 0.1 Hz intervals for the first 10 cycles, a time history of the two-
dimensional tail position for 10 cycles, vorticity contours of the pitching membrane
wake for the fully developed flow and the temporal evolution of the thrust coefficient
CT . Looking at both the membrane shape and the cross-stream tail position, we can
see that as we increased the bending rigidity, the structural evolution is markedly
different from the similar case for EI = 1 × 10−5 (figure 4). For double the bending
rigidity, the membrane bends closer to the leading edge, which increases significantly
the tail amplitude. The corresponding vortex wake is a more intense alternating
vortex pattern, since the generation of the wake vortices is dependent on the
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Figure 5. (a) Membrane shape, (b) tail position, (c) vorticity field and (d ) thrust coefficient.
Here EI = 1 × 10−5, ρsh = 0.01 and αmax = 8◦; f = 1 Hz.

excursion of the tail. This strong vortex wake is responsible for inducing much more
thrust, when compared with the results for the same αmax = 6◦ and half the bending
rigidity.

In figure 9, the averaged results for one cycle of the fully developed flow are
presented for the case of EI =2 × 10−5 and ρsh = 0.01. Again, four plots are shown:
tail amplitude evolution with αmax , tail amplitude evolution with St , thrust coefficient
CT and power CP with St and efficiency with St . For this set of results, efficiency η

is higher for the largest pitching angle αmax =8◦. For αmax > 4◦, efficiency markedly
grows for increasing values of αmax .

4.2. Structural mass coefficient ρsh

The influence of the structural mass coefficient needs to be included if we want to
quantify the effect that different density materials and membrane thickness have on
the thrust performance of the pitching system. In this study, we varied the structural
mass coefficient between 0.01 and 0.04. For the case of EI = 1 × 10−5 and αmax =8◦,
we present in figures 10 and 11 the results from a series of simulations through a
range of structural mass coefficients ρsh.

Figure 10 shows the membrane shape at 0.1 Hz intervals for two cycles of the fully
developed flow, as well as the vorticity contours of the pitching membrane wake for
the fully developed flow. When comparing the membrane shape for increasing ρsh, we
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Figure 6. (a) Membrane shape, (b) tail position, (c) vorticity field and (d ) thrust coefficient.
Here EI = 1 × 10−5, ρsh =0.01 and αmax = 6◦; f = 2 Hz.

realize that, even if the bending rigidity EI is the same for these four cases, the results
presented in figure 5 are also part of this data set, the membrane bending patterns
are certainly different. The effect of increasing the structural mass coefficient ρsh

appears to be an increasing deformation of the membrane at the half-chord region,
with little change in the trailing-edge excursion. This can be verified by examining
figure 11(a), which compares the time history of the trailing-edge position for two
cycles. Obviously, this means that the average thrust coefficient will be very similar
for 0.02 � ρsh � 0.04 (see figure 11b).

In figure 12, the averaged results for one cycle of the fully developed flow are
presented for the case of EI = 1 × 10−5 and αmax = 8◦. The four plots shown are tail
amplitude evolution with ρsh, St with ρsh, thrust coefficient CT and power coefficient
CP with St and efficiency with St . The effect of the structural mass coefficient on
efficiency does not have a definite trend, since the trailing-edge amplitude �ytail has
a minimum for c and the values for �ytail are virtually the same for ρsh = 0.02 and
ρsh = 0.04. Therefore, efficiency plateaus for ρsh higher than or equal to 0.03.

4.3. Bending rigidity EI

For given mass ratio ρsh, forcing frequency f and forcing amplitude αmax , the
variation of the rigidity of the flexible membrane causes important changes in the
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Figure 7. Effect of the maximum leading-edge angle αmax for two pitching frequencies, with
constant bending rigidity EI = 1 × 10−5. (a, b) Tail amplitude, (c) thrust and power coefficients
and (d ) efficiency; ρsh = 0.01.
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Figure 8. (a) Membrane shape, (b) tail position, (c) vorticity field and (d ) thrust coefficient.
Here EI = 2 × 10−5, ρsh =0.01 and αmax = 6◦; f = 1 Hz.

thrust and power input. As rigidity increases, the wake behind the pitching membrane
also undergoes important modifications. Figures 13 and 14 present the results for
varying bending stiffness EI , for the cases with ρsh =0.01 and αmax = 8◦.

Figure 13 shows the membrane shape at 0.1 Hz intervals for two cycles of the fully
developed flow, as well as the vorticity contours of the pitching membrane wake for
the fully developed flow. As the bending rigidity increases, the membrane behaviour
is more in line with what we could expect from having increasing stiffness. The wake
topology changes as well with increasing bending rigidity. For the stiffest membrane,
a strong pattern of alternating sign vortices is shed from the flexible membrane, which
considerably increases the thrust produced. As it would be expected, for the same
αmax , as the bending stiffness increases, so does the tail amplitude (figure 14a). This
translates into increasing thrust coefficient (figure 14b).

In figure 15, the averaged results for one cycle of the fully developed flow are
presented for cases with αmax = 8◦. Three data sets are presented for ρsh =0.01,
0.02 and 0.03, respectively. The three plots shown are St evolution with EI , thrust
coefficient CT and power coefficient CP with EI , and efficiency with EI . The effect of
bending rigidity on efficiency follows trends similar to those explained above. High
efficiencies for the same structural mass coefficient can be achieved for values of EI

close to the extremes studied here. However, the cases with higher bending rigidity
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Figure 9. Effect of the maximum leading-edge angle αmax for pitching frequency f = 1 Hz,
with constant bending rigidity EI =2 × 10−5. (a, b) Tail amplitude, (c) thrust and power
coefficients and (d ) efficiency; ρsh = 0.01.
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(a) ρsh = 0.02

(b) ρsh = 0.03

(c) ρsh = 0.04

Figure 10. (a–c) Effect of the structural mass coefficient ρsh on membrane shape and
vorticity field. EI = 1 × 10−5 and αmax =8◦; f = 1 Hz.

are more suited for propulsion applications, since the thrust coefficients achieved are
much higher.

Rigidity has a significant impact on the performance of the propulsive system
considered. For a given mass ratio, and in the lower range of mass ratios studied
here, forcing amplitude and frequency, the mean thrust and power input both
increase as rigidity approaches the higher values; however, the former increases
faster and the resulting efficiency increases with increasing rigidity. For higher mass
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Figure 11. Evolution of the (a) tail position and (b) thrust coefficient for two complete
pitching cycles for four different structural mass coefficient ρsh values. EI = 1 × 10−5 and
αmax = 8◦. f =1Hz.

ratios, the efficiency drops for higher values of rigidity, as power input increases
considerably.

5. Non-dimensional description of membrane behaviour
A simplified description of the motion of the membrane given by (3.3) can be

written as

∂2y

∂t2
+

ζ

ρsh

∂y

∂t
+

EI

ρsh

∂4x

∂s4
− T

∂2y

∂x2
= f (x, y), (5.1)

where y(x, t) is the displacement of the membrane and the forcing function f (x, y)
is the effect of the fluid on the membrane (Allen & Smits 2001). The solution for
the displacement of the membrane can be represented as y(x, t) =

∑∞
n=1 Φn(x)An(t),

where Φn(x) represents an orthogonal set of eigenfunctions. Wu (1961) used travelling
waves to describe the motion of a swimming plate through water. In Allen & Smits
(2001), the choice of the orthogonal basis functions was based on the approximation
of the membrane with a pinned Euler–Bernoulli beam and provided a compact,
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Figure 12. Effect of the structural mass coefficient ρsh with constant bending rigidity
EI = 1 × 10−5. (a) Tail amplitude, (b) Strouhal number, (c) thrust and power coefficients
and (d ) efficiency; αmax = 8◦ and f = 1 Hz.
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(c) EI = 2 × 10–5

(b) EI = 1 × 10–5

(a) EI = 5 × 10–6

Figure 13. (a–c) Effect of the bending rigidity EI on membrane shape and vorticity field.
Here ρsh = 0.01, αmax = 8◦ and f = 1 Hz.

though not necessarily unique, way to describe the membrane motion. This choice of
the orthogonal set of eigenfunctions was the one used in this study.

Neglecting the effects of tension and damping, the Euler–Bernoulli beam equation
yields information on the natural frequencies of these modes, which may be expressed
as ωn = (β2

n/ l2)
√

EI/ρsh, where βn represent the eigenvalues corresponding to Φn(x),
which depend on the boundary conditions of the membrane. In this study, the choice
of the orthogonal basis functions was based on the approximation of the membrane
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Figure 14. Evolution of the (a) tail position and (b) thrust coefficient for two complete
pitching cycles for three different bending rigidity EI values. Here ρsh = 0.01, αmax = 8◦ and
f = 1 Hz.

with a clamped Euler–Bernoulli beam, and the modal decomposition was done using
the pitching frame of reference.

Data sets for the shape of the flexible membrane have been projected onto the
eigenmodes to evaluate the contribution of each mode to the shape of the membrane.
Figure 16 shows the relative modal contributions An(t), varying in time, for modes
1–4 for the membrane with EI = 1 × 10−5, ρsh = 0.01 and αmax = 8◦, operating at a
frequency of f = 1 Hz. The modal contributions start to decay significantly past mode
3 and hence we have a very compact data set to describe the membrane motion. The
functions An(t) oscillate at the same frequency and display slight phase differences
between successive modes. The fact that we have a dominant single mode confirms
that the motion of the membrane is a function of the forcing.

The effect of rigidity in the relative modal contributions An(t) is shown in
figure 17. Two different membranes were calculated, with ρsh = 0.01, αmax = 8◦ and
EI = 1 × 10−5, EI = 5 × 10−6, respectively. The modal contributions start to decay
significantly past mode 3, and again we have a very compact data set to describe the
membrane motion. As rigidity increases, mode 1 is more dominant and subsequent
modes less significant. The effect of decreasing the structural mass coefficient ρsh, as
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Figure 15. Effect of the bending rigidity EI for three different structural mass coefficient ρsh
values. (a) Strouhal number, (b) thrust and power coefficients and (c) efficiency; αmax = 8◦.

shown in figure 18, is very similar. For increasing values of ρsh, and maintaining rigid-
ity at EI = 1 × 10−5, mode 1 is slightly less dominant and mode 2 is more dominant.
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Figure 16. Modal contributions to the shape of the membrane. Here EI = 1 × 10−5,
ρsh =0.01, αmax =8◦ and f = 1 Hz.
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Figure 17. Effect of the bending rigidity EI on the modal contributions to the shape of the
membrane. Here ρsh = 0.01, αmax = 8◦ and f = 1 Hz.

6. Conclusions
We considered the problem of the pitching motion of a thin flexible body in a

uniform flow. For zero extensibility and in the high bending stiffness range, the
problem is controlled by the maximum leading-edge angle αmax , the bending stiffness
EI and to a lesser extent the structural mass coefficient ρsh.

We developed a direct simulation of the nonlinear coupled fluid–structure problem.
Running the fluid/structure fully coupled method, we obtained a systematic set of
results for selected values of the bending stiffness and structural mass coefficient, over
a broad range of maximum leading-edge angles.

It is shown that the thrust coefficient is primarily a function of Strouhal
number, increasing monotonically for increasing St . Efficiency increases for increasing
structural mass coefficient and reaches a minimum for intermediate values of the
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Figure 18. Effect of the structural mass coefficient ρsh on the modal contributions to the
shape of the membrane. Here EI = 1 × 10−5, αmax = 8◦ and f = 1 Hz.

bending rigidity. The most interesting aspect of these results is the relatively high
values for efficiency that can be obtained for such a simple configuration. Material
flexibility increases oscillating plate efficiency, but in contrast, the thrust coefficient for
the flexible plate is significantly lower than the results of other researchers. The fact
that we obtained high efficiencies for flows produced by a simple flexible membrane
suggests that the optimal efficiency condition is somewhat independent of the nature
of the thrust-producing device, and more related to the wake topology. Using a
simplified description of the oscillating system as an Euler–Bernoulli beam, it is
shown that a very compact data set accurately describes the shape of the membrane.
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