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In three-dimensional turbulence there is on average a cascade of kinetic energy from
the largest to the smallest scales of the flow. While the dominant idea is that the
cascade occurs through the process of vortex stretching, evidence for this is debated.
Here we show theoretically and numerically that vortex stretching is in fact not the
main contributor to the average cascade. The main contributor is the self-amplification
of the strain-rate field, and we provide several arguments for why its role must not
be conflated with that of vortex stretching. Numerical results, however, indicate that
vortex stretching plays a more important role during fluctuations of the cascade about
its average behaviour. We also resolve a paradox regarding the differing role of vortex
stretching on the energy cascade and energy dissipation rate dynamics.
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1. Introduction

Fluid turbulence is a non-equilibrium, high-dimensional system, and in three
dimensions it exhibits an average cascade of energy from the largest scales of the
system, where the energy is injected, to the smallest scales, where it is dissipated
(Falkovich 2009). While the cascade ultimately arises from inertial forces in the
flow, a detailed understanding of the cascade mechanism remains elusive (Ballouz &
Ouellette 2018).

Richardson (1922) proposed that the cascade occurs through a hierarchical process
of instabilities whereby eddies break down and pass their energy to smaller eddies.
However, there is no clear connection between this mechanism and the Navier–Stokes
equation (NSE) governing the flow. An alternative idea, that has become the dominant
paradigm, is that vortex stretching (VS) drives the cascade (Taylor 1932, 1938;
Tennekes & Lumley 1972; Davidson 2004; Doan et al. 2018). Since VS is described

† Email address for correspondence: andrew.bragg@duke.edu

c© Cambridge University Press 2019 883 R2-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

92
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/jfm-rapids
https://orcid.org/0000-0003-0409-6946
https://orcid.org/0000-0001-7068-8048
mailto:andrew.bragg@duke.edu
https://doi.org/10.1017/jfm.2019.923


M. Carbone and A. D. Bragg

by NSE (Pope 2000), it is an appealing candidate for the cascade mechanism.
However, theoretical demonstrations of the direct link between VS and the energy
cascade are limited. In Borue & Orszag (1998) a closure model was used to obtain
a result relating the energy cascade and VS, while in Davidson (2004) an asymptotic
result is derived that connects VS and the energy cascade in the limit of vanishingly
small scales of the flow.

Numerical studies have reported evidence that appears consistent with the idea
that VS drives the energy cascade (Davidson, Morishita & Kaneda 2008; Doan et al.
2018); however, it is possible that these numerical results only reflect correlations
between the quantities, not causal connections, and/or that VS is part, but not the sole
mechanism. Moreover, theoretical problems with the VS mechanism have also been
discussed in the literature. For example, in Tsinober (2001) and Sagaut & Cambon
(2018) it is argued that VS hinders the fluid kinetic energy dissipation, and that this
implies that VS hinders the energy cascade, since dissipation is supposed to be the
end result of the cascade.

In this paper we provide theoretical and numerical results that clarify the precise
role VS plays in the energy cascade. Our main focus is on the average energy cascade,
since, historically, this is the context in which questions about the energy cascade
dynamics have been predominantly explored. Furthermore, the average energy cascade
is of particular importance precisely because it is the average energy cascade, and
not fluctuations of the cascade, that determines the second-order structure functions
and energy spectrum (Pope 2000), which are quantities of singular importance in
modelling and characterizing turbulent flows. However, we also consider fluctuations
of the energy cascade to provide a more complete picture, and to understand how the
mechanisms driving the average cascade may differ from those driving its fluctuations.

2. Theoretical results

The multiscale properties of turbulence are traditionally analysed using the velocity
increments 1u(x, r, t)≡ u(x+ r/2, t)− u(x− r/2, t), where u is the fluid velocity and
r is the vector separating two points in the flow with centroid x (Kolmogorov 1941;
Frisch 1995; Pope 2000). The Karman–Howarth equation (de Karman & Howarth
1938; Hill 2001) governs K(x, r, t) ≡ 〈‖1u(x, r, t)‖2

〉/2, the ensemble averaged
turbulent kinetic energy at scale r≡ ‖r‖, and for homogeneous turbulence

∂tK=−∂ r · T+ 2ν∂2
rK− 2〈ε〉 +W. (2.1)

Here, ∂ r · T ≡ (1/2)∂ r · 〈‖1u‖21u〉 is the nonlinear energy flux, ν is the fluid
kinematic viscosity, 〈ε〉 is the average kinetic energy dissipation rate, and W represents
power input. When ∂tK = 0, if W only acts at the large scales L, then in the
inertial range η� r� L (where η is the Kolmogorov length scale (Pope 2000)),
∂ r · T=−2〈ε〉.

To examine how the energy cascade described by ∂ r · T is related to VS, we
will derive a result for isotropic turbulence that relates ∂ r · T to the dynamics
of the velocity gradient filtered at scale r. We first introduce u = ũ + u′, where
ũ(x, t) ≡

∫
R3Gr(‖y‖)u(x − y, t) dy denotes u filtered on the scale r. Gr is an

isotropic kernel with filter length r and u′ ≡ u − ũ is the subgrid field. With this,
1u=1ũ+1u′; however, while ∂ r ·1u= 0 due to incompressibility, ∂ r ·1ũ 6= 0. To
avoid this compressibility issue we instead define a filtered velocity increment in the
solenoidal vector space (see appendix A for details)

1∗ũ= ∂ r × [2Ã(x+ r/2, t)+ 2Ã(x− r/2, t)+ B̃(x, t)], (2.2)
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Vortex stretching and the energy cascade

where Ã is the vector potential filtered at scale r, defined through ∇ × Ã ≡ ũ,
and B̃ is an integration constant. Next, the potential Ã in (2.2) is Taylor-expanded
in r, explicitly retaining terms up to second-order and grouping higher-order terms
into a remainder. This is justified since Ã is defined through ũ, which is smooth
at scales 6O(r). Further, Ã is even smoother than ũ since Ã is given by the
inverse curl operator acting on ũ. The integration constant B̃ is fixed imposing the
incompressibility condition for 〈1∗ũ1∗ũ1∗ũ〉 in isotropic flows (Hill 1997). We then
have 1u = 1∗ũ + 1∗u′, where 1∗u′ ≡ 1u − 1∗ũ is the subgrid field. Finally, the
nonlinear energy flux is constructed by means of 1∗ũ, invoking isotropy of the flow
(see appendix A)

∂ r · T=L {〈(S̃ · S̃) : S̃〉 − 1
4 〈ω̃ω̃ : S̃〉} +F , (2.3)

which involves the filtered strain rate S̃ ≡ (∇ũ + ∇ũ>)/2, the filtered vorticity ω̃ ≡
∇× ũ, and the operator

L {·} ≡ (∂r + 2/r)[(r4/105)(∂r + 7/r){·}]. (2.4)

In (2.3), F denotes the contributions involving both 1∗u′, and the higher order terms
in the expansion of Ã. In the limit r/η→ 0, F→ 0, equation (2.3) reduces to

∂ r · T=
r2

3
〈(S · S) : S〉 −

r2

12
〈ωω : S〉, (2.5)

where S= limr→0 S̃ and ω= limr→0 ω̃ are the ‘bare’/unfiltered strain rate and vorticity.
In the inertial range, ∂ r · T is independent of r, which implies 〈(S̃ · S̃) : S̃〉 ∝ 〈ω̃ω̃ : S̃〉
∝ r−2, and using this in (2.3) we obtain for η� r� L

∂ r · T=
r2

7
〈(S̃ · S̃) : S̃〉 −

r2

28
〈ω̃ω̃ : S̃〉 +F . (2.6)

It is anticipated that F will play a subleading role in (2.6); this will be assumed in
the following discussion, and later confirmed with data.

The invariant (S̃ · S̃) : S̃ is the strain self-amplification (SSA) term, and when
(S̃ · S̃) : S̃ < 0 it contributes to the production of ‖S̃‖ through nonlinear interaction
of the straining field with itself. We have (S̃ · S̃) : S̃ =

∑
i λ̃

3
i , where λ̃1, λ̃2, λ̃3

are the eigenvalues of S̃, satisfying
∑

i λ̃i = 0 and λ̃1 > λ̃2 > λ̃3. It is known that
〈(S̃ · S̃) : S̃〉< 0 (Meneveau 2011), and since λ̃1 > 0 and 〈λ̃3

2〉> 0 (see figure 1), then
〈(S̃ · S̃) : S̃〉< 0 is solely due to the negativity of λ̃3. Together with (2.6), this shows
that the contribution of SSA to the energy cascade is associated with compressional
straining motions.

The invariant ω̃ω̃ : S̃ is the VS term, and when ω̃ω̃ : S̃ > 0 it contributes to the
production of enstrophy ‖ω̃‖2 through the stretching of (filtered) vortex lines. We have
ω̃ω̃ : S̃ =

∑
i ‖ω̃‖

2λ̃i cos2(ω̃, ẽi), where ẽi is the eigenvector corresponding to λ̃i. It is
known that 〈ω̃ω̃ : S̃〉> 0 (Meneveau 2011), whose positivity can only come from λ̃1

or λ̃2. A well-known feature of turbulence is the predominant alignment of ω̃ with
ẽ2 (Meneveau 2011; Danish & Meneveau 2018). Nevertheless, the contribution to VS
associated with λ̃1 dominates (Tsinober 2001; Doan et al. 2018).
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Since 〈(S̃ · S̃) : S̃〉 < 0 and 〈ω̃ω̃ : S̃〉 > 0, then according to (2.5) and (2.6), both
SSA and VS contribute to the downscale energy cascade. Note that we are simply
taking 〈(S̃ · S̃) : S̃〉< 0 and 〈ω̃ω̃ : S̃〉> 0 as empirical facts. A complete explanation of
the physics of the turbulent energy cascade would of course require an explanation
for why these average invariants have the sign that they do. Several arguments have
previously been given; however, all of them appear to be at best incomplete (e.g.
Tsinober 2001), and we do not attempt to provide new arguments. Nevertheless,
independent of the explanation for why 〈(S̃ · S̃) : S̃〉 < 0 and 〈ω̃ω̃ : S̃〉 > 0, the
interpretation of these empirical facts is unambiguous – namely, that nonlinearity in
the NSE leads to the spontaneous production of strain and vorticity across the scales
of the turbulent flow. Our goal is to understand how these processes relate to the
turbulent energy cascade.

It is important to appreciate that (2.3) does not assume that the cascade is
dynamically local. Indeed, the filtered fields S̃ and ω̃ involve contributions from
all scales in the flow that are greater than or equal to the filter scale r, while the
effects of the subgrid scales are fully contained within F . As a result, terms such as
ω̃ω̃ : S̃ can involve contributions from interactions between scales of different sizes.
Therefore, equation (2.3) is consistent with recent numerical results showing that the
stretching of vortices at a given scale tends to be governed by straining motions at
scales that are three to five times larger (Doan et al. 2018).

We note that the result in (2.6) has similarities with the result obtained by Eyink
(2006b) under the strong ultraviolet locality assumption (UVLA) for the instantaneous
one-point scale-to-scale energy flux Π(x, t), that describes the cascade of kinetic
energy from ũ to u′ (it is also similar to the result in Borue & Orszag (1998) for
Π(x, t), although they derived their result using an ad hoc closure model). In contrast
to Π(x, t), however, the instantaneous form of ∂ r · T, namely (1/2)∂ r · (‖1u‖21u),
is not in general reducible to a form such as (2.6), even under UVLA. Moreover,
our general result in (2.3) differs from the energy flux result in Eyink (2006b),
since our result in general depends on gradients in r-space of the average strain
and vorticity invariants. This difference arises since in Eyink (2006b) the multiscale
properties of the turbulence are analysed using a one-point field, whereas ours
employs a two-point field representation in terms of the velocity increments. For
situations where the average invariants are not scale-invariant functions of r (e.g.
for low-Reynolds-number turbulence, or at the crossover between the dissipation
and inertial ranges), then according to our result in (2.3), the energy cascade will
depend to leading order on gradients of the invariants in r-space, and not only on
the invariants themselves.

2.1. Roles of SSA and VS in the energy cascade
For homogeneous filtering operators, Betchov’s result applies (Betchov 1956)

〈(S̃ · S̃) : S̃〉 =−(3/4)〈ω̃ω̃ : S̃〉, ∀r. (2.7)

It is important to stress that this result is purely kinematic/statistical; it is derived
assuming only incompressibility and statistical homogeneity of the flow, without
reference to the NSE. Using equation (2.7) we observe that the contribution from
SSA in (2.5) and (2.6) is three times larger than that from VS, indicating that VS is
not the main driver of the energy cascade, and that it plays a subleading role. The
SSA is the main mechanism driving the energy cascade.
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One may object to the conclusion that SSA, not VS, dominates the energy cascade,
since if we substitute (2.7) into (2.6) we obtain

∂ r · T=−(r2/7)〈ω̃ω̃ : S̃〉 +F , (2.8)

(a similar step to this was taken in Eyink (2006a) – namely, the Betchov relation in
(2.7) was used to express the energy flux purely in terms of VS for a homogeneous
turbulent flow) which appears to show that VS is the mechanism governing the
downscale energy cascade, contrary to our previous statements. Indeed, equation (2.8)
would explain why previous numerical studies seemed to find a strong correlation
between the energy cascade and VS, on average (Davidson et al. 2008; Doan et al.
2018).

Nevertheless, we argue that (2.8) is fundamentally misleading with respect to the
physical mechanism driving the energy cascade (and therefore so also is (32) in
Eyink (2006a)). Namely, it invokes (2.7) which is a purely kinematic relationship that
obscures the fact that SSA and VS are dynamically very different, and must therefore
be correctly distinguished. That this is the case may be observed in at least three
different ways. First is the simple fact that the dynamical equations governing the
SSA and VS invariants that can be derived from the NSE are very different (Tsinober
2001). Second, SSA and VS can affect the evolution of other quantities in turbulent
flows in completely different ways. For example, consider the equation for 〈‖S̃‖2

〉

(1/2)∂t〈‖S̃‖
2
〉 =−〈(S̃ · S̃) : S̃〉 − (1/4)〈ω̃ω̃ : S̃〉 − ν〈‖∇S̃‖2

〉. (2.9)

From (2.9) it is apparent that while 〈ω̃ω̃ : S̃〉> 0 acts as a sink for 〈‖S̃‖2
〉, 〈(S̃ · S̃) :

S̃〉 < 0 acts as a source for 〈‖S̃‖2
〉. Therefore, while 〈(S̃ · S̃) : S̃〉 = −(3/4)〈ω̃ω̃ : S̃〉,

the negativity of 〈(S̃ · S̃) : S̃〉 leads to an opposite dynamical effect on 〈‖S̃‖2
〉 than the

negativity of −〈ω̃ω̃ : S̃〉. Third, while the average values of SSA and VS are closely
related, their statistics in general differ, and joint probability density functions (PDFs)
of the unfiltered SSA and VS reveal that they are weakly correlated (Gulitski et al.
2007).

These arguments emphasize that while inserting 〈(S̃ · S̃) : S̃〉 =−(3/4)〈ω̃ω̃ : S̃〉 into
(2.6) is numerically legitimate, it obscures the true physics behind the energy cascade
because VS and SSA are distinct dynamical processes that have distinct effects on
the dynamics of turbulence. Their roles in the cascade mechanism must therefore be
distinguished; the true underlying physics is reflected in (2.6), not (2.8).

The above arguments are analogous to the argument that even though in homoge-
neous turbulence, 〈ε〉 ≡ 2ν〈‖S‖2

〉 = ν〈‖ω‖2
〉, it is dynamically incorrect to refer to

ν〈‖ω‖2
〉 as the average dissipation rate, since vorticity has no direct causal relationship

with dissipation (Tennekes & Lumley 1972). Indeed, for an incompressible, Newtonian
fluid, ε ≡ 2ν‖S‖2, by definition. The result 〈ε〉 = ν〈‖ω‖2

〉, like 〈(S̃ · S̃) : S̃〉 =
−(3/4)〈ω̃ω̃ : S̃〉, is purely kinematic, and must not be interpreted as implying a
dynamical relationship.

2.2. Paradoxical role of vortex stretching
In Tsinober (2001) and Sagaut & Cambon (2018) it is emphasized that according
to the NSE, VS opposes energy dissipation in the flow, and from this they infer
that VS must hinder the energy cascade since dissipation is supposed to be the end
result of the cascade. However, our analytical results contradict this. But this appears
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paradoxical; how can VS contribute to the downscale cascade of energy, while at the
same time acting to reduce the dissipation? We suggest that the argument in Tsinober
(2001) and Sagaut & Cambon (2018) involves a confusion concerning the nature of
the connection between the energy cascade and energy dissipation. The interpretation
of the inertial range result ∂ r ·T=−2〈ε〉 is that in the stationary state, ∂tK= 0, there
is a balance between the energy received by scale r due to ∂ r ·T, and the rate at which
energy is passed down to smaller scales, which is equal to −2〈ε〉. Therefore, the result
∂ r · T = −2〈ε〉 does not mean that the mechanism of ∂ r · T is the dynamical cause
of the energy dissipation, but rather it simply reflects an energetic balance between
the two processes. This point can be made clearer by considering that for stationary,
homogeneous turbulence, P = 〈ε〉, where P is the kinetic energy production term
(Pope 2000). According to this result, there is a balance between the energy injected
into the flow by the production mechanism and the energy dissipated. However, this
does not imply that the production is the dynamical cause of dissipation. In view of
these considerations, there is no reason why VS has to contribute dynamically to ∂ r ·T
and −2〈ε〉 in the same way. Therefore, while perhaps paradoxical (in the veridical
sense), the dynamical situation is that VS contributes to the downscale energy cascade,
while at the same time acting to reduce the dissipation rate.

Tsinober (2001) and Sagaut & Cambon (2018) also discussed that since SSA
is the process that produces energy dissipation in the flow, it, together with vortex
compression, must be the dynamical mechanism that drives the energy cascade. While
our analysis agrees with their conclusion that SSA drives the energy cascade, we
emphasize that their line of reasoning leading to this conclusion is problematic. This
is because, as explained above, their argument involves incorrectly assuming that the
dynamical cause of the dissipation must also be the dynamical cause of the energy
cascade.

3. Numerical results and discussion

We now turn to test the theoretical results using data from a direct numerical
simulation (DNS) of the incompressible NSE. In our DNS, the forced, incompressible
NSE are solved using a pseudo-spectral code on a periodic domain of length 2π
with 20483 grid points, generating statistically stationary, isotropic turbulence with
Taylor Reynolds number Rλ = 597, and the ratio of integral to Kolmogorov length
scales is L/η= 812. Further details on the DNS code and simulations may be found
in Ireland et al. (2013) and Ireland, Bragg & Collins (2016). A sharp-spectral filter
was used to construct ω̃ and S̃ for use in (2.3), but we also compared the results to
those obtained using a Gaussian filter (see Pope 2000) and found similar results.

In figure 1(a) we compare our DNS results for ∂ r · T with the right-hand side
of (2.3). Since we do not know F we set it to zero when plotting the results. In
the limit r/η→ 0 this introduces no approximation, since limr/η→0 F→ 0. The DNS
data confirm the accuracy of this asymptotic behaviour even up to r = O(η). The
results in figure 1(a) imply that in the inertial range, F makes a finite, but subleading
contribution to the cascade. We also plot separately the SSA and VS contributions
to (2.3). The results confirm that in both the dissipation and inertial ranges, the
average energy cascade is dominated by the contribution from SSA rather than VS,
with the contribution from SSA being three times larger than that from VS.

In figure 1(b) we show the DNS data for the eigenframe contributions to L 〈
∑

i λ̃
3
i 〉,

where (S̃ · S̃) : S̃ =
∑

i λ̃
3
i , and the results show that the i= 3 contribution dominates

and is the sole cause of the negativity of L 〈
∑

i λ̃
3
i 〉 at all scales in the flow.
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FIGURE 1. (a) Comparison of DNS data (black line with circles) for ∂ r · T with (2.3)
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FIGURE 2. DNS results for the joint PDF of SSA and VS at filter scales (a) r/η = 0,
(b) r/η=50, (c) r/η=200. Here, ξ1 and ξ2 are the fixed phase-space coordinates conjugate
to the fluctuating quantities (S̃ · S̃) : S̃ and ω̃ω̃ : S̃, respectively, while µ1 ≡ 〈(S̃ · S̃) : S̃〉
and µ2 ≡ 〈ω̃ω̃ : S̃〉. The colours correspond to the values of the PDF, and the lines are
isocontours of log10 PDF, shown in increments of 1.

This shows that the SSA process that dominates the energy cascade is itself governed
by compressional straining motions at all scales. In figure 1(c) we plot the eigenframe
contributions to L 〈

∑
i W̃i〉, where ω̃ω̃ : S̃ =

∑
i ‖ω̃‖

2λ̃i cos2(ω̃, ẽi)≡
∑

i W̃i, and the
results show that the contribution from i= 1 is the most positive at all scales.

This is consistent with the results in Doan et al. (2018) that show that at all scales
in the flow, VS is dominated by the contribution from the extensional eigenvalue.
Interestingly, while our results show 〈W̃1〉> 〈W̃2〉 in the dissipation range (as observed
in Gulitski et al. 2007), 〈W̃1〉 � 〈W̃2〉 in the inertial range. While W̃1 and W̃3 have
fixed signs, the sign of W̃2 fluctuates, and as a result, the contribution to

∑
i〈W̃i〉

from 〈W̃2〉 may be smaller than that from 〈W̃1〉 due to partial cancellation of positive
and negative W̃2 in its average. To explore this, we computed 〈|W̃2|〉 and found that
at all scales, 〈W̃2〉< 〈|W̃2|〉< 〈W̃1〉, such that the dominance of the i= 1 contribution
to
∑

i〈W̃i〉 is not simply caused by the fluctuating sign of W̃2. It is mainly because
λ̃1 tends to be larger than |λ̃2|, so that 〈W̃1〉 dominates

∑
i〈W̃i〉, despite the fact that

ω̃ preferentially aligns with ẽ2 at all scales in the flow (Danish & Meneveau 2018).
In figure 2 we show results for the joint PDF of VS and SSA at different filtering

scales. The shape of the PDF contours are similar to those in the experimental
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FIGURE 3. DNS results for (a) the PDF of ξα , normalized by the mean value µα with
α= 1, 2 (see the caption of figure 2 for the definitions of ξ1, ξ2, µ1, µ2), and at different
filter scales r/η, and (b) the correlation coefficient of VS and SSA, ρVS,SSA, as a function
of filter scale. Panel (c) shows results for ζn ≡ 〈[(−3/4)ω̃ω̃ : S̃]n〉/〈[(S̃ · S̃) : S̃]n〉 as a
function of r/η, and for various n. The shaded regions around the lines denote the region
bounded by the error bars (see appendix B for details).

work of Gulitski et al. (2007) (they only considered the unfiltered case), showing the
distinctive ‘corners’ of the contour lines along ξ1/µ1= 0 and ξ2/µ2= 0. In figure 3(a)
we show results for the PDFs of SSA and VS at different filtering scales. Concerning
the r/η= 0 results, in agreement with Gulitski et al. (2007) we find that for ξ/µ> 0
the PDFs are similar; however, in disagreement with their results, we find that the
PDFs for ξ/µ < 0 are quite different. The difference between the PDFs becomes
larger for the filtered case r/η = 200, for both ξ/µ < 0 and ξ/µ > 0. These results
provide further support for our earlier assertions that the roles of SSA and VS must
not be conflated. Not only are they dynamically very different, but furthermore, as
figure 3(a) shows, the general statistics of the two processes are significantly different,
despite the fact that their mean values are closely related through (2.7). This point is
made even clearer in figure 3(b), where we show results for the correlation coefficient
of VS and SSA, ρVS,SSA. While ρVS,SSA is moderate in the dissipation range, in the
inertial range ρVS,SSA approaches 0.3, indicating a weak correlation.

Finally, we have argued that concerning the average energy cascade, the contribution
from SSA is much larger than that from VS. However, it is important to consider
whether the same holds true for fluctuations of the energy cascade about its average
behaviour. To gain insight into this we consider the quantity

ζn(r)≡
〈[(−3/4)ω̃ω̃ : S̃]n〉

〈[(S̃ · S̃) : S̃]n〉
. (3.1)

The results for ζn are shown in figure 3(c) for different n and filtering scales r/η. For
n= 1, equation (2.7) gives ζ1 = 1, as observed in our numerical results for each r/η.
However, for n> 1, ζn> 1 at each scale, and reaches values O(10) for n= 4, implying
that VS may play a leading-order role during strong fluctuations of the energy cascade
about its average value. This increasingly important role of VS compared with SSA
during large fluctuations of the energy cascade about the average behaviour may in
part be associated with the known fact that the vorticity field is more intermittent
that the strain-rate field in turbulent flows (Chen, Sreenivasan & Nelkin 1997; Donzis,
Yeung & Sreenivasan 2008; Buaria et al. 2019).
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In closing this section we note that for a more complete understanding of
fluctuations of the energy cascade in turbulence one must also consider the role
played by subgrid stresses (Buzzicotti et al. 2018). These subgrid stresses interact
with the filtered fields S̃ and ω̃, and make a contribution to the energy cascade. Such
an investigation will be pursued in future work.

4. Conclusions

We have presented theoretical and numerical results showing that vortex stretching
is not the main mechanism driving the average energy cascade in isotropic turbulence.
Instead, the main mechanism driving the average cascade is the strain self-amplification
process, which is a fundamentally distinct dynamical process from that of vortex
stretching. However, our numerical results imply that vortex stretching may play a
stronger role during fluctuations of the cascade about its average behaviour, which
may be associated with the known fact that the vorticity field is more intermittent
than the strain-rate field in turbulence.
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Appendix A

Here we give details of the steps in the analysis leading to (2.3), using the same
notation as in the paper, and our method to avoid this compressibility issue discussed
in § 2.

We first define ũ(x, t)≡
∫
R3 G`(‖y‖)u(x− y, t) dy, where the filtering length scale `

is for now an independent variable. We then denote an incompressible filtered fluid
velocity increment by 1∗ũ(x, r, `, t), which satisfies

∂ r ·1
∗ũ(x, r, `, t)|x = 0, (A 1)

1∗ũ(x, r, `, t)|` =1ũ(x, r, `, t). (A 2)

The formal solution of (A 1) can be expressed as

1∗ũ(x, r, `, t)= ∂ r × Ã
∗

(x, r, `, t)|x, (A 3)

where Ã
∗

is a vector potential of the incompressible increment. Substituting (A 3) into
(A 2) an equation for the vector potential is obtained,

∂ r × Ã
∗

(x, r, `, t)|x,` =1ũ(x, r, `, t). (A 4)

This now clarifies the notation used in (A 2); 1∗ũ(x, r, `, t)|` means that when,
according to the vector potential expression for 1∗ũ, the curl operator ∂ r × {·} acts
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on Ã
∗

, ` is to be held fixed – that is, 1∗ũ=1ũ when ` does not depend on r. The
solution of (A 4) reads

Ã
∗

(x, r, `, t)= 2Ã(x+ r/2, `, t)+ 2Ã(x− r/2, `, t)+ B̃(x, `, t), (A 5)

where Ã is a vector potential associated with the velocity field filtered at length `,
defined through ũ(x, `, t)=∇× Ã(x, `, t)|`. Here B̃(x, `, t) is an integration constant,
since (A 4) has been integrated in r at fixed x and `. Using (A 5) into (A 3) we then
obtain the expression for the incompressible filtered velocity increment, equation (2.2).

In order to relate 1∗ũ(x, r, `, t) to the velocity gradient filtered at scale r, namely
Γ̃ ≡∇ũ, we choose `= r and Taylor expand the terms involving Ã in (2.2) in the
variable r, explicitly retaining terms up to second order,

Ã(x+ r/2, r, t)+ Ã(x− r/2, r, t)= 2Ã(x, r, t)+ 1
4(rr : ∇∇)Ã(x, r, t)+ h, (A 6)

where h(x, r, t) denotes the remainder term, defined (since the expansion may be
only asymptotic) as the difference between the left-hand side and the first two terms
on the right-hand side of (A 6). This remainder term will be subleading due to the
smoothness of Ã on scales 6O(r).

Substituting (A 6) into (A 3) yields

1∗ũ= Γ̃ · r+
r
r
×

[
1
2
(rr : ∇∇)∂rÃ+ ∂r(4Ã+ B̃)

]
+ 2∂ r × h, (A 7)

where Γ̃ = Γ̃ (x, r, t), Ã= Ã(x, r, t) and B̃= B̃(x, r, t). In the paper the dependence
upon r due to the filtering is implicitly indicated by the tilde. The cross product term
in (A 7) represents the ‘compressible correction’ that captures the effect of the variable
filtering length on the velocity increment, and guarantees ∂ r ·1

∗ũ(x, r, `, t)= 0 ∀`(r).
Since this term lies in the plane orthogonal to r, the longitudinal increments satisfy
1∗ũ‖ =1ũ‖, while the perpendicular increments differ, 1∗ũ⊥ 6=1ũ⊥.

Once the incompressible filtered velocity increment is defined, the nonlinear energy
flux is expressed using the decomposition 1u=1∗ũ+1∗u′ and invoking isotropy

∂ r · T=
1
2

(
∂r +

2
r

)
〈‖1∗ũ‖21∗ũ‖〉 + F, (A 8)

where F(r) denotes the contributions involving the subgrid field 1∗u′. Because of
isotropy, the quantity 〈‖1∗ũ‖21∗ũ‖〉 is physically related to the invariant 〈(Γ̃ >· Γ̃ ) : Γ̃ 〉,
which is then employed to express the third-order structure functions

〈1∗ũ3
‖
〉 =

2
35 〈(Γ̃

> · Γ̃ ) : Γ̃ 〉r3
+H‖, (A 9)

〈1∗ũ‖1∗ũ2
⊥
〉 =

4
105 〈(Γ̃

> · Γ̃ ) : Γ̃ 〉r3
+C+H⊥, (A 10)

where H‖ and H⊥ denote the contributions arising from h in (A 7). Here C(r) denotes
the contribution arising from the compressibility correction term in (A 7), which is
determined by incompressibility and isotropy of the flow. Indeed, as shown by Hill
(1997),

〈1u‖1u2
⊥
〉 =

1
6∂r(r〈1u3

‖
〉) (A 11)

and requiring that (A 11) is satisfied by the incompressible increment, using (A 9)
which is free of compressibility effects, gives

〈1∗ũ‖1∗ũ2
⊥
〉 =

1
105∂r(〈(Γ̃

>
· Γ̃ ) : Γ̃ 〉r4

+ rH‖). (A 12)

Substituting (A 9) and (A 12) into (A 8), we finally obtain (2.3), wherein F is the sum
of F and the contributions from H‖.
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Appendix B

In this appendix, we briefly describe the method used to construct the error bars
in figure 3(c), which are important to consider for the high-order moments shown in
that plot.

Let f (x, t) be an arbitrary random field; for a statistically stationary, homogeneous
flow we may approximate the ensemble average 〈 f 〉 by a space-time averaging
operator

〈 f 〉 ≈ f ∗ ≡
1
T

∫ T

0
f ∗ dt, (B 1)

f ∗ ≡
1
|Ω|

∫
f dx, (B 2)

where |Ω| is the measure of the domain in which the flow is taking place. In
our simulations, |Ω| is fixed and finite; however, assuming ergodicity, then we
expect limT→∞ f ∗→〈 f 〉. In contrast, in our simulations, T is finite, and it is therefore
important to consider convergence errors in our estimation associated with the finitude
of T .

In order to define the convergence error, we introduce the finite mean µ and
variance σ 2 of the time series f ∗(t), and define its partial average as

f ∗(τ )≡
1
τ

∫ τ

0
f ∗(t) dt. (B 3)

The deviation of the partial average from the exact mean, e(τ ) ≡ (f ∗(τ ) − µ)2, is
employed to define the convergence error

ε(T)≡

√
1
T

∫ T

0
e(τ ) dτ . (B 4)

The error defined in (B 4) measures the fluctuations of the partial average with
respect to the ensemble average over the whole time window. Also, this convergence
error ε(T) vanishes for T → ∞, when the time average is expected to approach
the ensemble average. Indeed, with ε(T) ≡

√
F(T)/T , the fundamental theorem of

calculus, together with the convergence of the partial averages to the ensemble
average, implies

dTF(T)= o(1) for T→∞, (B 5)

and, if e is smooth (which it is for the quantities we are considering), then F is even
smoother so that equation (B 5) can be integrated yielding F(T)=o(T) for T→∞. As
a consequence, the error defined in (B 4) vanishes when the partial average converges
to the ensemble average, limT→∞ ε(T)= limT→∞

√
F(T)/T = 0.

Now, in figure 3(c) we plot the quantity ζn(r), defined in (3.1). Let us now introduce
the quantity σn(r, τ ), which is the same as ζn(r), but with the ensemble averages in the
definition of ζn(r) replaced with a space average over the domain plus a time average
over the interval [0, τ ]. As before, we expect limτ→∞ σn(r, τ )→ ζn(r). In the DNS
data, we have τ 6 6τI , where τI is the integral time scale of the flow. We may then
estimate the convergence error using an approximation for ε(T) evaluated at T = 6τI ,

ε̃(r, 6τI)=

√
1

6τI

∫ 6τI

0
(σn(r, τ )− σn(r, T = 6τI))2 dτ , (B 6)
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since, by the Chebyshev inequality, σn(r, T = 6τI) is in probability the best estimate
to ζn(r). In figure 3(c) the error bars are constructed using ε̃(r, 6τI). Note that we
use the estimate for the error in (B 6) since a direct estimation of the error by means
of the Chebyshev inequality would be problematic due to the small number of time
samples we have available (our DNS data consist of 19 snapshots of the flow).
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