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ABSTRACT
A nonlinear station-keeping control method for a multi-vectored propeller airship under unknown
wind field with thrust saturation is developed, which is composed of three modules: nonlinear
model predictive controller (NMPC), disturbance observer (DOB) and tracking differentiator
(TD). The nonlinear kinematics and dynamics models are introduced, and the wind effect is
considered by the wind-induced aerodynamic force. Based on both models, an explicit NMPC is
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designed. Then a nonlinear DOB is introduced to estimate the wind disturbance. A TD, showing
the relationship between the maximum propulsion force and the maximum flight acceleration, is
proposed to handle the thrusts’ amplitude saturation. Stability analysis shows that the closed-loop
system is globally asymptotically stable. Simulations for a multi-vectored propeller airship are
conducted to demonstrate the robustness and effectiveness of the proposed method.

Keywords: Model predictive control; disturbance observer; tracking differentiator;
station-keeping; saturation

NOMENCLATURE
Ogxgygzg earth reference frame (ERF)
Oxyz body reference frame (BRF)
[u, v, w] linear velocities in BRF, m/s
[uw, vw, ww] wind velocities, m/s
V, Va inertial speed and airspeed, m/s
[p, q, r] angular velocitiees in BRF, rad/s
xg, yg, zg Cartesian positions in ERF, m
[ϕ,θ,ψ] Euler attitude angles, rad
M mass matrix(or inertial matrix)
xG, yG, zG positions of gravity center, m
xB, yB, zB positions of buoyancy center, m
m total mass of the airship and payload, kg
m11,...,m66 added masses, kg, kg.m or kg.m2

Ix,...,Iyz inertial moments, kg.m2

FGB gravity and buoyancy force, N
FT thrust force, N
FA,Fw nominal and wind-induced aerodynamic forces, N
FI Coriolis force, N
B, G gravity, buoyancy, N
B control allocation matrix of the propeller
Vol volume of the airship, m3

Lref, Sref reference length and reference area, m and m2

φ, φw angles between the x-axis and the horizontal component of the inertial
speed and airspeed respectively, rad

RB
I direction cosine transformation matrix

Φ angular transformation matrix
Cx, Cz, Cmy, Cmz aerodynamic coefficients
Rp distance between the position of the propeller and volume center of the

hull, m
uin indirect control vector
fi,μi propulsion forces and deflection angles of the i th propeller, i= 1,2,3,4,

N and rad
ξp,ξq,ξr rotation damping coefficients
Np predictive horizon, s
wd reference position, m
d, d̂ disturbance and its estimation, m/s2
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ρ air density at the flight attitude, kg/m3

ρr relative degree
RTD design parameter in TD

1.0 INTRODUCTION
The multi-vectored propeller airship is a lighter-than-air aircraft with low flying speed, which
has wide applications in earth observation(1) and communication due to its capability of non-
power station-keeping on resisting the gravity.(2) The most important three control types of the
airship are station-keeping control, trajectory tracking control and path following control.(3)

In station-keeping control, the performance of the controller is greatly influenced by wind
because the airship often has a large volume and it is lighter than air. However, it is difficult to
improve its station-keeping performance if the wind disturbance is not properly considered.
This paper aims to propose a composite station-keeping controller to deal with wind dis-
turbance and thrust saturation.

The current methods dealing with wind disturbance have been developed during the past
decade. First, it was handled by a stabilisation method, in which the wind is regarded as an
external disturbance. The stability of the controller is guaranteed via its robustness, such as
linear control,(4) backstepping control(5) and dynamic inversion control.(6) However, it would
be hard for the controller to maintain stability in a strong wind disturbance if this disturbance
exceeds the maximum value that the controller can handle. The second method, a path
following algorithm, was then put forward.(7) In this method, the station-keeping control was
transformed into a path following control scheme by expressing the kinematics model in the
wind field. Then the wind was not a strong disturbance since it was modelled. This method
was adopted by Zheng et al.(8) and Hong et al.(9) However, this method needs the wind speed
usually estimated by an anemometer,(10) leading to inevitable external hardware costs.
Therefore, the third method, an observer-based one, was presented to estimate the wind
speed. It can also estimate external disturbance and model uncertainties at low costs with
relatively high accuracy. A wind observer based on kinematics was employed by Zheng
et al.(11) for a constant wind. And a nonlinear DOB was proposed by Chen et al.(12) for a slow
time-varying disturbance. Liu et al.(13) adopted DOB in designing the control system for a
helicopter. Other observers like sliding mode observer (its robustness is often guaranteed by
the signum function(14)), and some other observer-based methods were reviewed in Chen
et al.’s work.(15)

The main motivation of this paper is to propose an MPC(16)-based composite controller
for a multi-vectored propeller airship. The controller consists of three modules: model
predictive control, disturbance observer (DOB) and tracking differentiator. It can eliminate
the wind effect and handle the thrust saturation. MPC is an advanced control algorithm
including three essential modules: predictive model, receding horizon control and feedback
correction. Recently, more and more attention has been paid to the MPC method, but few
of them are proposed to the airship. MPC algorithm is promising in handling the system
uncertainties, and thrust’s saturation as well. MPC often optimises a cost function at each
sampling time. The optimisation is often solved by a quadratic programming(QP) algo-
rithm or linear matrix inequality (LMI) method.(17) This algorithm can directly handle
saturation. But it usually needs significant numbers of iteration in solving the QP, thus
causing too much online computation, or causing conservation in solving LMI. The
iterations can be avoided by an analytical control law of the explicit NMPC,(18) but thrust
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saturation cannot be considered at the same time. This implies the saturation cannot be
handled by MPC without iteration. Therefore, in this paper, TD (19,20) is proposed to
preserve the analytical control law (or reduce the workload of online computation) and
handle the thrust’s amplitude saturation. In addition, the nonlinear DOB is implemented to
estimate the wind disturbance.

The main contributions are as follows: (1) a new wind model is proposed by the
mechanism analysis. Compared with the path following method which often models the wind
in the kinematics, this paper considered the wind as the wind-induced aerodynamic force in
the dynamics. (2) A novel saturation method using TD is adopted. The online computation
burden is relieved, and no change is needed in the MPC analytical control law. (3) A better
parameter design method of TD is proposed. A time-varying design parameter of TD is
developed based on the dynamics model.

This paper is organised as follows. The model of the airship is first introduced. The
controller design is then carried out. The controller stricture and the stability analysis are
provided in the following section. Simulation results are given to demonstrate the validity of
the proposed method. The conclusion and future works are given in the last section.

2.0 AIRSHIP MODEL
The multi-vectored propeller airship (see in Fig. 1) has a Eulerian shape with four even-
distributed propellers in its equatorial plane. The payload is suspended underneath its body by
ropes.

The earth reference frame (ERF) and body reference frame (BRF) are defined in Fig. 2,
in which the states of the airship are also illustrated, where R is the radius of the airship,
Rp is the distance from the position of the propeller to volume center of the hull,
½u v w� stands for the linear velocities in BRF, and ½p q r� denotes the angular
velocities in BRF.

2.1 Kinematics model of the airship

The kinematics models of the airship(21) are

_xg _yg _zg½ �T =RB
I u v w½ �T ... (1)

_ϕ _θ _ψ
� �T =Φ p q r½ �T ... (2)

RB
I =

cosψcosθ cosψsinθsinϕ�sinψcosϕ cosψsinθcosϕ + sinψsinϕ
sinψcosθ sinψsinθsinϕ + cosψcosϕ sinψsinθcosϕ�cosψsinϕ

�sinθ cosθsinϕ cosθcosϕ

2
64

3
75 ... (3)

where ϕ, θ, and ψ are the pitch, the yaw, and roll angles, respectively. ½ xg yg zg � is the
position in ERF. RB

I and Φ are the direction cosine transformation matrix and the angular
transformation matrix, respectively. Using this two matrices, the velocity and the angular
velocity are transferred from BRF to ERF. And both of them are detailed in (3) and (4)

Φ=
1 sinϕtanθ cosϕtanθ
0 cosϕ �sinϕ
0 sinϕsecθ cosϕsecθ

2
4

3
5 ... (4)
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2.2 Dynamics model of the airship

The dynamics model under wind disturbance is

M~x=FGB +FA +Fw +FI +FT ... (5)

where M is the inertia matrix and FGB stands for the combined force of the buoyancy and the
gravity. FA, Fw, FI, and FT are the nominal aerodynamic force, the extra wind-induced
aerodynamic force, the Coriolis force and the propeller force, respectively.

The mass matrix is presented as Equation (6), where Ix, Iy, Iz, Ixy, Ixz, and Iyz are the inertial
moments of the airship. [xG, yG, zG] is the position of gravity center. m is the total mass of the
airship and payload, and mii, i=1...6 are the added masses. The added mass is the inertia added to
a system because when the vehicle is accelerated in a fluid, additional forces are required to
increase the kinetic energy contained in the fluid. This effect appears as an apparent increase in the
mass of the vehicle and is often referred to as added mass.(22) The value of the added masses can

Figure 1. (Colour online) Structure of multi-vectored propeller airship.

Figure 2. (Colour online) Frames and states of the airship.
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be calculated by the potential flow theory.More details can be seen in Wang’s work(23)

M=

m +m11 0 0 0 mzG �myG
0 m +m22 0 �mzG 0 m26 +mxG
0 0 m +m33 myG m35�mxG 0
0 �mzG myG Ix +m44 �Ixy �Iyz

mzG 0 m53�mxG �Ixy Iy +m55 �Ixz
�myG m62 +mxG 0 �Ixz �Iyz Iz +m66

2
6666664

3
7777775

... (6)

FGB =

�ðG�BÞsinθ
ðG�BÞsinϕcosθ
ðG�BÞcosϕcosθ

�ðGzG�BzBÞsinϕcosθ
�ðGzG�BzBÞsinθ�ðGxG�BxBÞcosϕsinθ

ðGxG�BxBÞsinϕcosθ

2
666666664

3
777777775

... (7)

The combined force of the buoyancy and the gravity is presented in Equation (7). and [xB, yB,
zB] is the position of buoyancy center. G and B are the buoyancy and the gravity of the
airship, respectively.

The Coriolis force is presented in Equation (8).
FA and Fw are modeled in the next section.

FI =

�ðm +m33Þwq + ðm +m22Þvr�mzGpr +mxGðr2 + q2Þ�myGpq

�ðm +m11Þur + ðm +m33Þwp�mzGqr +myGðr2 + p2Þ�mxGpq

�ðm +m22Þvp + ðm +m11Þuq�myGqr +mzGðp2 + q2Þ�mxGpr

ðm55�m66�Iz + IyÞqr�myGðpv�quÞ +mzGðru�pwÞ
ðm66�m44�Ix + IzÞpr�mzGðqw�rvÞ +mxGðpv�quÞ
ðm44�m55�Iy + IzÞqp�mxGðru�pwÞ +myGðqw�rvÞ

2
666666664

3
777777775

... (8)

2.3 Aerodynamic force model

If the airship works in an ideal circumstance and there exist no wind field during its operation,
the aerodynamic force is defined as a nominal aerodynamic force. According to Liu,(24) it can
be presented as

FA =

1
2 ρSref V

2Cxcosφ
1
2 ρSref V

2Cxsinφ
1
2 ρSref V

2Cz

� 1
2 ρSref Lref V

2Cmysinφ�ξpp
1
2 ρSref Lref V

2Cmycosφ�ξqq
1
2 ρSref Lref V

2Cmz�ξrr

2
666666664

3
777777775

... (9)

where Cx, Cz, Cmy, and Cmz are the aerodynamic coefficients. It can be observed that the
aerodynamic coefficient in the x-axis and the y-axis is always the same, and also the rotation
aerodynamic coefficient in the x-axis and the y-axis are the same, this is because the shape of
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the airship is symmetrical with respect to the z-axis. φ is the angle between the x-axis and the
horizontal component of the inertial airship speed, so tanφ= u

v. ρ is the air density. Sref and
Lref are the reference area and the length, respectively. The presentations are Sref=Vol 2/3 and
Lref=Vol 1/3, where Vol is the volume of the airship. And V =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2 +w2

p
is the inertial

airship speed in BRF, ξp, ξq, ξr are the rotation damping coefficients. The damping coeffi-
cients are often proposed by the experience of the designer. In this paper, these are obtained
by experiments.

The aerodynamic coefficients are often obtained by wind-tunnel experiment, the symme-
trical structure of the airship can help to reduce the cost of the experiment because the number
of the coefficients is reduced. The wind-tunnel experiment is often conducted under different
angle of attacks. In this paper, following Chen’s work,(25) the wind-tunnel experiment is
conducted every 3° in [ − 180°,180°], and using linear interpolation, the coefficients of other
angles are obtained. The results show that Cmz≈10 − 5 is close to zero and can be ignored, and
Cx, Cz, Cmy are shown in Fig. 3.

If the wind velocity is given as ½uw vw ww�T , the real aerodynamic force can then be
reconsidered. Define the wind-induced aerodynamic force as the difference between the real
aerodynamic force and the nominal one, thus the wind-induced aerodynamic force can be
presented as

Fw =

1
2 ρSref V2

a cosφw�V2cosφ
� �

Cx

1
2 ρSref V2

a sinφw�V2sinφ
� �

Cx

1
2 ρSref V2

a�V2
� �

Cz

� 1
2 ρSref Lref V2

a sinφw�V2sinφ
� �

Cmy

1
2 ρSref Lref V2

a cosφw�V2cosφ
� �

Cmy

1
2 ρSref Lref V2

a�V2
� �

Cmz

2
666666664

3
777777775

... (10)

whereVa =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu�uwÞ2 + ðv�vwÞ2 + ðw�wwÞ2

q
is the airspeed and tanφw= (u − uw)/(v − vw).φw is

the angle between the x-axis and the horizontal component of the airspeed.

2.4 Propeller force model

The propellers of the airship can be rotated in the vertical plane with a deflection angle μi, and
the propulsion forces are denoted by fi, i= 1, 2, 3, 4. The detailed definition of deflection
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Figure 3. (Colour online) Aerodynamic coefficients under different angle of attacks.
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angle μi can be seen in Fig. 4, the thrust can rotate in the range that μi∈ [ − 180°,180°]. The
deflection angle is 0 when the thrust is in the negative direction of the z-axis, the deflection
angle is positive when the thrust rotates clockwise, and the deflection angle is negative when
the thrust rotation is counterclockwise. These are the direct control variables given to the
controller. In BRF, the thrust force is presented as

FT =

f2sinμ2�f4sinμ4
�f1sinμ1 + f3sinμ3

�f1cosμ1�f2cosμ2�f3cosμ3�f4cosμ4
f4cosμ4�f2cosμ2ð ÞRp

f1cosμ1�f3cosμ3ð ÞRp

f1sinμ1 + f2sinμ2 + f3sinμ3 + f4sinμ4ð ÞRp

2
666666664

3
777777775

... (11)

Note in Equation (11), nonlinear couplings between fi and μi are demonstrated, and control
allocation must be conducted to obtain fi and μi after FT is obtained, the control allocation is
often completed by choosing a control allocation matrix. The chosen of the control allocation
matrix is very important in dynamic inverse control allocation to avoid a singular value. Here,
the indirect control vector uin is introduced as

uin = ½f1sinμ1; f2sinμ2; f3sinμ3; f4sinμ4; f1cosμ1; f2cosμ2; f3cosμ3; f4cosμ4�T ... (12)

This will result in a constant control allocation matrix. Thus, the inverse matrix is also a
constant matrix, that is, a solution is always available in the control allocation process.
Therefore, the propeller force is then decomposed as

FT =Buin ... (13)

Figure 4. Definition of the deflection angle of the thrust.
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the resulting control allocation matrix B is presented as

B=

0 1 0 �1 0 0 0 0
�1 0 1 0 0 0 0 0
0 0 0 0 �1 �1 �1 �1
0 0 0 0 0 �Rp 0 Rp

0 0 0 0 Rp 0 �Rp 0
�Rp �Rp �Rp �Rp 0 0 0 0

2
6666664

3
7777775

The direct control variables can then be solved by

fi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fisinμið Þ2 + ficosμið Þ2

q
μi = arctan

fisinμi
ficosμi

:::ð14Þ

The dynamics equation can be transformed into a MIMO affine system. It is noted that in
station-keeping control, the useful output is the position of the airship in ERF. Recall the
dynamics model (5), the resulting affine system is

_x= f xð Þ + g1 xð Þuin + d
y= ½xg yg zg�T :::ð15Þ

where d=M − 1Fw is the wind disturbance, g1(x)=M − 1B, f(x)=M − 1(FGB +FA +FI) and y
is the system output.

3.0 THE STATION-KEEPING CONTROLLER
In this section, the station-keeping controller design procedure is carried out as follows. First,
based on the work of Li et al.,(26) the explicit NMPC for station-keeping of the airship is
derived, and nonlinear DOB is adopted for disturbance compensation. A saturation sup-
pression strategy using TD is then put forward.

3.1 Explicit nonlinear MPC

For a nonlinear MIMO affine system such as the airship, it is well known that after con-
tinuously differentiating the output for a specific number of times, the control input appears in
the expressions.

Definition 1. The number of times of differentiation required for the indirect control vector
to appear is defined as the relative degree.

The relative degree is a vector, and for station-keeping control of the airship, it can be denoted
as ρr= [ρr1, ρr2, ρr3]. Since the indirect control vector appears after some differentiations, the
relative degree is first specified in the controller design. Before that, the following assumption
is made to ensure the existence of these differentiations.

Assumption 1. The states of the airship are all detectable, the output y and reference
position wd = ½xd yd zd�T are continuously differentiable.

Under Assumption 1, the relative degree and y½ρr � are obtained by the following differentiations.(27)

The first derivative of y is the kinematics Equation (1).
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The second derivative of y is

€xg
€yg
€zg

2
4

3
5=RB

I

_u + qw�rv
_v + ru�pw
_w + pv�qu

2
4

3
5 ... (16)

Then uin appears in the expression of _u; _v; _w in Equation (5). Thus, the relative degree is
ρr1= ρr2= ρr3= 2.

Substituting Equation (15) into Equation (16) gives

€xg
€yg
€zg

2
4

3
5=RB

I C f xð Þ + g1 xð Þuin + dð Þ +Fqw ... (17)

where Fqw =RB
I qw�rv; ru�pw; pv�qu½ �T and C= I3 ´ 3 O3 ´ 3½ �.

Separating uin from Equation (17) gives

€xg €yg €zg½ �T =LðxÞ +RB
I Cd +A xð Þuin ... (18)

where L xð Þ=RB
I ðCf ðxÞ +FqwÞ and A xð Þ=RB

I Cg1ðxÞ.
Assumption 2. The system holds stable zero dynamics.

To achieve station-keeping of the airship, we need to design a controller such that the output y
tracks the reference position wd. In MPC strategy, this can be achieved by minimising the
following cost function:

J =
ðNp

0
ey t + τð ÞTey t + τð Þdτ ... (19)

where eyðt + τÞ= ŷðt + τÞ�ŵdðt + τÞ, Np is the predictive horizon and 0≤ τ≤Np. ŷðt + τÞ, and
ŵdðt + τÞ are the approximations of the output and reference position at time t + τ respectively.

In general, the cost function is optimised by MPC to obtain uin at each sampling time. In
this paper, ŷðt + τÞ and ŵdðt + τÞ are approximated by Taylor series expansion up to ρrth order

The approximation using Taylor serial expansion of ŷðt + τÞ can be presented as

ŷðt + τÞ=
xgðt + τÞ
ygðt + τÞ
zgðt + τÞ

2
4

3
5=

xgðtÞ
ygðtÞ
zgðtÞ

2
4

3
5 + τ

_xgðtÞ
_ygðtÞ
_zgðtÞ

2
4

3
5 +

τ2

2

€xgðtÞ
€ygðtÞ
€zgðtÞ

2
4

3
5 ... (20)

To separate the unknown time parameter τ from the approximation, Equation (20) is rear-
ranged as

ŷðt + τÞ=Γ τð ÞY tð Þ ... (21)

where Γ(τ)= [Tf, Ts], Ts = diag τ2

2 ;
τ2

2 ;
τ2

2

h i
, Tf = blkdiag ([1,τ], [1,τ], [1,τ]), it is the unkonwn

matrix with the unknown τ. Y tð Þ= ½Y1 tð Þ;Y2 tð Þ;Y3 tð Þ;€xg;€zg;€zg�T ; Y1 tð Þ= ½xg; _xg�;Y2 tð Þ=
½yg; _yg�;Y3 tð Þ= ½zg; _zg�:

Similar to ŷ t + τð Þ; ŵd t + τð Þ can be approximated as

ŵd t + τð Þ=Γ τð ÞWd tð Þ ... (22)

where
Wd tð Þ= ½W1 tð Þ;W2 tð Þ;W3 tð Þ;€xd;€yd;€zd�T ; W1 tð Þ= ½xd; _xd�; W3 tð Þ= ½zd; _zd�; W2 tð Þ= ½yd; _yd�;
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Substituting Equations (21) and (22) into the Equation (19) gives

J= Y tð Þ�Wd tð Þ½ �T Λ1 Λ2

ΛT
2 Λ3

� �
Y tð Þ�Wd tð Þ½ � ... (23)

where Λ1 =
Ð Np

0 TT
f Tfdτ; Λ2 =

Ð Np

0 TT
f Ts dτj ; Λ3 =

Ð Np

0 TT
s Tsdτ:

Equation (23) can be minimised with respect to uin (t + τ). The necessary condition for the
optimality is

∂J
∂uin

= 2 Y tð Þ�Wd tð Þ½ �T Λ1 Λ2

ΛT
2 Λ3

� �
∂Y
∂uin

= 0 ... (24)

Recall Y(t), Wd and define Mρr = ½Y1�W1 Y2�W2 Y3�W3�T , then Equation (24) can be

2½MT
ρr

ð€xg�€xd;€yg�€yd;€zg�€zdÞ� Λ1 Λ2

ΛT
2 Λ3

� �
½0T ; 0T ;AðxÞT �T = 0 ... (25)

It gives that

MT
ρr
Λ2 + ð€xg�€xd;€yg�€yd;€zg�€zdÞΛ3 = 0 ... (26)

Recall Equation (18), and note Λ3 is symmetrical, then the optimal control can be obtained by

uinðt + τÞ� =�A xð Þ + KMρr +M1 +RB
I Cd

� �
... (27)

where A(x) + is the Moore–Penrose pseudoinverse of A xð Þ;M1 =LðxÞ�½€xd €yd €zd�T ;
K =Λ�1

3 ΛT
2 :

After solving the nonlinear equation (27), we can obtain the optimal control uin
* (t + τ). In

this paper, only the current control in the control profile is implemented. The explicit solution
is uin

* =uin(t + τ), for τ= 0.
In addition, it can be noted that in Equation (27), the disturbance d is still unknown in the

control law, so an observer is designed in the next section for disturbance rejection. After that,
d is replaced by its estimation value d̂, then the influence of wind field is compensated.
Therefore, the station-keeping control law is

uin =�A xð Þ + KMρr +M1 +RB
I Cd̂�

h
... (28)

The direct control variables can then be calculated by Equation (14).

3.2 Nonlinear DOB

As disscused in the previous section, it is clear that d̂ is indispensable in controller design. In
this section, a nonlinear DOB is proposed to estimate the disturbance d.

The nonlinear DOB for MIMO affine system (15) is designed as

_z=�l xð Þz�l xð Þ p xð Þ + f xð Þ + g1 xð Þuinð Þ
d̂= z + p xð Þ :::ð29Þ

where z is the state vector of DOB, l(x) is the observer gain matrix, and p(x) is the nonlinear
function to be designed. The observer gain matrix can be determined by

l xð Þ= ∂p xð Þ
∂x

... (30)
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Lemma 1. The DOB in (29) for system (15) is stable if the gain matrix l (x) is Hurwitz.

Proof. Define the estimation error as e= d̂�d. Then the differentiation of the estimation
error with respect to time is

_e=
_̂
d� _d ... (31)

Assumption 3. The disturbance is slow time-varying (26), so _d �O.

Substituting Equation (29) into Equation (31) gives

_e= d̂= _z +
∂p xð Þ
∂x

_x

=�l xð Þðz� _xÞ�l xð Þ p xð Þ + f xð Þ + g1 xð Þuinð Þ :::ð32Þ
Substituting Equations (15) and (29) into Equation (32) gives

_e=�l xð Þðd̂�p xð Þ�f xð Þ�g1 xð Þuin�dÞ�l xð Þ p xð Þ + f xð Þ + g1 xð Þuinð Þ
=�l xð Þe :::ð33Þ

This demonstrates that d̂ approaches d exponentially if l(x) is Hurwitz.

Remark 1. Although the stability analysis is carried out with Assumption 3, which is not
often held in the realistic scenario. To the authors’ best knowledge, the DOB can also handle
some time-varying disturbance, for example, sinusoidal disturbance and some small gust
disturbances. These are verified in the simulation part.

3.3 Actuator saturation suppression based on TD

The amplitude of the propulsion force is severely limited in the realistic scenario, while the
analytical control law (28) can handle no saturation. Therefore, to preserve the analytical
control law and decrease the online computation burden, the TD employing time-varying
design parameter is proposed.

Remark 2. MPC can also handle saturations, but usually through the use of a quadratic
programming algorithm. The main drawback of MPC in handling saturation is the heavy
computation load from iterations, no analytical control law and the difficulties in stability
analysis. Compared with MPC, TD will not change the analytical law, thus no iteration
exists.

TD is first proposed by Han,(28) and it uses a numerical method based on integrity to track the
differentiation of the signal. In handling the saturation, TD always calculate a smooth govern
path within the saturation. The main advantage of TD is the control of rapidness and strong
robustness to the disturbance. The most common used TD(20) can be presented as

_x1 = x2
_x2 = fhan x1; x2;RTDð Þ

	
... (34)

where x1 and x2 are the states of the TD, they represent the position and velocity when
respecting to the station-keeping control. RTD is the design parameter that represents the
acceleration of the transition process. It is the only parameter that determines the transition
time.(29) fhan denotes the optimal control synthesis function. This function can avoid the
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chattering in steady state caused by the non-smooth structure of TD. It can be presented as

fhan x1; x2;RTDð Þ= RTDa j a j ≤ dt
�RTDsignðaÞ j a j > dt

	
... (35)

where dt=RTDh0, h0 is the sampling time interval, and a is presented as

a=
x2 + c = h0 j c j ≤ dt0

x2 + signðcÞða0�dtÞ = 2 j c j > dt0

	
... (36)

where dt0= dth0, c= x1 + x2h0 and a0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2t + 8RTD j c j 2p

.
To better understanding the basic theory and tracking performance of TD in path planning,

the forward flight of the airship is taken as an example. The flight acceleration, transition time
and reference position in the x-axis are defined as RTD, T0, and xd, respectively. The accel-
eration has the shape of the square wave, and velocity having the triangle wave. To illustrate it
in detail, in the first half of the process, the airship moves with a constant acceleration RTD,
reaching the position xd

2 and velocity T0
2 RTD. While in the latter half, the airship moves with the

acceleration −RTD, reaching the position xd and velocity 0.
Figure 5 shows the position, velocity, and acceleration under different reference positions

10m, 20m, and 30m, respectively, with RTD= 0.5m/s 2. It can be seen clearly that once the
acceleration is determined, the controller will always achieve the same performance in
handling the saturation, no matter how the reference positions change. Different reference
positions will only lead to different transition times.

In this paper, the main motivation of saturation handling strategy of TD is to choose a
proper RTD so that the direct control variables will always be within its boundary. We propose
a time-varying RTD choosing method based on the dynamics model of the airship via the
relationship between the maximum flight acceleration and maximum propulsion force. Before
that, the following assumption is made to simplify and decouple the dynamics model.

Assumption 4. In station-keeping control, the horizontal flight is considered, and the
height of the airship remains constant.

Define *max as the maximum value of *. Recall the dynamics model (5) and replace d by d̂.
The maximum acceleration of the airship can be expressed by

M _xmax =FTmax +FA +FGB +FI +Md̂ ... (37)
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Figure 5. (Colour online) Path planning of TD.
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Under Assumption 4, only the first two rows of Equation (37) are considered. _p; _q and _r are
not taken into consideration because of their small values. Define dx and dy as the dis-
turbances in x- and y-axes, d̂x and d̂y as their estimations, respectively. Then the time-varying
accelerations in x- and y-axes are

m0 +m11ð Þ _umax�d̂x
� �

= fmax sinμ2�sinμ4ð Þ +FA 1ð Þ +FI 1ð Þ +FGB 1ð Þ
m0 +m22ð Þ _vmax�d̂y

� �
= fmax sinμ1�sinμ3ð Þ +FA 2ð Þ +FI 2ð Þ +FGB 2ð Þ :::ð38Þ

Thus the maximum accelerations in x and y axes are

_umax =
fmax sinμ2�sinμ4ð Þ +FA 1ð Þ +FIð1Þ +FGB 1ð Þ

m0 +m11
+ d̂x

_vmax =
fmax sinμ1�sinμ3ð Þ +FA 2ð Þ +FI +FGB 2ð Þ 2ð Þ

m0 +m22
+ d̂y :::ð39Þ

Then _umax and _vmax are used as the time-varying design parameters in Equation (34).

Remark 3. The propulsion force may exceed its maximum value slightly for the reason that
_p; _q and _r are ignored. However, the saturation suppression can still be achieved by
decreasing _umax and _vmax slightly.

4.0 CONTROLLER STRUCTURE AND STABILITY
ANALYSIS

4.1 Controller structure

Based on the previous section, the station-keeping controller consists of three modules:
explicit NMPC, nonlinear DOB, and TD. Its structure can be seen in Fig. 6.

In Fig. 6, wd is the reference position of the station-keeping, and w0
d = x0d y0d z0d½ �T is the

command position planned by TD, and the other parameters remain the same as previous.

4.2 Stability analysis

From the structure of the controller, it can be seen that TD has no effect on the DOB-based
NMPC controller. It only plans a command path in the station-keeping, so the stability relies
on DOB and explicit NMPC. Now we focus on the stability of the DOB-based NMPC
controller, and the stability analysis is given as follows.

Figure 6. Structure of the station-keeping controller.

1766 THE AERONAUTICAL JOURNAL NOVEMBER 2018

https://doi.org/10.1017/aer.2018.91 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2018.91


Lemma 2. The station-keeping controller (28) for the system described in Equation (5),
Equation (1) and Equation (2) is asymptotically stable if l(x) is Hurwitz and K is properly
chosen.

Remark 4. The selection criterion of K is conducted in the following proof.

Proof. Compared with the conventional stability analysis, which often chooses a Lyapunov
function,(30) this paper analysis the tracking error directly.

The position tracking error of station-keeping control is defined as

z0p = xg�x'd yg�y'd zg�z'd½ �T ... (40)

Its first derivative is

_z0p = z1p = _xg� _x'd _yg� _y'd _zg�_z'd½ �T ... (41)

And the second derivative is

_z1p = €xg�€x'd €yg�€y'd €zg�€z'd½ �T ... (42)

Define

z2p = €xg €yg €zg½ �T ... (43)

Recall Mρr , M1. Substituting Equations (18) and (28) into Equation (42) gives

_z1p =M1 +RB
I Cd +A xð Þ �A xð Þ + KMρr +M1 +RB

I Cd̂

 �h i

=�KMρr +R
B
I Ce :::ð44Þ

where K= blkdiag ([k11, k12], [k21, k22], [k31, k32])
Recall e and z2p: _z

1
p can be expressed as

_z1p = z2p +R
B
I Ce ... (45)

Recall the presentation of K and Mρr , and rearrange them. Recall Equations (41), (42), and
(45). The tracking error of the control system is

_z0p
_z1p

" #
=

03 ´ 3 I3 ´ 3
K1 K2

� �
z0p
z1p

� �
+ 03 ´ 3

ϵ

� �
... (46)

where Ki= diag (k1i, k2i, k3i), i= 1, 2,3, and ϵ=RB
I Ce.

The tracking error of the station-keeping controller can then be expressed as

_zp = f Azp + ϵ ... (47)

From Lemma 1, we know that ϵ will converge to zeros if l(x) is Hurwitz. Therefore,
the tracking error can be reduced to a linear system _zp = f Azp, and its global asymptotic
stability can be guaranteed by properly choosing K such that f A is Hurwitz. In this paper,
it can be achieved by adjusting the predictive horizon such that f A is Hurwitz.

Remark 5. If f A is not Hurwitz by adjusting the predictive horizon, one other way to
guarantee this condition can be described as follows: design a weighting matrix in the cost
function (19), and then tuning the weighting matrix such that f A is Hurwitz.
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5.0 SIMULATION RESULTS
In the following simulations, a multi-vectored propeller airship is used to analyze the pro-
posed method.

The parameters needed in simulation are R= 2.5m, m0= 72 kg, Vol= 70m3, RP= 2.55m,
ξp= ξq= 200, ξr= 100. The center of gravity is ½xG yG zG�T = ½0 0 1:94�Tm. Other
parameters needed are given in Table 1.

The initial height of the airship in ERF is 100m. The initial horizontal position is
½0 0�Tm. The reference horizontal position is ½xd yd�T = ½20 10�Tm and their derivatives
are all zeros. The maximum propulsion force is fmax= 500N. For simulation, the wind
velocity is given as ½10 10 0�m = s.

The design parameters _umax and _vmax are calculated by Equation (39).
The observer gain matrix of DOB is chosen as l(x)= lx, where l is a constant.

5.1 Parameters analysis of nonlinear DOB and explicit NMPC

In this section, the parameters l and Np are investigated. Some comparisons on the perfor-
mance are carried out by applying different l and Np, and comments are given. Then the
parameters with better performance are chosen for the next section to illustrate the effec-
tiveness of the proposed station-keeping controller.

The DOB is first examined. The predictive horizon is given as Np= 1 s. The estimation
performances with different ls (1, 10, and 80) are given in Fig. 7. From lemma 1, we know
that d̂ approaches d exponentially if l(x) is Hurwitz. It means that the lager gain in DOB leads
to faster converge rate. It is consistent with the simulation result in Fig. 7 (see when l= 1 and
l= 10). When l increases, overshoot can be observed (see when l= 80), but the converge rate
does not change too much. Therefore, the tradeoff between overshoot and converge rate has
to be made. Thus, l= 10 is choosen.

To verify remark 1, a random wind and a cosine wind field are also implemented in the
simulation, and the parameters are l= 10 and Np= 1 s. The velocity of the random wind is
given as [10 + 0.5ξ,10 + 0.5ξ,0] m/s, where ξ is a random value in [ − 1,1]. The cosine wind
is given as [10 + sin(0.2t),10 + cos(0.2t),0] m/s. Figs. 8 and 9 show the results of the
estimations. It can be seen that the estimations are both converged to the wind disturbance.
The remark 1 is verified.

The explicit NMPC is then examined, and l= 10 are fixed. The position responses under
different Nps(1, 2, and 3 s) are given in Fig. 10. Figure 10 shows that the larger Np is, the
larger the transition time of the system is. And larger predictive horizon also leads to larger
overshoot( see in the z-axis). Thus, Np= 1 s is chosen (Fig. 10).

Table 1
Parameters of the multi-vectored propeller airship

Added mass Value Inertia Value

m11=m22 10.8 kg Ix 409.4 kg.m2

m33 38.9 kg Iy 409.4 kg.m2

m44=m55 19.3 kg.m2 Iz 34.5 kg.m2

m66 0 kg.m2 Ixy 0 kg.m2

m26=m62 0 kg.m Ixz 0 kg.m2

m35=m53 0 kg.m Iyz 0 kg.m2
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5.2 The controller performance

In this section, taking the wind disturbance and thrust saturation into consideration, we
implement our method to the airship. According to the previous section, l= 10 and Np= 1 s
are fixed in the following simulations.
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The nonlinear DOB is illustrated with its ability for disturbance rejection. The states of the
airship with or without nonlinear DOB are given in Fig. 11. The result shows that the
controller with DOB performs much better. Specifically, the DOB can restrain the states’
variation degree, especially rolling angular velocity (its amplitude decreases significantly
from 7.8 to 0.8 radians/s). It is able to drive the airship to the reference position (otherwise,
the position of the airship cannot converge to the reference position). Since the disturbance is
mainly caused by wind field, we can conclude that wind field (disturbance) has huge effects
on the station-keeping performance. In addition, DOB has the ability of disturbance rejection,
thus, the station-keeping performance has been significantly improved. Those interested in
disturbance estimation performance can refer to Fig. 7 when l= 10.

Finally, the ability to handle the thrust saturation of TD is studied, and the propulsion
forces and deflection angles are given in Fig. 12. The propulsion forces and deflection angles
without using TD are given in Fig. 13 as a comparison. The two figures demonstrate that
when the controller equipped with TD, the maximum value of propulsion forces decreases
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from 3685N (in propeller 4 at 5.8 s) to 502N (in propeller 3 at time 13.2 s). The propulsion
force slightly exceeds the given maximum value. From the comparison, it can be concluded
that the TD can handle thrust saturation efficiently.
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Figure 12. Propulsion forces and deflection angles with TD.
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Remark 6. One drawback of our method lies in the theory of TD. The current TD can only
handle the amplitude saturation of the propulsion force. Problems occur if the saturation of
changing rate is considered. The drawback could be discovered in Fig. 12 as some severe
changes in the propulsion force can be observed. This could be mitigated by decreasing the
design parameter of TD.

6.0 CONCLUSION
In this paper, a station-keeping control method is proposed by using the explicit NMPC
framework. The controller can not only eliminate the influences of the wind field but also
handle the saturation of the thrusts. It can also drive the airship to the desired reference
position. Simulations based on a multi-vectored propeller airship are conducted and the ability
of saturation suppression is revealed. The simulation results show that the proposed controller
could successfully achieve the expected goals.

For future work, the problem of variation in the propulsion force and deflection angle is
still to be solved. It is suggested that some saturation suppression strategies should be
investigated, for example, taking the changing rate into consideration, so that the airship
would not suffer much from severe changes in propeller force.
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