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Vortex breakdown bubbles in the flow in a closed cylinder with a rotating end-cover
have previously been successfully simulated by axisymmetric codes in the steady range.
However, high-resolution experiments indicate a complicated open bubble structure
incompatible with axisymmetry. Numerical studies with generic imperfections in the
flow have revealed that the axisymmetric bubble is highly sensitive to imperfections,
and that this may resolve the apparent paradox. However, little is known about the
influence of specific, physical perturbations on the flow structure. We perform fully
three-dimensional simulations of the flow with two independent perturbations: an
inclination of the fixed cover and a displacement of the rotating cover. We show
that perturbations below a realistic experimental uncertainty may give rise to flow
structures resembling those obtained in experiments, that the two perturbations may
interact and annihilate their effects, and that the fractal dimension associated with the
emptying of the bubble can quantitatively be linked to the visual bubble structure.

1. Introduction
The flow in a closed cylindrical container driven by a rotating end-cover has

long been a basic set-up for the study of recirculation zones on a main vortex,
also known as vortex breakdown of bubble type (Leibovich 1984). Vogel (1968) and
Ronnenberg (1977) made the first experimental investigations and Escudier (1984)
identified flow regimes with one, two, or three steady breakdown bubbles and mapped
an experimental bifurcation diagram in terms of the two dimensionless parameters of
the problem, the Reynolds number Re and the aspect ratio h of the cylinder,

Re =
ΩR2

ν
, h =

H

R
. (1)

Here, Ω is the angular velocity of the rotating end-cover, R is the radius of the
cylinder, H is the height, and ν is the kinematic viscosity of the fluid.

When the flow is steady it appears axisymmetric, and numerous numerical solutions
of the Navier–Stokes equations assuming axisymmetry (Lugt & Abboud 1987; Lopez
1990; Daube 1991; Tsitverblit 1993; Gelfgat, Bar-Yoseph & Solan 1996; Brøns, Voigt
& Sørensen 1999) reproduce the number, shape, and location of the breakdown
bubbles very well.

The axisymmetry of the flow is consistent with the three-dimensional computational
stability analysis of Gelfgat, Bar-Yoseph & Solan (2001). For aspect ratios h around
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the value we consider here, it was shown that the steady axisymmetric flow is linearly
stable to all perturbations. The first loss of stability of this solution occurs in a
Hopf bifurcation to an axisymmetric mode, and asymmetric modes appear only far
away from the steady regime. The stability analysis agrees with the pseudo-spectral
computations of Serre & Bontoux (2002) at a high aspect ratio, where, in the steady
domain, higher modes die out as transients and leave an axisymmetric flow.

After the loss of stability of the steady flow a number of interesting dynamical
phenomena involving interactions of Hopf bifurcations and transition to quasi-
periodic states have been found numerically under the assumption of axisymmetry.
Experimental studies have confirmed the numerical predictions (Stevens, Lopez &
Cantwell 1999; Lopez, Cui & Lim 2006). Hence, on the Eulerian level, the flow
in the cylinder is very well described by the axisymmetric Navier–Stokes equations
in a quite large range of the parameters h and Re. However, on the Lagrangian
level things are different. High-resolution visualization experiments by Spohn, Mory
& Hopfinger (1998) show a complicated folded and asymmetric structure of the
downstream part of the steady bubble which is incompatible with the assumption of
an axisymmetric velocity field. A prominent difference is that in steady axisymmetric
flow the breakdown bubble must be closed, while the experimentally observed
asymmetric bubbles are open and exchange fluid with the main vortex. As visualization
experiments are an important means to obtain information about the spatial structures
in the flow, and transport of particles is of interest in understanding the mixing
properties of the flow, it is worthwhile to study the Lagrangian structure of the
breakdown zones.

Several researchers have addressed the fundamental inconsistency between
computations and experiments in the steady regime. Gelfgat (2002) has pointed
out that if the density difference between tracer particles and the fluid is taken in
account, the particle paths will be asymmetric, even if the flow field is axisymmetric.
This may result in a misleading picture of the flow field in a visualization experiment.
However, numerical simulations including this effect do not result in particle traces
which resemble the experimentally obtained patterns in the steady regime.

A series of papers by Sotiropoulos and coworkers (Sotiropoulos & Ventikos
1998, 2001; Sotiropoulos, Ventikos & Lackey 2001; Sotiropoulos, Webster & Lackey
2002) has revealed the extreme sensitivity of the flow to imperfections. Fully three-
dimensional simulations are performed on a curvilinear grid which does not comply
with the rotational symmetry of the problem. On the Eulerian level, the simulations
give results which are axisymmetric to a high degree of precision. On the Lagrangian
level, however, the small imperfections induced by the grid suffice to give a clearly
asymmetric flow structure, with particle traces closely resembling the experimental
results by Spohn et al. (1998).

The effect of external perturbations was studied by Ventikos (2002) who replaced
the circular cross-section of the flow domain by a slightly eccentric ellipse. Asymmetric
and complex streamlines were also obtained, even for very small eccentricities. The
details of the bubble structure did not, however, resemble the experimental ones.
Similarly, Thompson & Hourigan (2003) mimicked computationally the effect of a
misalignment of the rotating cover. The axisymmetric flow domain was retained, and
asymmetric boundary conditions on the rotating cover were applied as an approximate
model of the misalignment. Very small misalignments gave rise to clearly asymmetric
bubble structures, resembling those obtained by Spohn et al. (1998).

Hence, little is known about the influence of specific, realistic perturbations of
the flow as they may be applied intentionally or as unavoidable imperfections in
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an experiment. To elucidate the sensitivity of the flow to external perturbations
we perform in the present paper fully three-dimensional simulations of the flow
with two simple, independent perturbations: an inclination of the fixed cover and
a displacement of the axis of rotation of the rotating cover. We will show, on
one hand, that for a relatively large controlled inclination of the fixed cover, the
experimentally obtained flow structure is very well reproduced, and, on the other
hand, that perturbations below a realistic experimental uncertainty can reproduce the
experimental results by Spohn et al. (1998) in an axisymmetric set-up. Furthermore,
we will show that the two independent perturbations may interfere constructively
or destructively with regard to the openness of the bubble, and that this can be
understood from the Melnikov theory of perturbed heteroclinic connections. Finally,
we compute the fractal dimension associated with the devil’s staircase appearing when
the emptying of particles from the bubble is monitored, and show how this number
matches the openness of the bubble as it appears in visualizations.

2. Topology of vortex breakdown bubbles
Holmes (1984) has identified the basic features of the Lagrangian dynamics when

an axisymmetric vortex breakdown bubble is perturbed. See also Sotiropoulos et al.
(2001) and Hartnack, Brøns & Spohn (2000). Here we briefly review the theory.

For a given steady three-dimensional velocity field in Cartesian coordinates

v = (u(x, y, z), v(x, y, z), w(x, y, z)) (2)

the streamlines are found by solving the differential equations

dx

dt
= u(x, y, z),

dy

dt
= v(x, y, z),

dz

dt
= w(x, y, z), (3)

for x(t) = (x(t), y(t), z(t)). In a visualization experiment massless tracer particles
follow the streamlines, so the structure of the solution curves of equations (3) is
of interest here. This is conveniently described with concepts from low-dimensional
nonlinear dynamics.

An axisymmetric recirculating bubble is characterized by the presence of stagnation
points (or critical points) on the axis, that is, points where v = 0.

The top stagnation point P is of saddle type with invariant stable and unstable
manifolds. The stable manifold Ws(P ) is defined as the set of streamlines x(t) for
which x(t) → P for t → ∞. This manifold is one-dimensional, and consists of a part of
the axis. The unstable manifold Wu(P ) consists of the streamlines x(t) with x(t) → P

for t → − ∞. It constitutes a two-dimensional streamsurface emanating from from P .
Similarly, the bottom stagnation point Q has stable and unstable manifolds. Owing to
axisymmetry Wu(P ) = Ws(Q), and this closed surface constitutes the bubble surface.
Similarly, the part of the cylinder axis inside the bubble belongs to both Ws(P ) and
Wu(Q). See figure 1(a, b). If tracer particles are released close to the axis above P ,
they will spiral around Ws(P ) down towards P and then out along Wu(P ). This
surface is attracting as the vector field in directions transverse to it points toward
the surface. Hence, small variations in the initial conditions of tracer particles will
quickly be damped out, and an accurate visualization of Wu(P ) is obtained.

If the velocity field v is perturbed by an imperfection, for example in the geometry
of the flow domain such that the flow is no longer axisymmetric, changes in the bubble
structure will occur. Stagnation points of saddle type are structurally stable, i.e. they
may move slightly, but retain their local structure with stable and unstable manifolds
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P

Q

P

W u(P) =
W s(Q)

W u(P)

W s(Q)

P

Q Q

(a) (b) (c)

Figure 1. Qualitative sketches of vortex breakdown bubble shapes. (a) A closed axisymmetric
breakdown bubble surface. A heteroclinic streamline connecting P and Q is shown.
(b) Intersection of the axisymmetric bubble with a meridional plane. (c) Bubble structure
in the perturbed case. For clarity, only the right-hand part is shown. The open circles indicate
a part of a heteroclinic streamline at the intersection of Wu(P ) and Ws(Q).

(Wiggins 1990). Tracer particles will still follow Wu(P ), and close to P the manifold
will closely resemble the unperturbed case. The global structure, however, will be
different. For an axisymmetric steady bubble, the surface Wu(P ) = Ws(Q) consists
entirely of heteroclinic streamlines, that is, streamlines x(t) with the property that
x(t) → P for t → −∞ and x(t) → Q for t → ∞. If the axisymmetry is broken, Wu(P )
and Ws(Q) will no longer be identical, but some of the heteroclinic streamlines will
persist. Figure 1(c) shows the situation in a meridional plane. A heteroclinic streamline
appears as an infinite sequence of points, accumulating in backward time on P and
in forward time on Q. Owing to the saddle point nature of Q, Wu(P ) is stretched
as it approaches Q. Pieces of Wu(P ) between two heteroclinic points below Ws(Q)
are stretched downwards, and pieces above Ws(Q) are stretched upwards inside the
bubble. A similar folding and stretching of Ws(Q) occurs as it approaches P in
backward time. As only Wu(P ) is attracting, Ws(Q) will not be seen in an experiment
with tracer particles and only the folded structure of the downstream part of the
bubble close to Q can be visualized. Even the smallest imperfection in an experiment
will in principle give rise to open bubbles with a folded downstream part, shaped as
shown in figure 1(c).

The present analysis only considers the outer bubble contour. In axisymmetric flow,
the inside of the bubble is filled with closed streamsurfaces, as indicated on figure 1(b).
An asymmetric perturbation will also have a profound influence on the flow inside
the bubble. A detailed analysis is outside the scope of the present paper. We only
mention that a complicated pattern of chaotic streamlines interspersed with islands
of periodic behaviour will typically appear. See e.g. Wiggins (1990) and Sotiropoulos
et al. (2001).

Transversal intersections of manifolds also occur when the flow is axisymmetric but
time-periodic, where structures similar to figure 1(c) are found in the Poincaré plane
(Lopez & Perry 1992a , b). Thus, in this case, there is also a complicated transport of
fluid in and out of the breakdown bubble.

3. Numerical method
We use the cylinder radius R and the angular velocity Ω of the bottom cover

to non-dimensionalize the system. In dimensionless variables, we hence consider a
cylindrical container with radius 1 and height h filled with viscous fluid. The top cover
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Figure 2. (a) Geometry of the system showing the inclination α of the fixed cover and the
displacement ∆ of the rotating bottom cover. (b) Part of the computational mesh in the
azimuthal plane θ = 0 close to the centre of the top cover for ∆= −0.5 % and α = 2.5◦. The
axis of rotation is shown as a dark solid line and the cylinder axis is shown as a dashed line.

is inclined an angle α with the cylinder axis. The bottom cover rotates with constant
angular velocity Ω = 1. The axis of rotation is displaced a distance ∆ from the cylinder
axis. See figure 2(a). In the present paper we consider Re = 1850 and h = 1.75, as this
is the case considered experimentally by Spohn et al. (1998) and several others. For
this parameter combination a single large steady breakdown bubble exist.

The flow is governed by the incompressible Navier–Stokes equations. Because of the
simple geometry of the cylinder, it is natural to formulate the equations in cylindrical
coordinates (r, θ, z). The resulting three-dimensional Navier–Stokes equations are
solved by a predictor–corrector method based on the cell-centred finite-volume/multi-
block strategy of Michelsen (1992) and Sørensen (1995). In the predictor step, the
momentum equations are discretized using a second-order backward differentiation
scheme in time or pseudo-time (local time-steps for steady computations) and second-
order central differences in space, except for the convective terms that are discretized
by the QUICK upwind scheme. Since all variables are defined at cell centres, no
special treatment is needed for the singularity problem at the centre axis. In the
corrector step, the new Rhie–Chow interpolation developed by Shen, Michelsen &
Sørensen (2001) and the new SIMPLEC scheme on collocated grids by Shen et al.
(2003) are used in order to avoid numerical oscillations from pressure decoupling.
The pressure Poisson equations are solved by a five-level multi-grid technique. For
more details, the reader is referred to the original works.

Since the top cover is inclined with an angle α and the rotating axis is displaced by
∆ (∆ � 1) from the cylinder axis, the mesh is generated such that

θj = 2π(j − 1)/Ny,

rij = (1 − ∆ cos θj )(i − 1)/Nx,

zijk = (h + rij cos θj tan α)(k − 1)/Nz,

where 1 � i � Nx + 1, 1 � j � Ny + 1, and 1 � k � Nz + 1. A detail of the mesh in
the region close to the top centre is shown in figure 2(b). From the figure, we can
see that the mesh is not orthogonal and the rotating axis (heavy line) is displaced
from the cylinder axis (dashed line). Although the Navier–Stokes solver is capable
of determining both steady and unsteady flow on non-orthogonal meshes, the steady
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Figure 3. (a) The iso-curve ψ = 0 obtained from an axisymmetric simulation (Sørensen & Loc
1989; Daube 1991), representing the bubble surface. (b) Particle traces in the three-dimensional
velocity field with axisymmetric geometry α = ∆= 0.

version is used in the current paper. The computational domain consists of Nx =128
cells in the radial direction, Ny = 128 in the tangential direction and Nz = 256 in the
axial direction. With this mesh and under axisymmetric conditions we get results
which agree closely with the results obtained by an axisymmetric code (Sørensen &
Loc 1989) which has been thoroughly validated.

In the velocity field v(x) the motion of massless tracer particles is simulated by
solving the ordinary differential equations (3) numerically using MATLAB routines.
The variable-order Adams–Bashforth–Moulton PECE solver ode113 is used with
a relative tolerance of 10−8. The velocity field is computed in each cell by tri-
linear interpolation with the routine interp3. In each experiment, 20 000 particles are
released uniformly at circles with centres at the cylinder axis. The circles are placed at
z = 1.745, well above the top stagnation point of the bubble which under axisymmetric
conditions is at z = 1.4. The radii of the circles vary typically from 10−10 to 10−4, and,
as discussed in § 2, the results are insensitive to these choices.

We will consider particle positions after 50 revolutions of the cover by displaying
the particles which are present in a thin sheet around the azimuthal plane θ = 0. This
corresponds to an experiment where particles are visualized by an azimuthal laser
sheet.

To validate the three-dimensional solver, we compare with results from an axisym-
metric simulation obtained from an axisymmetric Navier–Stokes code developed at
LIMSI/CNRS (Sørensen & Loc 1989; Daube 1991). This is based on a stream-
function/vorticity formulation, so streamlines are directly available as iso-curves of
the streamfunction ψ . Figure 3(a) shows the iso-curve ψ = 0 which represents the
breakdown bubble. Figure 3(b) shows a particle tracing experiment from the full
three-dimensional simulation. Keeping in mind that the plot in figure 3(b) also
contains inherent truncation errors from the integration, there is excellent agreement
between the two plots.

As we use relaxation with pseudo-time steps to compute steady solutions no
information about transient behaviour or stability of the solutions is obtained.
However, since we consider small perturbations from an axisymmetric solution which
is far from the stability limit, we expect, from continuity of eigenvalues with respect
to parameters, that the steady solution maintains its stability. This is confirmed
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(a) (b)

Figure 4. (a) Experiment with inclination α = 0.4◦ from Sotiropoulos et al. (2002).
(b) Computation with inclination α = 0.4◦, stretched 8 % vertically.

experimentally. Spohn et al. (1998), Sotiropoulos et al. (2002) and Lopez et al. (2006)
all observe steady flow, even if the bubble structures show asymmetric structures
stemming from experimental imperfections or a deliberate inclination of the fixed
cover. Furthermore, Sørensen, Naumov & Mikkelsen (2006) confirm the numerical
stability limits obtained numerically by Gelfgat et al. (2001) in a real experiment.
Hence we are confident that the steady solutions we find are stable.

4. Comparison with experiments
To compare visualization experiments with computations, optical effects must be

taken into account, as pictures may be stretched in a way depending specifically on
the apparatus. We have compensated this by stretching the computational results
shown in figures 4 and 6 axially. We have not attempted to estimate the correct
stretching rate in each case, but have simply chosen it by fitting the upper bubble
part to experiments.

Sotiropoulos et al. (2002) have performed experiments with a controlled inclination
α = 0.4◦. This is compared with simulations of the bubble structure in figure 4. The
general shape, amplitude, and spacing of the spikes of the folded downstream part of
the bubble compare well. In contrast, on the Eulerian level, this inclination gives rise
to an almost negligible asymmetry as shown in figure 5.

Figure 6(a) shows an experiment by Spohn et al. (1998), where great care has
been taken to ensure an axisymmetric geometry. Nevertheless, the flow is clearly
asymmetric. In figure 6(b) we show a simulation with a displacement of the axis
of rotation ∆ = −0.5 % and obtain an almost identical bubble structure. Hence, as
the radius of the cylinder in the experiment is 45.7 mm, a misalignment of the axis
of rotation of only 0.23 mm suffices to give an effect of the same size as observed
experimentally. We do not claim that this is the specific effect that causes the
asymmetry in Spohn’s experiment. As we shall see in figure 7, various combinations
of α and ∆ can give rise to almost identical bubble structures, and other imperfections
may contribute as well. But the simulation demonstrates that an imperfection below
a realistic experimental accuracy can explain the observed particle traces.
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(a) (b)

Figure 5. Iso-curves of axial velocity w in a meridional section. The full lines represent upward
velocities, the dashed lines are downward velocities. (a) Axisymmetric case. (b) Inclination of
cover α = 0.4◦.

(a) (b)

Figure 6. (a) Experiment with α = 0 from Spohn et al. (1998). (b) Computation with
displacement ∆ = −0.5 %, stretched 12 % vertically.

5. Interaction of perturbations
A series of particle tracing experiments with various values of α and ∆ is shown in

figure 7. It is clearly demonstrated that even very small imperfections result in open
bubbles with folded downstream parts in agreement with the theory of § 2. It also
appears that the two imperfections can interact to enhance or suppress their effect.
For example, for α = 0.01◦, the folding of Wu(P ) is minimal for ∆ =0.01 %.

This feature is clearly seen in figure 8, which shows particle traces for very small
values of α and ∆. One can envisage a curve with positive slope in the (α, ∆) parameter
plane corresponding to configurations with a minimal folding of the downstream part
of the bubble.

An explanation can be obtained from the Melnikov perturbation theory of
invariant manifolds (Guckenheimer & Holmes 1983; Wiggins 1990). Holmes (1984)
has suggested using the Melnikov method to study the dynamics of vortex breakdown
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Figure 7. Particle traces for different values of the inclination α and the axis displacement ∆.
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Figure 8. Further particle traces for small values of α and ∆.
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in the periodic regime. From this theory, it is possible to compute an asymptotic
measure of the distance between Wu(P ) and Ws(Q), the Melnikov function M . The
Melnikov function is defined along the unperturbed manifold Wu(P ) = Ws(Q). A zero
of M corresponds to a point of intersection of Wu(P ) and Ws(Q) as exemplified by
the circles in figure 1(c).

In the present case, M will depend on the imperfection parameters α and ∆.
Obviously, M ≡ 0 when α = ∆ =0, but there may be other combinations of α and
∆ which make M identically zero. For such a combination, Wu(P ) and Ws(Q) only
differ to second order in the imperfection parameters and the folding of the manifolds
will be minimal.

Rom-Kedar, Leonard & Wiggins (1990) performed an analytic derivation of the
Melnikov function for a pair of oscillating vortices and found that the Melnikov
function vanishes for certain non-zero combinations of the parameters defining the
flow. Although a physically quite different problem, the streamline geometry is similar,
and the periodic forcing corresponds to the angular symmetry here. As we only have
the flow represented numerically, a similar analytical computation for the present
problem is not possible, but could be performed numerically. However, Hartnack
et al. (2000) computed the Melnikov function for a normal form model, where a
simple analytical expression for the velocity field mimics the topology of a vortex
breakdown bubble. Adding two generic imperfections, it was shown that at a certain
ratio between the strengths of the imperfections, the Melnikov function vanishes,
resulting in a minimal folding of the bubble surface.

6. Fractal dimension associated with emptying of the bubble
When the breakdown bubble is not closed, tracer particles may enter the bubble

and stay there for a while before they exit close to the lower stagnation point Q.
Sotiropoulos et al. (2001) studied the residence time of particles in the bubble, and
found that the number of particles NP(t) inside the bubble as a function of time t

follows a devil’s staircase. That is, the graph of NP consists of plateaus of varying
length, and the set of ‘holes’ between the steps is a Cantor set with a fractal dimension
d . It was found that d = 0.4, based on a flow where the asymmetry was generated
by a computational mesh not being axisymmetric. Here we present computations of
the fractal dimension in the case where the asymmetries are generated by physical
imperfections.

The computations follow Sotiropoulos et al. (2001) and Bak (1986). Here we outline
the method. Two thousand particles are randomly placed in a disk of radius 0.001
centred at the cylinder axis at z =1.74, above the breakdown bubble. A particle is
defined as being inside the bubble if it is above a horizontal plane just below the
lower stagnation point of the bubble. All particles are released at t = 0, and NP (t) is
computed as the simulation progresses. A typical graph of NP is shown in figure 9(a).
Periods with a constant number of particles inside the bubble alternate with bursts
of particles leaving the bubble. A detailed view reveals a self-similar structure of
a burst, which again consists of small periods with a constant number of particles
interspersed with smaller bursts.

Let T (r) denote the total width of plateaus of the graph of NP of width more
than r , and let Tmax be the maximum residence time in the simulation. If the space
between the plateaus vanishes as a power function,

Tmax − T (r) ≈ r1−d as r → 0, (4)
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Figure 9. (a) Number of particles NP (t) inside the bubble as a function of time t for α = 0.06◦,
∆= 0. The graph displays a devil’s staircase structure. (b) Sample graphs for α = 0.06◦ of log(N )
vs. log(1/r), where N is defined in equation (5) and r is the length of plateaus in the staircase.

the fractal dimension of that set is d . Equivalently,

N(r) =
Tmax − T (r)

r
≈ (1/r)d . (5)

Figure 9(b) shows sample graphs of N vs. 1/r on a log–log scale, where the exponent
d is the slope of the linear relationship. Estimating d for α = 0.06◦ over two decades
gives rise to the results shown in table 1. The cases treated are those shown in the
third row of figure 8.
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∆ 0% 0.02% 0.04% 0.06% 0.08% 0.1%

d 0.65 0.40 — 0.54 0.66 0.68

Table 1. Fractal dimension d of the Cantor set associated with particle emptying for α = 0.06◦

for different values of the axis displacement ∆, corresponding to the third row of figure 8. For
∆ = 0.04 % no particles leave the bubble during the simulation, and d cannot be computed.

We observe a variation of d which follows the visual structure of the bubble: The
more pronounced the folding of the bubble surface, the higher the value of d . For
∆ =0.04 %, where the bubble is almost closed, the residence time of particles inside
the bubble is so long that no particles leave during the simulation time, and d cannot
be computed.

This behaviour is to be expected. When d is large, the steps of it NP are short,
and the emptying process is more uniform in time. This is matched by a more ‘spiky’
bubble, where it is easier for particles to leave.

7. Conclusions
An axisymmetric vortex breakdown bubble is, using a notion from dynamical

systems, structurally unstable. This means that arbitrarily small asymmetric
perturbations of the velocity field will give rise to a fundamentally changed flow
structure. This was pointed out by Holmes (1984) on a theoretical background
and convincingly demonstrated by Sotiropoulos and co-workers who have obtained
complicated asymmetric breakdown bubbles from the exceedingly small imperfections
generated by an asymmetric computational grid. Whether this suffices to explain the
experimentally observed asymmetric bubble structures is, however, another matter.
Imperfections generated by a grid are not linked to any specific physical perturbation.
Rather, they can be considered as a generic model for such imperfections, but one
cannot infer the magnitude or nature of an external perturbation needed to provide
the imperfection and whether such a perturbation is below a realistic experimental
accuracy.

We have performed fully three-dimensional simulations of the flow in a cylinder
with two external perturbations: an inclination of the fixed cover and a displacement
of the axis of rotation. We have reproduced the flow structure obtained experimentally
with an inclined cover, and have shown that a very small displacement of the axis
of rotation can reproduce the experiments by Spohn et al. (1998). This shows that
the structural instability of the axisymmetric bubble is indeed sufficient to explain the
experimentally obtained asymmetry and no other physical mechanisms need to be
invoked. We have shown that the independent perturbations may interact and result
in bubbles that are almost closed as if they were axisymmetric, and have connected
this to the Melnikov function from perturbation theory. From a physical point of
view, this shows that one cannot deduce the nature of the perturbation in a given
experiment from the structure of the bubble.

Finally, we have computed the fractal dimension related to the emptying of particles
from the bubble as a function of the perturbation parameters. We have obtained a
clear connection between the openness of the bubble and the fractal dimension, and
hence a useful quantitative measure to describe the bubble structure.
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