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Abstract In this paper, in terms of the hyperbolic metric, we give a condition under which the image of
a hyperbolic domain of an analytic function contains a round annulus centred at the origin. From this, we
establish results on the multiply connected wandering domains of a meromorphic function that contain
large round annuli centred at the origin. We thereby successfully extend the results of transcendental
meromorphic functions with finitely many poles to those with infinitely many poles.
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1. Introduction and main results

Let f be a meromorphic function that is not a Möbius transformation and let fn, n ∈ N,
denote the nth iterate of f . The Fatou set F (f) of f is defined to be the set of points
z ∈ Ĉ such that {fn}n∈N is well defined and forms a normal family in some neighbourhood
of z. The complement J(f) of F (f) is called the Julia set of f . An introduction to the
properties of these sets can be found in [3, 8, 10] for rational functions and in [5] for
transcendental meromorphic functions. The Fatou set F (f) is open and the Julia set is
not empty and is perfect, so every component of the Fatou set is a hyperbolic domain,
called a stable domain. Noting that F (f) is completely invariant, i.e. z ∈ F (f) if and
only if f(z) ∈ F (f), for a component U of F (f) we always have fn(U) in a component
of F (f), denoted by Un, i.e. fn(U) ⊆ Un. U is called periodic if for some n, U = Un and
the least number n for the equation is called the period of the periodic domain U ; U is
called wandering if Un �= Um for n �= m. A non-wandering Fatou component will fall in
a periodic domain under iteration, and it is called preperiodic if it is itself not periodic.

An important difference between the dynamics of a transcendental meromorphic func-
tion and a rational function with degree at least 2 is that a rational function has neither
wandering domains nor Baker domains, but a transcendental meromorphic function may
have them. Here, a periodic stable domain U of period p is called a Baker domain if there

c© 2017 The Edinburgh Mathematical Society 787

https://doi.org/10.1017/S0013091516000377 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000377


788 J.-H. Zheng

exists z0 ∈ ∂U such that fnp(z) → z0 for z ∈ U as n → ∞ but fp is not defined at z0.
Therefore, for some 0 � j < p, fnp+j(z) → ∞ for z ∈ U as n → ∞ and at least one of
U, f(U), . . . , fp−1(U) is unbounded.

In [1] Baker proved that a multiply connected Fatou component U of a transcendental
entire function must be wandering, fn(U) → ∞ (n → ∞), and, for all sufficiently large n,
Un separates 0 and Un+1. In terms of the hyperbolic metric, Zheng established the
following theorem, among other things, in [17].

Theorem A. Let f be a transcendental meromorphic function with finitely many
poles. If U is a Fatou component of f such that fn|U → ∞ (n → ∞) and, for all
sufficiently large n, Un separates 0 and ∞, then for all n > n0, Un contains an annulus
{z : rn < |z| < Rn} with rn → ∞ and Rn/rn → ∞.

Among other things, Bergweiler et al . [7] proved the following.

Theorem B. Let f and U be given as in Theorem A. Then for z0 ∈ U and an open
set D in U containing z0, there exists an α > 0 such that for all sufficiently large n we
have

Un ⊃ fn(D) ⊃ {z : |fn(z0)|1−α < |z| < |fn(z0)|1+α}.

Theorem B is stated in [7] for a transcendental entire function, but it is available for
a transcendental meromorphic function with only finitely many poles, as pointed out
in [7]. In this paper we investigate the applicability of Theorem A and Theorem B to
transcendental meromorphic functions with infinitely many poles.

In [19] (see also [11, Theorem 5]) Zheng proved that if fn|U → ∞ for a Fatou compo-
nent U , then for any compact subset W of U there exists an M(W ) > 1 such that

M(W )−1|fn(z)| � |fn(w)| � M(W )|fn(z)| ∀z, w ∈ W (1.1)

provided that
⋃∞

n=1 fn(U) does not contain any sequence of round annuli Dm centred at 0
such that dist(0, Dm) → ∞ and mod(Dm) → ∞. We will say that {Dm} has Property A
below for convenience. Therefore, if (1.1) does not hold for some compact subset W of
U , then

⋃∞
n=1 fn(U) contains a sequence of round annuli with Property A.

If the number of poles of f is restricted, then in terms of the hyperbolic metric, we
can establish the following theorem.

Theorem 1.1. Let f(z) be a transcendental meromorphic function. Assume that there
exist two points a, b in a Fatou component U such that for a sequence {nk} of increasing
positive integers we have

|fnk(a)|
|fnk(b)| → ∞, |fnk(b)| → ∞ (k → ∞). (1.2)

Let D be a domain in U containing a and b.

(i) If for all sufficiently large r,

n(r, 0) > n(r, ∞) + 7π, (1.3)

then for all sufficiently large n, fn(D) contains an annulus An = {z : rn < |z| < Rn}
with rn → ∞ and Rn/rn → ∞ as n → ∞ such that An+1 ⊂ f(An).
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(ii) If for arbitrarily large C there exists an s(C) > 0 such that for r � s(C) we have

T (Cr, f) − N(Cr, f) � T (2r, f) + 7π log C, (1.4)

then for all sufficiently large n, fn(D) contains an annulus An = {z : rn < |z| < rα
n}

with α > 1 and rn → ∞ such that An+1 ⊂ f(An).

Here, n(r, 0) and n(r, ∞) are, respectively, the number of zeros and the number of
poles of f in {z : |z| < r}, T (r, f) is the Nevanlinna characteristic of f , and N(r, f) is
the integrated counting function of poles of f in {z : |z| < r}. For details, please see § 3.
In Theorem 1.1, n(r, 0) can be replaced by the number n(r, c) of c-points in {|z| < r} for
any finite value c.

In § 5 we will discuss the conditions and results in Theorem 1.1 via examples of tran-
scendental meromorphic functions. We will construct an example such that Un contains
an annulus with Property A but no annulus with the form {z : rn < |z| < rα

n} for α > 1,
i.e. the result in case (i) holds but the result in case (ii) does not. We explain the necessity
of condition (1.3) in terms of [11, Example 1], whose wandering domains orbit has not
only infinitely many elements surrounding the origin but also infinitely many elements
not surrounding the origin and, in terms of Example 5.4, every element of whose wan-
dering domain orbit surrounds the origin. The necessity of condition (1.4) will be shown
by Example 5.3.

We have a consequence of Theorem 1.1 that is a generalization of [17, Corollary 2 (II)].

Corollary 1.2. Given f , a, b and U as in Theorem 1.1, if for r � r0 > 0 (1.3) holds,
then for any meromorphic function g satisfying, for a subset E of [0,∞) with finite
logarithmic measure, i.e.

∫
E

dr/r < ∞, and for 0 < c < 1,

c log M(r, f) � log M(r, g), r �∈ E,

we have δ(0, f − g) = 0. Furthermore, δ(0, f − z) = 0 and f has infinitely many repelling
fixed points or indifferent fixed points with multiplier equal to 1.

Here, M(r, f) = max{|f(z)| : |z| = r}, the exceptional set E depends on g, and δ(0, ∗)
is the Nevanlinna deficiency of the function ∗ at 0. The definition of Nevanlinna deficiency
will be given in § 3. A point z0 such that f(z0) = z0 is a fixed point of f ; a fixed point z0

of f is called repelling (respectively, indifferent) if |f ′(z0)| > 1 (respectively, |f ′(z0)| = 1)
and the multiplier of a fixed point z0 is f ′(z0). The existence of infinitely many repelling
fixed points or indifferent fixed points with multiplier equal to 1 was proved by Bergweiler
and Terglane [6] for the case of entire functions that have multiply connected wandering
domains.

Theorem 1.3. Let f be a transcendental meromorphic function and suppose that
there exist r0 > 0 and λ > 1 such that for r � r0 we have

T (2r, f) � λT (r, f)

and δ(∞, f) > 0. Then for any compact subset W in a Fatou component U of f with
fn|U → ∞ (n → ∞), we have (1.1) for an M(W ) > 1 and

⋃∞
n=1 fn(U) contains no

sequence of annuli with Property A.
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This result motivates us to raise the following problem.

Problem 1.4. For a Fatou component U of a meoromorphic function f with fn|U →
∞ (n → ∞), if (1.1) holds for any compact subset W of U , does

⋃∞
n=1 fn(U) contain no

sequence of annuli with Property A?

Obviously, the discussion of this problem only needs to focus on the case in which U

and Un = fn(U) are wandering, bounded and multiply connected. The below proof of
Corollary 1.2 tells us that if (1.3) holds and f has finitely many repelling fixed points
and finitely many indifferent fixed points with multiplier equal to 1, then the answer to
Problem 1.4 is affirmative.

In [7] Bergweiler et al . proved that if U is a multiply connected Fatou component of
an entire function f , then for z0 ∈ U the limit

hU (z) = lim
n→∞

log |fn(z)|
log |fn(z0)|

exists on U and hU (z) is a positive non-constant harmonic function on U . Therefore,
the answer to Problem 1.4 for a meromorphic function with only finitely many poles is
affirmative. In fact, if

⋃∞
n=1 fn(U) contains a sequence of annuli with Property A, then

the above result is also available for such a U ; that is to say, hU (z) exists on U and is
not a constant, and therefore (1.1) does not hold for W = {z1, z0}, where hU (z1) �= 1.

In [7], by using the harmonic function hU (z), Bergweiler et al . characterized precisely
the round annuli in Un. The establishment of Theorem B basically stems from the fact
that hU (z) is non-constant. Therefore, hU (z) is an important function.

We consider a question of whether hU (z) exists for a wandering domain U of a mero-
morphic function f such that fn|U → ∞ (n → ∞). To this end, for z0 ∈ U define

h̄U (z) = lim sup
n→∞

log |fn(z)|
log |fn(z0)|

,

hU (z) = lim inf
n→∞

log |fn(z)|
log |fn(z0)|

.

If h̄U (z) = hU (z), we write hU (z) for the common value. In § 5 we discuss the possibility
of existence of hU (z) via examples.

In § 2, to prove Theorem 1.1 and Corollary 1.2, we establish preliminary results
(i.e. Theorems 2.2 and 2.4) in view of the hyperbolic metric, which are of independent sig-
nificance. We devote § 3 to a simple introduction to the Nevanlinna theory. In § 4 we show
the proofs of Theorems 1.1 and 1.3 and Corollary 1.2. In § 5 we construct some examples
of transcendental meromorphic functions to illustrate the necessity of the conditions in
Theorem 1.1.

2. The hyperbolic metric and basic results

Let Ω be a hyperbolic domain in the complex plane, that is, C\Ω contains at least two
points. Then there exists on Ω the hyperbolic metric λΩ(z)|dz| with Gaussian curvature
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−1, and by dΩ(u, v) we denote the hyperbolic distance between two points u, v ∈ Ω,
which is defined for u and v in Ω by

dΩ(u, v) = inf
α

∫
α

λΩ(z) |dz|,

where the infimum is taken over all piecewise-smooth paths α in Ω joining u and v.
It is well known that

λD(z) =
1

|z| log |z| , D = {z : |z| > 1}. (2.1)

Below, by A(r, R) we denote the annulus {z ∈ C : r < |z| < R}. Through the covering
map from the unit disk D onto the annulus, we show that the hyperbolic density on the
annulus A = A(r, R) is

λA(z) =
π

|z| mod(A) sin(π log(R/|z|)/mod(A))
∀z ∈ A, (2.2)

where mod(A) = log(R/r) is the modulus of A.
In order to find a relation between the domain constants, Beardon and Pommerenke [4]

introduced the notation

βΩ(z) = inf
{∣∣∣∣ log

|z − a|
|b − a|

∣∣∣∣ : a, b ∈ ∂Ω

}
, z ∈ Ω.

In order to consider the geometric structure of a domain with respect to a boundary
point, in [15], for a �∈ Ω and for z ∈ Ω, Zheng defined

βΩ(z; a) = inf
{∣∣∣∣ log

|z − a|
|b − a|

∣∣∣∣ : b ∈ ∂Ω

}
.

If βΩ(z0; a) > 0 for a z0 ∈ Ω, then

{z : e−βΩ(z0;a)|z0 − a| < |z − a| < eβΩ(z0;a)|z0 − a|} ⊂ Ω;

that is to say, Ω contains a round annulus centred at a with modulus 2βΩ(z0; a).

Lemma 2.1 (Beardon and Pommerenke [4], Zheng [15]). We have

1
βΩ(z; a) + κ

� λΩ(z)|z − a| � π

2βΩ(z; a)

for z ∈ Ω and a �∈ Ω, where κ = Γ ( 1
4 )4/(4π2) = 4.3768796 . . . .

In [7] Bergweiler et al . proved the following theorem, which gives a condition under
which the image of a hyperbolic domain under an analytic map contains a definite
annulus.
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Theorem C. There exists a δ > 0 such that, for any analytic function f on U =
A(r, R) with 0 �∈ f(U), if two points z1, z2 ∈ U satisfy

dU (z1, z2) < δ and |f(z1)| � 2|f(z2)|,

then we have
f(U) ⊃ A(|f(z2)|, |f(z1)|). (2.3)

We take the ratio of |f(z1)| and |f(z2)| together with dU (z1, z2) into consideration and
establish the following theorem.

Theorem 2.2. Let f be analytic on a hyperbolic domain U with 0 �∈ f(U). If there
exist two distinct points z1 and z2 in U such that |f(z1)| > eκδ|f(z2)|, where δ =
dU (z1, z2), then there exists a point ẑ ∈ U such that |f(z2)| � |f(ẑ)| � |f(z1)| and

f(U) ⊃ A

(
eκ

(
|f(z2)|
|f(z1)|

)1/δ

|f(ẑ)|, e−κ

(
|f(z1)|
|f(z2)|

)1/δ

|f(ẑ)|
)

; (2.4)

if |f(z1)| � exp(κδ/(1 − δ))|f(z2)| and 0 < δ < 1, then (2.3) holds. In particular, for
δ � 1

6 and |f(z1)| � e|f(z2)|, we have (2.3).

Proof. We take the geodesic curve γ connecting z1 and z2 in U . We may assume that
|f(z2)| � |f(z)| � |f(z1)| for all z ∈ γ. Set Ω = f(U). In view of Lemma 2.1, we have

λU (z) � λΩ(f(z))|f ′(z)| � 1
βΩ(f(z); 0) + κ

|f ′(z)|
|f(z)| .

This reduces to

(βΩ(f(z); 0) + κ)λU (z) � |f ′(z)|
|f(z)| .

There exists a point ẑ ∈ γ such that βΩ(f(z); 0) � βΩ(f(ẑ); 0) for all z ∈ γ. Considering
the integration along γ yields

(βΩ(f(ẑ); 0) + κ)dU (z1, z2) �
∫

γ

|f ′(z)|
|f(z)| |dz| �

∣∣∣∣
∫

γ

f ′(z)
f(z)

dz

∣∣∣∣ � log
|f(z1)|
|f(z2)|

.

Therefore, we have

βΩ(f(ẑ); 0) � log e−κ

(
|f(z1)|
|f(z2)|

)1/δ

.

In terms of the definition of βΩ , we have

Ω ⊃ {z : e−βΩ(f(ẑ);0)|f(ẑ)| < |z| < eβΩ(f(ẑ);0)|f(ẑ)|}

⊃ A

(
eκ

(
|f(z2)|
|f(z1)|

)1/δ

|f(ẑ)|, e−κ

(
|f(z1)|
|f(z2)|

)1/δ

|f(ẑ)|
)

.

This is (2.4).
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Suppose that |f(z1)| � exp(κδ/(1 − δ))|f(z2)| and 0 < δ < 1. Then

eκ

(
|f(z2)|
|f(z1)|

)(1−δ)/δ

� 1,

and we have

eκ

(
|f(z2)|
|f(z1)|

)1/δ

|f(ẑ)| � eκ

(
|f(z2)|
|f(z1)|

)1/δ

|f(z1)| = eκ

(
|f(z2)|
|f(z1)|

)(1−δ)/δ

|f(z2)|

� |f(z2)|

and

e−κ

(
|f(z1)|
|f(z2)|

)1/δ

|f(ẑ)| � |f(z1)|.

Thus, (2.3) follows from (2.4). If δ � 1
6 and |f(z1)| � e|f(z2)|, then δ < 1/(κ + 1),

κδ/(1 − δ) < 1 and |f(z1)| � e|f(z2)| � exp(κδ/(1 − δ))|f(z2)|. This implies (2.3). �

Let us make remarks on Theorem C and Theorem 2.2.

(A) For arbitrary δ = dU (z1, z2), as long as |f(z1)| > eκδ|f(z2)|, Theorem 2.2 tells us
that f(U) contains an annulus whose modulus is

2
δ

log
∣∣∣∣f(z1)
f(z2)

∣∣∣∣ − 2κ.

However, after a restriction is imposed on δ = dU (z1, z2), Theorem C can confirm
the existence of an annulus contained in f(U), and in Theorem 2.2 we can obtain
an annulus with great modulus if either δ is small or the ratio of |f(z1)| to |f(z2)|
is large.

(B) Certainly, from the proof of Theorem 2.2 we can take into account the change
of argument of f along the geodesic curve γ from z2 to z1, denoted by Argγ(f).
Indeed, under the assumption of Theorem 2.2 with |f(z1)| > eκδ|f(z2)| replaced by
Argγ(f) > κδ, there exists a point ẑ ∈ γ such that we have

f(U) ⊃ A

(
exp

(
−1

δ
Argγ(f) + κ

)
|f(ẑ)|, exp

(
1
δ

Argγ(f) − κ

)
|f(ẑ)|

)
.

But we cannot confirm that |f(ẑ)| � |f(z2)|, and hence we do not know if (2.3)
holds. However, if we assume additionally that |f(z2)| � |f(z)| � |f(z1)| on γ and

|f(z1)| < exp
(

1
δ

Argγ(f) − κ

)
|f(z2)|,

we have (2.3).

In order to prove Corollary 1.2, we need the two following results, the first of which
serves the second, which is essentially a general version of [7, Theorem 3.1].
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Lemma 2.3. We have

sin x � 2
π

min{x, π − x} for 0 < x < π, (2.5)

exp
(

−π

2
x

)
>

1 − x

1 + x
for 0 < x < 1. (2.6)

Proof. To prove (2.5), by noting that sinx/x is decreasing on (0, π/2] we have sin x �
(2/π)x for x ∈ [0, π/2]; for x ∈ [π/2, π], i.e. 0 � π−x � π/2, we have sin x = sin(π−x) �
(2/π)(π − x); thus, (2.5) follows.

We rewrite (2.6) as 1 + x > (1 − x)eπx/2 and set

F (x) = 1 + x − (1 − x)eπx/2 for 0 < x < 1.

Then (2.6) is equivalent to F (x) > 0 for 0 < x < 1. Differentiating F (x) twice, we have

F ′(x) = 1 + eπx/2 − π

2
(1 − x)eπx/2, F ′′(x) = π

[
1 − π

4
(1 − x)

]
eπx/2 > 0

for 0 < x < 1. This implies that F ′(x) is increasing on [0, 1] and F ′(x) > F ′(0) =
2 − π/2 > 0 for 0 < x < 1. Therefore, F (x) is increasing on [0, 1] and F (x) > F (0) = 0
for 0 < x < 1. �

Theorem 2.4. Let h(z) be analytic on the annulus B = A(r, R) with 0 < r < R < +∞
such that |h(z)| > 1 on B. Then

log m̂(ρ, h) � exp
(

−π2

2
max

{
1

log(R/ρ)
,

1
log(ρ/r)

})
log M(ρ, h)

� min
{

log(ρ/r) − π

log(ρ/r) + π
,
log(R/ρ) − π

log(R/ρ) + π

}
log M(ρ, h), (2.7)

where ρ ∈ (r, R) and m̂(ρ, h) = min{|h(z)| : |z| = ρ}.

Proof. Since h(z) : B → D = {w : |w| > 1} is analytic, we have

λD(h(z))|h′(z)| � λB(z) ∀z ∈ B.

That is to say, from (2.1) and (2.2),

|h′(z)|
|h(z)| log |h(z)| � π

mod(B)|z| sin(π log(R/|z|)/mod(B))
. (2.8)

For ρ ∈ (r, R), take two points z1 and z2 such that |z1| = |z2| = ρ and |h(z1)| =
m̂(ρ, h), |h(z2)| = M(ρ, h). Let γ be the shorter arc from z1 to z2 on |z| = ρ. Then on γ

we have

sin
(

π
log(R/|z|)
mod(B)

)
= sin

(
π

log(R/ρ)
mod(B)

)

� 2
π

min
{

π
log(R/ρ)
log(R/r)

, π

(
1 − log(R/ρ)

log(R/r)

)}

=
2

mod(B)
min{log(R/ρ), log(ρ/r)}.
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Integrating both sides of (2.8) along γ yields

log
log M(ρ, h)
log m̂(ρ, h)

� π

2ρ min{log(R/ρ), log(ρ/r)}

∫
γ

|dz| � π2

2
max

{
1

log(R/ρ)
,

1
log(ρ/r)

}
.

And from (2.6) it follows that

exp
(

−π2

2
max

{
1

log(R/ρ)
,

1
log(ρ/r)

})
= exp

(
−π

2
max

{
π

log(R/ρ)
,

π

log(ρ/r)

})

>
min{1 − π/log(R/ρ), 1 − π/log(ρ/r)}
max{1 + π/log(R/ρ), 1 + π/log(ρ/r)}

= min
{

log(R/ρ) − π

log(R/ρ) + π
,
log(ρ/r) − π

log(ρ/r) + π

}
.

Thus, we obtain (2.7). �

When min{log(R/ρ), log(ρ/r)} > π, as in the proof of [7, Theorem 3.1], by applying
the Harnack inequality we can prove that log m̂(ρ, h) is not smaller than the final quantity
in (2.7).

3. Nevanlinna theory of meromorphic functions

Since what we study is the dynamics of a transcendental meromorphic function, the
basic notation and results of the Nevanlinna theory of meromorphic functions no doubt
play a crucial role. (The reader is referred to [18] for more on Nevanlinna theory.) Set
log+ x = log max{1, x}. Let f be a meromorphic function. Define

m(r, f) :=
1
2π

∫ 2π

0
log+ |f(reiθ)| dθ,

N(r, f) :=
∫ r

0

n(t, f) − n(0, f)
t

dt + n(0, f) log r,

where n(t, f) denotes the number of poles of f counted according to their multiplicities
in {z : |z| < t}; sometimes we write n(t, ∞) for n(t, f) and n(t, 0) for n(t, 1/f) when f is
clear in the context, and

T (r, f) := m(r, f) + N(r, f).

N(r, f) is known as the integrated counting function of poles of f , and T (r, f) is known as
the Nevanlinna characteristic of f . Then f is transcendental if and only if T (r, f)/log r →
∞ (r → ∞). The following is the Nevanlinna–Jensen formula (see [18]):

T (r, f) = T

(
r,

1
f

)
+ log |c(0)|;

that is,
1
2π

∫ 2π

0
log |f(reiθ)| dθ = N

(
r,

1
f

)
− N(r, f) + log |c(0)|,

where c(0) is the first coefficient of the Laurent series of f at 0.
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For a ∈ C define

δ(a, f) := lim inf
r→∞

m(r, 1/(f − a))
T (r, f)

,

and δ(a, f) is called the Nevanlinna deficiency of f at a; if δ(a, f) > 0, then a is called
the Nevanlinna deficient value of f , and δ(∞, f) is defined by the above equation with
m(r, 1/(f −a)) replaced by m(r, f). The Nevanlinna characteristic T (r, f) is logarithmic-
ally convex.

When f is a transcendental entire function, log M(r, f) is logarithmically convex. In
terms of the convex property, we can obtain a deeper result than Theorem A.

In fact, under the assumption of Theorem A, in [17] Zheng proved that given any
sufficiently large s, we have a p > 0 such that for all n we have

Up+n ⊃ A(Mn(s, f), 8Mn(2s, f)),

where Mn(s, f) denotes the nth iterate of M(s, f). We assume without loss of generality
that f is analytic on {z : |z| � 1}. Since log M(r, f) is convex with respect to log r, we
have

log M(Kr, f) �
(

1 +
log K

log r

(
1 − log M(1, f)

log M(r, f)

))
log M(r, f) (3.1)

for K > 1 and r > 1. Take s > M(1, f) such that M(s, f) � s2 and so log Mn(s, f) �
2n log s. Inductively we have

log Mn(2s, f) �
(

1 +
log 2
log s

n∏
k=1

(
1 − log M(1, f)

log Mk(s, f)

))
log Mn(s, f)

�
(

1 +
log 2
log s

n∏
k=1

(
1 − 1

2k

))
log Mn(s, f)

>

(
1 + e−2 log 2

log s

)
log Mn(s, f).

Therefore, we have
Up+n ⊃ A(Mn(s, f), Mn(s, f)b)

for some b > 1 in Theorem A. The result can also be obtained via Theorem B and
Theorem 2.4. In fact, for all sufficiently large r one can find a z0 ∈ U such that for some
p > 0, |fn+p(z0)| � Mn(r, f) for all n ∈ N (see [7, Lemma 2.1]).

In [7, Theorem 2.2] a more precise inequality than (3.1) is given for a positive and
convex function: given a positive and convex function φ(t) with φ(t)/t → ∞ (t → ∞),
for t � t0 > 0, φ(t)/t is increasing, and so for K > 1, φ(Kt) � Kφ(t). Furthermore, for
t1 > t2 � t0 we have φ(t1) � (t1/t2)φ(t2). This implies that φ(t1) > φ(t2) and φ(t1) > t1;
that is to say, φ(t) is increasing and φ(t) > t. Therefore, we have

φn(Kt) � Kφn(t), t � t0,
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where φn(t) = φ(φn−1(t)), φ0(t) = t. Indeed, from φ(t1)/φ(t2) � t1/t2 it follows that for
t � t0 we have

φn(Kt) = φ(φn−1(Kt)) � φn−1(Kt)
φn−1(t)

φn(t) � φ(Kt)
φ(t)

φn(t) � Kφn(t).

Applying the above discussion to T (et, f) with t = log r for a transcendental mero-
morphic function f , we have an r0 > 0 such that for r � r0,

T (Kr, f) �
(

1 +
log K

log r

)
T (r, f) (3.2)

and
T̂n(Kr, f) � T̂n(r, f)1+log K/log r, (3.3)

where T̂ (r, f) = eT (r,f) and T̂n(r, f) = T̂ (T̂n−1(r, f), f), T̂ 0(r, f) = r. These inequalities
will be used in the proof of Theorem 1.1.

4. Proofs of main results

Proof of Theorem 1.1. Under the assumption of Theorem 1.1, in view of a result
in [14], U is not a Baker domain and it is a wandering domain. Given an arbi-
trary C � e2, under the assumption of Theorem 1.1 we can take an m such that
e−κ(|fm(a)|/|fm(b)|)1/δ � Cd, where δ = dD(a, b), d = 7π and |fm(b)| is sufficiently
large such that for r � |fm(b)| inequalities (1.3) or (1.4) hold according to our discussion
below. Applying Theorem 2.2 to fm on D yields

Um ⊃ fm(D) ⊃ A(C−dr0, C
dr0), (4.1)

where |fm(b)| � r0 � |fm(a)|.
Let us prove Theorem 1.1 (i). Assume that condition (1.3) of part (i) holds for r � s0.

Since U is wandering, we assume without loss of generality that for every n, 0 �∈ fn(U).
In view of the Nevanlinna–Jensen formula, for r � s0 we have

T (r, f) = T

(
r,

1
f

)
+ log |c(0)|

� N

(
r,

1
f

)
+ log |c(0)|

= N

(
s0,

1
f

)
+

∫ r

s0

n(t, 0)
t

dt + log |c(0)|

� N(r, f) + d log r + N

(
s0,

1
f

)
− N(s0, f) − d log s0 + log |c(0)|.

Therefore, for sufficiently large r0 � Cds0 we have

1
2π

∫ 2π

0
log+ |f(r0eiθ)| dθ = m(r0, f) = T (r0, f) − N(r0, f) � log r0.
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There exists a point z0 with |z0| = r0 such that |f(z0)| � r0. Since f(fm(U))∩fm(U) = ∅,
in view of (4.1) together with |f(z0)| � r0, we have |f(z)| � Cdr0 > 1 on fm(U). Thus,
in view of the Nevanlinna–Jensen formula, for C−dr0 < r < Cdr0 we have

T (r, f) = T

(
r,

1
f

)
+ log |c(0)| = N

(
r,

1
f

)
+ log |c(0)|. (4.2)

Set Cn = C + n, n ∈ N , A0 = A(C−dr0, C
dr0) and B0 = A(C−1

1 r0, C1r0). Since

1
2π

∫ 2π

0
log+ |f(C1r0eiθ)| dθ = T (C1r0, f) − N(C1r0, f)

and

1
2π

∫ 2π

0
log+ |f(C−1

1 r0eiθ)| dθ = T (C−1
1 r0, f) − N(C−1

1 r0, f),

there exist two points z1 and z2 with |z1| = C1r0 and |z2| = C−1
1 r0 such that

log |f(z1)| � T (C1r0, f) − N(C1r0, f)

and

log |f(z2)| � T (C−1
1 r0, f) − N(C−1

1 r0, f).

Noting that from (4.2) we have

T (C1r0, f) − N(C1r0, f) − T (C−1
1 r0, f) + N(C−1

1 r0, f)

= N

(
C1r0,

1
f

)
− N(C1r0, f) − N

(
C−1

1 r0,
1
f

)
+ N(C−1

1 r0, f)

=
∫ C1r0

C−1
1 r0

n(t, 0) − n(t, ∞)
t

dt

�
∫ C1r0

C−1
1 r0

d

t
dt

= 2d log C1,

we have |f(z1)| � C2d
1 |f(z2)|. From (2.2), we estimate λA0(z) for all z ∈ B0. For z ∈ B0,

sin
(

π
log(Cdr0/|z|)

2d log C

)
� sin

(
π

log(Cdr0/C1r0)
2d log C

)
� sin

(
π(d − 2)

2d

)
= cos

π

d
,

and so λA0(z) � π/|z|2d log C cos(π/d) for all z ∈ B0 with d = 7π and C � e2. Thus, we
have

dA0(z1, z2) � 2π log C1

2d log C cos(π/d)
+

π2

2d log C cos(π/d)

→ π

d cos(π/d)

=
1

7 cos(1/7)
<

98
97 × 7

<
1
6

(C → +∞).
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In terms of Theorem 2.2, for sufficiently large C we have

f(A0) ⊃ A(|f(z2)|, |f(z1)|). (4.3)

There exists an r1 > 0 such that

Um+1 ⊃ fm+1(D) ⊃ f(A0) ⊃ A(C−d
1 r1, C

d
1 r1) = A1,

say, and C−d
1 r1 � Cdr0, r1 > C2dr0.

We can then continue the above step and inductively we have

Um+n ⊃ fm+n(D) ⊃ f(An−1) ⊃ An,

n = 1, 2, . . . , where An−1 = A(C−d
n−1rn−1, C

d
n−1rn−1), Bn−1 = A(C−1

n rn−1, Cnrn−1),
An = A(C−d

n rn, Cd
nrn), C0 = C and rn � C2ndr0 → ∞ (n → ∞). We have proved the

existence of the annuli An = A(rn, Rn) with Rn/rn → ∞ (n → ∞) such that for all
sufficiently large n, An ⊂ fn(D) ⊂ Un and An+1 ⊂ f(An).

Now we want to prove Theorem 1.1 (ii). We have seen that (4.1) holds. Set T̂ (x) =
eT (x,f) and T̂n(x) = T̂ (T̂n−1(x)). Under assumption (1.4) of Theorem 1.1 (ii), for all
sufficiently large r we have

T (Cr, f) − N(Cr, f) � T (2r, f) + d log C

and

T (C−1r, f) − N(C−1r, f) � T (C−1r, f)

�
(

1 − log C

log r

)
T (r, f)

= T (r, f) − T (r, f)
log r

log C

� T (r, f) − d log C,

where (3.2) was used. Set A0 = A(C−dr0, C
dr0) and B0 = A(C−1r0, Cr0). By the same

argument as in the proof of part (i) with C1 replaced by C, we have (4.3). It follows from
(4.3) that

fm+1(D) ⊃ f(A0) ⊃ A(eT (C−1r0,f)−N(C−1r0,f), eT (Cr0,f)−N(Cr0,f))

⊃ A(C−dT̂ (r0), CdT̂ (2r0)).

For the next step, set A1 = A(C−dr1, C
dR1) and B1 = A(C−1r1, CR1) with r1 = T̂ (r0)

and R1 = T̂ (2r0). Then for A1 and B1 we have f(A1) ⊃ A2, where A2 = A(C−dr2, C
dR2),

r2 = T̂ 2(r0), R2 = T̂ 2(2r0). Thus, inductively we have

fm+n(D) ⊃ f(An−1) ⊃ An,

where An = A(C−drn, CdRn), rn = T̂n(r0), Rn = T̂n(2r0).
Therefore, in view of (3.3), we have proved that for all sufficiently large n, fn(D)

contains the annulus Ân = A(Tn, T c
n) with c � 1 + log 2/log r0 > 1 and Tn → ∞

(n → ∞) and Ân+1 ⊂ f(Ân). �
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Here, we give a condition such that (1.4) holds. If for all sufficiently large r,

T (r, f) � N(r, f) log r,

then (1.4) holds. Indeed, in view of (3.2) we have

T (Cr, f) − N(Cr, f) �
(

1 − 1
log Cr

)
T (Cr, f)

�
(

1 − 1
log Cr

)(
1 +

log C/2
log 2r

)
T (2r, f)

� T (2r, f) + 1
2 log 1

2C
T (2r, f)
log 2r

� T (2r, f) + d log C.

In the proof of Theorem 1.3, another condition such that (1.4) holds is given.

Proof of Theorem 1.3. Under the assumptions of Theorem 1.3, for sufficiently large
C such that

log C

log 2
>

log 4 − log δ̂

log λ
+ 2,

where δ̂ = δ(∞, f) (so (δ̂/2)λn � 2, n = [log C/log 2] − 1), and for r � r1 � r0 such that
T (2r, f) � d log C, we have

T (Cr, f) − N(Cr, f) = m(Cr, f) � δ̂

2
T (Cr, f) � δ̂

2
λnT (2r, f) � T (2r, f) + d log C.

Suppose that Theorem 1.3 does not hold, so there exists a compact subset W in a
Fatou component U of f such that for any sufficiently large M > 1 we have two points
a, b ∈ W and a positive integer m such that M |fm(b)| < |fm(a)|. Then, as in the proof
of Theorem 1.1 (ii), we can prove that for all sufficiently large n we have

fn(U) ⊃ An, An = A(rn, rα
n), α > 1.

Using the same argument as in the proof of [17, Corollary 5], we can derive a contradic-
tion. For completeness, we give its proof. For all sufficiently large n, |f(z)| > 1 on fn(U),
and therefore n(rα

n , 0) = n(rn, 0), and for rn < r < rα
n , m(r, 1/f) = 0. In view of the

Nevanlinna–Jensen formula, we have

T (rα
n , f) − log |c(0)| = T

(
rα
n ,

1
f

)

= N

(
rα
n ,

1
f

)

= N

(
rn,

1
f

)
+

∫ rα
n

rn

n(t, 0) − n(0, 0)
t

dt + n(0, 0) log rα−1
n
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= N

(
rn,

1
f

)
+ (α − 1)n(rn, 0) log rn

� N

(
rn,

1
f

)
+ (α − 1)N

(
ern,

1
f

)
log rn

� (1 + (α − 1) log rn)T
(

ern,
1
f

)

� (1 + (α − 1) log rn)(T (ern, f) − log |c(0)|).

On the other hand, we have

T (rα
n , f) � T (2m(ern), f) � λmT (ern, f) � Krc

nT (ern, f),

where

m =
[
α log rn − 1

log 2

]
, K = λ−2, c =

α log λ

log 2
> 0.

Thus, we have

(1 + (α − 1) log rn)(T (ern, f) − log |c(0)|) � Krc
nT (ern, f) − log |c(0)|.

This is impossible since rn → ∞ (n → ∞). Theorem 1.3 follows. �

Proof of Corollary 1.2. In view of Theorem 1.1 (i), for all sufficiently large n,
fn(U) ⊃ An = A(rn, Rn) with Rn/rn → ∞ (n → ∞). Take a C > 1 such that

0 < c <
log C − π

log C + π
< 1, d

log C − π

log C + π
� 3 and An ⊃ A(C−1an, Can)

for some an �∈ E. Since |f(z)| > 1 on An, in view of Theorem 2.4 we have

log m̂(an, f) � α log M(an, f), α =
log C − π

log C + π
.

We have

log M(an, f) � m(an, f) = T (an, f) − N(an, f)

= N

(
an,

1
f

)
− N(an, f) + log |c(0)|

� d log an + log |c(0)| → ∞ (n → ∞).

Thus, on |z| = an we have

|f(z) − g(z)| � |f(z)| − |g(z)|
� m̂(an, f) − M(an, g)

� M(an, f)α − M(an, f)c

∼ M(an, f)α → ∞ (n → ∞).
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This implies that, for all sufficiently large n, on |z| = an we have |f(z) − g(z)| > 1, and
log+ 1/|f(z) − g(z)| = 0, and so

m

(
an,

1
f − g

)
= 0 and δ(0, f − g) = 0.

In particular, on |z| = an we have

|f(z) − z| � |f(z)| − |z| � M(an, f)α − an � |c(0)|adα
n − an � a2

n > 1,

so δ(0, f − z) = 0, and basically we have proved that

lim sup
r→∞

m̂(r, f)
r

= +∞.

As pointed out in [16, p. 11], using the method of [13] and [6] we can prove that if

lim sup
r→∞

m̂(r, f)
r

> 1, (4.4)

then f has infinitely many repelling fixed points or indifferent fixed points with multiplier
equal to 1.

Actually, from (4.4) we have a sequence of increasing positive numbers {rn} tending
to ∞ such that for some k > 0, m̂(rn, z − f) � krn. Then∣∣∣∣ 1

2πi

∫
|z|=rn

dz

z − f(z)

∣∣∣∣ � 1
2π

∫
|z|=rn

|dz|
|z − f(z)| � 1

k
.

Since δ(0, f − z) = 0, f has infinitely many fixed points z1, z2, . . . . In view of the residue
theorem we have

1
2πi

∫
|z|=rn

dz

z − f(z)
=

∑
|zj |<rn

Res
(

1
z − f(z)

, zj

)
.

However, for a zj with |f ′(zj)| � 1 and f ′(zj) �= 1, we have

Re
[

Res
(

1
z − f(z)

, zj

)]
= Re

(
1

1 − f ′(zj)

)
� 1

2 .

This together with the above two equations implies our desired result. �

5. Examples

In this section we construct some examples of transcendental meromorphic functions to
illustrate the above results in view of the following theorem.

Theorem 5.1 (Runge’s theorem (see Rudin [12])). Let W be a compact set on
the complex plane and let h(z) be analytic on W . Assume that E is a set that intersects
every component of C \W . Then for any ε > 0 there exists a rational function R(z) such
that all poles of R(z) lie in E and

|h(z) − R(z)| < ε ∀z ∈ W.
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For any positive integer p, in [2] Baker et al . constructed a transcendental meromorphic
function f that has a multiply connected wandering domain U of connectivity p such that
every fn is univalent on U . However, no Un separates 0 and ∞. Dominguez [9] found a
transcendental meromorphic function g that has a multiply connected wandering domain
V such that f2n|V → ∞, f2n+1|V → 0 as n → ∞, and every Vn separates 0 and ∞. For
an open set Ω and a �∈ Ω we define

Mod0
a(Ω) = sup{mod(A) : A is a round annulus centred at a in Ω}

and

Moda(Ω) = sup{mod(A) : A is a doubly connected domain in Ω and goes around a}.

We have that Mod0
a(Ω) � Moda(Ω) � Mod0

a(Ω) + C, where C is an absolute constant
(see [15]). Throughout this section, we denote by B(a, r) the disk centred at a with
radius r.

Example 5.2. There exists a meromorphic function f that has a multiply connected
wandering domain U such that fn|U → ∞ (n → ∞) and every Un separates 0 and ∞
with supn Mod0(Un) < ∞. (Thus, (1.1) holds for any compact subset W of U .)

Proof. Take a sequence of positive numbers {rn} such that

r1 > 10, rn+1 > exp rn,

and a sequence of positive numbers {εn} such that εn+1 < 1
2εn and ε1 < 1

2 . Set δn =
rn+1/rn,

Bn = A( 1
3rn, 3rn), An = B̄(0, 1

10rn)

and

Cn = {z : |z| = 5rn or |z| = 1
5rn}.

In view of Runge’s theorem, we have a rational function f1(z) such that

|f1(z)| < ε1 ∀z ∈ A1, |f1(z) − δ1z| < ε1 ∀z ∈ B1,

|f1(z)| < ε1 ∀z ∈ C1,

and inductively we have a rational function fn+1(z) such that

|fn+1(z)| < εn+1 ∀z ∈ An+1,

∣∣∣∣
n+1∑
k=1

fk(z) − δn+1z

∣∣∣∣ < εn+1 ∀z ∈ Bn+1

and ∣∣∣∣
n+1∑
k=1

fk(z)
∣∣∣∣ < εn+1 ∀z ∈ Cn+1.
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Write f(z) =
∑∞

n=1 fn(z). Since the series is uniformly convergent on any compact subset
of C, f(z) is a meromorphic function on C.

It is obvious that f(B(0, 1)) ⊂ B(0, 1), and so B(0, 1) ⊂ F (f). For z ∈ Bn+1, we have

|f(z) − δn+1z| �
∞∑

k=n+2

|fk(z)| +
∣∣∣∣

n+1∑
k=1

fk(z) − δn+1z

∣∣∣∣

<

∞∑
k=n+1

εk

< 2εn+1,

so we write f(z) = δn+1z + ηn+1, z ∈ Bn+1, with |ηn+1| < 2εn+1. Set D1 = A( 1
2r1, 2r1).

For z ∈ D1 we have

|f(z)| � δ1|z| − |η1| > 1
2δ1r1 − 2ε1 = 1

2r2

(
1 − 4ε1

r2

)
> 1

3r2

and

|f(z)| � δ1|z| + |η1| < 2δ1r1 + 2ε1 = 2r2

(
1 +

ε1

r2

)
< 3r2.

Therefore, f(D1) ⊂ B2. Inductively, suppose that fn−1(D1) ⊂ Bn. For z ∈ D1 we have

|fn(z)| � 1
2rn+1

(
1 −

n∑
k=1

4εk

rk+1

)
> 1

3rn+1

and

|fn(z)| � 2rn+1

(
1 +

n∑
k=1

εk

rk+1

)
< 3rn+1.

This implies that fn(D1) ⊂ Bn+1. Set Dn = A( 1
2rn, 2rn). In view of the same arguments

as above, we have fm(Dn) ⊂ Bn+m. Therefore, D1 is contained in a Fatou component
U of f and Dn ⊂ Un−1. Thus, fn|U → ∞ (n → ∞). According to the construction of f ,
on Cn we have

|f(z)| �
∣∣∣∣

n∑
k=1

fk(z)
∣∣∣∣ +

∣∣∣∣
∞∑

k=n+1

fk(z)
∣∣∣∣ �

∞∑
k=n

εk < 1

so that f(Cn) ⊂ B(0, 1) and obviously B(0, 1) ∩ Un = ∅. Thus,

Un ⊂ A( 1
5rn+1, 5rn+1)

and Un is wandering with 2 log 2 � Mod0(Un) � 2 log 5. �

Example 5.3. There exists a transcendental meromorphic function f that has a wan-
dering domain U such that Un contains a round annulus Dn centred at 0 and mod(Dn) →
∞ (n → ∞), and there are two points a, b ∈ U such that |fn(a)|/|fn(b)| → ∞ (n → ∞)
but hU (z) ≡ 1 on U .
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Proof. Take a sequence of positive numbers {rn} such that

r1 > 102, rn+1 > exp rn,

and a sequence of positive numbers {εn} such that εn+1 < 1
2εn and ε1 < 1

2 . Set δn =
rn+1/r2

n,

Bn = A(3−2n

rn, 32n

rn), An = B̄(0, 10−2n

rn)

and

Cn = {z : |z| = 52n

rn or |z| = 5−2n

rn}.

In view of Runge’s theorem, we have a rational function f1(z) such that

|f1(z)| < ε1 ∀z ∈ A1, |f1(z) − δ1z
2| < ε1 ∀z ∈ B1,

|f1(z)| < ε1 ∀z ∈ C1,

and inductively we have a rational function fn+1(z) such that

|fn+1(z)| < εn+1 ∀z ∈ An+1,

∣∣∣∣
n+1∑
k=1

fk(z) − δn+1z
2
∣∣∣∣ < εn+1 ∀z ∈ Bn+1

and ∣∣∣∣
n+1∑
k=1

fk(z)
∣∣∣∣ < εn+1 ∀z ∈ Cn+1.

Write f(z) =
∑∞

n=1 fn(z). Since the series is uniformly convergent on any compact subset
of C, f(z) is a meromorphic function on C.

It is obvious that f(B(0, 1)) ⊂ B(0, 1), and so B(0, 1) ⊂ F (f). For z ∈ Bn+1 we have

|f(z) − δn+1z
2| �

∞∑
k=n+2

|fk(z)| +
∣∣∣∣

n+1∑
k=1

fk(z) − δn+1z
2
∣∣∣∣

<
∞∑

k=n+1

εk

< 2εn+1,

so we write f(z) = δn+1z
2 + ηn+1, z ∈ Bn+1, with |ηn+1| < 2εn+1. Set D1 = {z : 1

2r1 <

|z| < 2r1}. For z ∈ D1 we have

|f(z)| � δ1|z|2 − |η1| >
1
22 δ1r

2
1 − 2ε1 =

1
22 r2

(
1 − 23ε1

r2

)
>

1
32 r2

and

|f(z)| � δ1|z|2 + |η1| < 22δ1r
2
1 + 2ε1 = 22r2

(
1 +

ε1

2r2

)
< 32r2.
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Therefore, f(D1) ⊂ B2. Inductively, suppose that fn−1(D1) ⊂ Bn. For z ∈ D1 we have

|fn(z)| � 2−2n

rn+1

n∏
k=1

(
1 − 22k+1εk

rk+1

)2n−k

> 3−2n

rn+1

and

|fn(z)| � 22n

rn+1

n∏
k=1

(
1 +

εk

22k−1rk+1

)2n−k

< 32n

rn+1.

This implies that fn(D1) ⊂ Bn+1. Set Dn = A(2−2n

rn, 22n

rn). In view of the same
arguments as above, we have fm(Dn) ⊂ Bn+m. Therefore, we have a Fatou component
U of f such that Dn ⊂ Un−1. Thus, fn|U → ∞ (n → ∞). According to the construction
of f , on Cn we have

|f(z)| �
∣∣∣∣

n∑
k=1

fk(z)
∣∣∣∣ +

∣∣∣∣
∞∑

k=n+1

fk(z)
∣∣∣∣ �

∞∑
k=n

εk < 1

so that f(Cn) ⊂ B(0, 1) and obviously B(0, 1) ∩ Un = ∅. Thus,

Un ⊂ A(5−2n+1
rn+1, 52n+1

rn+1)

and Un is wandering. A simple calculation shows that mod(Dn) = 2n+1 log 2 → ∞
(n → ∞) and for any two points z1 and z2 in U we have

log rn+1 − 2n+1 log 5
log rn+1 + 2n+1 log 5

� log |fn(z1)|
log |fn(z2)|

� log rn+1 + 2n+1 log 5
log rn+1 − 2n+1 log 5

.

This implies that hU (z) ≡ 1 on U .
For a with |a| = 2r1 we have

|fn(a)| � 22n

rn+1

n∏
k=1

(
1 − εk

22k−1rk+1

)2n−k

� ( 3
2 )2

n

rn+1

and for b with |b| = 1
2r1 we have

|fn(b)| � 2−2n

rn+1

n∏
k=1

(
1 +

22k+1εk

rk+1

)2n−k

� rn+1.

Thus,
|fn(a)|
|fn(b)| � ( 3

2 )2
n → ∞.

However, Un contains no annulus of the form A(Tn, Tα
n ) for a fixed α > 1. This shows

the necessity of (1.4) in Theorem 1.1. �
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By the above method, we can construct a transcendental meromorphic function g such
that g has a wandering domain U with the following properties: gn|U → ∞ (n → ∞),

sup
n

Mod0(U2n) < ∞ but sup
n

Mod0(U2n+1) = ∞.

Thus, hU does not exist on U and, actually, h̄U is a non-constant harmonic function on
U and hU (z) ≡ 1 for z ∈ U .

We can also construct a transcendental meromorphic function with a wandering domain
U such that for some β > α > 1, U2n−1 ⊃ A(rn, rα

n), U2n−1 �⊃ A(rn, rβ
n) and U2n ⊃

A(rn+1, r
β
n+1).

Example 5.4. There exists a meromorphic function f that has a multiply connected
wandering domain U such that f2n|U → ∞, f2n−1|U → 0 (n → ∞) and U2n contains
a round annulus An = A(rn, Rn) with mod(An) → ∞(n → ∞). Also, there exist two
points a, b ∈ U2n such that |f2n(a)|/|f2n(b)| → ∞ (n → ∞). (This shows the necessity
of (1.3) in Theorem 1.1.)

Proof. Take a sequence of positive numbers {rn} such that

200 < r1 � 250, rn+1 > exp rn,

and a sequence of positive numbers {εn} such that εn+1 < 1
2εn and ε1 < 1

2 . Set δn =
r2
n/rn+1,

Bn = A(3−2n

rn, 32n

rn), An = B̄(0, 10−2n

rn)

and

Cn = {z : |z| = 52n

rn or |z| = 5−2n

rn}.

In view of Runge’s theorem, there exists a rational function f1(z) such that∣∣∣∣f1(z) − 1
z

∣∣∣∣ < ε1 ∀z ∈ A1, |f1(z) − 5| < ε1 ∀z ∈ B(5, 2) ∪ C1,

∣∣∣∣f1(z) − δ1

z2

∣∣∣∣ < ε1 ∀z ∈ B1.

Inductively, we have a rational function fn+1(z) such that

|fn+1(z)| < εn+1 ∀z ∈ An+1 ∪ Cn+1,∣∣∣∣
n+1∑
k=1

fk(z) − δn+1z
−2

∣∣∣∣ < εn+1 ∀z ∈ Bn+1.

Define f(z) =
∑∞

n=1 fn(z); hence, f(z) is a meromorphic function on C. It is easy to see
that f(B(5, 2)) ⊂ B(5, 2) and B(5, 2) ⊂ F (f) so that Cn ⊂ F (f). We also have∣∣∣∣f(z) − 1

z

∣∣∣∣ �
∞∑

k=2

εk < ε1, z ∈ B(0, 1),

∣∣∣∣f(z) − δn+1
1
z2

∣∣∣∣ �
∞∑

k=n+1

εk � 2εn+1, z ∈ Bn+1,
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so we can write

f(z) =
1
z

+ η, |η| < ε1, z ∈ B(0, 1),

and

f(z) = δn+1
1
z2 + ηn+1, |ηn+1| < 2εn+1, z ∈ Bn+1.

For z ∈ Bn+1 we estimate

|f(z)| � δn+1

|z|2 + |ηn| <
32n+2

rn+2
+ 2εn+1 < 1,

and so f(Bn+1) ⊂ B(0, 1). Thus, for z ∈ Bn+1 we can write

f2(z) =
z2

δn+1
(1 + ηn+1z

2δ−1
n+1)

−1 + η.

Set
Dn = A(2−2n

rn, 22n

rn).

For z ∈ D1, we have

|f2(z)| � |z|2
δ1

(1 + 2ε1|z|2δ−1
1 )−1 − ε1

� 2−22
r2(1 + 2ε1322

r2)−1 − ε1

� 2−22
r2

[
(1 + 2ε1322

r2)−1 − 222 ε1

r2

]

> 3−22
r2

and

|f2(z)| � |z|2
δ1

(1 − 2ε1|z|2δ−1
1 )−1 + ε1

� 222
r2(1 − 2ε1322

r2)−1 + ε1

� 222
r2

[
(1 − 2ε1322

r2)−1 − 2−22 ε1

r2

]

< 322
r2.

Therefore, f2(D1) ⊂ B2. Inductively, for z ∈ D1 we have

|f2n(z)| � 2−2n+1
rn+1

n∏
k=1

(
1

1 + 32k+1εkrk

− 32k+1
ε1

rk

)2n−k

> 3−2n+1
rn+1
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and

|f2n(z)| � 22n+1
rn+1

n∏
k=1

(
1

1 − 32k+1εkrk

− 3−2k+1
ε1

rk

)2n−k

< 32n+1
rn+1.

Thus, f2n(D1) ⊂ Bn+1. A similar calculation yields f2m(Dn) ⊂ Bn+m. Let U1 be the
Fatou component of f containing D1. It is easy to see that f2n|U1 → ∞ (n → ∞) and
f2n−1|U1 → 0 (n → ∞).

Obviously, U1 is not a Baker domain, and it is a wandering domain of f . From the
above result, we have Dn ⊂ U2n and mod(Dn) → ∞ (n → ∞).

A suitable calculation, like that in the construction of Example 5.3, yields that for a

with |a| = 2r1 and b with |b| = 2−1r1 we have |f2n(a)|/|f2n(b)| → ∞ (n → ∞). �

Remark. In [16, Theorem 3.2.9] Zheng proved that for a wandering domain U of a
transcendental meromorphic function f , one of the following cases holds:

(1) every Un is of infinite connectivity;

(2) for all sufficiently large n, Un is simply or doubly connected;

(3) for all sufficiently large n, Un is of p (greater than or equal to 3) connectivity, and
f : Un → Un+1 is conformal.

Therefore, the wandering domains in Examples 5.3 and 5.4 are of infinite or double
connectivity. Noting that f(z) ≈ δn+1z

2 in Example 5.3 and f2(z) ≈ δ−1
n+1z

2 in Bn+1 in
Example 5.4, through a complicated construction we have that the wandering domains
in Examples 5.3 and 5.4 are doubly connected. However, the wandering domains in
Example 5.2 can be constructed to be of any connectivity.
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