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Abstract Hilbert schemes are an object arising from geometry and are closely related to physics and
modular forms. Recently, there have been investigations from number theorists about the Betti numbers
and Hodge numbers of the Hilbert schemes of points of an algebraic surface. In this paper, we prove
that Göttsche’s generating function of the Hodge numbers of Hilbert schemes of n points of an algebraic
surface is algebraic at a CM point τ and rational numbers z1 and z2. Our result gives a refinement of
the algebraicity on Betti numbers.
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1. Introduction

Modular forms appear in various areas of mathematics including geometry, and in
physics (see, for instance, Alvarez-Gaumé–Moore–Vafa [1]). In this paper, we consider
one example called Hilbert schemes, which are related to all of these areas.

Hilbert schemes are an object arising from algebraic geometry. They were defined by
Grothendieck [14] as a moduli space of closed subschemes of an algebraic variety. Since
moduli spaces parametrizing objects associated with a given space X are a rich source
of spaces with interesting structures in general, Hilbert schemes are usually considered
as important objects and have been a source of continuous investigations. For the basic
references, we refer to Göttsche [10] and Nakajima [21].

It is interesting to note that modular forms and Hilbert schemes have a connection in
relation to physics. In [23], it was pointed out that the S-duality conjecture in the string
theory implies the modularity of the generating function of Euler numbers of moduli
spaces of instanton. Then, using the fact that the Euler numbers of moduli spaces of
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instantons are equal to those of Hilbert schemes of points in the K3 case, it became
possible to obtain the desired answer using the following beautiful formula given by
Göttsche [10]

∞∑
n=0

qnPt(S[n]) =
∞∏

m=1

(1 + t2m−1qm)b1(S)(1 + t2m+1qm)b3(S)

(1 − t2m−2qm)b0(S)(1 − t2mqm)b2(S)(1 − t2m+2qm)b4(S)
(1.1)

Here, Pt(X) :=
∑2 dimC(X)

i=0 bi(X)ti and bi(X) is the ith Betti number of X. However,
despite the relationship to modular forms, Hilbert schemes have not been extensively
studied from the number-theoretic point of view.

Recently, some investigations from number theorists appeared, after the work by Bring-
mann and Manschot [7]. In their paper, they found the asymptotic behaviour of the Betti
numbers of the Hilbert schemes of points on an algebraic surface that is related to the
counting of BPS states in physics. Subsequently, their work was continued by the work of
Manschot and Rolon [20], where the following Göttsche’s new formula about the Hodge
numbers of the Hilbert schemes of n points on algebraic surfaces was considered:

Theorem 1.1 (Göttsche [10, Theorem 2.3.14]). If S is a smooth projective complex
surface, then we have that

∑
n≥0

0≤s,t≤2n

(−1)s+ths,t(S[n])xs−nyt−nqn =

∞∏
n=1

∏
s+t odd(1 − xs−1yt−1qn)hs,t(S)

∏
s+t even(1 − xs−1yt−1qn)hs,t(S)

=

∞∏
n=1

(1 − x−1qn)h0,1(S)(1 − y−1qn)h1,0(S)(1 − yqn)h1,2(S)(1 − xqn)h2,1(S)

(1−x−1y−1qn)h0,0(S)(1−x−1yqn)h0,2(S)(1−xy−1qn)h2,0(S)(1−qn)h1,1(S)(1−xyqn)h2,2(S)
.

(1.2)

We remark that the two generating functions used in the above two papers [7, 20]
can be combined mathematically to a general generating series, as was later given by the
authors [16] where the general asymptotic formula was obtained. We also refer the reader,
to the papers written by Gillman–Gonzalez–Schoenbauer [8] and Gillman–Gonzalez–
Ono–Rolen–Schoenbauer [9], respectively, where some specialized cases corresponding

to (x, y) = (±1, ±1) (respectively (x, y) = (e
2πij1

l1 , e
2πij2

l2 )) in Göttsche’s Hodge number
generating formula for the Hilbert schemes of n points were thoroughly studied, to obtain
exact formulas and asymptotic formulas of the Euler characteristic and the signature of
S[n]. Finally, we refer to two recent interesting papers by Bringmann–Craig–Males–Ono
[6] and Griffin–Ono–Rolen–Tsai [11] about Betti distributions of Hilbert schemes.

In this paper, we further consider and study Göttsche’s Hodge number generating
function of the Hilbert schemes of n points of an algebraic surface to study another
property, the algebraicity. Algebraicity has been an important property in mathematics,
and in particular, the algebraicity of modular forms (and in general q-series) has been also
extensively studied (see, for instance, [3, 4, 12, 18, 22]). It is also interesting that there
also has been interest from physicists, including investigations from [2, 5, 15, 17]. For
example, in [2], Beliakova–Chen–Le gave a complete solution to the integrality problem
of the Witten–Reshetikhin–Turaev invariant in the SU(2) case by proving that the WRT
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invariant is an algebraic integer for any three-manifold with any coloured link inside at
any root of unity.

In our previous work [16], it was shown that for a smooth projective surface S the
value

e−
πiτ
12 χ(S)η(τ)b2(S)fS(z; τ) (1.3)

is an algebraic number, at any rational number z and any CM point* τ , where fS(z; τ) is
the left-hand side of (1.1) with q = e2πi(τ−z) and t = eπiz, χ(S) is the Euler characteristic
of S, and η(τ) = e

πiτ
12

∏∞
n=1(1 − e2πinτ ) is the Dedekind eta function. Moreover, under

some condition on z, (1.3) is an algebraic integer.
In this paper, we give a more refined explanation of our previous work. We study

the algebraicity of Göttsche’s Hodge number generating function involving the Hodge
numbers of the Hilbert schemes of points and see whether some algebraicity holds for the
refined subclasses (since in the Kähler case, Betti numbers can be expressed in terms of
the Hodge numbers). The result is positive. We consider, in relation to Göttsche’s Hodge
number generating function, the following generating function

FS(z1, z2, τ) :=
∑
n≥0

0≤s,t≤2n

(−1)s+ths,t(S[n])e2πiz1(s−n)e2πiz2(t−n)e2πinτ . (1.4)

In fact, this is the left-hand side of Theorem 1.1 with x = e2πiz1 , y = e2πiz2 , and
q = e2πiτ .

Our first theorem is a generalization of our previous result [16, Theorem 1.2]. We say
that α is a unit over a commutative ring R with unity, if α and α−1 are integral over R.

Theorem 1.2. Let S be a smooth projective complex surface with the Euler
characteristic χ(S). Let z1, z2 be rational numbers, and let τ be a CM point.

(1) If z1 �= 0, z2 �= 0 and z1 = z2 = z, then

e−
πiτ
12 χ(S)η(τ)h0,2(S)+h1,1(S)+h2,0(S)FS(z1, z2, τ) = e−

πiτ
12 χ(S)η(τ)b2(S)FS(z1, z2, τ) (1.5)

is an algebraic number.
(2) If z1 �= 0, z2 �= 0 and z1 = −z2 = z, then

e−
πiτ
12 χ(S)η(τ)h0,0(S)+h1,1(S)+h2,2(S)FS(z1, z2, τ) = e−

πiτ
12 χ(S)η(τ)h1,1(S)+2FS(z1, z2, τ)

(1.6)
is an algebraic number.

(3) If z �= 0, then

e−
πiτ
12 χ(S)η(τ)−h0,1(S)+h1,1(S)−h2,1(S)FS(z, 0, τ) = e−

πiτ
12 χ(S)η(τ)h1,1(S)−b1(S)FS(z, 0, τ)

(1.7)
is an algebraic number. (Note that FS(z, 0, τ) = FS(0, z, τ).)

(4) Let den(a) be the smallest N ∈ N such that Na ∈ Z. If den(2z) (respectively,
den(z)) has at least two distinct prime factors, then the numbers (1.5) and (1.6),
respectively (respectively, (1.7)) for each corresponding z, are units over Z.

* CM points are roots in the upper half-plane of some quadratic equation whose coefficients are integers.
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In general, the numbers (1.5), (1.6), and (1.7), respectively for each corresponding z,
are units over Z[ 1

den(2z) ], Z[ 1
den(2z) ], and Z[ 1

den(z) ], respectively.

One may notice that the exponents of the Dedekind eta function η(τ) vary in (1.5),
(1.6), and (1.7), according to the assumptions of the theorem. The point is that these
exponents are in fact very special, in the sense that they make expressions (1.5), (1.6),
and (1.7) respectively have special algebraic properties at a CM point τ .

Remark 1.3. (i) If z1 = z2 = 0, then we have

FS(z1, z2, τ) = e
πiτ
12 χ(S)η(τ)−χ(S).

Therefore we have that

e−
πiτ
12 χ(S)η(τ)χ(S)FS(z1, z2, τ) = 1,

which is clearly an algebraic number.

(ii) Note that fS(z; τ) in (1.3) coincides with FS( z+1
2 , z+1

2 ; τ) in (1.4), and hence the
result (1) of Theorem 1.2 implies the algebraicity of the number given by (1.3). In
fact, Theorem 1.2 (1) improves the results (1) and (3) of [16, Theorem 1.2]. We also
have an improvement of (2) of [16, Theorem 1.2], but for simplicity, we include it
in the proof of the theorem.

Note that Theorem 1.2 corresponds to some special cases of z1 and z2, namely, when
z1 = ±z2 or z1z2 = 0, and therefore, it is natural to ask about the general case. In the
following theorem, we also have the algebraicity result for the generic z1 and z2, which
complete the whole picture.

Theorem 1.4. Let S be a smooth complex projective surface with the Euler
characteristic χ(S). Let z1, z2 be rational numbers, and let τ be a CM point.

If z1 �= 0, z2 �= 0, and z1 �= ±z2, then

e−
πiτ
12 χ(S)η(τ)h1,1(S)FS(z1, z2, τ) (1.8)

is an algebraic number, where χ(S) is the Euler characteristic of S. In fact, (1.8) is a unit
over Z[ 1

lcm(den(z1), den(z2))
].

Moreover, if each of den(z1), den(z2), den(z1 + z2), and den(z1 − z2) has at least two
distinct prime factors, then (1.8) is an algebraic integer.

One may wonder why the object in Theorem 1.4 contains only h1,1(S) in the exponent
of η(τ), simpler than the objects in Theorem 1.2. It is mainly because of the applicability
of the algebraicity result on Siegel functions.

This paper is organized as follows: In §2, we state important properties needed to prove
Theorem 1.2 and 1.4. In §3, we prove Theorem 1.2 and 1.4.

2. Preliminaries

In this section, we summarize some facts needed to prove our theorems.
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2.1. Hodge numbers

The Hodge numbers hp,q(X) of a compact complex manifold X are defined as the
complex dimensions of the Dolbeault cohomology groups Hq(X, Ωp

X), namely the qth

cohomology group of X with values in the sheaf Ωp
X of holomorphic differential forms of

degree p. If dimC(X) = n, it is known by the Serre duality that hp,q(X) = hn−p,n−q(X),
and in particular hn,n(X) = h0,0(X) = 1. Furthermore, if X is a Kähler manifold, the
Hodge numbers are known to satisfy the following further properties (see [13]):

hp,q(X) = hq,p(X), hp,p(X) ≥ 1.

Applying these, we see for a compact complex surface X that

h1,0(X) = h0,1(X) = h1,2(X) = h2,1(X), h2,0(X) = h0,2(X).

Hodge numbers in fact have a close connection to the celebrated Betti numbers when X
is Kähler. The ith Betti number of a manifold X, denoted by bi(X), is the rank of its ith

singular cohomology group Hi(X, C). If a compact complex manifold X is Kähler, then
we have the following equality, by the existence of the Hodge decomposition.

br(X) =
∑

p+q=r

hp,q(X).

It is easily seen that the following holds for the Euler characteristic χ(X) of X:

χ(X) = b0(X) − b1(X) + b2(X) − b3(X) + b4(X)

= −2(h0,1(X) + h1,0(X) − h0,0(X) − h0,2(X) − 1
2
h1,1(X)). (2.1)

2.2. Siegel functions

To deal with the algebraicity of q-series given by infinite products, we need the theory
of the so-called Siegel functions.

Let B2(x) := x2 − x + 1
6 be the second Bernoulli polynomial and let e(x) := e2πix. If

a = (a1, a2) ∈ Q2, then the Siegel function is defined as

ga(τ) := −q
1
2B2(a1)e(a2(a1 − 1)/2)

∞∏
n=1

(1 − qn−1+a1e(a2))(1 − qn−a1e(−a2)),

where q = e2πiτ .
One of the main use of the Siegel functions comes from the fact that ga is modular

function (of some multiplier system and some subgroup of SL2(Z)). Furthermore, if N ·
a ∈ Z2, then ga(τ)12N is known to be modular on Γ(N) with the trivial multiplier system,
where Γ(N) = {γ ∈ SL2(Z) : γ ≡ 1 (mod N)} is the Nth principal congruence subgroup
of SL2(Z) (see [19, Theorem 1.2]). Let Den(a) be the smallest N ∈ N such that N · a ∈ Z2.

What we need about the Siegel functions in this paper is the following theorem
about the algebraicity of Siegel functions in relation to the j-invariant j(τ) :=
(1+240

∑∞
n=1

∑
d|n d3qn)3

q
∏∞

n=1(1−qn)24 that is in fact an SL2(Z)-modular function.
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Theorem 2.1 (Kubert and Lang [19, chapter 2, Theorem 2.2]). Let a ∈ Q2\Z2.
If τ is in the upper half-plane and N = Den(a), then the following are true.

(1) If N has at least two prime factors, then ga(τ) is a unit over Z[j(τ)].

(2) If N = pr is a prime power, then ga(τ) is a unit over Z[1/p][j(τ)].

(3) If c ∈ Z and (c, N) = 1, then (gca/ga) is a unit over Z[j(τ)].

(4) If τ is a CM point, then ga(τ) is an algebraic integer.

Remark 2.2. In fact, more can be said when τ is a CM point: if ga(τ) is a unit
over Z[j(τ)], then ga(τ) is an algebraic integer unit, because j(τ) is an algebraic integer.
Similarly, if ga(τ) is a unit over Z[1/p][j(τ)] then ga(τ) is a unit over Z[1/p].

2.3. Root of unity

To prove Theorems 1.2 and 1.4, we need some properties about roots of unity. Let
Φn(z) be the nth cyclotomic polynomial given by

Φn(z) :=
ϕ(n)∏
k=1

(z − zk) =
∏
d|n

(zd − 1)μ( n
d ),

where z1, z2, · · · , zϕ(n) are the primitive nth roots of unity and μ(n) is the Möbius
function.

Note that, for n ≥ 2,

Φn(z) =
∏
d|n

(zd−1 + zd−2 + · · · + z + 1)μ( n
d ).

Therefore we have that, for n ≥ 2,

Φn(1) =
∏
d|n

dμ( n
d ) = exp

⎛
⎝∑

d|n
μ

(
n

d

)
log d

⎞
⎠ = exp

⎛
⎝∑

d|n
μ(d) log(n/d)

⎞
⎠

= exp

⎛
⎝−

∑
d|n

μ(d) log d

⎞
⎠ .

We can check that
∑
d|n

μ(d) log d =
{

0 if n has at least two distinct prime factors,
− log p if n = pr is a prime power with r ≥ 1.

From this formula, for n ≥ 2, we have that

Φn(1) =
{

1 if n has at least two distinct prime factors,
p if n = pr is a prime power with r ≥ 1.

Using these observations, we have the following well-known fact (see, for instance,
[19, p.37]).
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Lemma 2.3. Let ζ be a primitive nth root of unity. Then the following are true.

(1) If n has at least two distinct prime factor, then 1 − ζ is a unit over Z.

(2) If n = pr is a prime power, then 1 − ζ is a unit over Z[1/p].

3. Proofs of the main theorems

In this section, we give proofs of Theorem 1.2 and Theorem 1.4. We use the notation
q = e2πiτ in this section.

First, we note that if (a1, a2) = (0, α) ∈ Q2, then we have

g(a1,a2)(τ) = −q
1
2 (a2

1−a1+
1
6 )e(a2(a1 − 1)/2)

∞∏
n=1

(1 − qn−1+a1e(a2))(1 − qn−a1e(−a2))

= −q
1
12 e(−α/2)

∞∏
n=1

(1 − qn−1e(α))(1 − qne(−α))

= q
1
12 (e(α/2) − e(−α/2))

∞∏
n=1

(1 − qne(α))(1 − qne(−α)).

Note also that the Dedekind eta function has the q-expansion η(τ) = q
1
24

∏∞
n=1(1 − qn).

Proof of Theorem 1.2. Let ζr
� := e(r/�), where r, � ∈ Z and gcd(r, �) = 1.

(1) If z1 = z2 = z = r
� , then x = y = ζr

� . Using the fact hp,q(S) = h2−p,2−q(X), one can
rephrase the given infinite product as follows:

∞∏
n=1

(1 − x−1qn)h0,1(S)(1 − y−1qn)h1,0(S)(1 − yqn)h1,2(S)(1 − xqn)h2,1(S)

(1−x−1y−1qn)h0,0(S)(1−x−1yqn)h0,2(S)(1 − xy−1qn)h2,0(S)(1 − qn)h1,1(S)(1 − xyqn)h2,2(S)

=
∞∏

n=1

((1 − ζ−r
� qn)(1 − ζr

� qn))h0,1(S)+h1,0(S)

((1 − ζ−2r
� qn)(1 − ζ2r

� qn))h0,0(S)(1 − qn)h0,2(S)+h1,1(S)+h2,0(S)

=
g(0,r/�)(τ)h0,1(S)+h1,0(S)q−

1
12 (h0,1(S)+h1,0(S)−h0,0(S)−h0,2(S)− 1

2 h1,1(S))

g(0,2r/�)(τ)h0,0(S)η(τ)h0,2(S)+h1,1(S)+h2,0(S)

× (e( r
�
) − e(− r

�
))h0,0(S)

(e( r
2�

) − e(− r
2�

))h0,1(S)+h1,0(S)

=
q

χ(S)
24

η(τ)b2(S)

g(0,r/�)(τ)h0,1(S)+h1,0(S)

g(0,2r/�)(τ)h0,0(S)

(ζr
� )h0,0(S)

(ζr
2�)

h0,1(S)+h1,0(S)

(1 − ζ−2r
� )h0,0(S)

(1 − ζ−r
� )h0,1(S)+h1,0(S)

.

Therefore, the given infinite product can be expressed in terms of the Euler characteristic
χ(S), the Dedekind eta function, the Siegel functions, and roots of unity.

Then, one can see from Theorem 2.1(4) that g(0,r/�)(τ)h0,1(S)+h1,0(S)

g(0,2r/�)(τ)h0,0(S) takes an algebraic

number at a CM point τ , and from Lemma 2.3, we also know that (1−ζ−2r
� )h0,0(S)

(1−ζ−r
� )h0,1(S)+h1,0(S)
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takes an algebraic number. Therefore, the algebraicity of

e−
πiτ
12 χ(S)η(τ)h0,2(S)+h1,1(S)+h2,0(S)FS

(
r

�
,
r

�
, τ

)

for a CM point τ follows.
(2) If z1 = −z2 = z = r

� , then x = y−1 = e(r/�) = ζr
� . Then using hp,q(X) =

h2−p,2−q(X), we can rephrase the given infinite product as follows:

∞∏
n=1

(1 − x−1qn)h0,1(S)(1 − y−1qn)h1,0(S)(1 − yqn)h1,2(S)(1 − xqn)h2,1(S)

(1 − x−1y−1qn)h0,0(S)(1 − x−1yqn)h0,2(S)(1 − xy−1qn)h2,0(S)(1 − qn)h1,1(S)(1 − xyqn)h2,2(S)

=
∞∏

n=1

((1 − ζ−r
� qn)(1 − ζr

� qn))h0,1(S)+h1,0(S)

((1 − ζ−2r
� qn)(1 − ζ2r

� qn))h0,2(S)(1 − qn)h0,0(S)+h1,1(S)+h2,2(S)

=
g(0,r/�)(τ)h0,1(S)+h1,0(S)q− 1

12 (h0,1(S)+h1,0(S)−h0,2(S)−h0,0(S)− 1
2 h1,1(S))

g(0,2r/�)(τ)h0,2(S)η(τ)h0,0(S)+h1,1(S)+h2,2(S)

× (e( r

�
) − e(− r

�
))h0,2(S)

(e( r

2�
) − e(− r

2�
))h0,1(S)+h1,0(S)

=
q

χ(s)
24

η(τ)h0,0(S)+h1,1(S)+h2,2(S)

g(0,r/�)(τ)h0,1(S)+h1,0(S)

g(0,2r/�)(τ)h0,2(S)

(ζr
� )h0,2(S)

(ζr
2�)

h0,1(S)+h1,0(S)

(1−ζ−2r
� )h0,2(S)

(1 − ζ−r
� )h0,1(S)+h1,0(S)

.

Similarly, as in (1), we have that

e−
πiτ
12 χ(S)η(τ)h0,0(S)+h1,1(S)+h2,2(S)FS

(
r

�
,−r

�
, τ

)

is an algebraic number for a CM point τ .
(3) If z1 = z = r

� , z2 = 0, then x = ζr
� and y = 1. In this case, we have the following

rephrasement of the given infinite product:

∞∏
n=1

(1 − x−1qn)h
0,1(S)(1 − y−1qn)h

1,0(S)(1 − yqn)h
1,2(S)(1 − xqn)h

2,1(S)

(1−x−1y−1qn)h
0,0(S)(1−x−1yqn)h

0,2(S)(1−xy−1qn)h
2,0(S)(1−qn)h

1,1(S)(1−xyqn)h
2,2(S)

=
∞∏

n=1

((1 − ζ−r
� qn)(1 − ζr

� qn))h
0,1(S)−h0,0(S)−h0,2(S)

(1 − qn)h
1,1(S)−h1,0(S)−h1,2(S)

=
g(0,r/�)(τ)h

0,1(S)−h0,0(S)q−
1
12 (h0,1(S)+h1,0(S)−h0,0(S)−h0,2(S)− 1

2 h1,1(S))

(e( r
2� ) − e(− r

2� ))h
0,1(S)−h0,0(S)−h0,2(S)η(τ)−h1,0(S)+h1,1(S)−h0,1(S)

=
q

χ(s)
24

η(τ)−h1,0(S)+h1,1(S)−h0,1(S)

g(0,r/�)(τ)h
0,1(S)−h0,0(S)

(ζr
2�)

h0,1(S)−h0,0(S)−h0,2(S)(1 − ζr
� )h

0,1(S)−h0,0(S)−h0,2(S)
.

Then, as before, we conclude that the number

e−
πiτ
12 χ(S)η(τ)−h0,1(S)+h1,1(S)−h2,1(S)FS(z1, z2, τ)

is an algebraic number for a CM point τ .
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(4) Now we prove that if den(2z) (respectively, den(z)) has at least two distinct
prime divisors, then the above expressions (1.5) and (1.6)(respectively, (1.7)) are units
over Z at the corresponding rational numbers z and a CM point τ , and, in general,
(1.5) and (1.6)(respectively, (1.7)) are units over Z[ 1

den(2z) ](respectively, Z[ 1
den(z) ]) at the

corresponding rational numbers z and a CM point τ .
First, we consider the cases of (1.5) and (1.6). We only prove the statement about (1.5)

here, since the proof of (1.6) is similar. To do this, we divide the proof into two cases,
namely when den(2r

� ) has at least two distinct prime factors and den(2r
� ) has only one

prime factor, i.e., is a prime power.
Let us first consider the case when den( 2r

� ) has at least two distinct prime fac-
tors. In this case, first, from Theorem 2.1(1) and Remark 2.2, we can see that
g(0,r/�)(τ)±(h0,1(S)+h1,0(S)) and g(0,2r/�)(τ)±h0,0(S) take an algebraic integer at a CM
point τ .

We also need to control the roots of unity part. First, since 1 − ζ−2r
� and 1 − ζ−r

� are
algebraic integers, it is clear that (1 − ζ−2r

� )h0,0(S) and (1 − ζ−r
� )h0,1(S)+h1,0(S) are also

algebraic integers. Furthermore, if den(2r
� ) has at least two distinct primes, we see from

Lemma 2.3(1) that (1 − ζ−2r
� )−h0,0(S) and (1 − ζ−r

� )−h0,1(S)−h1,0(S) are algebraic integers.
Combining these two facts, we conclude that if r

� �= 0 and den(2r
� ) has at least two distinct

prime factors, then (1.5) is an algebraic unit over Z for a CM point τ .
The other remaining case is the case when den( 2r

� ) = pl is a prime power. In this case,
similarly, one can get using Theorem 2.1(2) and Lemma 2.3(2) that if den(2r

� ) = pl is a
prime power, then (1.5) is a unit over Z[ 1p ] for a CM point τ .

Therefore, combining the above two cases, we can see that (1.5) is a unit over Z[ 1
den( 2r

� )
]

for a CM point τ .
Now, we consider the case of (1.7). In this case, it is sufficient to consider g(0,r/�)(τ)

and (1 − ζr
� ). If den( r

� ) has at least two distinct prime factors, from Theorem 2.1(1) and
Lemma 2.3(1), we see that the Siegel function g(0,r/�)(τ)±(h0,1(S)−h0,0(S)) takes an alge-
braic integer and (1 − ζr

� )±(h0,1(S)−h0,0(S)−h0,2(S)) is an algebraic integer at a CM point τ .
On the other hand, if den( r

� ) = pl is a prime power, then g(0,r/�)(τ)±(h0,1(S)−h0,0(S)) and
(1 − ζr

� )±(h0,1(S)−h0,0(S)−h0,2(S)) are units over Z[ 1p ] using Theorem 2.1(2) and Lemma
2.3(2). Therefore (1.7) is a unit over Z[ 1

den( r
� ) ] and an algebraic integer when den( r

� ) has
at least two distinct prime divisors. �

Now, we prove Theorem 1.4 in the generic case, i.e., when z1 �= ±z2 with non-zero
z1, z2. Note that in this case, the exponent of η(τ) in (1.8) is simpler than those of η(τ)
in (1.5), (1.6), and (1.7). At first sight, this phenomenon may seem somewhat strange,
since Theorem 1.4 is about the generic case. However, this can be understood from
Göttsche’s formula (1.2), since the cases of Theorem 1.2 correspond to those when some of
the products of the form

∏∞
n=1(1 − xaybqn) are simplified to

∏∞
n=1(1 − qn) = q−

1
24 η(τ),

which in turn explains powers of η(τ) being more than those of exponent h1,1(S) in
Theorem 1.4.

On the other hand, we have to deal with the algebraicity of general infinite products
of the form

∏∞
n=1(1 − xaybqn), which are more complex than the exponent of η(τ) in

Theorem 1.4. Fortunately, this can be achieved using the theory of Siegel functions, as we
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see below, but here we have to deal with more Siegel functions than we did in Theorem
1.2. This makes the proof of Theorem 1.4 more involved than that of Theorem 1.2.

Proof of Theorem 1.4. Let ζr
� = e(r/�), where r, � ∈ Z and gcd(r, �) = 1. If x = ζr1

�1
and y = ζr2

�2
, then

∞∏
n=1

(1 − x−1qn)(1 − xqn) =
∞∏

n=1

(1 − e(−r1/�1)qn)(1 − e(r1/�1)qn)

= g(0,r1/�1)(τ)
q−

1
12

e( r1
2�1

) − e(− r1
2�1

)
=

q−
1
12 g(0,r1/�1)(τ)

ζr1
2�1

(1 − ζ−r1
�1

)

and

∞∏
n=1

(1 − y−1qn)(1 − yqn) =
∞∏

n=1

(1 − e(−r2/�2)qn)(1 − e(r2/�2)qn)

= g(0,r2/�2)(τ)
q−

1
12

e( r2
2�2

) − e(− r2
2�2

)
=

q−
1
12 g(0,r2/�2)(τ)

ζr2
2�2

(1 − ζ−r2
�2

)
.

From xy = e((r1�2 + r2�1)/(�1�2)) and x/y = e((r1�2 − r2�1)/(�1�2)), we have

∞∏
n=1

(1 − (xy)−1qn)(1 − xyqn) =
q−

1
12 g(0,r1/�1+r2/�2)(τ)

ζr1�2+r2�1
2�1�2

(1 − ζ−r1�2−r2�1
�1�2

)

and
∞∏

n=1

(1 − (xy−1)−1qn)(1 − xy−1qn) =
q−

1
12 g(0,r1/�1−r2/�2)(τ)

ζr1�2−r2�1
2�1�2

(1 − ζ−r1�2+r2�1
�1�2

)
.

Because of the formula hp,q(X) = hn−p,n−q(X), we have

∞∏
n=1

(1 − x−1qn)h
0,1(S)(1 − y−1qn)h

1,0(S)(1 − yqn)h
1,2(S)(1 − xqn)h

2,1(S)

(1−x−1y−1qn)h
0,0(S)(1−x−1yqn)h

0,2(S)(1−xy−1qn)h
2,0(S)(1−qn)h

1,1(S)(1−xyqn)h
2,2(S)

=
∞∏

n=1

((1 − x−1qn)(1 − xqn))h
0,1(S)((1 − y−1qn)(1 − yqn))h

1,0(S)

((1 − x−1y−1qn)(1 − xyqn))h
0,0(S)((1 − x−1yqn)(1 − xy−1qn))h

0,2(S)(1 − qn)h
1,1(S)

=
(g(0,r1/�1)(τ))h

0,1(S)(g(0,r2/�2)(τ))h
1,0(S)q−

1
12 (h0,1(S)+h1,0(S)−h0,0(S)−h0,2(S)− 1

2 h1,1(S))

(g(0,r1/�1+r2/�2)(τ))h
0,0(S)(g(0,r1/�1−r2/�2)(τ))h

0,2(S)(η(τ))h
1,1(S)

×
(ζr1�2+r2�1

2�1�2
)h

0,0(S)(1 − ζ−r1�2−r2�1
�1�2

)h
0,0(S)(ζr1�2−r2�1

2�1�2
)h

0,2(S)(1 − ζ−r1�2+r2�1
�1�2

)h
0,2(S)

(ζr1
2�1

)h
0,1(S)(1 − ζ−r1

�1
)h

0,1(S)(ζr2
2�2

)h
1,0(S)(1 − ζ−r2

�2
)h

1,0(S)
.
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Therefore, using (2.1), we have

FS

(
r1

�1
,
r2

�2
, τ

)

=
q

χ(S)
24

η(τ)h1,1(S)

(ζr1
2�1

)h0,0(S)+h0,2(S)−h0,1(S)

(ζr2
2�2

)h1,0(S)+h0,2(S)−h0,0(S)

(1−ζ−r1�2−r2�1
�1�2

)h0,0(S)(1−ζ−r1�2+r2�1
�1�2

)h0,2(S)

(1 − ζ−r1
�1

)h0,1(S)(1 − ζ−r2
�2

)h1,0(S)

× (g(0,r1/�1)(τ))h0,1(S)(g(0,r2/�2)(τ))h1,0(S)

(g(0,r1/�1+r2/�2)(τ))h0,0(S)(g(0,r1/�1−r2/�2)(τ))h0,2(S)
.

Because 1 − ζ−r1�2−r2�1
�1�2

and 1 − ζ−r1�2+r2�1
�1�2

are algebraic integers, we see that

(1 − ζ−r1�2−r2�1
�1�2

)h0,0(S)(1 − ζ−r1�2+r2�1
�1�2

)h0,2(S)

is an algebraic integer. From Lemma 2.3(1), we see that

(1 − ζ−r1
�1

)−h0,1(S)(1 − ζ−r2
�2

)−h1,0(S)

is an algebraic integer if both den( r1
�1

) and den( r2
�2

) have at least two distinct prime factors.
From Theorem 2.1(4), we have that

(g(0,r1/�1)(τ))h0,1(S)(g(0,r2/�2)(τ))h1,0(S)

takes an algebraic integer at a CM point τ . Also, from Theorem 2.1(1), if both
den( r1

�1
+ r2

�2
) and den( r1

�1
− r2

�2
) have at least two prime factors then

(g(0,r1/�1+r2/�2)(τ))−h0,0(S)(g(0,r1/�1−r2/�2)(τ))−h0,2(S)

takes an algebraic integer at a CM point τ .
Therefore, for r1

�1
�= 0, r2

�2
�= 0 and r1

�1
�= ± r2

�2
, if each of den( r1

�1
), den( r2

�2
), den( r1

�1
+ r2

�2
)

and den( r1
�1

− r2
�2

) has at least two distinct prime factors, then

e−
πiτ
12 χ(S)η(τ)h1,1(S)FS

(
r1

�1
,
r2

�2
, τ

)

is an algebraic integer for a CM point τ .
Generally, from Lemma 2.3 and Theorem 2.1, we can check that (1 − ζ−r

� )±1 is a unit
over Z[ 1

den( r
� ) ] and g(0,r/�)(τ) is a unit over Z[ 1

den( r
� ) ] for a CM point τ . Hence for the case

that r1
�1

�= 0, r2
�2

�= 0 and r1
�1

�= ± r2
�2

, we conclude that

e−
πiτ
12 χ(S)η(τ)h1,1(S)FS

(
r1

�1
,
r2

�2
, τ

)

is a unit over Z[ 1
lcm(den(

r1
�1

), den(
r2
�2

))
] and an algebraic number for a CM point τ . �
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