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Reduced fluid models for collisionless plasmas including electron inertia and finite
Larmor radius corrections are derived for scales ranging from the ion to the electron
gyroradii. Based either on pressure balance or on the incompressibility of the electron
fluid, they respectively capture kinetic Alfvén waves (KAWs) or whistler waves
(WWs), and can provide suitable tools for reconnection and turbulence studies.
Both isothermal regimes and Landau fluid closures permitting anisotropic pressure
fluctuations are considered. For small values of the electron beta parameter βe, a
perturbative computation of the gyroviscous force valid at scales comparable to the
electron inertial length is performed at order O(βe), which requires second-order
contributions in a scale expansion. Comparisons with kinetic theory are performed in
the linear regime. The spectrum of transverse magnetic fluctuations for strong and
weak turbulence energy cascades is also phenomenologically predicted for both types
of waves. In the case of moderate ion to electron temperature ratio, a new regime of
KAW turbulence at scales smaller than the electron inertial length is obtained, where
the magnetic energy spectrum decays like k−13/3

⊥ , thus faster than the k−11/3
⊥ spectrum

of WW turbulence.
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1. Introduction
Exploring the dynamics of magnetized plasmas in the range of scales extending

from the ion to the electron Larmor radii (hereafter denoted ρi and ρe respectively) is
of great importance in various contexts, including magnetic reconnection (Daughton
et al. 2011; Treumann & Baumjohann 2013; Zweibel & Yamada 2017) and turbulence
in space plasmas such as the solar wind (Sahraoui et al. 2010, 2013; Matteini et al.
2017) or the auroral regions (Chaston et al. 2008). At scales comparable to or
smaller than the electron inertial length de, electron inertia cannot be neglected, while
electron finite Larmor radius (FLR) corrections play a role at scales approaching ρe.
Although a fully kinetic approach is a priori required to describe plasma dynamics
at these scales, ‘reduced fluid models’ can provide an interesting insight when
considering relatively small fluctuations about a Maxwellian equilibrium state. Up to
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the assumptions needed to close the fluid hierarchy, such models can indeed be
obtained using systematic asymptotic expansions in regimes where nonlinearities are
small and characteristic length scales appropriately selected in order to permit a
rigorous estimate of the non-gyrotropic components of the pressure tensor. At scales
small compared to ρi, ions are mostly static, which leads to drastic simplifications.
Concerning the electron fluid, two regimes are classically distinguished. Except in the
relativistic regimes of large Alfvén velocities (Kuvshinov et al. 1998), this fluid can
be viewed as incompressible in the case of whistler waves (WWs). This assumption is
in particular usual in electron magnetohydrodynamics (EMHD), a limit of a multifluid
description in which the motion of the ions is neglected and the Hall term dominates
in the Ohm’s law (see e.g. Kingsep, Chukbar & Yan’kov (1990) or Bulanov, Pegoraro
& Sakharov (1992)). If the equilibrium plasma density is uniform, quasi-neutrality
then indeed implies incompressibility of the electron flow. Differently, kinetic Alfvén
waves (KAWs) are compressible at the sub-ion scales, with pressure fluctuations
governed by the perpendicular pressure balance, a description valid as long as their
frequency w satisfies ω � k⊥vthi where vthi is the ion thermal velocity and k⊥ the
perpendicular wavenumber, leading to the electron reduced magnetohydrodynamics
(ERMHD) (see Schekochihin et al. (2009) for a review). The electron gyroviscous
stress tensor is negligible at scales large compared to ρe but, except in the case of
very large values of the ion to electron temperature ratio τ , this condition strongly
constrains the validity range when scales are also supposed to be small compared to
ρi. This point is exemplified in Tassi, Sulem & Passot (2016), where comparison with
the kinetic theory shows that, in the linear regime, the accuracy of the fluid model
for KAWs with τ and the electron beta parameter βe of order unity, is limited to
scales such that k⊥ρs ' 15 (here, ρs = (mi/2me)

1/2ρe is the sonic Larmor radius with
mi and me refering to the mass of the ion and of the electron respectively). At smaller
scales, non-gyrotropic pressure contributions are to be retained. Their calculation is
performed perturbatively in appendix A, when the coupling to the non-gyrotropic part
of the heat flux is not retained.

In the sub-ion range, the electron inertial length de = (2me/miβe)
1/2ρs plays an

important role as dispersive properties of KAWs and WWs display a qualitative
change across this characteristic scale, thus potentially affecting turbulent cascades. In
order to study scales smaller than de, but still larger than ρe, the parameter βe should
be taken small. When assuming βe = O(me/mi) as in Zocco & Schekochihin (2011),
electron inertia should be retained, but electron FLR corrections can be neglected,
except for βe-independent terms involved in gyroviscous cancellation. For values of
βe that, although small compared to unity, exceed me/mi, the electron gyroviscous
force becomes relevant, and it turns out that its computation to order βe at scales
comparable to de requires the expansion to be pushed to second order in the scale
separation.

The resulting equations for the electrostatic and the parallel magnetic potentials
must be supplemented by conditions concerning density and temperature fluctuations.
As already mentioned, neglecting density fluctuations or prescribing perpendicular
pressure balance leads to discriminate between WWs and KAWs. Concerning
temperature fluctuations, we have considered two different regimes. The first
one assumes isothermal electrons, which leads to two-field models. Beyond its
simplicity, such an assumption appears realistic for turbulent applications when
not addressing questions related to plasma heating, and preferable to an adiabatic
assumption (Tassi et al. 2016). Temperature indeed tends to be homogenized along
the magnetic field lines which, in a turbulent regime, are expected to be stochastic
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(Schekochihin et al. 2009). A more elaborate model retains dynamical equations
for the temperatures and involves a Landau fluid closure to express the gyrotropic
heat fluxes, in terms of lower-order moments, in a way consistent with the linear
kinetic theory (Hammett & Perkins 1990; Snyder, Hammett & Dorland 1997). As
discussed by Hesse, Kuznetsova & Birn (2004), retaining electron heat fluxes can
be an important issue in guide-field magnetic reconnection. The models derived in
this paper could indeed be most useful to address questions such as the role of
electron pressure anisotropy, Landau damping and FLR corrections in collisionless
reconnection, the prevalence of KAWs or WWs depending on the strength of the
guiding field, as discussed by Rogers et al. (2001) (see also Treumann & Baumjohann
2013).

Being three-dimensional, the reduced fluid models are also well adapted to study
turbulence dynamics at sub-ion scales. The regime at scales smaller than de has
been extensively studied mostly for WWs, in the framework of EMHD (Biskamp,
Schwarz & Drake 1996; Biskamp et al. 1999; Galtier & Bhattacharjee 2003; Lyutikov
2013; Galtier & Meyrand 2015), of an incompressible bi-fluid model (Andrés et al.
2014; Andrés, Galtier & Sahraoui 2016a; Andrés et al. 2016b) and of extended
magnetohydrodynamics (XMHD) (Miloshevich, Lingam & Morrison 2017). Full
particle-in-cell simulations of this regime were performed by Gary, Chang & Wang
(2012) and Chang, Gary & Wang (2013). A purpose of the present paper is to address
the KAWs dynamics at scales smaller than the electron inertial length, where new
regimes of strong and weak turbulence are phenomenologically studied. Due to the
compressibility of these waves, magnetic spectra steeper than in the case of WWs are
obtained for moderate values of τ , a property that it could be of interest to compare
to the fast-decaying spectra observed in the terrestrial magnetosheath (Huang et al.
2014).

The paper is organized as follows. Sections 2–4 provide a derivation of reduced
models for KAWs and WWs, including the non-gyrotropic electron pressure force,
whose calculation is presented in appendix A. Comparisons with previous estimates
are made in appendix B. In § 5, closed systems of equations resulting from the
assumption of isothermal electrons or from a Landau fluid closure are presented, both
in the KAWs and WWs regimes. In § 6, accuracy of these two closures is checked
against kinetic theory in the linear regime. In § 7, the isothermal models are used
as a basis for a phenomenological theory of KAWs and WWs turbulent cascades, at
scales either large or small compared with the electron inertial length. The influence
of the ion to electron temperature ratio τ on the small-scale KAWs spectral exponent
is in particular discussed. Section 8 is the conclusion.

2. Reduced form of the Faraday equation
We consider the Faraday equation for the magnetic field B

∂tB=−c∇×E, (2.1)

where the electric field E is given by the generalized Ohm’s law

E=−1
c

ue ×B− 1
en
∇ · Pe − me

e
D(e)

Dt
ue. (2.2)

Here c is the speed of light, e the electron charge and D(e)/Dt = ∂t + ue · ∇ holds
for the material derivative associated with the electron velocity field ue. The electron
pressure tensor Pe is given by

Pe = p⊥eI + (p‖e − p⊥e)τ +Πe, (2.3)
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where I is the identity matrix, τ = b̂ ⊗ b̂ (with b̂ = B/|B|), p‖e and p⊥e are the
gyrotropic parallel and perpendicular electron pressures and Πe refers to the FLR
contribution to the electron pressure tensor. As usual, n holds for the electron number
density.

The equation for the parallel magnetic fluctuations Bz thus reads

D(e)

Dt
Bz + (∇ · ue)Bz − (B · ∇)uze − ẑ · ∇×

( c
ne
∇ · Pe

)
− mec

e
ẑ · ∇× D(e)

Dt
ue = 0, (2.4)

where ẑ denotes the unit vector along the ambient magnetic field. The divergence of
the electron velocity is given by the continuity equation

∇ · ue =−1
n

D(e)

Dt
n. (2.5)

In terms of the electrostatic potential ϕ and of the magnetic potential A, defined by
B=∇×A, with the Coulomb gauge ∇ ·A= 0, equation (2.1) rewrites

E=−∇ϕ − 1
c
∂tA. (2.6)

In addition, when concentrating on sub-ion scales where the electron velocity
strongly exceeds that of the ions, the Ampère equation

∇×B= 4π

c
en(ui − ue), (2.7)

where the displacement current is neglected, reduces to

ue = c
4πen

1A. (2.8)

We consider in the following fluctuations about a homogeneous equilibrium state
characterized by a number density n0, isotropic ion and electron temperatures Ti0 and
Te0 and a guide (or ambient) field of magnitude B0 taken in the z-direction. In order to
deal with dimensionless quantities, we rescale time by the inverse ion gyrofrequency
Ωi = eB0/(mic), velocities by the sound speed cs = (Te0/mi)

1/2, space coordinates by
the sonic Larmor radius ρs = cs/Ωi, density by the equilibrium density n0, magnetic
field by the equilibrium field B0, electric potential by Te0/e, parallel magnetic potential
by B0ρs, ion pressures by n0Ti0, electron pressures by n0Te0, parallel and perpendicular
electron heat fluxes by csn0Te0 and fourth-rank moments by n0T2

e0/me. For convenience,
we keep the same notation for the rescaled fields. We also define the non-dimensional
parameters τ = Ti0/Te0, δ =√me/mi and βe = 8πn0Te0/B2

0.
For a given vector V, we denote by V‖ and V⊥ the components parallel and

perpendicular to the local magnetic field (except for the magnetic field, for which B⊥
refers to the component perpendicular to the ambient field). When the magnetic field
distortions are small, V‖ = Vz to leading order, except when V is quasi-perpendicular
(as it is the case for the electric field and also for the gradient operator).

We assume a weakly nonlinear regime characterized by two small parameters ε and
µ such that u⊥e = O(ε) and ∇⊥ = O(1/µ). We furthermore assume that the parallel
(∇‖= b̂ · ∇) and perpendicular (∇⊥) gradients with respect to the local magnetic field
satisfy ∇‖ � ∇⊥, with scalings depending on the type of wave, as specified below.
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In this asymptotics, ∇‖= ∂z− [A‖, ·], where the bracket of two scalar functions f and
g is defined as [ f , g] = ẑ · (∇f ×∇g). Concentrating on scales around de leads us to
assume δ2/(βeµ

2)= 1. At these scales, the condition (in dimensional units) k⊥ρe� 1
reduces to βe� 1.

We here consider KAWs and WWs. Based on their dispersion relations, we are
led to prescribe that for both kinds of waves, ∂t =O(ε/µ), ϕ =O(µε), Bz=O(βeµε).
Differently, we have ∇‖ = O(δε/µ) = O(β1/2

e ε), A‖ = O(δµε) = O(β−1/2
e δ2ε) and

u‖e = O(µε/δ) = O(β−1/2
e ε) for the KAWs, while for the WWs, ∇‖ = O(βeε),

A‖ = O(βeµ
2ε) = O(δ2ε) and u‖e = O(ε). Furthermore, Bz/|B⊥| = O(β1/2

e ) for the
KAWs, but is of order unity for the WWs (a condition which is not inconsistent
with the Coulomb gauge, since |A⊥| and A‖ can be comparable when the angle
between A⊥ and k⊥ is close to π/2). Similarly, the density, pressure and temperature
fluctuations are O(µε) for the KAWs, while for the WWs the density fluctuations
are negligible and the temperature fluctuations are O(βeεµ). For both types of waves,
the gyrotropic heat fluxes q‖e and q⊥e scale like the parallel velocity u‖e and the
fourth-rank cumulants like the temperature fluctuations.

Under the above assumptions, a drift expansion of the transverse electron velocity
gives (in terms of the rescaled variables)

u⊥e = ẑ× (∇⊥(ϕ − p⊥e)−∇ ·Πe), (2.9)

where, to leading order (see appendix A), ∇ ·Πe= (δ2/2)∇ωze, in terms of the parallel
electron vorticity ωze. We write

u⊥e = ẑ×∇⊥ϕ∗, (2.10)

with

ϕ∗ = ϕ − p⊥e − δ
2

2
ωze. (2.11)

In (2.11) and hereafter, the various fields refer to fluctuations, except for the pressure
in primitive equations.

Furthermore, using (2.8),

u‖e = 2
βe
∆⊥A‖ (2.12)

ωze =∆⊥ϕ∗ (2.13)

ϕ∗ = 2
βe

Bz (2.14)(
1+ δ

2

2
∆⊥

)
ϕ∗ = ϕ − p⊥e. (2.15)

It follows that
D(e)

Dt
= d

dt
−
[

p⊥e + δ
2

βe
∆⊥Bz, ·

]
, (2.16)

where d/dt= ∂t + [ϕ, ·].
The projection on the parallel direction of (2.6),

∂tA‖ + c∇‖ϕ =−cE‖, (2.17)
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rewrites
d
dt

(
1− 2δ2

βe
∆⊥

)
A‖ + ∂zϕ −∇‖p‖e + δ2

[
p⊥e + δ

2

2
ωze, u‖e

]
− b̂ · (∇ ·Πe)= 0, (2.18)

where the FLR contributions b̂ · (∇ ·Πe)= b̂ ·∇ ·Π(1)
e + b̂ ·∇ ·Π(2)

e are given by (A 8),
(A 9), (A 11) and (A 19). Equation (2.18) rewrites

d
dt

(
1− 2δ2

βe
∆⊥ + 2δ4

βe
∆2
⊥

)
A‖ + ∂zϕ −∇‖p‖e −

[
p⊥e,

2δ4

βe
∆2
⊥A‖

]
+ δ2[Bz, u‖e + q⊥e] − δ2∇‖∆⊥ϕ∗ − δ2

∑
i=x,y

[
∂iϕ
∗,
(

1− 2δ2

βe
∆⊥

)
∂iA‖

]
+ δ4 d

dt
∆⊥q⊥e − δ4[p⊥e, ∆⊥q⊥e] − δ4[∆⊥ϕ∗, q⊥e] = 0, (2.19)

where the gyroviscous cancellation eliminates the δ2[p⊥e + (δ2/2)ωze, u‖e] term.
We now turn to (2.4) where, assuming an isotropic equilibrium state, we write

∇ · Pe =∇⊥p⊥e +∇‖p‖eb̂+∇ ·Πe. (2.20)

At the order of the present expansion, we have

ẑ · ∇× D(e)

Dt
ue = D(e)

Dt
ωze = 2

βe

D(e)

Dt
∆⊥Bz (2.21)

and

ẑ · ∇× (∇ ·Πe) = 2δ2

βe
[p⊥e − Bz, ∆⊥Bz] + δ2

∑
i=x,y

[∂i(p⊥e − Bz), ∂iϕ
∗]

− δ
2

2
∆⊥∇ · ue − δ

2

2
∇‖∆⊥u‖e − δ2∇‖∆⊥q⊥e + δ2

∑
i=x,y

[∂iA‖, ∂iq⊥e].

(2.22)

Using (A 22), we obtain

d
dt

((
1− 2δ2

βe
∆⊥

)
Bz

)
−
[

p⊥e + δ
2

βe
∆⊥Bz, Bz + n

]
+
(

1+ δ
2

2
∆⊥

)
(∇ · ue)

−∇‖
(

1− δ
2

2
∆⊥

)
u‖e + δ2[Bz, ∆⊥ϕ∗] − δ2

∑
i=x,y

[∂ip⊥e, ∂iϕ
∗]

+ δ2∇‖∆⊥q⊥e − δ2
∑
i=x,y

[∂iA‖, ∂iq⊥e] = 0 (2.23)

or, when using (2.5),

d
dt

((
1− 2δ2

βe
∆⊥

)
Bz −

(
1+ δ

2

2
∆⊥

)
n
)
−
[

p⊥e + 3δ2

βe
∆⊥Bz, Bz

]
− δ

2

2
[∆⊥ϕ, n]

+ δ
2

2
∆⊥

[
p⊥e + δ

2

βe
∆⊥Bz, n

]
− 2
βe
∇‖
(

1− δ
2

2
∆⊥

)
∆⊥A‖ + δ2

∑
i=x,y

[∂in, ∂iϕ]

− δ2[∂ip⊥e, ∂iϕ
∗] + δ2∇‖∆⊥q⊥e − δ2

∑
i=x,y

[∂iA‖, ∂iq⊥e] = 0. (2.24)
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3. Pressure equations
The equations for the electron gyrotropic pressures read

D(e)

Dt
p‖e + p‖e∇ · ue + 2p‖e∇‖ue · b̂+∇ · qe : τ +

[
(Πe · ∇ue)

S
: τ −Πe :

dτ
dt

]
= 0

(3.1)
D(e)

Dt
p⊥e + 2p⊥e∇ · ue − p⊥e∇‖ue · b̂+ 1

2
∇ · qe : n+

1
2

[
(Πe · ∇ue)

S
: n+Πe :

dτ
dt

]
= 0,

(3.2)

where n= I− τ and the electron heat flux tensor qe can be written qe=Se+ σe. Here
the tensor σe obeys the conditions σe : n= 0 and σe : τ = 0. The elements of the tensor
Se are classically expressed (see e.g. Goswami, Passot & Sulem 2005) in terms of
the components of two vectors S‖e and S⊥e defined by S‖e = qe : τ and S⊥e = (1/2)qe : n
that measure the directional fluxes of the parallel and perpendicular heats respectively.
The usual perpendicular and parallel gyrotropic heat fluxes are given by q⊥e = S⊥e · b
and q‖e= S‖e · b, and thus correspond to the fluxes along the magnetic field. We write
S⊥e = q⊥eb+ S⊥⊥e and S‖e = q‖eb+ S‖⊥e.

In the present asymptotics, the contribution to the pressure equations of the tensor
σe, whose expression, given in Ramos (2005a) and also in Sulem & Passot (2015), is
negligible. To leading order, we are thus led to write

(∇ · qe) : τ =∇‖q‖e +∇ · S‖⊥e (3.3)
1
2(∇ · qe) : n=∇‖q⊥e +∇ · S⊥⊥e. (3.4)

Here, the non-gyrotropic heat fluxes contributions, described by the vectors S‖⊥e and
S⊥⊥e, are obtained by changing sign in the equations (3.6) and (3.7) of Sulem & Passot
(2015) for the ion heat flux vectors. We obtain, at the order of the asymptotics,

S‖⊥e =−
1
B

b̂× (p⊥e∇T‖e + 2δ2q⊥eb̂×ωe +∇r̃‖⊥e) (3.5)

S⊥⊥e =−
2
B

b̂× (p⊥e∇T⊥e +∇r̃⊥⊥e), (3.6)

where the r̃ functions refer to the gyrotropic components of the fourth-rank cumulants.
Among the terms associated with the work of the non-gyrotropic pressure force in

(3.1) and (3.2), the one involving the time derivative scales like O(ε3) and is thus
negligible. In the other terms, only the linear part of Πe is possibly relevant at the
prescribed order, but it is easily checked that the corresponding contribution in fact
vanishes.

Using the electron continuity equation to eliminate the velocity divergence, we are
led to write the equations for the temperature fluctuations

d
dt

T‖e − [Bz, T‖e + r̃‖⊥e] + ∇‖(2u‖e + q‖e)− δ
2

βe
[∆⊥Bz, T‖e] + 2δ2[q⊥e, u‖e] = 0 (3.7)

d
dt
(T⊥e − n)− 2[Bz, T⊥e + r̃⊥⊥e] + ∇‖(q⊥e − u‖e)− δ

2

βe
[∆⊥Bz, T⊥e − n] = 0, (3.8)

where u‖e and Bz are given by (2.12) and (2.14) respectively.
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4. KAWs or WWs, depending on the compressibility level
At this stage, it is important to note that, beyond the estimate of the gyrotropic

electron pressure fluctuations which are prescribed by the closure assumption for
the fluid hierarchy, the system given by (2.19) and (2.24) involves three unknown
quantities A‖, ϕ and n. An additional relation is obtained when specifying the type
of waves the system is describing. KAWs and WWs are indeed characterized by
different levels of compressibility.

In the case of KAWs, the plasma is in pressure balance in the transverse direction.
This condition, which consists in neglecting the inertial term compared to the pressure
gradient in the equation for the transverse total momentum reads (for typical ion
transverse velocity δv⊥i and density fluctuations δn),

ω

k⊥

δv⊥i

vthi
� vthi

δn
n
. (4.1)

In the above estimate, in spite of the fact that |ui|� |ue|, miδv⊥i dominates meδv⊥e, at
least close to the ion scale where δv⊥i/vthi and δn/n are comparable, and where one
thus recovers the classical condition ω� k⊥vthi for the existence of KAWs. At smaller
scales, where the ion velocity fluctuations decrease due to ion demagnetization, this
condition becomes in fact less stringent. The pressure balance then reads

(∇ · (τP i + Pe))⊥ − 2
βe
(∇×B)× ẑ= 0, (4.2)

where the index i refers to the ions. Applying the transverse divergence, we find

∆⊥(τp⊥i + p⊥e)+∇⊥ · (∇ · (τΠi +Πe))+ 2
βe
∆⊥Bz = 0. (4.3)

As shown in Tassi et al. (2016), at the sub-ion scales, Πi is negligible and the ions
are isothermal (making, in the present units, electron pressure and density fluctuations
equal). To leading order in ε, equation (4.3) rewrites

τn+ p⊥e + δ
2

2
1ϕ∗ + 2

βe
Bz = 0. (4.4)

Using (2.14) and (2.15), it is then easily checked that

n=−1
τ
ϕ. (4.5)

It results that

n=− 1
1+ τ

(
T⊥e +

(
1+ δ

2

2
∆⊥

)
ϕ∗
)

(4.6)

ϕ = τ

1+ τ
(

T⊥e +
(

1+ δ
2

2
∆⊥

)
ϕ∗
)
. (4.7)

A different behaviour of the density holds in the case of the WWs. The linear
kinetic theory (see e.g. Gary & Smith 2009) shows that the electron compressibility
of WWs is significantly smaller than that of the KAWs, at least for βe small enough

https://doi.org/10.1017/S0022377817000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000514


Electron-scale reduced fluid models 9

compared to unity and scales small compared to di. This suggests that we may assume
∇ · ue is smaller than ε2, and thus may neglect the density fluctuations. This regime
formally corresponds to taking the limit τ→∞ in (4.6) and (4.7). Note however than
in auroral zones where the Alfvén velocity can exceed several thousands of km s−1,
quasi-neutrality no longer holds at large enough wavenumber, making electron density
fluctuations relevant for WW dynamics (Kuvshinov et al. 1998).

In the next section, two different closures of the fluid hierarchy will be examined,
namely the isothermal case, a regime often considered in turbulence studies, and a
Landau fluid closure.

5. Closure assumptions
5.1. General form of the four-field model

Two asymptotics which are similar but not identical can be distinguished. When
considering scales comparable to de, we should take βe as the expansion parameter.
We refer in the following to this regime as the small βe regime. Differently, when
considering βe of order unity, a gradient expansion is performed in terms of δ2∆⊥
(hereafter referred to as large-scale regime). In fact both approaches can be captured
simultaneously, but this leads us to retain subdominant terms of order βeδ

2∆⊥=O(β2
e )

in the former regime and of order δ4∆2
⊥/βe in the latter.

In the KAW regime, using (4.6)–(4.7), equations (2.19) and (2.24) rewrite,

∂t

((
1− 2δ2

βe
∆⊥ + 2δ4

βe
∆2
⊥

)
A‖ + δ4∆⊥q⊥e

)
+∇‖(T⊥e − T‖e)+∇‖

(
1− δ

2

2
∆⊥

)
ϕ∗

+
[
ϕ∗, δ2∆⊥A‖ + 2δ4

βe
∆2
⊥A‖

]
− τ

1+ τ
[

T⊥e +
(

1+ δ
2

2
∆⊥

)
ϕ∗,

2δ2

βe
∆⊥A‖

]
− δ2

∑
i=x,y

[
∂iϕ
∗,
(

1− 2δ2

βe
∆⊥

)
∂iA‖

]
+
[
ϕ∗,

βe

2
δ2q⊥e + δ4∆⊥q⊥e

]
− δ4[∆⊥ϕ∗, q⊥e] = 0, (5.1)

and

∂t

(
βe

2

(
1− 2δ2

βe
∆⊥

)
ϕ∗ + 1

1+ τ (1+ δ
2∆⊥)ϕ∗ + 1

1+ τ
(

1+ δ
2

2
∆⊥

)
T⊥e

)
− 2
βe
∇‖
(

1− δ
2

2
∆⊥

)
∆⊥A‖ + δ2∇‖∆⊥q⊥e

+ 2τ + 1
2(τ + 1)

[δ2∆⊥ϕ∗, T⊥e] + δ2
∑
i=x,y

[∂iϕ
∗, ∂iT⊥e]

−
[
ϕ∗,
(

τ

1+ τ −
βe

2

)
δ2∆⊥ϕ∗ − 1

1+ τ
δ2

2
∆⊥T⊥e

]
− δ2

∑
i=x,y

[∂iA‖, ∂iq⊥e] = 0. (5.2)

Note that retaining O(βe) contributions make temperature anisotropy relevant in (5.1)
and (5.2), while neglecting these terms and using ϕ instead of ϕ∗ eliminates T⊥e from
these equations.

https://doi.org/10.1017/S0022377817000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000514


10 T. Passot, P. L. Sulem and E. Tassi

Equations (3.7) and (3.8) become

∂tT‖e +∇‖
(

4
βe
∆⊥A‖ + q‖e

)
+ τ

1+ τ
[

T⊥e +
(

1+ δ
2

2
∆⊥

)
ϕ∗, T‖e

]
− βe

2
[ϕ∗, T‖e + r̃‖⊥e] −

[
δ2

2
∆⊥ϕ∗, T‖e

]
+ 4δ2

βe
[q⊥e, ∆⊥A‖] = 0 (5.3)

∂t

(
2+ τ
1+ τ T⊥e + 1

1+ τ
(

1+ δ
2

2
∆⊥

)
ϕ∗
)
+∇‖

(
q⊥e − 2

βe
∆⊥A‖

)
− τ

1+ τ
[

T⊥e,

(
1+ δ

2

2
∆⊥

)
ϕ∗
]
− βe[ϕ∗, T⊥e + r̃⊥⊥e]

− δ
2

2

[
∆⊥ϕ∗,

2+ τ
1+ τ T⊥e + 1

1+ τ ϕ
∗
]
= 0. (5.4)

In the limit δ= 0, equations (5.1)–(5.4) reduce to (3.72)–(3.78) of Tassi et al. (2016).
In the adiabatic limit (where q‖e, q⊥e, r̃‖⊥e and r̃⊥⊥e are taken equal to zero), this
system possesses a conserved energy, a property easily established when noting that
the brackets involving gradients are eliminated within the integrals by using equalities
of the type

2
∫
∆⊥A‖

∑
i=x,y

[∂iϕ
∗, ∂iA‖] dx=

∫
(∆2
⊥A‖[ϕ∗, A‖] −∆⊥A‖[∆⊥ϕ∗, A‖]) dx (5.5)∫

∆⊥A‖
∑
i=x,y

[∂iϕ
∗, ∂i∆⊥A] dx=

∫
∆2
⊥A[ϕ∗, ∆⊥A‖] dx. (5.6)

These identities are obtained by expanding ∆⊥[ϕ∗, f ] within the equality∫
∆⊥A‖∆⊥[ϕ∗, f ] dx=

∫
∆2
⊥A‖[ϕ∗, f ] dx, (5.7)

where f holds for A‖ or ∆⊥A‖, and using the identity
∫

f [g, h] dx= ∫ h[ f , g] dx. The
energy reads

EKAW = 1
2

∫
2
βe

(
|∇A‖|2 + 2δ2

βe
(∆⊥A‖)2 + 2δ4

βe
|∇∆⊥A‖|2

)
+
(

1
τ + 1

+ βe

2

)
ϕ∗2

+ τ

1+ τ δ
2|∇ϕ∗|2 + T2

‖e
2
+ 2+ τ

1+ τ T2
⊥e +

2
1+ τ T⊥e

(
1+ δ

2

2
∆⊥

)
ϕ∗ dx. (5.8)

Writing that, to leading order, ϕ∗ = −(T⊥e + (1 + τ)n), it can be shown that the
internal energy contributions in (5.8) coincide with those of (3.39) of Tassi et al.
(2016), once the various fields are transformed from the gyrofluid to the particle
formulation.

The system of equations describing the WWs dynamics is conveniently obtained by
taking the limit τ→∞. In this regime, the temperature fluctuations are subdominant
by a factor βe in the resulting system.

5.2. The isothermal case
Isothermal electrons is a good approximation when one does not focus on dissipative
effects, as long as k‖� k⊥ and k⊥ρe� 1, as discussed in Schekochihin et al. (2009).
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5.2.1. KAWs reduced model
Taking temperature fluctuations and heat fluxes equal to zero, one obtains, in the

small βe regime,

∂t

(
1− 2δ2

βe
∆⊥ + 2δ4

βe
∆2
⊥

)
A‖ +∇‖

(
1− δ

2

2
∆⊥

)
ϕ∗ +

[
ϕ∗, δ2∆⊥A‖ + 2δ4

βe
∆2
⊥A‖

]
− τ

τ + 1

[(
1+ δ

2

2
∆⊥

)
ϕ∗,

2δ2

βe
∆⊥A‖

]
− δ2

∑
i=x,y

[
∂iϕ
∗,
(

1− 2δ2

βe
∆⊥

)
∂iA‖

]
= 0

(5.9)

∂t

(
βe

2

(
1− 2δ2

βe
∆⊥

)
+ 1
τ + 1

(1+ δ2∆⊥)
)
ϕ∗ − 2

βe
∇‖
(

1− δ
2

2
∆⊥

)
∆⊥A‖

− τ

1+ τ [ϕ
∗, δ2∆⊥ϕ∗] = 0, (5.10)

while at finite βe and scales large compared to ρe, the system reduces to

∂t

(
1− 2δ2

βe
∆⊥

)
A‖ +∇‖

(
1− δ

2

2
∆⊥

)
ϕ∗ + [ϕ∗, δ2∆⊥A‖]

− τ

τ + 1

[
ϕ∗,

2δ2

βe
∆⊥A‖

]
− δ2

∑
i=x,y

[∂iϕ
∗, ∂iA‖] = 0 (5.11)

∂t

(
βe

2

(
1− 2δ2

βe
∆⊥

)
+ 1
τ + 1

(1+ δ2∆⊥)
)
ϕ∗ − 2

βe
∇‖
(

1− δ
2

2
∆⊥

)
∆⊥A‖

−
(

τ

1+ τ −
βe

2

)
[ϕ∗, δ2∆⊥ϕ∗] = 0. (5.12)

In the small βe regime, the energy, which reduces to

EKAW = 1
2

∫ {(
1

τ + 1
+ βe

2

)
ϕ∗2 + τ

1+ τ δ
2|∇ϕ∗|2

+ 2
βe

(
|∇A‖|2 + 2δ2

βe
(∆⊥A‖)2 + 2δ4

βe
|∇∆⊥A|2

)}
dx, (5.13)

is conserved during the time evolution. In the case of finite βe, the term proportional
to δ4 is absent in the definition of the energy.

In the limit βe → 0, τ →∞ with τ = O(β−1
e ), the system considered to leading

order at scales comparable to the electron inertial length reduces to (19) and (20) of
Chen & Boldyrev (2017).

5.2.2. WWs reduced model
Proceeding as above, we get in the case of small βe

∂t

(
1− 2δ2

βe
∆⊥ + 2δ4

βe
∆2
⊥

)
A‖ +∇‖

(
1− δ

2

2
∆⊥

)
ϕ∗ +

[
ϕ∗, δ2∆⊥A‖ + 2δ4

βe
∆2
⊥A‖

]
−
[(

1+ δ
2

2
∆⊥

)
ϕ∗,

2δ2

βe
∆⊥A‖

]
− δ2

∑
i=x,y

[
∂iϕ
∗,
(

1− 2δ2

βe
∆⊥

)
∂iA‖

]
= 0 (5.14)
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∂t

(
1− 2δ2

βe
∆⊥

)
ϕ∗− 4

β2
e

∇‖
(

1− δ
2

2
∆⊥

)
∆⊥A‖+

(
1− 2

βe

)
[ϕ∗, δ2∆⊥ϕ∗]= 0. (5.15)

The corresponding energy reads

EWW = 1
2

∫ {
ϕ∗2 + 2δ2

βe
|∇ϕ∗|2 + 4

β2
e

(
|∇A‖|2 + 2δ2

βe
(∆⊥A‖)2 + 2δ4

βe
|∇∆⊥A|2

)}
dx.

(5.16)
In the finite βe regime, the only change in the system of equations and in the

corresponding energy consists in the absence of the δ4 contributions.
Note that in the range ρ−1

i � k⊥ � d−1
e , where both electron inertia and FLR

corrections are negligible, the equations for KAWs and for WWs formally identify,
although ϕ∗ refers in fact to different quantities, being proportional to the electron
density in the former case and to the parallel magnetic field in the latter (Boldyrev
et al. 2013). The resulting model is usually referred to as ERMHD (see e.g.
Schekochihin et al. 2009) and can be viewed as the generalization of EMHD for
low-frequency anisotropic fluctuations without the assumption of incompressibility.
When electron inertia is retained, but not the FLR corrections, the equations for the
WWs appear as an extension to the anisotropic three-dimensional (3-D) regime of the
2.5-D equations given in Biskamp et al. (1996, 1999).

5.3. Landau fluid closure
In (5.1)–(5.4) for KAWs, which are valid both in the small βe and the large-scale
regimes (or in the equations for WWs which, as previously mentioned, are obtained
by taking the limit τ→∞), the heat fluxes and fourth-rank cumulants are still to be
specified. A simple closure, aimed at capturing Landau damping, in a way consistent
with linear kinetic theory, is provided by directly expressing the heat fluxes in terms of
lower-order fluctuations, as done in equations (3.17)–(3.19) of Sulem & Passot (2015),
which here reduce to

q‖e =−2αHT‖e (5.17)
q⊥e =−αHT⊥e − αδ2Hωze, (5.18)

where, at the considered scales, the vorticity term arising in (3.18) of the above
reference has, in fact, also to be retained. Here, α = (2/π)1/2δ−1 and the operator
H denotes the negative Hilbert transform along the magnetic field lines (see Sulem
& Passot (2015) for a discussion on its modelling). The fourth-order cumulants are
given by equations (3.21) and (3.27) of Sulem & Passot (2015), which here take the
form

r̃‖⊥e =−T⊥e − αδ2Hωze (5.19)
r̃⊥⊥e = 0. (5.20)

In contrast with the small-scale model discussed in Tassi et al. (2016), the reduced
Landau fluid (RLF) model discussed here includes an explicit closure of the fluid
hierarchy and retains electron inertia together with FLR corrections.

Remark. The present RLF model can be extended to larger scales by relating ϕ and n,
as in Zocco & Schekochihin (2011), by means of the more general relation provided
by the gyrokinetic Poisson equation (Krommes 2002)

n=−
(

1− Γ0(τk2
⊥)

τ

)
ϕ. (5.21)
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Here Γ0(x) = e−xI0(x), where I0 denotes the modified Bessel function of order 0. In
this approach, the ion response is taken into account and the agreement with kinetic
theory improved at values of k⊥ close to unity, as discussed in § 6. The model then
appears as a Landau fluid version of the kinetic model of Zocco & Schekochihin
(2011), where FLR corrections have been supplemented.

6. Linear theory
6.1. Isothermal regime

Linearizing (5.9)–(5.10) and (5.14)–(5.15), which correspond to the small βe regime,
we obtain the dispersion relation for the KAWs

ω

kz
=
√

2
βe

(
1+ δ

2k2
⊥

2

)
k⊥(

1+ 2δ2k2
⊥

βe
+ 2δ4k4

⊥
βe

)1/2 (
βe

2

(
1+ 2δ2k2

⊥
βe

)
+ 1

1+ τ (1− δ
2k2
⊥)
)1/2 , (6.1)

and for the WWs

ω

kz
= 2
βe

(
1+ δ

2k2
⊥

2

)
k⊥(

1+ 2δ2k2
⊥

βe
+ 2δ4k4

⊥
βe

)1/2 (
1+ 2δ2k2

⊥
βe

)1/2 , (6.2)

respectively, where kz denotes the parallel wavenumber. Note that, when (1+ τ)βe� 1,
the dispersion relation of KAWs and WWs coincide. In that case, when neglecting
FLR corrections, the frequency of the waves saturates at a value ωs = (kz/k⊥)(1/δ2),
which, at large enough propagation angle θkB, identifies (in dimensional units) with
Ωe cos θkB. On the other hand, when (1+ τ)βe� 1, KAWs obey, in the high-frequency
domain (still neglecting FLR effects), ω/kz ' (1+ τ)1/2/δ.

For both types of waves, the eigenvector is associated with the relation

ϕ̂∗ = ω
kz

1+ 2δ2k2
⊥

βe
+ 2δ4k4

⊥
βe

1+ δ
2

2
k2
⊥

 Â‖, (6.3)

where the hat symbol refers to Fourier modes. From this formula, the magnetic
compressibility

C= B̂2
z

|B̂⊥|2
= β

2
e

4
ϕ̂∗2

k2
⊥Â2
‖

(6.4)

is easily obtained for each type of wave in the form

CKAW =
1+ 2δ2k2

⊥
βe
+ 2δ4k4

⊥
βe

1+ 2
(1+ τ)βe

+ τ

1+ τ
2δ2k2

⊥
βe

, (6.5)

https://doi.org/10.1017/S0022377817000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000514


14 T. Passot, P. L. Sulem and E. Tassi

CWW =
1+ 2δ2k2

⊥
βe
+ 2δ4k4

⊥
βe

1+ 2δ2k2
⊥

βe

. (6.6)

While the magnetic compressibility is of order one for WWs, it displays a sharp
increase for the KAWs at scales comparable to de. Capturing the saturation observed
in data from the Magnetospheric Multiscale (MMS) mission, near the electron Larmor
radius (Chen & Boldyrev 2017) nevertheless requires a suitable descriptions of the
FLR effects at this scale, which is beyond the scope of the present model.

It is of interest to compare the predictions of the present reduced fluid models with
those of the kinetic theory obtained using the WHAMP software (Rönnmark 1982).
The first question concerns the domain of existence of the two types of wave. For
the KAWs, a propagation angle θkB close to 90◦ is required in order to prevent the
occurrence of cyclotron resonance within the considered range of wavenumbers. Note
that this condition is relaxed when βi= τβe is large (typically a few units) (Sahraoui,
Belmont & Goldstein 2012; Passot, Sulem & Hunana 2012). For these large values
of βi, and at large propagation angles, there is only one electromagnetic mode at
scales smaller than the ion Larmor radius. It is a continuation of the shear Alfvén
branch, and is named Alfvén–whistler mode because its frequency can greatly exceed
the ion gyrofrequency (Sahraoui et al. 2012). For smaller βi, KAWs and WWs are
clearly distinct modes which appear to be the continuation of shear Alfvén and fast
waves respectively. They furthermore exist in different domains of θkB and βe, whistler
modes requiring a smaller angle of propagation (see also Boldyrev et al. 2013). If
one assumes that the frequency ωW of WWs obeys ωWW > k⊥vth i >Ωi, inserting the
approximate (dimensional) formula ωWW ' (Ωi/βe)kzk⊥ρ2

s , (valid in the range kde < 1),
one finds that, for k⊥ρs ' 1, one should have kzρi & βi, while for k⊥ρs = O(1/µ) =
β1/2/δ, the condition is kz/k⊥ & (τβe)

1/2δ. On the other hand, taking for the KAWs,
ωKAW ' Ωiβ

−1/2
e kzk⊥ρ2

s , the condition ωKAW < Ωi taken for k⊥ρs ' β1/2/δ gives the
condition kz/k⊥ . δ2β−1/2

e . In the following, we choose θkB = 82◦ for the WWs and
θkB = 89.99◦ for the KAWs.

Figure 1 displays the ratios Re(ω)/kz (in dark blue solid lines) and −Im(ω)/kz (in
dark blue dashed lines) obtained from the linear kinetic theory for KAWs at βe=0.001
for τ = 1, τ = 5 and τ = 50 (a,c,e) and at βe = 0.1 for τ = 0.2, τ = 1 and τ = 5
(b,d, f ). Superimposed in thick red solid lines are the corresponding ratios ω/kz of
the isothermal dispersion relation given by (6.1). At small βe, the agreement between
kinetic theory and the isothermal model is better for large values of τ , in part due to
a smaller damping rate. A much faster decrease of the ratio Re(ω)/kz is observed for
τ = 50 and the behaviour is indeed close to that of WWs (see figure 2b), as predicted
by inspection of the dispersion relations. For smaller values of τ and/or larger values
of βe, the damping becomes quite strong when k⊥ reaches a few units.

Turning to the WWs, it is of interest to first briefly discuss their properties when
varying angles and βe. As mentioned previously, for small enough βi, WWs can be
found as a continuation to small scales of the fast mode. At a sufficiently small angle
of propagation, e.g. 60◦, they do not encounter any resonance, even at βi of order
unity, but as the angle and/or βi increases, branches of Bernstein modes cross the
whistler branch, that nevertheless remains continuous throughout the considered range
of wavenumbers, if θkB and βi remain below certain thresholds. This is illustrated
in figure 2(a), which displays the frequencies (solid) and damping rates (dashed) at
βe = 0.01, τ = 8 and θkB = 82◦ for an Alfvén wave (red), a fast wave ending in the
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 1. Re(ω)/kz (solid line) and −Im(ω)/kz (dashed line) from kinetic theory (in dark
blue) and ω/kz from the two-field model (thick red line) for KAWs at βe = 0.001 (a,c,e)
for τ = 1 (a), τ = 5 (c) and τ = 50 (e), and at βe = 0.1 (b,d, f ) for τ = 0.2 (b), τ = 1 (d)
and τ = 5 ( f ).

https://doi.org/10.1017/S0022377817000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000514


16 T. Passot, P. L. Sulem and E. Tassi

(a) (b)

FIGURE 2. (a) Frequencies (solid) and damping rates (dashed) at βe = 0.01, τ = 8 and
θkB= 82◦ for an Alfvén wave (red), a fast wave ending in the first Bernstein mode (blue)
and in the second one (brown) and for the whistler wave (green) continuing to small scale
(see right in red dotted line). (b) Re(ω)/kz (solid lines) and −Im(ω)/kz (dashed lines) from
kinetic theory for whistlers at βe = 0.01 for τ = 0.2 (dark blue), τ = 1 (brown), τ = 5
(green) and τ = 8 (red dotted) and ratio ω/kz from the two-field model (thick black line).

first Bernstein mode (blue) and in the second one (brown) and for the whistler wave
(green) continuing to small scale (as a red dotted line in (b)). Choosing θkB= 82◦ and
βe = 0.01, we display in figure 2(b), Re(ω)/kz (solid lines) and −Im(ω)/kz (dashed
lines) for WWs at τ = 0.2 (dark blue), τ = 1 (brown), τ = 5 (green) and τ = 8 (red
dots), superimposed with the prediction of linear theory (6.2) (thick black line). As τ
increases, the kinetic results converge to the same curve which is very close to the
prediction of the model, as long as dissipation remains small (i.e. for k⊥6 10). A very
similar behaviour is observed for a 75◦ propagation angle.

Figure 3(a) displays the electron density fluctuation of the eigenmode, obtained
from the kinetic theory for KAWs (red line) at θkB= 89.99◦ and WWs (dark blue line)
at θkB = 82◦ for β = 0.01 and τ = 5. This result, which remains true at larger values
of βe, confirms the assumption that was used to distinguish the two waves, namely
that the WWs are associated with almost incompressible motions.

Finally, figure 3(b) displays the case of a smaller βe for KAWs, a situation where
the behaviour at small k⊥ is now quite sensitive to the ion response. We display
Re(ω)/kz for βe = 10−4 and τ = 1 for the kinetic theory (dark blue solid line) and
different models. The prediction of (6.1), which is displayed with a thick red solid line,
shows a strong disagreement for k⊥< 5. The agreement with kinetic theory is however
much better at these large scales when using the dispersion relation of the model of
Zocco & Schekochihin (2011) taken in the isothermal limit (black dashed line). Note
that the different curvature of the dispersion relation, observed at small k⊥ when βe

crosses me/mi, is associated with the well-known transition from KAWs to inertial
Alfvén waves. Interestingly, when modified by using the gyrokinetic Poisson equation
(5.21) (green dots), our model reproduces for ω/kz both the qualitative behaviour at
large scales and the decrease at small scales, in agreement with kinetic theory, in
spite of a different absolute level in a spectral range where the Landau damping is
nevertheless so strong that the corresponding waves are rapidly dissipated.
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(a) (b)

FIGURE 3. (a) Electron density fluctuations for whistlers at θkB = 82◦ (dark blue) and
KAWs at θkB = 89.99◦ (red) for βe = 0.01 and τ = 5. (b) Re(ω)/kz for a KAW at βe =
0.0001 and τ = 1, from kinetic theory (in dark blue) and frequency from various two-field
models: from (6.1) (thick red line), from the model of Zocco & Schekochihin (2011) taken
in the isothermal limit (dashed black line), and from an extension of the current model
using the improved relation between n and ϕ given by (5.21) (green dotted line). The dark
blue dashed line displays −Im(ω)/kz.

6.2. Reduced Landau fluid model
We shall here restrict the discussion to the impact of Landau damping on the
dispersion relation for KAWs. Equations (5.1)–(5.4) supplemented by (5.17)–(5.20),
are linearized, and the dispersion relation computed using the MAPLE software.
Figure 4 displays Re(ω)/kz (solid lines) and −Im(ω)/kz (dashed lines) for KAWs at
τ = 1, in both cases βe = 1 (a) and βe = 0.01 (b), for different reduced models, with
the kinetic theory prediction superimposed in dark blue. The green and thick red lines
correspond to the isothermal and RLF models respectively. A clear extension of the
spectral validity range is obtained when Landau damping is retained. The damping
rate is however globally weaker than predicted by the kinetic theory, except at the
largest scales, possibly pointing out the limitation of the closure assumption at small
scales. It turns out that this discrepancy is not significantly reduced by retaining
dynamical equations for the gyrotropic fluxes and closing the fluid hierarchy at the
next order. The agreement is also not improved when instead of a closure assumption
we use the low-frequency kinetic formulas given in appendix B of Passot & Sulem
(2007) and take for the plasma response functions Padé approximants of various
orders. This observation raises the question whether Landau damping is the only
dissipation mechanism acting at these scales.

Noticeably for βe = 1, the comparison with kinetic theory for the real part is
satisfactory up to k = 25 (very close to the inverse electron Larmor radius). In the
case where electron inertia and FLRs are not included (violet line), a regime where
no saturation is expected, the disagreement starts around k = 10. This latter model,
which can be viewed as an extension of the model of Boldyrev et al. (2013) including
Landau damping, was originally derived in Tassi et al. (2016) (where the heat fluxes
were estimated directly from the linear kinetic theory, instead of using the above
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(a) (b)

FIGURE 4. Re(ω)/kz (solid lines) and −Im(ω)/kz (dashed lines) for KAWs with
propagation angle θkB=89.99◦, at τ =1 and βe=1 (a) or βe=0.01 (b) from kinetic theory
(dark blue), the RLF model (thick red lines), the isothermal two-field model (green) and
the RLF model with δ = 0 (violet).

approximate closure). For βe = 0.01, globally similar graphs are obtained except that,
saturation occurring at smaller wavenumbers, the domain where the kinetic theory is
accurately reproduced is more limited.

7. Turbulent regimes

In this section, we concentrate on the isothermal models, considered in the spectral
ranges D<

e = {1/ρs � k⊥ � 1/de} and D>
e = {1/de � k⊥ � 1/ρe} separately. While

in the former domain, where δ2k2
⊥/βe � 1, electron inertia is negligible, this effect

is dominant in the latter, where δ2k2
⊥/βe � 1. In both ranges, FLR effects are

subdominant corrections that we will thus neglect. The energy becomes

EKAW ∝ 1
2

∫ (
1

1+ τ ϕ
∗2 + 2

βe
|∇⊥A‖|2 + 4δ2

β2
e

(∆⊥A‖)2
)

dx, (7.1)

for the KAWs, and

EWW ∝ 1
2

∫ (
ϕ∗2 + 2δ2

βe
|∇⊥ϕ∗|2 + 4

β2
e

|∇⊥A‖|2 + 8δ2

β3
e

(∆⊥A‖)2
)

dx, (7.2)

for the WWs. In more physically explicit terms, we can write

EKAW ∝ 1
2

∫ (
2
βe
|B⊥|2 + (τ + 1)n2 + δ2u2

‖e

)
dx (7.3)

and

EWW ∝ 1
2

∫ (
2
βe
|B|2 + δ2|ue|2

)
dx. (7.4)
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Note that these energies are dominated by the transverse magnetic energy at the largest
scales and by the parallel kinetic energy at the smallest ones. In a turbulent regime,
the energy is expected to cascade to small transverse scales, resulting in an inertial
range characterized by a scale-independent energy flux ε. The aim of this section is to
phenomenologically evaluate the scaling properties of the transverse magnetic energy
spectrum EB⊥(k⊥) in such a cascade, in both regimes of strong and weak turbulence,
assumed to exist and to result from three-wave interactions.

When assuming transverse isotropy, the energy flux ε can be estimated as k⊥ times
the one-dimensional spectral density, divided by the characteristic transfer time τtr at
this wavenumber. The regimes of strong and weak turbulence differ in the estimate of
this time that, in both cases, can nevertheless be written τtr= τ 2

NL/τL, where τNL refers
to the characteristic time of the nonlinear interactions at the corresponding scale, and
τL ∼ 1/ω to the inverse frequency of the considered wave at this scale.

In the strong turbulence regime, where a so-called critical balance holds, the rate of
the nonlinear interactions at a given scale is comparable to the frequency of the linear
wave at this scale (τNL ∼ τL), leading us to identify τtr with τNL. In this approach,
τNL is defined as the shortest of the characteristic times associated with the various
nonlinear couplings, which turns out to be given by τ−1

NL ∼ [ϕ̂∗, ·] associated with the
transverse strain. Note that the same estimate of the transfer time holds in the absence
of waves. We are thus led to write 1/τNL∼ k2

⊥ϕ̂
∗. An additional element used to relate

the magnitude of the various fields is provided by the condition that the considered
solution is an eigenmode of the linear problem, thus obeying equation (6.3). In both
spectral ranges defined above, one can write the phase velocity in the asymptotic form
ω/k‖∼ kα⊥. In D<

e , one thus has ϕ̂∗∼ (ω/k‖)Â‖, leading to τ−1
NL ∼ k1+α

⊥ B̂⊥, while in D>
e ,

ϕ̂∗ ∼ (ω/k‖)k2
⊥Â‖, leading to τ−1

NL ∼ k3+α
⊥ B̂⊥.

In the strong turbulent regime, it follows that in D<
e , where ε ∼ k1+α

⊥ B̂3
⊥, one

gets EB⊥(k) ∼ ε2/3k−(5+2α)/3
⊥ , while in D>

e , where ε ∼ k5+α
⊥ B̂3

⊥, one has EB⊥(k) ∼
ε2/3k−(13+2α)/3

⊥ .
In the weak turbulent regime, one easily obtains that in D<

e , τ−1
tr ∼ k(2+α)⊥ B2

⊥, while
in D>

e , τ−1
tr ∼ k(6+α)⊥ B2

⊥. It follows that in D<
e , EB⊥(k) ∼ ε1/2k−(2+α/2)⊥ , while in D>

e ,
EB⊥(k)∼ ε1/2k−(5+α/2)⊥ . Let us now consider more specifically the cases of KAWs and
WWs.

In D<
e , the dispersion relation is the same for KAWs and WWs, with α = 1. As

a consequence, for both types of waves, EB⊥(k⊥) ∼ ε2/3k−7/3
⊥ in the strong turbulent

regime and EB⊥(k⊥) ∼ ε1/2k−5/2
⊥ in the weak turbulent regime, a result obtained

as the finite flux solution of the weak turbulence spectral equations in Galtier &
Bhattacharjee (2003).

In D>
e , various cases are to be distinguished. For the KAWs, when the ion-to-

electron temperature ratio τ is moderate, α= 0. One thus obtains EB⊥(k⊥)∼ ε2/3k−13/3
⊥

in the strong turbulent regime and EB⊥(k⊥) ∼ ε1/2k−5
⊥ in the weak turbulent regime.

Note that a −13/3 exponent for the magnetic field spectra has also been reported
in the different context of a generalized helicity cascade in incompressible so-called
extended MHD (Krishan & Mahajan 2004; Abdelhamid, Lingam & Mahajan 2016). In
contrast, for the WWs, but also for the KAWs when the ion-to–electron temperature
ratio is large (τ � 1), α=−1. It follows that in this case EB⊥(k⊥)∼ ε2/3k−11/3

⊥ in the
strong turbulence regime and EB⊥(k⊥) ∼ ε1/2k−9/2

⊥ in the weak turbulence regime. A
similar k−11/3

⊥ spectrum for KAWs at large τ is also obtained by Chen & Boldyrev
(2017).
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Furthermore, in the case of strong turbulence, the spectral anisotropy can be
estimated from the above relations. While at large scale, the balance between
the linear term ∂zϕ

∗ in (5.9) with the bracket [ϕ∗, A‖] leads to k‖ ∼ k2
⊥Â‖ and

thus to the usual scaling k‖ ∼ k1/3
⊥ , at small scales the relevant nonlinear term is

[ϕ∗, (2δ2/βe)∆⊥A‖]. In this regime, k‖ ∼ k4
⊥Â‖ where Â‖ ∼ k−8/3−α/3

⊥ . For KAWs with
τ ∼ 1, α = 0, this implies k‖ ∼ k4/3

⊥ , while for WWs or KAWs at τ � 1, one has
k‖ ∼ k5/3

⊥ , consistent with the finding of Chen & Boldyrev (2017). In both cases, the
longitudinal transfer becomes increasingly important at smaller scales.

It is also of interest to consider the effect of a small but finite value of βe on the
energy spectrum. Considering the case of KAWs, figure 3(b) shows that taking βe =
10−4 causes ω/k‖ to decrease with k⊥ (red solid and green dotted lines), while it tends
to a constant when βe= 0 (black dashed line). As the spectrum can be written in the
form k−13/3

⊥ (ω/k‖)−2/3, this suggests that a finite βe will tend to make the spectrum
shallower.

At the numerical level, simulations of whistler turbulence were performed using
incompressible bi-fluid equations in 2.5-D (i.e. three-dimensional velocities and
magnetic fields but two-dimensional space coordinates), showing a transition from a
−7/3 spectrum at the ion scales to a steeper slope (close to −11/3) at scales smaller
than de (Andrés et al. 2014). Three-dimensional particle-in-cell simulations of WW
turbulence also clearly indicate the development of two sub-ion spectral ranges, but
the exponents are steeper than those predicted by the above phenomenology, and
non-universal (Chang, Gary & Wang 2011; Gary et al. 2012). Kinetic effects, such as
electron Landau damping could be at the origin of this discrepancy. This issue could
be addressed with the RLF model (discussed in § 5.3), both numerically and using
a phenomenological approach as in Passot & Sulem (2015). Concerning the kinetic
Alfvén wave cascade, the phenomenology discussed above assumes a transformation
of Alfvén waves to KAWs near the ion gyroscale. Recent numerical simulations
(Cerri & Califano 2017) however indicate that fast magnetic reconnection processes
can inject energy on a time scale shorter than the nonlinear cascade time at the
reconnection scales, leading to the formation of di-scale structures and to a nonlinear
cascade that fills the spectrum at small scales. The effect of such phenomena on the
sub-ion turbulence remains to be analysed quantitatively, possibly using reduced fluid
models.

8. Conclusion

Reduced fluid models have been derived for the sub-ion-scale dynamics of
collisionless plasmas, retaining electron inertia and leading-order electron FLR
corrections. Neglecting the ion dynamics, we are led to discriminate between two
limiting cases: a low-frequency regime involving perpendicular pressure balance and
a high-frequency one, where the electron fluid is essentially incompressible. The two
resulting models capture KAWs and WWs respectively, in the context of isothermal
or Landau fluid closures. They extend the validity range of previously existing
models. At small βe and scales large compared to de, they both reduce to ERMHD
(Schekochihin et al. 2009; Boldyrev et al. 2013) where the same equations govern
different fields depending on the kind of waves. Furthermore, at scales comparable
to de, in 2.5-D dimensions and for βe small enough for electron FLR corrections to
be negligible (i.e. βe = O(me/mi)), the system for WWs reproduces EMHD (see e.g.
(10)–(11) of Biskamp et al. 1999). Differently, in the same βe-range, the equations for
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KAWs with the Landau fluid closure appear as a fluid reduction of those of Zocco &
Schekochihin (2011) (see Loureiro, Schekochihin & Zocco (2013) for their numerical
simulations in the case of fast collisionless reconnection). While the latter model is
based on a drift kinetic description of the electrons, the present RLF model includes
first-order FLR corrections. Such terms, together with the contribution of parallel
magnetic fluctuations, which are both O(βe), induce a sensitivity of the system to
pressure anisotropy, an effect potentially important in a reconnection context (Lee
et al. 2016).

Computation of the electron gyroviscous force ∇ · Πe is performed within an
asymptotic expansion based on temporal and spatial scale separation between the
electron gyroradius and the considered quasi-transverse scales, a procedure which, at
scales comparable to de, results in an expansion in terms of βe. The computation
involves a recursive process involving both the non-gyrotropic pressure and heat
flux tensors, two iterations being needed in order to obtain the leading order in βe.
Because of the algebraic complexity in the general framework (see e.g. Ramos 2005a),
we resorted in the present paper to assume a gyrotropic heat flux in the expression
of the gyroviscous force. Relations with previous FLR estimates is discussed in
appendix B. Note that including the gyroviscous force in a generalized Ohm’s law
may in particular be useful for enriching hybrid models in the context of collisionless
reconnection.

Both isothermal and Landau fluid closures are considered for KAWs and WWs.
The linear regime is examined in comparison with the fully kinetic theory to evaluate
the validity of these closures. In the isothermal case, a qualitative agreement is
found, which turns out to be more accurate when Landau damping is weak. For the
propagation angles exceeding 80◦ that we have considered, WWs are more weakly
damped than KAWs, at least at scales larger than ρe. As expected, for the values of
βe . 0.1 and moderate values of τ , the range of angles where KAWs can propagate
without resonance turns out to be restricted to quasi-perpendicular angles. The Landau
fluid closure improves the model accuracy. In particular, when βe is pushed to values
of order unity, the range of wavenumbers where the dispersion relation is accurately
described is significantly enlarged.

Observations in the solar wind and the magnetosheath provide evidence of
power-law magnetic energy spectra at scales smaller than de, possibly associated with
turbulent cascades. Assuming that KAWs and WWs are still present at such scales,
we explored the spectrum of the transverse magnetic fluctuations in both strong
and weak turbulence energy cascades. As a first step, a phenomenological approach
where FLR corrections are neglected is presented. In addition to the well-known
WWs magnetic spectra both above and below d−1

e , and to the −7/3 sub-ion KAWs
spectrum, a new regime of KAW turbulence is obtained at scales smaller than de,
characterized by a −13/3 exponent for strong turbulence and by a −5 exponent in
the weak regime. These exponents are to be compared with satellite observational
data that display slopes steeper than the WWs −11/3 spectrum. Note that other
physical effects such as Landau damping (Passot & Sulem 2015; Sulem et al. 2016)
and intermittency corrections associated with coherent structures, such as current
sheets (Boldyrev et al. 2013), can also lead to steeper spectra. It should be stressed
that both phenomenological arguments and numerical simulations predict a transition
at de, while observational spectra in the terrestrial magnetosheath only display a
transition at ρe (Huang et al. 2014), associated with electron demagnetization. In fact,
a transition at de is more clearly observed at the level of the magnetic compressibility
(Chen & Boldyrev 2017). This does exclude that additional effects such as other kind
of waves or structures could play a role.
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As shown in § 5, our four-field model, as well as its two-field isothermal reductions,
conserve energy. To the best of our knowledge, this is the first example of reduced
fluid model for inertial reconnection conserving energy and accounting for electron
FLR effects. A question we intend to address in the future concerns the Hamiltonian
structure of this model. Previous results concerning the inclusion of (ion) FLR effects
in Hamiltonian reduced fluid models were presented in Morrison, Caldas & Tasso
(1984), Hazeltine, Hsu & Morrison (1987), Dagnelund & Pavlenko (2005), Izacard
et al. (2011), Morrison, Lingam & Acevedo (2014). It could in particular be of
interest to investigate whether the idea of the gyromap transformation, adopted in
Morrison et al. (1984), Hazeltine et al. (1987), Izacard et al. (2011), Morrison et al.
(2014) together with the Hamiltonian structure of the model in the absence of FLR
contributions, can help in building a Hamiltonian model including electron FLR
effects. Further developments should also include numerical simulations to test the
predictions for the turbulent energy spectra, and in particular to evaluate the role of
coherent structures and analyse the difference between two- and three-dimensional
geometries. Existence and stability of Alfvén or electron vortices (Mikhalovskii et al.
1987; Schep, Pegoraro & Kuvshinov 1994) are also open questions. Other open
issues concern the relative importance of KAWs and WWs in space plasmas. Such
questions cannot be addressed using gyrokinetic simulations or gyrofluid models
which, involving a perpendicular pressure balance, concentrate on low-frequency
waves. Furthermore, the models for the WWs and the KAWs considered in this
paper differentiate at the level of the determination of the magnitude of the density
fluctuations. When the latter are neglected, the system can be viewed as an extension
of EMHD for WWs to smaller scales, while when pressure balance is prescribed,
it describes KAWs dynamics. It would be of great interest to derive a reduced
fluid model able to simultaneously capture the two types of wave. Noticibly, recent
hybrid kinetic simulations indicate that the relative importance of KAWs and WWs
is sensitive to the plasma β, KAWs being dominant at β & 1 and WWs at lower β
(Cerri et al. 2016).

In addition to turbulent cascades discussed in this paper, an important issue that the
present models can address concerns collisionless magnetic reconnection, in particular
in three dimensions where fully kinetic simulations require huge computational
resources. In the turbulent regime, RLF models could in particular provide an efficient
tool to study the relative contributions of coherent structure disruptions and incoherent
fluctuation cascades in the processes of dissipation and plasma heating (Parashar et al.
2015), an important issue aimed at being addressed by the THOR satellite mission
(Vaivads et al. 2016).

Appendix A. Nongyrotropic electron pressure tensor
As derived in Schekochihin et al. (2010), an exact equation for the electron pressure

tensor Pe reads, when neglecting collisions,

Pe,ij = p⊥eδij + (p⊥e − p‖e)b̂ib̂j

+ δ2 M ijkl

4B

[
D(e)

Dt
Pe,kl + ∂mQe,mkl + (δmnPe,kl + δknPe,ml + δlnPe,mk)∂mue,n

]
. (A 1)

In this equation, Qe denotes the heat flux tensor and

M ijkl = (δik + 3b̂ib̂k)εjlnb̂n + εilnb̂n(δjk + 3b̂jb̂k). (A 2)
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Equation (A 1) can be solved recursively, using as small parameters δ2ω and δ2k2,
corresponding in the dimensional variables to the conditions that the considered scales
k−1 be large and the frequencies ω small compared to the electron Larmor radius and
cyclotron frequency respectively. For βe of order unity, this also prescribes that scales
must be large compared to de. In this regime, the appropriate scaling is that given by
(3.13) of Tassi et al. (2016). Differently, for small values of βe, scales comparable
to de can be considered, the appropriate scaling being that given in § 2. Keeping the
leading-order corrections in βe nevertheless requires in this case to also retain the
second order relatively to the scale expansion, as shown below. In the following, we
shall concentrate on the small βe regime, but the resulting gyroviscous force remains
valid at βe=O(1) (recalling that, in the present units, k must remain small compared
to (mi/2me)

1/2 ≈ 30), although it then includes subdominant contributions.
The iteration mentioned above involves in fact the coupling with another equation

for the heat flux tensor (not written here). Solving the coupled system proves to be
quite involved and falls outside the scope of the present paper. A linear version can be
found in Goswami et al. (2005). Here, for the sake of simplicity, we resorted to only
retain the contribution of the gyrotropic part of Qe in the evaluation of the gyroviscous
stress.

A.1. First-order contributions

At zeroth order, the pressure tensor is simply given by its gyrotropic expression PG
e =

p⊥eI + (p⊥e− p‖e)τ . At first order, replacing Pe by PG
e in the right-hand side of (A 1),

we easily get for the gyroviscous tensor

Π(1)
e =−

δ2

4B
[b̂×W · (I + 3 τ )− (I + 3 τ ) ·W × b̂] − δ

2

B
[b̂⊗ (w× b̂)+ (w× b̂)⊗ b̂].

(A 3)
Here,

W = [p⊥e∇ue +∇(q⊥e b̂)]S (A 4)

and

w= (p⊥e − p‖e)

(
db̂
dt
+∇‖ue

)
+ (3q⊥e − q‖e)∇‖b̂, (A 5)

where, for a given tensor T , the notation T S denotes the sum of the tensor with the
ones obtained by circular permutation of the indices. Assuming an equilibrium state
with isotropic temperatures, the term w is of order O(ε3) in the present asymptotics
and can thus be neglected. We thus write Π(1)

e =Π(1,u)
e +Π(1,q)

e where

Π(1,u)
e =− δ

2

4B
[b̂× [p⊥e∇ue]S · (I + 3 τ )− (I + 3 τ ) · [p⊥e∇ue]S × b̂], (A 6)

and where Π(1,q)
e and all the quantities derived from it can be obtained from

the formula involving Π(1,u)
e after the replacements p⊥e by 1 and ue by q⊥eb̂.

Equation (A 6) identifies with (C 1) of Ramos (2005b), up to the minus sign due
to the electron charge.
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A.1.1. Velocity contributions
Carrying out calculations similar to those performed in Ramos (2005b), we obtain,

without neglecting any possibly subdominant contribution,

∇ ·Π(1,u)
e =

1︷ ︸︸ ︷
−δ2

[
∇×

(p⊥e

B
b̂
)
· ∇

]
ue +

2︷ ︸︸ ︷
δ2

2
∇

(p⊥eω‖e
B

)
3︷ ︸︸ ︷

+ δ2
∇×

(p⊥e

B
∇‖ue

) 4︷ ︸︸ ︷
+ δ

2

2
∇× ((∇ · ue)b̂)

5︷ ︸︸ ︷
− 3δ2

2
∇× (b̂ · (∇‖ue)b̂)

6︷ ︸︸ ︷
− 3δ2B∇‖

(p⊥e

B2
b̂×∇‖ue

) 7︷ ︸︸ ︷
− 3δ2

2
B∇‖

(p⊥e

B2
ω‖eb̂

) 8︷ ︸︸ ︷
+ δ2B∇‖

(p⊥e

B2
ωe

)
, (A 7)

where ωe =∇× ue.
Let us first calculate b̂ · ∇ · Π(1,u)

e , which enters (2.18) where all the terms scale
as δε2 for the KAWs or β1/2

e δε2 for the WWs (when the scaling parameter µ is
replaced by δ/β1/2

e ). Thus, in (A 7), only contributions of these orders, possibly up
to factors of order O(βe) (which is assumed to be only ‘moderately’ small) are to be
kept. It follows that the contributions of the terms 4 – 6 , which scale like ε3 (since in
particular ∇ ·ue is of second order in ε for the KAWs and even smaller for the WWs),
are negligible. The relevant contributions are: from term 1 , δ2[p⊥e − Bz, u‖e]; from
term 2 , (δ2/2)∇‖ωze; from term 3 , δ2ẑ · ∇ × ∇‖u⊥e; from term 7 , −(3δ2/2)∇‖ωze;
from term 8 , δ2∇‖ωze. We thus obtain

b̂ · ∇ ·Π(1,u)
e = δ2{[p⊥e − Bz, u‖e] + ẑ · ∇×∇‖u⊥e}. (A 8)

Note that, in terms of ϕ∗, we can write

ẑ · ∇×∇‖u⊥e =∇‖∆⊥ϕ∗ +
∑
i=x,y

[∂iϕ
∗, ∂iA‖]. (A 9)

Furthermore, the term δ2[p⊥e−Bz, u‖e], which participates to the so-called gyroviscous
cancellation, is O(δε2) for the KAWs, thus larger than all the other contributions,
which are O(βeδε

2). Differently, for the WWs, all the terms are O(β3/2δε2).
It is also easy to obtain the transverse component of ∇ ·Π(1,u)

e , which reads

(∇ ·Π(1,u)
e )⊥ = δ2

{
[p⊥e − Bz, u⊥e] + 1

2
∇⊥
(p⊥e

B
ω‖e
)

+ 1
2
∇⊥ × [(∇ · ue −∇‖u‖e)̂z] + ∇‖∇× (u‖eẑ)

}
, (A 10)

where an expression involving a bracket with a scalar as one argument and a vector
as the other one stands for the vector whose components are obtained as the brackets
of the scalar with each components of the vector.

The dominant contribution to (∇ ·Π(1,u)
e )⊥, which enters (2.9), originates from the

second term on the right-hand side and writes (δ2/2)∇ωze. It is O(βeε) for both types
of wave. For the KAWs, the other terms are O(β1/2

e δε2), or O(β3/2
e δε2) for the term

involving Bz, while for the WWs, they are all O(β3/2δε2).
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A.1.2. Heat flux contributions
Let us now consider the contributions involving Π(1,q)

e . It is easy to find that

b̂ · ∇ ·Π(1,q)
e =−δ2[Bz, q⊥e] (A 11)

and

(∇ ·Π(1,q)
e )⊥ = δ2

{
−1

2
∇⊥

(
βe

2
q⊥eu‖e + ẑ · (b̂⊥ ×∇⊥q⊥e)

)
+∇‖∇× (q⊥eẑ)

}
, (A 12)

where we have used that, to the required order, ẑ× (∇⊥× b̂⊥)=−∆⊥A‖=−(βe/2)u‖e.

A.2. Second-order contributions

At second order, since terms of order O(ε3) or smaller are discarded, we can write

Π
(2)
e,ij =

δ2

4
M ijkl

[
D(e)Π

(1)
e,kl

Dt
+ (δknΠ

(1)
e,ml + δlnΠ

(1)
e,mk)∂mue,n

]
. (A 13)

In this formula, it is also sufficient to use for Π(1) (keeping only terms of order O(ε))

Π
(1,1)
e,ij =−

δ2

4
[εi3q(∂qu∗e,j + ∂ju∗e,q)+ 3εi3q∂qu∗‖eδj3]S, (A 14)

where u∗e = ue + q⊥eẑ, while M reduces to M ijkl = (δik + 3δi3δk3)εjl3 + (δjk + 3δj3δk3)εil3.
We shall now calculate the second-order contribution for the perpendicular

components of the gyroviscous force (∇jΠ
(2)
e,ij)⊥ by considering all terms separately.

In the second term on the right-hand side of (A 13), we find by inspection that m 6=
3, j 6= 3 (the terms involving parallel derivatives would be too small), l 6= 3 (as implied
by the symmetries of M ijkl) and k 6= 3 (because k= 3 only contributes to the parallel
gyroviscous force). It is then easy to see that Π (1,1)

e,i6=3,j6=3 only involves perpendicular
components of the velocity. As a result, the order of magnitude of the considered term
is δ4ε2/µ3=β3/2

e δε2 for both types of wave, which is too small to be retained. Similar
arguments apply to the third and the first terms which also contribute, at most, at order
β3/2

e δε2. We thus conclude that (∇ ·Π(2)
e )⊥ = 0.

Let us then turn to the parallel component b̂ · ∇ ·Π(2)
e which reduces to ∂jΠ

(2)
e,3j. We

have M3jkl= 4δk3εjl3 and Π (1,1)
e,3j = δ2εjq3∂qu∗‖e= δ2∇× (u∗‖eẑ). Up to terms of order O(ε3),

the first term of the right-hand side of (A 13) writes

R1 = δ4εjl3∂j
D(e)

Dt
(εlq3∂qu∗‖e)=−δ4

(
D(e)

Dt
∆⊥(u‖e + q⊥e)+ ∂jue⊥ · ∇⊥∂j(u‖e + q⊥e)

)
,

(A 15)
the second one writes

R2 = −δ
4

4
εjl3∂j{εm3q(∂qu∗e,l + ∂lu∗e,q)∂mu‖e + εl3q(∂qu∗e,m + ∂mu∗e,q)∂mu‖e}

= −δ
4

4
([ωze, u‖e] + 2εjl3[ue,l, ∂ju‖e] +∆⊥ue⊥ · ∇⊥u‖e + 2∂jue⊥ · ∇⊥∂ju‖e), (A 16)

and the third one
R3 = δ4([ωze, u∗‖e] + εjl3[ue,l, ∂ju∗e‖]). (A 17)
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We thus have

b̂ · ∇ ·Π(2)
e = −δ4 D(e)

Dt
∆⊥u‖e − 3δ4

2
∂jue⊥ · ∇⊥∂ju‖e − δ

4

4
∆⊥ue⊥ · ∇⊥u‖e

+ 3δ4

4
[ωze, u‖e] + δ

4

2
εjl3[ue,l, ∂ju‖e]

− δ4 D(e)

Dt
∆⊥q⊥e − δ4∂jue⊥ · ∇⊥∂jq⊥e + δ4[ωze, q⊥e] + δ4εjl3[ue,l, ∂jq⊥e]

(A 18)

or, when expressing u⊥e in terms of ϕ∗,

b̂ · ∇ ·Π(2)
e = −δ4 D(e)

Dt
∆⊥u‖e + δ

4

2
[∆⊥ϕ∗, u‖e] − δ4

∑
j=x,y

[∂jϕ
∗, ∂ju‖e]

− δ4 D(e)

Dt
∆⊥q⊥e + δ4[∆⊥ϕ∗, q⊥e]. (A 19)

Since all the terms at this order in the expansion of (A 1) are O(ε2), the higher
orders cannot contribute to the gyroviscous force at order O(ε2).

A.3. Curl of the gyroviscous force
We shall now turn to the expressions entering (2.4). Since only first-order terms
contribute to the perpendicular gyroviscous force, one gets from (A 10) and (A 12)

ẑ · ∇× (∇ ·Πe) = δ2

{
[p⊥e − Bz, ωze] +

∑
i=x,y

[∂i(p⊥e − Bz), ∂iϕ
∗]

+ 1
2
∆⊥(∇‖u‖e −∇ · ue)−∇‖∆⊥u‖e +

∑
i=x,y

[∂iA‖, ∂iu‖e]

− ∇‖∆⊥q⊥e +
∑
i=x,y

[∂iA‖, ∂iq⊥e]
}

(A 20)

which, after some algebra, rewrites

ẑ · ∇× (∇ ·Πe) = δ2

{
[p⊥e − Bz, ∆⊥ϕ∗] +

∑
i=x,y

[∂i(p⊥e − Bz), ∂iϕ
∗]

− 1
2
[∆⊥A‖, u‖e] − 1

2
∆⊥∇ · ue − 1

2
∇‖∆⊥u‖e

− ∇‖∆⊥q⊥e +
∑
i=x,y

[∂iA‖, ∂iq⊥e]
}
. (A 21)

For the KAWs, all the terms in this equation (except that involving Bz) are O(βeε
2),

while those of (2.4) are O(ε2). In this formula, the term ∇ · ue can be replaced by
−(D(e)/Dt)n. Differently, for the WWs, ∇ · ue is negligible and the other terms are
all O(β2

e ε
2), while those of (2.4) are O(βeε

2).
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Finally, the term ẑ · (∇n× (∇ ·Πe)) simply writes at order O(ε2)

ẑ · (∇n× (∇ ·Πe))= δ
2

2
[n, ∆⊥ϕ∗], (A 22)

which is O(βε2) for the KAWs where n=−(1/τ)ϕ and negligible for the WWs.

Appendix B. Relation with classical FLR formulations
It is of interest to relate the FLR pressure tensor formulas derived using a systematic

asymptotics in appendix A, to the classical formulations given in Hazeltine & Meiss
(1985) and Hsu, Hazeltine & Morrison (1986).

Neglecting the heat flux contribution and using the identity

[p⊥e, u⊥e] = (∇⊥p⊥e · ∇⊥)∇⊥ϕ∗ −∆⊥ϕ∗∇⊥p⊥e, (B 1)

it is easily checked that, up to the sign coming from the electron charge, equations
(A 8) and (A 10) (which provide the leading-order contribution) identify with (4.133)
of Hazeltine & Meiss (1985) once we perform the assumptions made in this paper,
namely isothermal electrons (p⊥e = n), no longitudinal magnetic fluctuations (Bz =
0) nor longitudinal variations (∇‖ = 0), negligible compressibility of the transverse
electron flow (∇⊥ · u⊥e = 0).

We now turn to (24) of Hsu et al. (1986) which, in comparison with that of
Hazeltine & Meiss (1985), takes into account parallel gradients, parallel flow and
compressibility. Defining the electron diamagnetic drift VDe =−b̂×∇p⊥e, and using
(B 1), we note that, at order O(ε2/µ),

D(e)

Dt
VDe =∆⊥ϕ∗∇⊥p⊥e − (∇⊥p⊥e · ∇⊥)∇⊥ϕ∗ − (̂z×∇⊥)D

(e)

Dt
p⊥e. (B 2)

Under the assumption of isothermal electrons, the last term is evaluated using the
continuity equation. Putting together (A 8), (A 10), (B 1) and neglecting Bz, we obtain
to leading order

∇ ·Πe = δ2

{
(∇⊥p⊥e · ∇⊥)∇⊥ϕ∗ −∆⊥ϕ∗∇⊥p⊥e + 1

2
∇⊥(p⊥e∆⊥ϕ∗)

+∇‖∆⊥ϕ∗ẑ+ ẑ · (∇⊥p⊥e ×∇⊥u‖e)̂z− 1
2

ẑ×∇⊥(∇ · ue)

+ 1
2

ẑ×∇⊥(∇‖u‖e)−∇‖(̂z×∇⊥u‖e)+
∑
i=x,y

[∂iϕ
∗, ∂iA‖]̂z

}
. (B 3)

Using (B 2) and the further approximation of a constant magnetic field (A‖ = 0), this
expression rewrites,

∇ ·Πe = δ2

{
−D(e)

Dt
VDe + 1

2
∇⊥(p⊥e∆⊥ϕ∗)

+ ∇‖∆⊥ϕ∗ ẑ− ẑ · (∇⊥u‖e ×∇⊥p⊥e)̂z+ 1
2

ẑ×∇⊥(∇⊥ · u⊥e)

}
, (B 4)
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which identifies with (24) of Hsu et al. (1986) (which refers to ions and which makes
the same assumptions), once we make the appropriate sign change for the electron
charge (remembering that the diamagnetic drift is here defined with the opposite sign).
Note that (22) and (23a) of Hsu et al. (1986) are recovered when using the formulas
of appendix A adapted to the ions and pushed to second order. Note that the term
(∇ ·Π(2)

e )⊥, which in the present paper is negligible, has to be kept in the analysis of
Hsu et al. (1986).
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