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Abstract
Whenmaking causal inferences, post-treatment confounders complicate analyses of time-varying treatment
e�ects. Conditioning on these variables naively to estimate marginal e�ects may inappropriately block
causal pathways and may induce spurious associations between treatment and the outcome, leading to
bias. To avoid such bias, researchers o�en use marginal structural models (MSMs) with inverse probability
weighting (IPW). However, IPW requires models for the conditional distributions of treatment and is highly
sensitive to their misspecification. Moreover, IPW is relatively ine�icient, susceptible to finite-sample bias,
and di�icult to usewith continuous treatments. We introduce an alternativemethod of constructingweights
for MSMs, which we call “residual balancing”. In contrast to IPW, it requires modeling the conditional means
of the post-treatment confounders rather than the conditional distributions of treatment, and it is therefore
easier to use with continuous treatments. Numeric simulations suggest that residual balancing is bothmore
e�icient and more robust to model misspecification than IPW and its variants in a variety of scenarios. We
illustrate the method by estimating (a) the cumulative e�ect of negative advertising on election outcomes
and (b) the controlled direct e�ect of shared democracy on public support for war. Open-source so�ware is
available for implementing the proposedmethod.

Keywords: causal inference, balancing, panel data

1 Introduction
Social scientists are o�en interested in estimating the marginal, or population average, e�ects
of treatment in the presence of post-treatment confounding. Post-treatment confounding is
common in studies of time-varying treatments, where confounders of future treatments may be
a�ected by prior treatments. For example, political scientists study how the timing and frequency
of negative advertising during political campaigns a�ect election outcomes (e.g., Lau, Sigelman,
and Rovner 2007; Blackwell 2013). In this context, the decision to run negative advertisements
at any given point during a campaign is a�ected by a candidate’s position in recent polling data,
which itself is a�ected by negative advertising conducted previously. Post-treatment confounding
is also common in analyses of causal mediation, where confounders for the e�ect of themediator
on the outcome may be a�ected by treatment. For example, when assessing the role of morality
inmediating the e�ects of shared democracy on public support for war, post-treatment variables,
such as beliefs about the threat posed by the adversary, may a�ect both the perceivedmorality of
war and support for military action (Tomz and Weeks 2013).
Adjusting for post-treatment confounders using conventionalmethods, for example, by naively

conditioning, stratifying, or otherwise balancing on them, may engender two di�erent types of
bias (Robins 1986, 2000). First, adjusting naively for post-treatment confounders leads to bias
from overcontrol of intermediate pathways because it blocks, or “controls away”, the e�ect of
treatment on the outcome that operates through these variables. Second, adjusting naively for
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post-treatment confounders can lead to collider-stratification bias if these variables are also
a�ected by unobserved determinants of the outcome, as conditioning on a variable generates
a spurious association between its common causes even when these common causes are
unconditionally independent (Pearl 2009).
Marginal structuralmodels (MSMs) and the associatedmethod of inverse probabilityweighting

(IPW) avoid these biases and are capable of consistently estimating treatment e�ects under
fairly general conditions (Robins 2000; Robins, Hernan, and Brumback 2000; VanderWeele 2015).
Compared with more traditional models for time-series cross-sectional data (e.g., fixed e�ects
regression models), MSMs with IPW can better accommodate dynamic causal relationships (Imai
andKim2019). Specifically, unlike conventionalmethods, this approach allows past treatments to
a�ect current outcomes (i.e., “carryover e�ects”) and past outcomes to a�ect current treatment
(i.e., “feedbacke�ects”). Becauseof this flexibility, political scientists have increasinglyusedMSMs
with IPW to draw causal inferences from longitudinal data (e.g., Zhukov 2017; Ladam, Harden, and
Windett 2018; Simmons and Creamer 2019).
Nevertheless, IPW has several important limitations. First, IPW requires models for the

conditional distributions of exposure to treatment and/or the mediator, and prior research
indicates that it is highly sensitive to their misspecification (e.g., Kang and Schafer 2007). Second,
even if these models are correctly specified, IPW is relatively ine�icient, and it is susceptible to
large finite-sample biases when confounders strongly predict the exposures of interest (Wang
et al. 2006; Cole and Hernán 2008).1 Finally, when the exposures of interest are continuous, IPW
tends to perform poorly because estimates of conditional densities are o�en unreliable (e.g.,
Vansteelandt 2009; Naimi et al. 2014).
Several remedies have been proposed to improve the e�iciency and robustness of IPW. For

example, Cole and Hernán (2008) suggest truncating or censoring extreme weights to obtain
more precise estimates. With this approach, however, the improved precision comes at the
cost of greater bias. Recently, Imai and Ratkovic (2014, 2015) propose constructing weights
for an MSM with covariate balancing propensity scores (CBPS). By integrating a large set of
balancing conditions when estimating propensity scores, this method is less sensitive to model
misspecification. But estimating CBPS can be computationally demanding, and because of
the practical di�iculties associated with modeling conditional densities, this method remains
challenging to use with continuous exposures, even in the cross-sectional setting (Fong et al.
2018).
In this paper, we propose an alternative method of constructing weights for MSMs, which we

call “residual balancing”. Briefly, the method is implemented in two stages. First, a model for the
conditional mean of each post-treatment confounder, given past treatments and confounders, is
estimated and then used to construct residual terms. Second, a set of weights is constructed
using Hainmueller’s (2012) entropy balancing method such that, in the weighted sample,
(a) the residualized confounders are orthogonal to future exposures, past treatments, and past
confounders, and (b) their discrepancywith a set of baseweights (e.g., survey samplingweights) is
minimized. Thus, our proposedmethod is an extension of Hainmueller’s (2012) entropy balancing
procedure to the longitudinal setting. It exactly balances sample moments for each of the

1 For expositional simplicity, we occasionally use the term “exposures” to generally refer to treatments or mediators.
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post-treatment confounders across future exposures, conditional on the observed past, without
explicit models for the conditional distributions of exposure to treatment and/or a mediator.2

Residual balancing has a number of advantages over both conventional methods of covariate
adjustment and over IPW and its variants. First, by appropriately residualizing the post-treatment
confounders, the proposed method avoids bias due to overcontrol and collider stratification,
unlike conventional methods that condition, stratify, or otherwise balance on these variables
naively. Second, residual balancing is relatively robust to the model misspecification bias that
commonly a�licts IPW and its variants. Third, residual balancing is also more e�icient than
IPW because it tends to avoid highly variable and extreme weights by minimizing their relative
entropy with respect to a set of base weights. Fourth, in contrast to CBPS, residual balancing is
computationally attractive in that the weighting solution is quickly obtained even with a large
number of confounders, time periods, and observations. Finally, because it does not require
models for the conditional distributions of the exposures, residual balancing is easy to use
when treatments and/or mediators are continuous. This advantage may be especially important
in political science applications, where continuous exposures commonly arise in analyses of
time-series cross-sectional data (e.g., Blackwell 2013). An open-source Rpackage,rbw, is available
for implementing the proposedmethod, as is a Stata package with similar functionality.
In the sections that follow, we first briefly review MSMs and the method of IPW. Next, we

introduce the method of residual balancing and conduct a set of simulation studies to evaluate
its performance relative to IPW and its variants. We then illustrate the method empirically by
estimating the cumulative e�ect of negative advertising on election outcomes as well as the
controlled direct e�ect (CDE) of shared democracy on public support for war. We conclude by
discussing the method’s limitations along with possible remedies.

2 MSMs and IPW: A Review
In this section, we briefly review MSMs and the method of IPW (Robins 2000; Robins, Hernan,
and Brumback 2000). Consider first a study with T ≥ 2 time points where interest is in the
e�ect of a time-varying treatment, At (1 ≤ t ≤ T ), on an end-of-study outcome, Y . At each
time point, there is also a vector of observed time-varying confounders, Lt , that may be a�ected
by prior treatments. Following convention, we use overbars to denote the treatment history,
At = (A1, . . . ,At ), and confounder history, Lt = (L1, . . . , Lt ), up to time t . Similarly, we denote an
individual’s complete treatment and confounder histories through the endof follow-upbyA = AT
andL = LT , respectively. Finally,weuseY (a) todenote thepotential outcomeunder theparticular
treatment history a .
An MSM is a model for the marginal mean of the potential outcomes, which can be expressed

in general form as follows:

Å[Y (a)] = µ(a ; β ), (1)

where µ(·) is some function of treatment history, a , and a parameter vector, β , that captures
the marginal e�ects of interest. For example, with a large number of time points and a binary

2 Ourmethod of residual balancing should not be confusedwith themethod of “approximate residual balancing” proposed
in Athey, Imbens, and Wager (2018). Despite their similar names, the two methods are very di�erent in both their
goals and mechanics. The goal of our method is to adjust for post-treatment confounding when estimating the e�ects
of time-varying treatments or assessing causal mediation, whereas the goal of “approximate residual balancing” is to
remove bias introduced by penalized regression adjustments when estimating the e�ects of point-in-time treatments
from high-dimensional linear models. Consequently, with our method, the residuals come from regression models of the
time-varying confounders, and a set of weights are constructed to balance the residualized confounders across future
exposures, past treatments, and past confounders. With “approximate residual balancing”, by contrast, a set of weights
are constructed first to balance the (unresidualized) confounders between static treatment and control groups, and then
they are used to re-weight the residuals from a penalized regressionmodel for the outcome to remove bias introduced by
penalization.
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treatment, a common parameterization is

Å[Y (a)] = β0 + β1cum(a), (2)

where cum(a) =
∑T
t=1 at denotes the total number of time periods on treatment and β1 captures

themarginal e�ect of one additionalwave on treatment. Of course,manyother parameterizations
are possible.
An MSM can be identified from observed data under three key assumptions:

(1) consistency, which requires that, for any unit, if A = a , thenY =Y (a);
(2) sequential ignorability, which requires that treatment at each time point must not

be confounded by unobserved factors conditional on past treatments and observed
confounders or, formally, thatY (a) ⊥⊥ At `At−1, Lt for any treatment sequence a ; and

(3) positivity, which requires that treatment assignmentmust not be deterministic or, formally,
that f (At = at `At−1 = a t−1, Lt = l t ) > 0 for any treatment condition at if f (At−1 = a t−1, Lt =
l t ) > 0, where f (·) denotes a probability mass or density function.

When these assumptions are satisfied, anMSM can be consistently estimated using themethod of
IPW.
IPWestimation involves fittingamodel for theconditionalmeanof theobservedoutcomegiven

an individual’s treatment history using weights that balance, in expectation, past confounders
across treatment at each time point. The IPW for individual i is defined as

wi =
T∏
t=1

1

f (At = ai ,t `At−1 = a i ,t−1, Lt = l i ,t )
, (3)

where the At−1 = a i ,t−1 term can be ignored when t = 1. Since the denominator of equation
(3) can be very small, some units may end up with extremely large weights, leading to highly
variable estimates. Tomitigate this problem, Robins, Hernan, and Brumback (2000) suggest using
a so-called “stabilized” weight, which is defined as

swi =
T∏
t=1

f (At = ai ,t `At−1 = a i ,t−1)

f (At = ai ,t `At−1 = a i ,t−1, Lt = l i ,t )
. (4)

Sometimes, the probabilities in both the numerator and denominator are also made conditional
on a set of baseline or time-invariant confounders X :

swi =
T∏
t=1

f (At = ai ,t `At−1 = a i ,t−1,X = x )

f (At = ai ,t `At−1 = a i ,t−1, Lt = l i ,t ,X = x )
. (5)

In such cases, these variables need to be included in the MSM to properly adjust for confounding,
which is unproblematic because they cannot be a�ected by treatment and thus conditioning on
themwill not engender bias due to overcontrol or collider stratification.
In practice, both the numerator and the denominator of the stabilized weight need to be

estimated. When treatment is binary, the denominator is typically estimated using a generalized
linear model (GLM), with the logit or probit link function, for treatment at each time point, while
the numerator is estimated using a constrained version of this model that omits the time-varying
confounders. When treatment is continuous, models are needed to estimate the conditional
densities in both the numerator and the denominator of the weight. A�er weights have been
computed, the marginal e�ects of interest are estimated by fitting a model for the conditional
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mean of Y , given At (and also possibly X ) with weights equal to swi . When both this model
and themodels for treatment assignment are correctly specified, this procedure yields consistent
estimates for all marginal means of the potential outcomes, Å[Y (a)], and thus for any marginal
e�ect of interest, provided that the identification assumptions outlined previously are satisfied.
As shown in prior studies (e.g., Kang and Schafer 2007), IPW estimates of marginal e�ects can

be highly sensitive to misspecification of the models used to construct the weights. To address
this limitation, Imai and Ratkovic (2014, 2015) developed the method of CBPS to estimate the
denominator in equation (4) for binary treatments. With a logit model for treatment at each
time point, this method augments the score conditions of the likelihood function with a set of
covariate balance conditions. Because the total number of score and balance conditions exceeds
the number of model parameters to be estimated, the generalizedmethod of moments is used to
minimize imbalance in theweightedsample. Thismethodof incorporatingbalanceconditions into
model-based estimation of the weights tends to reduce the bias that results when the treatment
models are misspecified.
MSMs and IPW estimation can also be used to examine causal mediation (VanderWeele 2015).

Consider now a study with a point-in-time treatment, A, a putative mediator measured at some
point following treatment,M , and an end-of-study outcome,Y . Suppose that both treatment and
the mediator are confounded by a vector of observed baseline covariates, denoted by X , and
that the mediator is additionally confounded by a vector of observed post-treatment covariates,
denoted by Z , which may be a�ected by the treatment received earlier. In this setting, the
potential outcomes of interest are denoted byY (a,m).
As before, an MSM models the marginal mean of the potential outcomes. If, for example,

treatment and the mediator are both binary, a saturated MSM can be expressed as follows:

Å[Y (a,m)] = α0 + α1a + α2m + α3am . (6)

From this model, the CDE of treatment is given by CDE(m) = Å[Y (1,m) − Y (0,m)] = α1 + α3m,
which measures the strength of the causal relationship between treatment and the outcome
when the mediator is fixed at a given value, m, for all individuals (Pearl 2001; Robins 2003).
This estimand is useful for assessing causal mediation because it helps to adjudicate between
alternative explanations for a treatment e�ect. For example, the di�erence between a total e�ect
and the CDE(m) may be interpreted as the degree to which the mediator contributes to a causal
mechanism that transmits the e�ect of treatment on the outcome (Acharya, Blackwell, and Sen
2016; Zhou and Wodtke 2019).
MSMs for the joint e�ects of a treatment and mediator, like equation (6), can be identified

under essentially the same assumptions as outlined previously. In this context, the consistency
assumption requires that Y = Y (a,m) if A = a and M = m; sequential ignorability requires
that both treatment and the mediator must be unconfounded conditional on the observed past
or, formally, that Y (a,m) ⊥⊥ A`X and Y (a,m) ⊥⊥ M `X ,A, Z ; and positivity requires that both
treatment and the mediator are not deterministic functions of past variables. Similarly, the
stabilized IPW are here defined as

sw ∗i =
f (A = ai )

f (A = ai `X = xi )
×

f (M = mi `A = ai )
f (M = mi `X = xi ,A = ai , Z = zi )

, (7)

and they must be estimated using appropriate models for the conditional probabilities and/or
densities that compose this expression. A�er weights have been computed, the marginal e�ects
of interest—here, the CDE(m)—are estimated by fitting a model for the conditional mean of Y
given A and M with weights equal to sw ∗i . Alternatively, it is also possible to define the weights
as sw †

i
= f (M=mi `X=xi ,A=ai )

f (M=mi `X=xi ,A=ai ,Z=zi )
, in which case X must be included in the MSM to properly adjust
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for confounding. Adjusting for X in the MSM is unproblematic because these variables are not
post-treatment confounders, unlike Z .

3 Residual Balancing
In this section, we motivate and explain the method of residual balancing. We first focus on
analyses of time-varying treatment e�ects, and then we outline how the method is easily
adapted for studies of causal mediation. Finally, we discuss the advantages and limitations of
residual balancing comparedwith IPWaswell as the similarities and di�erences between residual
balancing and the CBPSmethod.

3.1 Rationale
Toexplain themethodof residual balancing, it is useful tobeginwithRobins’ (1986) g-computation
formula. The g-computation formula factorizes themarginalmeanof the potential outcome,Y (a),
as follows:

Å[Y (a)] =
∫
· · ·

∫
Å[Y `A = a, L = l ]

T∏
t=1

f (l t `l t−1, a t−1) dµ(l t ). (8)

In contrast, the conditionalmean of the observed outcomeY , givenA = a , can be factorized into

Å[Y `A = a] =

∫
· · ·

∫
Å[Y `A = a, L = l ]

T∏
t=1

f (l t `l t−1, a) dµ(l t ). (9)

A comparison of equation (8) with equation (9) indicates that weighting the observed population
by

Wl =
T∏
t=1

f (Lt `Lt−1,At−1)
f (Lt `Lt−1,A)

(10)

would yield apseudo-population inwhich f ∗(l t `l t−1, a) = f ∗(l t `l t−1, a t−1) = f (l t `l t−1, a t−1) and thus
Å∗[Y `A = a] = Å∗[Y (a)] = Å[Y (a)], where the asterisk denotes quantities in theweighted pseudo-
population.3 Because Lt is o�en high-dimensional, estimation of the conditional densities in
equation (10) is practically di�icult.
Nevertheless, the condition that f ∗(l t `l t−1, a) = f ∗(l t `l t−1, a t−1) = f (l t `l t−1, a t−1) implies that, in

the pseudo-population, the following moment condition would hold for any scalar function g (·)
of Lt :

Å∗[g (Lt )`Lt−1,A] = Å∗[g (Lt )`Lt−1,At−1] = Å[g (Lt )`Lt−1,At−1]. (11)

This moment condition can be equivalently expressed as

Å∗[δ(g (Lt ))`Lt−1,A] = 0, (12)

where δ(g (Lt )) = g (Lt ) − Å[g (Lt )`Lt−1,At−1] is a residual transformation of g (Lt ) with respect
to its conditional mean given the observed past. The moment condition in equation (12), in turn,

3 In fact, the “stabilized” weight in equation (4) is just a di�erent way of writing equation (10):

Wl =
T∏
t=1

f (Lt `Lt−1,At−1)
f (Lt `Lt−1,A)

=

∏T
t=1 f (Lt `Lt−1,At−1)

f (L`A)
=
f (A)

∏T
t=1 f (Lt `Lt−1,At−1)

f (L,A)

=
f (A)

∏T
t=1 f (Lt `Lt−1,At−1)∏T

t=1 f (Lt `Lt−1,At−1)f (At `Lt ,At−1)
=
∏T
t=1 f (At `At−1)∏T

t=1 f (At `Lt ,At−1)
.
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implies that for any scalar function h(·) of Lt−1 and A, δ(g (Lt )) and h(Lt−1,A) are uncorrelated,
that is,

Å∗[δ(g (Lt ))h(Lt−1,A)] = Å∗[δ(g (Lt ))]Å∗[h(Lt−1,A)] = 0, (13)

where the second equality follows from the fact that Å∗[δ(g (Lt ))] = Å∗Å∗[δ(g (Lt ))`Lt−1,A] = 0.
The method of residual balancing emulates the moment conditions (13) that would hold in

the pseudo-population were it possible to weight byWl . In other words, it emulates the moment
conditions (13) that would be expected in a sequentially randomized experiment. Specifically, this
is accomplished by (a) specifying a set of g (·) functions,G (Lt ) = {g1(Lt ), . . . , gJt (Lt )}, and a set of
h(·) functions, H (Lt−1,A) = {h1(Lt−1,A), . . . , hKt (Lt−1,A)}; (b) computing a set of residual terms,
δ(g (Lt )) = g (Lt )−Å[g (Lt )`Lt−1,At−1], from theobserveddata; and then (c) finding a set ofweights
such that, for any j , k , and t , the cross-moment of δ(gj (l i t )) andhk (l i ,t−1, a i ) is zero in theweighted
data. Hence, it involves finding a set of nonnegative weights, denoted by r bwi , subject to the
following balancing conditions:

n∑
i=1

r bwi δ(gj (l i t ))hk (l i ,t−1, a i ) = 0, 1 ≤ j ≤ Jt ; 1 ≤ k ≤ Kt , (14)

or, expressedmore succinctly,

n∑
i=1

r bwi ci r = 0, 1 ≤ r ≤ nc , (15)

where ci r is the r th element of c i = {δ(gj (l i t ))hk (l i ,t−1, a i ); 1 ≤ j ≤ Jt , 1 ≤ k ≤ Kt , 1 ≤

t ≤ T } and nc =
∑T
t=1 JtKt is the total number of balancing conditions. The conditions in

equation (14) stipulate that the residualized confounders at each time point are balanced across
future treatments, past treatments, and past confounders, or some function thereof. In this way,
the proposed method adjusts for post-treatment confounding without engendering bias due to
overcontrol or collider stratification, as the residualized confounders are balanced across future
treatments while (appropriately) remaining orthogonal to the observed past.
As long as the convex hull of {c i ; 1 ≤ i ≤ n} contains 0, finding the weighting solution is

an underidentified (or just-identified) problem. Following Hainmueller (2012), we minimize the
relative entropy between r bwi and a set of base weights qi (e.g., a vector of ones or survey
sampling weights),4

min
r bwi

∑
i

r bwi log(r bwi /qi ), (16)

subject to the nc balancing conditions. This is a constrained optimization problem that can be
solved using Lagrange multipliers. Technical details can be found in Supplementary Material A
(see also Hainmueller 2012).
In Figure 1, we illustrate the logic of residual balancing with a directed acyclic graph, which

describes the causal relationships between a time-varying treatmentAt , a vector of time-varying
confounders Lt , and an end-of-study outcome Y with two time periods t = 1, 2. Weighting is
intended to create a pseudo-population in which the confounding arrows L1 → A1, L1 → A2,
and L2 → A2 are “broken”, that is, a pseudo-population in which (a) L1 no longer predicts A1

or A2 and (b) L2 no longer predicts A2, given L1 and A1. The first condition requires L1 to be

4 Alternative loss functions, such as the empirical likelihood (Fong et al. 2018) or the variance (Zubizarreta 2015), could also
be used to construct the weights. We use the relatively entropy metric because it can easily accommodate a set of base
weights.Moreover, in contrast to the empirical likelihood, the relatively entropymetric is convex and thus computationally
convenient.
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Figure 1. The logic of residual balancing. Note: At denotes treatment at time t , Lt denotes time-varying
confounders at time t , andY denotes the end-of-study outcome.

marginally independent of both A1 and A2. Thus, any function of L1 should be uncorrelated
with any function of A1 and A2 in the weighted population. The second condition, by contrast,
requiresL2 to be conditionally independent ofA2, givenL1 andA1. To this end,we could divide the
original population into a number of strata defined byL1 andA1 and thenbalanceL2 across levels
of A2 within each stratum. This approach, however, becomes impractical when L1 and A1 are
continuous and/or multidimensional. To circumvent this problem, our method invokes a model
for the conditional mean of L2 (or some function of L2), given L1 and A1, and it then balances
the residuals from this model across levels of A2 and levels of (L1,A1). This procedure breaks
the confounding arrow L2 → A2 but preserves the causal arrow A1 → L2, thereby adjusting
properly for the observed post-treatment confounderswhile avoiding bias due to overcontrol and
collider stratification. Taken together, thebalancing conditions for bothL1 andL2 yield aweighted
population in which all the confounding arrows (L1 → A1, L1 → A2, and L2 → A2) are “broken”
and all the other arrows are le� intact. An MSM can then be fit to this population in order to
estimate the average causal e�ects of A1 and A2 onY .

3.2 Implementation
In practice, residual balancing requires specifying a set of g (·) functions that constitute G (Lt ).
A natural choice is to set gj (Lt ) = Lj t , where Lj t is the j th element of the covariate vector Lt .
If there is concern about confounding by higher-order or interaction terms, they can also be
included inG (Lt ). Then, the residual terms, δ(g (Lt )), need to be estimated from thedata. Because
δ(g (Lt )) = g (Lt ) − Å[g (Lt )`Lt−1,At−1], they can be estimated by fitting GLMs for g (Lt ) and then
extracting the response residuals, δ̂(g (Lt )) = g (Lt ) − m(β̂Tt r (Lt−1,At−1)), where r (Lt−1,At−1) =
[r1(Lt−1,At−1), . . . , rLt (Lt−1,At−1)] is a vector of regressors and m(·) denotes the inverse link
function of the GLM.
In addition, residual balancing requires specifying a set of h(·) functions that constitute

H (Lt−1,A). Because weighting is intended to neutralize the relationship between Lt and future
treatments, we suggest including all future treatments, At ,At+1, . . . ,AT , in H (Lt−1,A). However,
if it is reasonable toassume that thee�ectsofLt on future treatments stopatAt ′ ,where t ≤ t ′ <T ,
treatments beyond time t ′may be excluded from H (Lt−1,A). Equation (13) additionally indicates
that δ(g (Lt )) should be uncorrelated with past treatments, At−1, and past confounders, Lt−1,
in the weighted pseudo-population. Because Å[δ(g (Lt ))`Lt−1,At−1] = 0 by construction, zero
correlation is guaranteed in the original unweighted population, and when the GLMs for g (Lt )
are Gaussian, binomial, or Poisson regressions with canonical links, the score equations ensure
that the response residuals, δ̂(g (Lt )), are orthogonal to the regressors r (Lt−1,At−1) in the original
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sample. But to ensure that the response residuals, δ̂(g (Lt )), are also orthogonal to the regressors
in the weighted sample, we suggest including all elements of r (Lt−1,At−1) in H (Lt−1,A).
In general, then, H (Lt−1,A) should include all future treatments as well as all regressors in the

GLMs for g (Lt ), including an intercept. A reassuring property of this specification for H (Lt−1,A)
is that if the GLMs for g (Lt ) are Gaussian, binomial, or Poisson regressions with canonical links
and they are fit to the weighted sample with all future treatments,At ,At+1, . . . ,AT , as additional
regressors, the coe�icients on future treatments will all be exactly zero and the coe�icients on
r (Lt−1,At−1) will be the same as those in the original sample. Therefore, when the GLMs for g (Lt )
are correctly specified, the first moments of g (Lt ) are guaranteed to be balanced across future
treatments, conditional on past treatments and confounders, as would be expected in a scenario
where treatment is unconfounded by Lt .
In sum, a typical implementation of residual balancing for estimating the marginal e�ects of a

time-varying treatment proceeds in two steps:

(1) At each time point t and for each confounder j , fit a linear, logistic, or Poisson regression
of l i j t , as appropriate given its level of measurement, on l i ,t−1 and a i ,t−1, and then compute
the response residuals, δ̂(l i j t ).

(2) Find a set of weights, r bwi , such that:

(a) in the weighted sample, the residuals, δ̂(l i j t ), are orthogonal to all future treatments
and the regressors of l i j t ;

(b) the relative entropy between r bwi and the base weights, qi , is minimized.

The weighting solution can then be used to fit any MSM of interest.

3.3 Application to Causal Mediation
Residual balancing can also be used to estimate an MSM for the joint e�ects of a point-in-time
treatment, A, and mediator, M , in the presence of both baseline confounders, X , and a set of
post-treatment confounders, Z , for the mediator–outcome relationship. In this setting, residual
balancing is implemented using essentially the same procedure as outlined previously but with
several minor adaptions. First, for each baseline confounderXj , compute the response residuals,
δ̂(xi j ), by centering it around its sample mean. Then, for each post-treatment confounder Z j , fit
a linear, logistic, or Poisson regression of zi j , depending on its level of measurement, on xi and
ai , and then compute the response residuals, δ̂(zi j ). Finally, find a set of weights, r bwi , such that,
in the weighted sample, the baseline residuals δ̂(xi j ) are orthogonal to both treatment ai and the
mediator mi ; the post-treatment residuals δ̂(zi j ) are orthogonal to treatment, the mediator, and
the pretreatment confounders xi j ; and the relative entropy between r bwi and the base weights
qi is minimized. The weighting solution can then be used to fit any MSM for the joint e�ects of
the treatment and mediator on the outcome, from which the CDE of interest are constructed.
Alternatively, it is also possible to skip the first step and construct weights that only balance
the residualized post-treatment confounders, in which case the baseline confounders X must be
included as regressors in the MSM.

3.4 Comparison with Existing Methods
Compared with IPW, residual balancing has both advantages and limitations. On the one hand,
because it does not require explicit models for the conditional distribution of exposure to
treatment and/or a mediator, residual balancing is robust to the bias that results when these
models aremisspecified, and it is easy to usewith both binary and continuous exposures. Also, by
minimizing the relative entropy between the balancingweights and the baseweights, themethod
tends to avoid highly variable and extremeweights, thus yieldingmore stable estimates of causal
e�ects.
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On the other hand, residual balancing requires models for the conditional means of the post-
treatment confounders (or transformations thereof). When these models are misspecified, the
moment condition in equation (11) is only partially achieved. In this case, equation (12) implies

Å∗[g (Lt )`Lt−1,A] = Å∗[g (Lt )`Lt−1,At−1] , Å[g (Lt )`Lt−1,At−1],

where future treatments (i.e., At ,At+1, . . . ,AT ) may still be unconfounded in the weighted
pseudo-population, but the pseudo-population no longer mimics the original unweighted
population. As a result, estimates of marginal e�ects based on residual balancing weights
may be biased. In addition, even when models for Å[g (Lt )`Lt−1,At−1] are correctly specified,
residual balancing estimates of marginal e�ects may still be biased if the balancing conditions
are insu�icient. For example, if both the treatment and outcome are a�ected by the product of
two confounders, say L1tL2t , but L1t and L2t are only included separately in theG (Lt ) functions,
uncontrolled confounding may still be present in the weighted sample, leading to bias.
Residual balancing is similar to the CBPS method (Imai and Ratkovic 2015) in that it seeks

a set of weights that balance time-varying confounders across future treatments by explicitly
specifying a set of balancing conditions. Residual balancing di�ers from CBPS, however, in two
important respects. First, unlike CBPS, residual balancing can easily accommodate continuous
treatments and/or mediators. As mentioned previously, this is because residual balancing does
not require parametric models for exposure to treatment and/or a mediator, and, thus, it can
balance confounders across both binary and continuous treatments using a common set of
balancing conditions (equation (14)). CBPS, by contrast, is based on a parametric logistic model
for the propensity score, and it is, therefore, limited to settings with binary treatments and/or
mediators.
Second, residual balancing allows for the specification of more flexible and parsimonious

balancing conditions than those specifiedwith theCBPSmethod. In fact, thebalancing conditions
specified by CBPS can also be generated within the residual balancing framework. To see the
connection, note that CBPS attempts to balance the time-varying confounders across all possible
sequences of future treatments within each possible history of past treatments. Thus, for each
confounder j , there are 2t−1 × (2T −t+1 − 1) = 2T − 2t−1 balancing conditions at time t . Summing
over t and j , the total number of balancing conditions associated with CBPS is nCBPSc = J [(T −
1)2T +1]. Because nCBPSc ∼ O (J ·T · 2T ), the number of balancing conditions can easily exceed the
sample size, in which case they are, at best, approximated (evenwithout themethod’s parametric
constraints).With residual balancing, thenumberof balancing conditions nc =

∑T
t=1 JtKt depends

on the specification of G (Lt ) and H (Lt−1,A). As mentioned previously, a natural specification of
G (Lt ) is {L1t , L2t , . . . , Lj t }. If Å[gj (Lt )`Lt−1,At−1] is then modeled with a saturated GLM of Lj t
on At−1 only and H (Lt−1,A) is defined as a set of dummy variables for each possible sequence
of future treatments interacted with each possible history of past treatments, the balancing
conditions in equation (14) would be equivalent to those for the CBPSmethod.
With residual balancing, however, G (Lt ), Å[gj (Lt )`Lt−1,At−1], and H (Lt−1,A) can be specified

more flexibly. For example, when a parsimonious GLM is used to fit Å[gj (Lt )`Lt−1,At−1], and only
theLt regressors of gj (Lt ) andT −t +1 future treatments are included inH (Lt−1,A), the number of
balancing conditions will be nc = J

∑T
t=1(T − t +1+Lt ), which is substantially smaller than nCBPSc .

In large and even moderately sized samples, these balancing conditions can o�en be satisfied
exactly.

4 Simulation Experiments
In this section, we conduct a set of simulation studies to assess the performance of residual
balancing for estimating marginal e�ects with (a) a binary time-varying treatment under correct
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model specification, (b) a binary time-varying treatment under incorrectmodel specification, (c) a
continuous time-varying treatment under correctmodel specification, and (d) a continuous time-
varying treatment under incorrectmodel specification. In each of these four settings, we compare
residual balancing with four variants of IPW: conventional IPWwith weights estimated fromGLMs
(IPW-GLM), IPW with weights estimated from GLMs and then censored (IPW-GLM-Censored), IPW
with weights estimated from CBPS (IPW-CBPS), and as a benchmark, IPW with weights based on
the true exposure probabilities (IPW-Truth). Because the CBPSmethod has not been extended for
continuous treatments in the time-varying setting, we assess the performance of IPW-CBPS only
for binary treatments.5

The data generating process (DGP) in our simulations is similar to that of Imai and Ratkovic
(2015). It involves four time-varying covariates measured at T = 3 time periods with a sample
of n = 1000. At each time t , the covariates Lt are determined by treatment at time t − 1 and a
multiplicative error: Lt = (Ut ε1t ,Ut ε2t , `Ut ε3t `, `Ut ε4t `), whereU1 = 1,Ut = (5/3) + (2/3)At−1 for
t > 1 and εj t ∼ N (0, 1) for 1 ≤ j ≤ 4. Treatment at each time t depends on prior treatment
at time t − 1 and the covariates Lt . Specifically, when treatment is binary, it is generated as
a Bernoulli draw with probability p = logit−1[−At−1 + γT Lt + (−0.5)t ], and when treatment
is continuous, it is generated as At ∼ N (µt = −At−1 + γT Lt + (−0.5)t ,σ2

t = 22), where
A0 = 0 and γ = α (1,−0.5, 0.25, 0.1)T . Here, we use the α parameter to control the level of
treatment–outcome confounding. We consider two values of α , 0.4 and 0.8, corresponding to
scenarios where treatment–outcome confounding is weak and strong, respectively. Finally, the
outcome is generated as Y ∼ N (µ = 250 − 10

∑3
t=1 At +

∑3
t=1 δ

T Lt ,σ
2 = 52), where δ =

(27.4, 13.7, 13.7, 13.7)T . To assess the impact of model misspecification, we use the same DGP,
but we recode the “observed” covariates as nonlinear transformations of the “true” covariates:
specifically, L∗t = (L31t , 6 · L2t , log(L3t + 1), 1/(L4t + 1))T . We then use only the transformed
covariates, L∗t , to implement IPW, its variants, and residual balancing. For IPW and its variants,
using the transformed covariates leads to misspecification of the treatment assignment model.
For residual balancing, the conditional mean model for L∗j t is still correct when treatment is
binary but incorrectwhen treatment is continuous. However, in both cases, using the transformed
covariates (insteadof theoriginal covariates) leads tomisspecificationof thebalancingconditions.
For each scenario described previously, we generate 2500 random samples. Then, for each

sample, we construct weights using IPW-GLM, IPW-GLM-Censored, IPW-CBPS, and residual
balancing. With IPW-GLM, we estimate the weights using logistic regression for binary treatments
and normal linear models for continuous treatments, assuming homoskedastic errors. With
IPW-GLM-Censored, we follow Cole and Hernán’s (2008) example and censor weights at the 1st
and 99th percentiles. With IPW-CBPS, we estimate weights using the methods proposed by Imai
and Ratkovic (2015) with the function CBMSM() in the R package CBPS. With residual balancing,
G (Lt ) = Lt , and the residual terms are estimated from linear models for Lt with prior treatment
At−1 as a regressor, and H (Lt−1,A) includes At as well as the regressors in the model for Lt
(i.e., 1 and At−1). Finally, with each set of weights, we fit an MSM by regressing the outcome Y
on the three treatment variables {A1,A2,A3} and denote their coe�icient estimates as β̂1, β̂2,
and β̂3. We obtain the true values of these coe�icients by simulating potential outcomes with
the g-computation formula, regressing them on the treatment variables, and averaging their
coe�icients over a large number of simulations. The performance of each method is evaluated
using the simulated sampling distributions of β̂1, β̂2, and β̂3.
Figure 2 presents results from simulations with a binary treatment. Specifically, this figure

displays a set of violin plots, which show the sampling distributions of β̂1, β̂2, and β̂3 centered
at the true values of these coe�icients. In these plots, black dots represent means of the

5 Replication data are available in Zhou and Wodtke (2020).
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Figure 2. Simulation results for a binary treatment. “Mild confounding” and “strong confounding”
correspond to α = 0.4 and α = 0.8, respectively. Four di�erent methods are compared: IPW based on
the standard logistic regression (IPW-GLM), IPW based on the standard logistic regression with weights
censored at the 1st and 99th percentiles (IPW-GLM-Censored), IPW based on the CBPS (IPW-CBPS), and
residual balancing. As a benchmark, results from IPW based on true treatment probabilities (IPW-Truth) are
also reported. The violin plots show the sampling distributions (from 2500 random samples) of di�erent
estimators centered at the true values of corresponding parameters, and the shaded violin plots highlight
the estimator with the smallest root mean squared error (RMSE) in each scenario.

sampling distributions, and the shaded distributions highlight the estimator with the smallest
root mean squared error (RMSE) in each scenario. In this figure, the first two panels show the
sampling distributions of the parameter estimates under correct model specification. Comparing
the first and second panels, we see that IPW and its variants su�er from finite-sample bias and
may have skewed sampling distributions, especially when the covariates are strongly predictive
of treatment. By contrast, residual balancing is roughly unbiased, and its estimates appear
approximately normally distributed, regardless of the level of confounding. Second, the results
indicate that residual balancing is much more e�icient than IPW-GLM, especially when the level
of confounding is high. In addition, with a high level of confounding, both IPW-GLM-Censored and
IPW-CBPS yield much less variable estimates than IPW-GLM, but this gain in precision comes at
the expense of greater bias. Residual balancing, by contrast, improves e�iciencywithout inducing
bias.
The last two panels of Figure 2 show the sampling distributions of parameter estimates

under misspecified models where Lt is measured incorrectly. In these simulations, the treatment
assignment models for IPW and the balancing conditions for residual balancing are misspecified.
As indicated by its extreme level of sampling variation, IPW-GLM is highly unstable when
models for the conditional probability of treatment are misspecified. Consistent with Imai and
Ratkovic (2015), IPW-CBPS appears more robust to model misspecification, as reflected in its
substantially smaller sampling variation compared with IPW-GLM. However, this improvement
in precision comes at the cost of greater bias. In addition, censoring the IPW also appears
to substantially improve the method’s performance in the presence of misspecification. In
fact, IPW-GLM-Censored outperforms IPW-CBPS in these simulations. Nevertheless, despite the
improvements achieved by censoring the weights or using CBPS, residual balancing consistently
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Figure 3. Simulation results for a continuous treatment. “Mild confounding” and “strong confounding”
correspond to α = 0.4 and α = 0.8, respectively. Three di�erent methods are compared: IPW based on
the standard logistic regression (IPW-GLM), IPW based on the standard logistic regression with weights
censored at the 1st and 99th percentiles (IPW-GLM-Censored), and residual balancing. As a benchmark,
results from IPW based on true treatment probabilities (IPW-Truth) are also reported. The violin plots show
the sampling distributions (from 2500 random samples) of di�erent estimators centered at the true values of
corresponding parameters, and the shaded violin plots highlight the estimator with the smallest root mean
squared error (RMSE) in each scenario.

produces the most accurate and e�icient estimates across nearly all scenarios, even though its
balancing conditions are incorrectly specified.
Figure 3 presents another set of violin plots based on simulationswith a continuous treatment.

As shown in the first twopanels,whenboth the treatment assignmentmodels and the confounder
models are correctly specified, the bias for IPW and its variants increases substantially with the
level of confounding. Residual balancing, by contrast, is approximately unbiased across both
levels of confounding. Moreover, residual balancing consistently outperforms IPW and its variants
in terms of e�iciency. For example, residual balancing is the most accurate and precise estimator
for β2 and β3 under both high and low levels of confounding, and for β1, the performance of
residual balancing is comparable to that of IPW-GLM-Censored.
The last two panels of Figure 3 present sampling distributions under misspecified models

where Lt is measured incorrectly. In these simulations, the treatment assignmentmodels for IPW
are misspecified, as are both the confounder models and the balancing conditions used with
residual balancing. Consistent with the results discussed previously, this figure also indicates that
IPW-GLM is extremely biased and ine�icient under incorrect models for treatment, that censoring
the weights reduces bias and improves e�iciency, and that residual balancing yields by far the
most accurate and e�icient estimator among all methods. Residual balancing even outperforms
IPW based on the true treatment densities, even though its confounder models and balancing
conditions are both misspecified.

5 The Cumulative E�ect of Negative Advertising on Vote Shares
In this section, we illustrate residual balancing by estimating the cumulative e�ect of negative
campaign advertising on election outcomes (Lau, Sigelman, and Rovner 2007; Blackwell 2013;
Imai and Ratkovic 2015). Drawing on U.S. senate and gubernatorial elections from 2000 to 2006,
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Blackwell (2013) used MSMs with IPW to evaluate the cumulative e�ects of negative campaign
advertising on election outcomes for 114 Democratic candidates. MSMs are appropriate for
this problem because campaign advertising is a dynamic process plagued by post-treatment
confounding. For example, candidates adjust their campaign strategies on the basis of current
polling results, where trailing candidates aremore likely to “go negative” than leading candidates.
At the same time, polling results changeover time andare likely a�ectedby a candidate’s previous
use of negative advertising.
Treatment,At , in this analysis is theproportionof campaignadvertisements thatare “negative”

(i.e., thatmention the opposing candidate) in each campaignweek. Because IPW tends to perform
poorly with continuous treatments, we also consider a binary version of treatment, Bt , for which
the proportion of negative advertisements is dichotomized using a cuto� of 10%, as in Blackwell
(2013). The time-varying confounders, Lt , included in this analysis are the Democratic share in the
polls and the share of undecided voters in the previous campaign week. This analysis also uses a
set of baseline confounders,X , including total campaign length, electionyear, incumbency status,
and whether the election is for the senate or governor’s o�ice. The outcome,Y , is the Democratic
share of the two-party vote.
Following Imai and Ratkovic (2015), we focus on the final five weeks preceding the election and

estimate an MSM for the binary version of treatment with the form

Å[Y (b)`X ] = θ0 + θ1cum(b) + θ2V · cum(b) + θT3 X , (17)

and an MSM for the continuous treatment with the form

Å[Y (a)`X ] = β0 + β1avg(a) + β2V · avg(a) + θT3 X . (18)

In these models, cum(b) denotes the total number of campaign weeks for which more than
10% of the candidate’s advertising was negative, avg(a) denotes the average proportion of
advertisements that were negative over the final five weeks of the campaign, and V is an
indicatorof incumbency statusused toconstruct interaction terms that allow thee�ectof negative
advertising to di�er between incumbents and nonincumbents.6 Thus, the e�ect of an additional
week with more than 10% negative advertising for nonincumbents is θ1, and for incumbents, it
is θ1 + θ2. Similarly, β1 and β1 + β2 correspond to the e�ects of a 1 percentage point increase in
negative advertising for nonincumbents and incumbents, respectively. To facilitate comparison
of results across the di�erent versions of treatment, we report estimates for the e�ects of a 10
percentage point increase in negative advertising—that is, 10β1 and 10(β1 + β2).
We estimate these models with both IPW methods and residual balancing. Specifically, we

first implement IPW-GLM by fitting, at each time point, a logistic regression of the dichotomized
treatmentonboth time-varyingconfoundersandbaselineconfounders, and thenconstructing the
IPW using equation (5). Second, we implement IPW-CBPS with the same treatment assignment
model using the function CBMSM() in the R package CBPS. Finally, we implement residual
balancing by, first, fitting linear models for each covariate in Lt (t ≥ 2) with lagged values of
treatment and the time-varying confounders as regressors, and then extracting residual terms
δ̂(Lt ). For each covariate in L1, the residual term is computed as the deviation from its sample
mean. Next, we find a set of minimum entropy weights such that, in the weighted sample,
δ̂(Lt ) is orthogonal to treatment at time t and the regressors of Lj t . We compute estimates of

6 In equations (17) and (18), the “main” e�ect ofV is captured in the term θT3 X .
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Table 1. Estimatedmarginal e�ects of negative advertising on the candidate’s vote share.

Dichotomized treatment Continuous treatment
Estimator

Nonincumbent Incumbent Nonincumbent Incumbent

IPW-GLM 1.42 (0.43; 0.49) −1.73 (0.47; 0.55) 0.80 (0.28; 0.32) −1.15 (0.31; 0.34)
IPW-CBPS 0.78 (0.89; 0.87) −2.03 (0.41; 0.53)
Residual balancing 0.98 (0.54; 0.68) −1.67 (0.46; 0.68) 0.49 (0.32; 0.43) −0.99 (0.36; 0.43)

Note: For the dichotomized treatment, results represent the estimatedmarginal e�ects of an additionalweek
with more than 10% negative advertising. For the continuous treatment, results represent the estimated
marginal e�ects of a 10 percentage point increase in the average proportion of negative advertisements
across all campaign weeks. The two numbers in each parenthesis are the robust (i.e., “sandwich”) and
jackknife standard errors, respectively.

standard errors using both the robust (i.e., “sandwich”) variance estimator7 and the jackknife
method.8 R code for implementing residual balancing in this analysis is available in Part C of the
Supplementary Material.
Results from these analyses are presented in Table 1, where the first two columns contain

IPW-GLM, IPW-CBPS, and residual balancing estimates based on the dichotomized version of
treatment. For nonincumbent candidates, these results suggest that the e�ect of negative
advertising is positive. However, both IPW-CBPS and residual balancing yield point estimates
that are considerably smaller than IPW-GLM. While IPW-GLM suggests that an additional week
with more than 10% negative advertising increases a candidate’s vote share by 1.42 percentage
points, on average, the estimated e�ect is reduced to 0.78 percentage points for IPW-CBPS and
0.98 percentage points for residual balancing. For incumbent candidates, all three methods
indicate thatnegativeadvertisinghasa substantively largenegative e�ectonvote shares. Residual
balancing, for example, suggests that anadditionalweekwithmore than 10%negative advertising
decreases a candidate’s vote share by 1.67 percentage points, on average.
The last two columns of Table 1 present results based on the continuous version of treatment.

Because IPW-CBPS has not been extended for continuous treatments in the time-varying setting,
we focus on estimates from IPW-GLM and residual balancing. Overall, these results are quite
consistent with those based on the dichotomized treatment. For nonincumbents, the e�ect of
negative advertising appears to be positive, although the estimate from residual balancing is
relatively small. For incumbents, both methods suggest a sizable negative e�ect. According to
the residual balancing estimate, a 10 percentage point increase in the proportion of negative
advertising throughout the final five weeks of the campaign reduces a candidate’s vote share by
about one percentage point, on average.

6 The Controlled Direct E�ect of Shared Democracy on Public Support for War
In this section, we reanalyze data from Tomz and Weeks (2013) to estimate the CDE of shared
democracy on public support for war, controlling for a respondent’s perceived morality of war.
With a nationally representative sample of 1273 US adults, Tomz and Weeks (2013) conducted

7 In Part B of the Supplementary Material, we report a set of simulation results on the performance of the robust variance
estimator for IPW-GLM, IPW-GLM-Censored, IPW-CBPS, and residual balancing. We find that the robust variance estimator
is consistently conservative for residual balancing. For IPW and its variants, the robust variance estimator appears to
sometimes overestimate andother times underestimate the true sampling variance, depending on theparticular scenario.

8 When possible, the nonparametric bootstrap can also be used with residual balancing and IPW. However, because of the
small sample size of the campaign advertising dataset, the residual balancing algorithm does not converge in about 25%
of the bootstrapped samples, likely because the convex hull of {c i ; 1 ≤ i ≤ n} does not contain 0 in those cases. Because it
is dubious to use a variance estimate based on a nonrandom fraction of bootstrapped samples, we report standard errors
from only the robust variance estimator and the jackknife method.
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a survey experiment to analyze the role of public opinion in the democratic peace, that is, the
empirical regularity that democracies almost never fight each other. In this experiment, they
presented respondents with a situation in which a country was developing nuclear weapons and,
when describing the situation, they randomly and independently varied three characteristics of
the country: its political regime (whether it was a democracy), alliance status (whether it had
signed a military alliance with the United States), and economic ties (whether it had high levels
of trade with the United States). They then asked respondents about their levels of support
for a preventive military strike against the country’s nuclear facilities. The authors found that
individuals are substantially less supportive of military action against democracies than against
otherwise identical autocracies.
To investigate the causal mechanisms through which shared democracy reduces public

support for war, Tomz and Weeks (2013) also measured each respondent’s beliefs about the
threat posed by the potential adversary (threat), the cost of military intervention (cost), and
the likelihood of victory (success). In addition, the authors assessed each respondent’s moral
concernsaboutusingmilitary force (morality).With thesedata, they conductedacausalmediation
analysis and found that shared democracy reduces public support for war, primarily by changing
perceptions of the threat and morality of using military force. In this analysis, the authors
examined the role of each mediator separately by assuming that they operate independently
and do not influence one another. However, it is likely that one’s perception of morality is
partly influenced by beliefs about the threat, cost, and likelihood of success, which also a�ect
support forwar directly. Thus, in the following analysis, we treat these variables as post-treatment
confounders and reassess the mediating role of morality accordingly.
In these data, the outcome,Y , is a measure of support for war on a five-point scale; treatment,

A, denotes whether the country developing nuclear weapons was presented as a democracy;
the mediator, M , is a dummy variable indicating whether the respondent thought it would be
morally wrong to strike; the baseline covariates X include dummy variables for each of the
two other randomized treatments (alliance status and economic ties) as well as a number of
demographic and attitudinal controls; and the post-treatment confounders Z include measures
of the respondent’s beliefs about threat, cost, and likelihood of success.9 We estimate the CDE of
shared democracy, controlling for perceptions of morality, using an MSMwith form

Å[Y (a,m)`X ] = α0 + α1a + α2m + α3am + αT4 X . (19)

In this model, we control for baseline covariates because, although treatment is randomly
assigned, they may still confound the mediator–outcome relationship.10 The CDE is given by
CDE(m) = α1 + α3m, where α1 measures the e�ect of shared democracy on support for war if
none of the respondents hadmoral reservations aboutmilitary intervention andα1+α3measures
the e�ect of shared democracy on support for war if all respondents thought it would be morally
wrong to strike.
We estimate this model with both IPW-GLM and residual balancing weights. Specifically, we

first implement IPW-GLM by fitting a logit model forM withX ,A, and Z as regressors, by fitting a
second logitmodel forM with onlyX andA as regressors, and thenbyusing the fitted values from
these models to estimate a set of weights with the following form: sw †

i
= Ð(M=mi `X=xi ,A=ai )

Ð(M=mi `X=xi ,A=ai ,Z=zi )
.

Second, we implement residual balancing by fitting a linear model for each post-treatment
confounder in Z with X and A as regressors, computing residual terms δ̂(Z ) and then finding a
set of minimum entropy weights such that, in the weighted sample, δ̂(Z ) is orthogonal toM and

9 For detailed descriptions of the variables included in L and Z , see Tomz and Weeks (2013, Table 5).
10 Alternatively, these pretreatment confounders can be adjusted for using IPW or residual balancing weights. We adjust for
them directly in the MSM for the sake of statistical e�iciency.
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Table 2. Estimated CDE of shared democracy on support for war using IPW and residual balancing.

Total e�ect IPW Residual balancing

Intercept 2.39 (0.05; 0.05) 3.12 (0.05; 0.06) 2.76 (0.05; 0.05)
Shared democracy −0.35 (0.07; 0.07) −0.20 (0.07; 0.08) −0.36 (0.08; 0.08)
Moral concerns −1.63 (0.14; 0.15) −1.20 (0.13; 0.13)
Shared democracy * moral concerns −0.05 (0.16; 0.16) 0.14 (0.16; 0.16)

Note: Coe�icients of pretreatment covariates are omitted. For ease of interpretation, all pretreatment
covariates are centered at their means. The two numbers in each parenthesis are robust (i.e., “sandwich”)
standard errors and jackknife standard errors, respectively.

the regressors of Z . Standard errors are computed using the robust (i.e., “sandwich”) variance
estimator and the jackknife method. R code for implementing residual balancing in this analysis
is available in Part C of the Supplementary Material.
As a benchmark, the first column of Table 2 presents an estimate of the total treatment

e�ect from a regression of Y on X and A. Consistent with the original study, we find that
shared democracy significantly reduces public support for war—specifically, by 0.35 points on
the five-point scale, or about 0.25 standard deviations. The next two columns present IPW and
residual balancing estimates, respectively, for model (19). In this model, the “main e�ect” of
shared democracy represents the estimated CDE if respondents had nomoral reservations about
military intervention, and the sum of this coe�icient and the interaction term represents the
estimated CDE if respondents did have moral reservations.
IPW and residual balancing yield somewhat di�erent estimates of these e�ects. According to

IPW, the estimatedCDEof shared democracy is−0.20 if respondents hadnomoral concerns about
war, and it is −0.25 if respondents thought it was morally wrong to strike. According to residual
balancing, by contrast, the estimated CDE of shared democracy is −0.36 if respondents had no
moral concernsaboutwar, and it is−0.22 if respondents thoughtmilitary interventionwasmorally
wrong. Notwithstanding these di�erences, however, both IPWand residual balancing suggest that
most of the total e�ect is “direct”, that is, transmitted through pathways other thanmorality.

7 Discussion and Conclusion
Post-treatment confounding arises in analyses of both time-varying treatments and causal
mediation, where it complicates the use of conventional regression, matching, and balancing
methods for causal inference. To adjust for this type of confounding, researchers most o�en use
MSMs along with the associated method of IPW estimation (Robins 2000; Robins, Hernan, and
Brumback 2000; VanderWeele 2015). IPW, however, is highly sensitive to model misspecification,
relatively ine�icient, susceptible to finite-sample bias, and di�icult to use with continuous
treatments. Several remedies for these problems have been proposed, such as censoring the
weights (Cole and Hernán 2008) or constructing them with CBPS (Imai and Ratkovic 2014, 2015),
but these corrections are not without their own limitations.
In this article, we proposed themethod of residual balancing for constructing weights that can

be used to estimate MSMs. Like IPW, residual balancing avoids the bias that a�licts conventional
methods of covariate adjustment when some or all of the covariates are post-treatment
confounders. In contrast to IPW, residual balancing does not require models for the conditional
distribution of exposure to treatment and/or a mediator. Rather, it entails modeling only the
conditional means of the post-treatment confounders, and because it simultaneously imposes
covariate balancing and minimum entropy conditions on the weights, the method is both more
e�icient and more robust to model misspecification than IPW. It is also much easier to use
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with continuous treatments, which obviates the need for arbitrary quantile binning as is o�en
employed in practice (e.g., Wodtke, Harding, and Elwert 2011; Blackwell 2013).
Residual balancing also appears to outperform IPW even when the weights are constructed

with CBPS, which also incorporate explicit balancing conditions when estimating the conditional
probabilities of exposure. The reason, we believe, is that IPW with CBPS is torn between two
conflicting goals. On the onehand, it imposes a parametric logisticmodel on the propensity score,
which limits the number of balancing conditions that can be satisfied with IPW. On the other
hand, it attempts to balance the time-varying confounders across all possible sequences of future
treatmentswithin all possible histories of prior treatments, generating an extremely large number
of balancing conditions. Therefore, the search for covariate balancing weights is almost always
an overidentified problem with CBPS, leading to weights that can, at best, satisfy the balancing
conditions approximately. In this situation, IPWwith CBPSmay remain biased if certain important
balancing conditions are notwell satisfied in theweighted sample. By contrast, residual balancing
does not impose a parametric structure on the conditional probability/density of the exposure.
Moreover, it models the conditional means of the time-varying confounders and balances only
their residuals across a parsimonious representation of future treatments and the observed past.
Therefore, the search for residual balancing weights is o�en an underidentified problem, leading
to exact, rather than approximate, balance in the weighted sample.
Despite its many advantages, residual balancing is still limited in several ways. First, it

requires modeling the conditional means of the post-treatment confounders (or transformations
thereof). As noted earlier, when these models are misspecified, the pseudo-population created
by the residual balancing weights will no longer mimic the original unweighted population,
making estimates of marginal e�ects biased for the target quantities of interest. This problem
might be mitigated in practice by combining residual balancing with a sensitivity analysis
to assess the robustness of estimates to di�erent parametric models for the post-treatment
confounders. Another remedy might involve fitting nonparametric or semiparametric models for
Å[g (Lt )`Lt−1,At−1], although this may potentially engender inferential problems (e.g., a lack of
√
n-consistency; seeNewey 1994) and thus additional research is needed to better understand the

method’s performance with these types of models for the post-treatment confounders.
Second, even when models for the conditional means of the post-treatment confounders

are correctly specified, residual balancing estimates of marginal e�ects may still be biased if
the balancing conditions are insu�icient. In practice, this bias can be mitigated by including
more functions (e.g., cross-product and higher-order terms) in G (Lt ). Nevertheless, if there are
a large number of time-varying confounders, inclusion of their cross-product and higher-order
termswouldmultiply the number of balancing conditions, making exact balancemore di�icult to
achieve. In those cases, the balancing conditions in equation (15) may need to be relaxed to allow
for approximate, rather than exact, balance (e.g., Wang and Zubizarreta Forthcoming). We leave
this extension for future work.
Another important direction for future research will be to further investigate the theoretical

properties of residual balancing. For example, consistency may be established if the method can
be recast as a form of IPWwith treatment probabilities/densities estimated from a proper scoring
rule (an objective function that is not necessarily the log-likelihood). As Zhao and Percival (2017)
show, when treatment is binary and the estimand is the average treatment e�ect on the treated,
entropy balancing weights can be recast as IPW estimated from a tailored objective function
that di�ers from the Bernoulli likelihood. However, this relationship does not hold when the
estimand is the average treatment e�ect (ATE). Specifically, Zhao (2019) shows that IPW for the
ATE can be viewed as a set of covariate balancing weights only when a di�erent loss function
(
∑
i (wi − 1) log(wi − 1)−wi ), rather than the entropy loss (

∑
i wi logwi ), is used in the optimization

problem. This result suggests that alternative loss functionsmay be required to establish a formal
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link between residual balancing and IPW. Futurework should therefore explore theproperties and
performance of residual balancingwith a variety of loss functions, including but not limited to the
entropy loss on which we focus in the present study.
These limitations notwithstanding, residual balancing appears to provide an e�icient and

robust method of constructing weights for MSMs. It should therefore find wide application in
analyses of time-varying treatments and causalmediation,wherever post-treatment confounding
presents itself. To facilitate its implementation in practice, we have developed an open-source
R package, rbw, for constructing residual balancing weights, which is available from GitHub:
https://github.com/xiangzhou09/rbw. A Stata package with similar functionality is also available
fromGitHub: https://github.com/gtwodtke/rbw. In addition, Part Cof the SupplementaryMaterial
provides R code illustrating the use of rbw in our two empirical examples.
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