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In wireless broadband communication systems, the inherent non-linearity of power

amplifiers creates spectral growth beyond the signal bandwidth, which interferes with

adjacent channels. It also causes distortions within the signal bandwidth. In this paper, we

study five digital predistortion algorithms for linearising two different non-linear memory

power amplifier models. The simulation results show that the proposed digital predistorter

using different algorithms can improve the in-band distortion and out of band spreading in

different ways. In particular, the DLMS algorithm with fast convergence can significantly

suppress spectral regrowth (by 60dB), effectively compensating for the non-linearity of the

power amplifier.

1. Introduction

Power amplifiers are an indispensable component of wireless communication systems.

However, power amplifiers also generate spectral regrowth because of their inherent

non-linearity, which leads to adjacent channel interference and in-band distortion (He

and Chen 2010; Ding 2004). Thus, linearisation techniques are required to obtain power

amplifiers with a high efficiency and good linearity. Digital predistortion technology

is becoming the major linearisation technology for RF power amplifiers in future

communication systems due to its great adaptability, simple structure and low cost

characteristics (Du 2010; Zhang et al. 2008).

Adaptive technology has the ability to track the time-varying signals in an unknown

environment, and this has become an important tool for signal processing. Therefore,

adaptive predistortion technology can not only automatically correct the input signals

to make the amplifier output have a linear characteristic, but also compensate for the

changes in the amplifier characteristics due to device ageing and temperature drift (Zhang

et al. 1981; Wang 2009; Wu 2009).

In the current paper, we propose a digital predistortion technology for multi-carrier

broadband communication systems. In particular, we have applied it to a WCDMA

system. By analysing the theory of the traditional least mean squares (LSM) algorithm
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Fig. 1. The Wiener–Hammerstein model

and its variable step-size variants, we then present an indirect learning architecture to

construct a predistorter based on different algorithms for two types of power amplifier.

2. Modelling power amplifiers

In broadband communication system, such as WCDMA, the memory effects of the power

amplifier cannot be ignored as the input signal bandwidth becomes wider. In the current

paper, we concentrate on two types of memory amplifier model: the Wiener–Hammerstein

model and the polynomial model (Mahfuz and Wang 2007; Zhao 2011).

2.1. The Wiener–Hammerstein model

The Wiener–Hammerstein model is composed of an LTI system, followed by a memoryless

non-linearity, which in turn is followed by another LTI system – see Figure 1. This

configuration is commonly used for satellite communication channels. The subsystems in

this model are described as follows:

u(n) =

L−1∑

l=0

alz(n− l)

v(n) =

K∑

k=1

odd

bku(n)|u(n)|k−1

y(n) =

L−1∑

l=0

clv(n− l)

where al and cl are the impulse response values of the LTI systems, respectively, before

and after the memoryless non-linear block and the bk are the coefficients of the non-linear

block.

2.2. The memory polynomial model

The most commonly adopted memory polynomial model uses the diagonal kernels of the

Volterra series, which is described by

yk(n) =

Q−1∑

q1=0

· · ·
Q−1∑

q2=0

hk(q1, q2, · · · , qk)
k∏

l=1

x(n− q1)

where

y(n) =

k2∑

k=0

cl

Q−1∑

q=0

hk,qx(n− l)|x(n− l)|k−1.
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Fig. 2. The indirect learning architecture for the predistorter

In these equations, hk is the k-order kernel of the Volterra series, Q is the memory depth

and k is the non-linear order of the Volterra series. In the actual system, all off-diagonal

kernels of the Volterra series are defined to be zero, thus the power amplifier model can

be rewritten as

y(n) =

K∑

k=0

cl

Q−1∑

q=0

hk,qx(n− l)|x(n− l)|k−1.

This equation is just the memory polynomial model, which can accurately characterise

the properties of an actual power amplifier.

3. Architecture of the predistorter

The most popular designs for digital predistorters use either direct or indirect learning

approaches. The former first identifies the power amplifier and then finds its inverse.

The latter designs the predistorter directly, and is the approach adopted in this paper.

The advantage of this structure is that it eliminates the need for assumptions about the

model and parameter estimation for the power amplifier. A block diagram of the indirect

learning structure is shown in Figure 2, where the feedback path labelled ‘Predistorter

Training’ has y(n)/G as its input, where G is the intended power amplifier gain, and ẑ(n)

as its output. The actual predistorter is an exact copy of the feedback path, which has

x(n) as its input and z(n) as its output. Ideally, we would like y(n) = G∗x(n), which makes

z(n) = ẑ(n) and the error term e(n) = 0. Given y(n) and z(n), this structure enables us to

find the predistorter parameters directly. The algorithm converges when the error energy

‖x‖2 is minimised.

4. Principle of the adaptive algorithm

The identification system is the key to the linearisation techniques based on an adaptive

predistorter, which can constantly update the coefficients by tracking the variations of

the power amplifier. It is obvious that the performance of the digital predistortion

system is directly influenced by the adaptive identification algorithms. For this reason, the
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Fig. 3. Block diagram for an adaptive filter

algorithms in the field of linearising filters have been deeply researched for application to

non-linear predistorters.

The basic LMS algorithm and its variable step-size variants are all linear adaptive

filtering algorithms, and are composed of a digital filter whose parameters are adjustable

and an adaptive algorithm. The operation principle is shown in Figure 3. The error

estimate signal is described by the equations

e(n) = d(n) − y(n).

If we define

xL(n) = [x(n), x(n− 1), · · · , x(n− L+ 1)]T ,

where x(n) and y(n) are the the input and output signals, respectively, we obtain

y(n) =

L∑

i=1

wix(n− i+ 1) = XT
L (n)WL

where

WL = [w1, w2, . . . , wL]
T

is the coefficient of the adaptive filter.

4.1. The LMS algorithm

The LMS algorithm is based on the mean square error (MSE), with the stochastic gradient

descent method used to minimise the MSE. Specifically, in order to achieve the optimal

weights and the adaptive filter in the sense of the least mean squares, in each iteration,

the weight vectors upgrade the steps by a certain percentage along the negative direction

of the calculated gradient of the error performance surface. The iterative equation for the

filter is

W (n) = W (n− 1) + 2μe(n)x(n)

where μ is the step-size factor of the adaptive filter.
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Fig. 4. Block diagram for the DLMS algorithm

4.2. The RLS algorithm

The recursive least squares (RLS) algorithm is based on the least squares criterion, where

the sum of the squares of the difference between the reference signals and the filter’s

output signal is to be minimised. The iterative equation for the filter is

W (n) = W (n− 1) +
1

λ
R−1(n− 1)e(n)x(n)

where 0 < λ � 1 is the genetic factor and

R(n− 1) = E[x(n− 1)xT (n− 1)]

is the autocorrelation matrix of the input signals at time n-1.

4.3. The NLMS algorithm

The normalised least mean squares (NLMS) algorithm is based on the LMS algorithm. It

is a variable step-size algorithm, which accelerates the convergence by changing the step

factor indirectly. The iterative equation for the filter is

W (n) = W (n− 1) +
η

xH (n)x(n) + ψ
e(n)x(n)

where ψ and η are both constants, with 0 < η < 1 used to guarantee the imbalance

coefficients of the LMS algorithm have a fixed value.

4.4. The DLMS algorithm

Because of the slow convergence process caused by the conflict between the step factor

and convergence rate, Long and Herzberg proposed the delay LMS (DLMS) algorithm

as a variant of the traditional LMS algorithm – see Figure 4. Compared with the LMS

algorithm, the delayed cycle number d is used to update the coefficients of the DLMS

algorithm at the next clock cycle. Thus, the throughput of the DLMS algorithm data is

twice that of the LMS, and it is thus more suitable for high-speed signal processing. The

iterative equation for the filter is

W (n) = W (n− 1) + 2μe(n− d)x(n− d)

where the parameter d is the delayed cycle number, which is introduced when the weight

coefficients are updated.
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Fig. 5. (Colour online) Power spectrum of input (a) and output (b) signals without the predistorter

(Wiener–Hammerstein model)

Fig. 6. (Colour online) Performance of the predistorter with the LMS algorithm

(Wiener–Hammerstein model)

4.5. The sign LMS algorithm

The stochastic gradient descent method is also used in the sign LMS algorithm to obtain

the optimal solution, though this method only gives the optimal solution and not the size

of the gradient. The iterative equation for the filter is

W (n) =W (n− 1) + 2μ sign[e(n)]x(n)

W (n) =W (n− 1) + 2μe(n) sign[x(n)]

where sign is the sign function, and the first equation is the sign LMS algorithm for the

error signals and the second is for the input signals.
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Fig. 7. (Colour online) Performance of the predistorter with the RLS algorithm

(Wiener–Hammerstein model)

Fig. 8. (Colour online) Performance of the predistorter with the NLMS algorithm

(Wiener–Hammerstein model)

5. Simulation of adaptive digital predistortion

In order to verify the validity and feasibility of the proposed adaptive digital predistorter,

a source generation and simulation test platform was set up using MATLAB software.

Specifically, following one of the 3GPP25.141 protocol test patterns, we generated two

frame business source with 78848 dates. We then simulated single and dual carrier signals

for a WCMDA system on the test platform using the two different power amplifier models

under consideration.

5.1. Simulation with the Wiener–Hammerstein model

When the power amplifier is modelled as a Wiener–Hammerstein model, the coefficients

for the case where there is no linearisation process using the predistorter, which were
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Fig. 9. (Colour online) Performance of the predistorter with the DLMS algorithm

(Wiener–Hammerstein model)

Fig. 10. (Colour online) Performance of the predistorter with the sign LMS algorithm

(Wiener–Hammerstein model)

extracted from the actual Class AB power amplifier, are

c1 = +1.0108 + 0.0858j

c3 = +0.0879 − 0.1583j

c5 = −1.0992 − 0.8891j.

The WCDMA system’s single carrier signal was adopted as the baseband input signals.

The power spectrum of the input and output signals without the predistorter is shown in

Figure 5.

We then analysed the memory polynomial predistorter with memory length 3 and 5th

odd-order non-linearity, with the predistorter coefficients constantly updated using the

algorithms described earlier in the paper.
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Fig. 11. (Colour online) Performance comparison of the predistorter using the different algorithms

(Wiener–Hammerstein model)

Fig. 12. (Colour online) Power spectrum of input (a) and output (b) signals without the

predistorter (polynomial model)

In iterating the LMS and RLS algorithms, we used a step factor of μ = 0.005 and

genetic factor λ = 0.095. The output signal with and without the memory polynomial

predistorter is shown for the LMS and RLS algorithms in Figures 6 and 7, respectively.

In iterating the NLMS and DLMS algorithms, we used the values ψ = 0.02, η = 0.095,

the step factor μ = 0.005 and the delay number in the weight updating d = 5. The

performance of the predistorter using the NLMS and DLMS algorithms is shown in

Figures 8 and 9, respectively.

Using the two iterative formulas given in Section 4.5 for the sign LMS algorithm,

the error signals were simulated to determine the performance of the predistorter – see

Figure 10.

Figure 11 compares the performance of the predistorter using each of the five adaptive

algorithms.
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Fig. 13. (Colour online) Performance of the predistorter with the LMS algorithm (polynomial

model)

Fig. 14. (Colour online) Performance of the predistorter with the RLS algorithm (polynomial

model)

When the Wiener–Hammerstein model was adopted as the model for the predistorter

and amplifier, the above simulation characteristics show that when the sign LMS algorithm

is used, there is only limited improvement of the outband distortions by about 20dB.

However, in comparison with the other algorithms, the DLMS and NLMS algorithms

can significantly suppress spectral regrowth by about 60dB.

5.2. Simulation with a polynomial model

When the power amplifier was constructed with a polynomial model, the coefficients,

which were extracted from an actual Class AB power amplifier, were

b10 = +1.0513 + 0.0904j

b30 = −0.0542 − 0.2900j
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Fig. 15. (Colour online) Performance of the predistorter with the NLMS algorithm (polynomial

model)

Fig. 16. (Colour online) The performance of predistorter with DLMS algorithm (polynomial

model)

b50 = −0.9657 − 0.7028j

b11 = −0.0680 − 0.0023j

b31 = +0.2234 + 0.2317j

b51 = −0.2451 − 0.3735j

b12 = +0.0289 − 0.0054j

b32 = −0.0621 − 0.0932j

b52 = +0.1229 + 0.1508j.

In this case, we adopted the dual carrier signal of the WCDMA system as the baseband

input signals. Figure 12 shows the power spectrum of the input and output signals without

the predistorter.
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Fig. 17. (Colour online) Performance of the predistorter with the sign LMS algorithm (polynomial

model)

Fig. 18. (Colour online) Performance comparison of the predistorter with the different algorithms

(polynomial model)

We again analysed the memory polynomial predistorter with memory length 3 and 5th

odd-order non-linearity.

In iterating the LMS and RLS algorithms, we used a step factor of μ = 0.005 and

genetic factor λ = 0.095. The output signal with and without the predistorter is shown for

the LMS and RLS algorithms in Figures 13 and 14, respectively.

In iterating the NLMS and DLMS algorithms, we used the values ψ = 0.02, η = 0.095,

the step factor μ = 0.001 and the delay number in the weight updating d = 2. The

performance of the predistorter using the NLMS and DLMS algorithms is shown in

Figures 15 and 16, respectively.

The error signals were also simulated for the sign LMS algorithm – see Figure 17.
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Figure 18 compares the performance of the predistorter using each of the five adaptive

algorithms.

It is obvious from the above simulation characteristics for the adaptive algorithms when

the polynomial model was adopted as the model for the predistorter and amplifier that all

the algorithms apart from the sign LMS algorithm can dramatically suppress the adjacent

interference. In particular, the original input and output signals almost coincide when the

DLSM algorithm was adopted to update the predistorter coefficients.

6. Conclusions

In this paper, we have proposed memory polynomial predistortion constructed with

an indirect learning architecture to counteract non-linear distortion and memory effects

arising from the power amplifier. In the process of linearising two types of power amplifier,

we used the LMS algorithm and its variable step-size variants to carry out a performance

analysis. The different algorithms may have different performance characteristics for

different power amplifier designs, but the DLMS algorithm seems to be superior because

of its fast convergence and high-speed processing characteristics.
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