
Adv. Appl. Prob. 49, 629–651 (2017)
doi:10.1017/apr.2017.15

© Applied Probability Trust 2017

ALLOCATION SCHEMES OF RESOURCES
WITH DOWNGRADING

CHRISTINE FRICKER,∗ INRIA

FABRICE GUILLEMIN,∗∗ Orange Labs

PHILIPPE ROBERT ∗ ∗∗∗ and

GUILHERME THOMPSON,∗ ∗∗∗∗ INRIA

Abstract

We consider a server with large capacity delivering video files encoded in various
resolutions. We assume that the system is under saturation in the sense that the total
demand exceeds the server capacity C. In such a case, requests may be rejected. For the
policies considered in this paper, instead of rejecting a video request, it is downgraded.
When the occupancy of the server is above some value C0 < C, the server delivers the
video at a minimal bit rate. The quantity C0 is the bit rate adaptation threshold. For these
policies, request blocking is thus replaced with bit rate adaptation. Under the assumptions
of Poisson request arrivals and exponential service times, we show that, by rescaling the
system, a process associated with the occupancy of the server converges to some limiting
process whose invariant distribution is computed explicitly. This allows us to derive
an asymptotic expression of the key performance measure of such a policy, namely the
equilibrium probability that a request is transmitted at requested bitrate. Numerical
applications of these results are presented.
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1. Introduction

Over the past few years video streaming applications have become the dominant applications
in the internet and generate the prevalent part of traffic in today’s internet protocol (IP) networks;
see, for instance, [10] for an illustration of the application breakdown in a commercial IP
backbone network. Video files are currently downloaded by customers from large data centers,
such as Google’s data centers for YouTube® files. In the future, it is very likely that video
files will be delivered by smaller data centers located closer to end users, for instance cache
servers disseminated in a national network. It is worth noting that, as shown in [11], caching
is a very efficient solution for YouTube traffic. While this solution can improve performances
by reducing delays, the limited capacity of those servers in terms of bandwidth and computing
can cause overload.

One possibility to reduce overload is to use bit rate adaptation. Video files can indeed be
encoded at various bit rates (for example, standard and high definition video). If a node cannot
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serve a file at a high bit rate then the video can be transmitted at a lower rate. It is remarkable that
video bit rate adaptation has become very popular in the past few years with the specification
of dynamic adaptive streaming over HTTP (DASH), also known as MPEG-DASH standard,
where it is possible to downgrade the quality of a given transmission; see [1], [7], [17], [18],
and [21]. Adaptive streaming is also frequently used in mobile networks where bandwidth is
highly varying. In this paper we investigate the effect of bit rate adaptation in a node under
saturation.

1.1. Downgrading policy

We assume that customers request video files encoded at various rates, say, Aj for j =
1, . . . , J , with 1 = A1 < A2 < · · · < AJ . Jobs of class j ∈ {1, . . . , J } require bit rate Aj .
The total capacity of the communication link is C. If � = (�j ) is the state of the network at some
moment, with �j being the number of class j jobs, the quantity 〈A, �〉 = A1�1 +· · ·+AJ �J has
to be less than C. The quantity 〈A, �〉 is defined as the occupancy of the link. The algorithm has
a parameter C0 < C and works as follows. If there is an arrival of a job of class 1 ≤ j0 ≤ J ,

• if 〈A, �〉 < C0 then the job is accepted;

• if C0 ≤ 〈A, �〉 < C then the job is accepted but as a class 1 job, i.e. it has an allocated
bit rate of A1 = 1 and service rate μ1;

• if 〈A, �〉 = C then the job is rejected.

For 1 ≤ j ≤ J , jobs of class j arrive according to a Poisson process with rate λj and have an
exponentially distributed transmission time with rate μj . Additionally, it is assumed that

μ1 ≤ min(μj , 2 ≤ j ≤ J ).

1.2. A scaling approach

To study this allocation scheme, a scaling approach is used. It is assumed that the server
capacity is very large, namely, scaled up by a factor N . The bit rate adaptation threshold and
the request arrival rates are scaled up accordingly, i.e.

λj �→ λjN, 1 ≤ j ≤ J, C0 �→ c0N and C �→ cN. (1)

1.2.1. Performances of the algorithm. Our main result shows that, for the downgrading policy
and if c0 is chosen conveniently, then

• the equilibrium probability of rejecting a job converges to 0 as N goes to ∞;

• the equilibrium probability of accepting a job without downgrading it converges to

π− :=
(

c0μ1 −
J∑

j=1

λj

)/(
μ1

J∑
j=1

λj

μj

Aj −
J∑

j=1

λj

)
as N → ∞.

See Theorem 2 and Corollary 1.

The above formula gives an explicit expression of the success rate of this allocation mechanism.
The quantity 1 − π−, the probability of downgrading requests, can be seen as the ‘price’ of the
algorithm to avoid rejecting jobs.
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The scaling (1) was introduced by Kelly to study loss networks [14]. The transient behavior of
these networks under this scaling has been analyzed by Hunt and Kurtz [12]. This last reference
provides essentially a framework to establish convenient convergence theorems involving
stochastic averaging principles. This line of research was developed in the 1990s to study
uncontrolled loss networks where a request is rejected as soon as its demand cannot be accepted.

When the demand can be adapted to the state of the network, for controlled loss networks,
several (scarce) examples have also been analyzed during that period of time; see, for example,
[4], [5], [22], and [23]. Our model can be seen as a ‘controlled’ loss network instead of a pure
loss network. Controlled loss networks may have mechanisms such as trunk reservation or
may allocate requests according to some complicated schemes depending on the state of the
network. In our case, the capacity requirements of requests are modified when the network is
in a ‘congested’ state.

Contrary to classical uncontrolled loss networks, as it will be seen, the Markov process
associated to the evolution of the vector of the number of jobs for each class is not reversible.
Additionally, the invariant distribution of this process does not seem to have a closed-form
expression. Kelly’s approach [13] is based on an optimization problem, it cannot be used in our
case to obtain an asymptotic expression of some characteristics at equilibrium. For this reason,
the equilibrium behavior of these policies is investigated in a two step process.

(i) Transient Analysis. We investigate the asymptotic behavior of some characteristics of
the process on a finite-time interval when the scaling parameter N goes to ∞.

(ii) Equilibrium. The stability properties of the limiting process are analyzed, we prove that
the equilibrium of the system for a fixed N converges to the equilibrium of the limiting
process.

For our model, the transient analysis involves the explicit representation of the invariant
distribution of a specific class of Markov processes. It is obtained using complex analysis
arguments. As it will be seen, this representation plays an important role in the analysis of the
asymptotic behavior at equilibrium.

It should be noted that related models have recently been introduced to investigate resource
allocation in a cloud computing environment where the nodes receive requests of several types
of resources; see, for example, [8], [19], and [20].We believe that this domain will receive a
renewed attention in the coming years. It could be said that there is renewed interest in the
study of loss networks. Part of the motivation of this paper to shed some light on the methods
that can be used to study these systems.

1.3. Outline of the paper

We consider a system in overload. Because of bit rate adaptation, requests may be down-
graded but not systematically rejected as in a pure loss system. As it will be seen, the stability
properties of this algorithm are linked to the behavior of a Markov process associated to the
occupation of the link. Under exponential assumptions for interarrival and service times, this
process turns out to be, after rescaling by a large parameter N , a bilateral random walk instead
of a reflected random walk as in the case of loss networks. Using complex analysis methods,
an explicit expression of the invariant distribution of this random walk is obtained. With this
result, the asymptotic expression of the probability that, at equilibrium, a job is transmitted at
its requested rate (and, therefore, does not experience a bit rate adaptation) is derived.

This paper is organized as follows. In Section 2 we present the model used to study the
network under some saturation condition. Convergence results when the scaling factor N tends
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to ∞ are proved in Section 3. The invariant distribution of a limiting process associated to
the occupation of the link is computed in Section 4 by means of complex analysis techniques.
Applications are discussed in Section 5.

2. Model description

We consider a service system where J classes of requests arrive at a server with band-
width/capacity C. Requests of class j , 1 ≤ j ≤ J , arrive according to a Poisson process Nλj

with rate λj . A class j request has a bandwidth requirement of Aj units for a duration of
time which is exponentially distributed with parameter μj . For the systems investigated in this
paper, there is no buffering, requests have to be processed at their arrival otherwise they are
rejected. Without any flexibility on the resource allocation, this is a classical loss network with
one link; see, for example, [14].

In this paper we investigate allocation schemes which consist of reducing the bandwidth
allocation of arriving requests to a minimal value when the link has a high level of conges-
tion. In other words, the service is downgraded for new requests arriving during a saturation
phase. If the system is correctly designed, it will reduce significantly the fraction of rejected
transmissions and, hopefully, few jobs will in fact experience downgrading.

2.1. Downgrading policy D(C0)

We introduce C0 < C, the parameter C0 will indicate the level of congestion of the link.
It is assumed that the vector of integers A = (Aj ) is such that A1 = 1 < A2 < · · · < AJ . The
condition A1 = 1 is used to simplify the presentation of the results and to avoid problems of
irreducibility in particular, but this is not essential.

If the network is in state � = (�j ) and if the occupancy 〈A, �〉 is less than C0, then any
arriving request is accepted. If the occupancy is between C0 and C − 1, it is accepted but with
a minimal allocation, as a class 1 job. Finally, it is rejected if the link is fully occupied, i.e.
〈A, �〉 = C. It is assumed that μ1 ≤ μj for 1 ≤ j ≤ J , i.e. class 1 jobs are served with the
smallest service rate.

Mathematically, the stochastic model is close to a loss network with the restriction that a job
may change its requirements depending on the state of the network. This is a controlled loss
network; see [23]. It does not appear that, such as in uncontrolled loss networks, the associated
Markov process giving the evolution of the vector � has reversibility properties, or that its
invariant distribution has a product-form expression. Related schemes with product form are
trunk reservation policies for which requests of a subset of classes are systematically rejected
when the level of congestion of the link is above some threshold; see, for example, [4] and [22].
Concerning controlled loss networks, mathematical results are more scarce. We can mention
networks where jobs requiring congested links are redirected to less loaded links. Several
mathematical approximations have been proposed to study these models; see the surveys [14]
and [23]. In our model, in the language of loss networks, the control is on the change of capacity
requirements instead of a change of link.

2.2. Scaling regime

The invariant distribution being, in general, not known, a scaling approach is used. The
network is investigated under Kelly’s regime, i.e. under heavy traffic regime with a scaling
factor N . This regime was introduced in [13] in order to study the equilibrium of uncontrolled
networks. The arrival rates are scaled by N : λj is replaced by λjN as well as the capacity C
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by CN and the threshold C0 by CN
0 , which are such that

CN = cN + o(N) and CN
0 = c0N + o(N), for 0 < c0 < c.

Definition 1. For 1 ≤ j ≤ J and t ≥ 0, LN
j (t) denotes the number of class j jobs at time t in

this system and LN(t) = (LN
j (t), 1 ≤ j ≤ J ).

It will be assumed that the system is overloaded when the jobs have their initial bandwidth
requirements

(R) 〈A, ρ〉 > c and �/μ1 < c,

with � = λ1+· · ·+λJ and ρj = λj/μj , 1 ≤ j ≤ J . The first condition gives that, without any
change on the bandwidth requirement of jobs, the system will reject jobs. The second condition
implies that the network could accommodate all jobs without losses (with high probability) if
all of them would require the reduced bit rate A1 = 1 and service rate μ1.

It should be noted that, from the point of view of the design of algorithms, the constant c0
has to be defined. If we take c0 ∈ (�/μ1, c) then the following hold:

(R1) 〈ρ, A〉 > c0,

(R2) �/μ1 < c0.

If 〈A, ρ〉 < c, it is not difficult to see that the system is equivalent to a classical underloaded
loss network with one link and multiple classes of jobs. There is, of course, no need to use
downgrading policies since the system can accommodate incoming requests without any loss
when N is large; see, for example, [14] or [15, Chapter 6, Section 7].

3. Scaling results

In this section we prove convergence results when the scaling parameter N goes to ∞.
These results are obtained by studying the asymptotic behavior of the occupation of the link
around CN

0 ,
mN(t) = 〈A, LN(t)〉 − CN

0 . (2)

In the context of loss networks, the analogue of such a quantity is the number of empty places.
The following proposition shows that, for the downgrading policy, the boundary CN does not
play a role after some time if condition (R2) holds.

Proposition 1. Under condition (R2) and if the initial state is such that

lim
N→+∞

(
LN

j (0)

N

)
= �(0) = (�j,0) ∈ S := {x ∈ R

J+ : 〈A, x〉 < c},

then, for ε > 0, there exists tε ≥ 0 such that, for T > tε,

lim
N→+∞ P

(
sup

tε≤t≤T

〈A, LN(t)〉 < (c0 + ε)N
)

= 1.

Proof. Define

(L̃N
j (t)) := (DN

1 (t) + XN(t), DN
2 (t), . . . , DN

J (t)),
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where (XN(t)) is the process of the number of jobs of an independent M/M/∞ queue with
XN(0) = 0, service rate μ1, and arrival rate � = λ1 + · · · + λJ , and, for 1 ≤ j ≤ J ,

DN
j (t) =

LN
j (0)∑
k=1

1{Eμj ,k > t},

where (Eμj ,k) is a sequence of independent and identically distributed (i.i.d.) exponentially
distributed random variables with rate μj and where 1{·} denotes the indicator function. The
quantity DN

j (t) is the number of initial class j jobs still present at time t . Using Theorem 6.13
of [15], we obtain the convergence in distribution

lim
N→+∞

(
XN(t)

N

)
=

(
�

μ1
(1 − e−μ1t )

)
,

and, consequently,

lim
N→+∞

(
1

N
〈A, L̃N(t)〉

)
=

(
�

μ1
(1 − e−μ1t ) +

J∑
j=1

Aj�j,0e−μj t

)
. (3)

Since μ1 ≤ μj for 1 ≤ j ≤ J ,

�

μ1
(1 − e−μ1t ) +

J∑
j=1

Aj�j,0e−μj t ≤ �

μ1
(1 − e−μ1t ) + e−μ1t 〈A, �(0)〉

≤ max(c0, 〈A, �(0)〉)
by condition (R2). Note that the asymptotic occupancy, when N is large, remains below the
initial occupancy.

If 0 < εN < CN − CN
0 and LN(0) ∈ N

J such that CN
0 + εN < 〈A, LN(0)〉 < CN , let

τN = inf
{
t > 0 : 〈A, LN(t)〉 ≤ CN

0 + 1
2εN

}
,

then, on the event {τN > T }, the downgrading policy yields that the identity in distribution

((LN
j (t)), 0 ≤ t ≤ T )

d= ((L̃N
j (t)), 0 ≤ t ≤ T ) (4)

holds. From condition (R2) we have the existence of tε such that

�

μ1
(1 − e−μ1tε ) +

J∑
j=1

Aj�j,0e−μj tε = c0 + ε

2
.

From convergence (3) we see that the sequence (τN) converges in distribution to tε.
Note that, if S ∈ (tε, T ), as long as the process (〈A, LN(t)〉) stays above CN

0 on I = [tε, S),
a relation similar to (4) holds. Using again convergence (3), we see that, as N goes to ∞, the
process (〈A, LN(t)〉/N) remains below c0 +ε with probability close to 1 on I . The proposition
is proved. �

We are now ready to investigate the asymptotic behavior of the process (mN(t)) defined by
relation (2). The variable indicates if the network is operating in saturation at time t , mN(t) ≥ 0,
or not, mN(t) < 0. In pure loss networks, when N is large, up to a change of time scale, the
analogue of this process, the process of the number of empty places converges to a reflected
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random walk in N. In our case, as it will be seen, the corresponding process is in fact a random
walk on Z.

Definition 2. For � = (�j ) ∈ S, let (m�(t)) be the Markov process on Z whose Q-matrix Q�

is defined by, for x ∈ Z and 1 ≤ j ≤ J ,

Q�(x, x − Aj) = μj�j , Q�(x, x + Aj) = λj if x < 0,

Q�(x, x + 1) = � if x ≥ 0,
(5)

with � := λ1 + λ2 + · · · + λJ .

In the following proposition we summarize the stability properties of the Markov process
(m�(t)).

Proposition 2. If � = (�j ) ∈ S then the Markov process (m�(t)) is ergodic if � ∈ 	0 with

	0 :=
{
x ∈ S : 〈A, x〉 = c0,

J∑
j=1

(λj − μjxj )Aj > 0 and � <

J∑
j=1

μjxjAj

}
, (6)

where π� denotes the corresponding invariant distribution.

Proof. The Markov process (m�(t)) on Z behaves like a random walk on each of the two
half-lines N and Z

∗−. Definition (6) implies that if � ∈ 	0 then the drift of the random walk
is positive when in Z

∗− and negative when in N. This property implies the ergodicity of the
Markov process by using, for example, the Lyapunov function F(x) = |x|; see, for example,
[15, Corollary 8.7 ]. �

We now extend the expression π� for the values � ∈ S \ 	0. This will be helpful in order to
describe the asymptotic dynamic of the system. See Theorem 1 for further details.

Definition 3. We denote π� = δ−∞, the Dirac measure at −∞ when � ∈ 	−, with

	− :=
{
x ∈ S : 〈A, x〉 = c0,

J∑
j=1

(λj − μjxj )Aj ≤ 0

}
∪ {x ∈ S : 〈A, x〉 < c0},

and π� = δ+∞ if � ∈ 	+, with

	+ :=
{
x ∈ S : 〈A, x〉 = c0,

J∑
j=1

μjxjAj ≤ �

}
∪ {x ∈ S : 〈A, x〉 > c0}.

3.1. Stochastic evolution equations

For ξ > 0, denote by Nξ (dt) a Poisson process on R+ with rate ξ and (Nξ,i (dt)) an i.i.d.
sequence of such processes. All Poisson processes are assumed to be independent. Classically,
the process (LN(t)) can be seen as the unique solution to the following stochastic differential
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equations:

dLN
1 (t) = −

LN
1 (t−)∑
k=1

Nμ1,k(dt) + 1{mN(t−) < CN − CN
0 }Nλ1N(dt)

+
J∑

j=2

1{0 ≤ mN(t−) < CN − CN
0 }Nλj N (dt), (7a)

dLN
j (t) = −

LN
j (t−)∑
k=1

Nμj ,k(dt) + 1{mN(t−) < 0}Nλj N (dt), 2 ≤ j ≤ J, (7b)

with initial condition (LN
j (0)) ∈ N

J such that 〈A, LN(0)〉 ≤ CN .

Theorem 1. (Limiting dynamical system.) Under condition (R2), if the initial conditions are
such that mN(0) = m ∈ Z and

lim
N→+∞

(
LN

j (0)

N

)
= (�j (0)) ∈ S,

then there exists a continuous process (�(t)) = (�j (t)) such that the convergence in distribution

lim
N→+∞

((
LN

j (t)

N

)
,

∫ t

0
f (mN(u)) du

)
=

(
(�j (t)),

∫ t

0

∫
Z

f (x)π�(u)(dx) du

)
(8)

holds for any function f with finite support on Z. Furthermore, there exists t0 > 0 such that
(�(t), t ≥ t0) satisfies the differential equations

d

dt
�1(t) = −μ1�1(t) + λ1 + π�(t)(N)

( J∑
k=2

λk

)
,

d

dt
�j (t) = −μj�j (t) + λjπ�(t)(Z

∗−), 2 ≤ j ≤ J,

(9)

where π�, for � ∈ S, is the distribution of Proposition 2 and Definition 3.

It should be noted that, since the convergence holds for the convergence in distribution of
processes, the limit (�(t)) is a priori a random process.

Proof. Using the same method as Hunt and Kurtz [12], we obtain the analogue of their
Theorem 3. Fix ε > 0 such that c0 + ε < c, from Proposition 1, we obtain the existence of t0
such that

lim
N→+∞ P

(
sup

t0≤t≤T

〈A, LN(t)〉 < (c0 + ε)N
)

= 1,

which implies that the boundary condition mN(t) < CN − CN
0 in the evolution equations (7a)

and (7b) can be removed. Consequently, only the boundary condition of (mN(t)) at 0 plays
a role, which yields relation (9) as in Hunt and Kurtz [12]. Note that, contrary to the general
situation described in this reference, we have indeed a convergence in distribution because, for
any � ∈ S, (m�(t)) has exactly one invariant distribution (which may be a Dirac mass at ∞) by
Proposition 2; see [12, Conjecture 5]. �

In the following proposition we provide a characterization of the equilibrium point of the
dynamical system (�(t)).
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Proposition 3. (Fixed point.) Under conditions (R1) and (R2), there exists a unique equilibrium
point �∗ ∈ 	0 of the process (�j (t)) defined by (8) given by

�∗
1 = c0 − π−(ρ2A2 + · · · + ρJ AJ ), �∗

j = ρjπ
−, 2 ≤ j ≤ J, (10)

where

π− := c0 − �/μ1

〈A, ρ〉 − �/μ1
, (11)

with � = λ1 + · · · + λJ . The process (m�∗(t)) is ergodic in this case.

Proof. Assume that there exists an equilibrium point �∗ = (�∗
j ) of (�j (t)) defined by (8), it

is also an equilibrium point of the dynamical system defined by (9), then

μ1�
∗
1 = λ1 + (λ2 + · · · + λJ )(1 − π−), μj�

∗
j = λjπ

−, 2 ≤ j ≤ J, (12)

with π− = π�∗(Z∗−). We obtain

J∑
j=1

λj =
J∑

j=1

μj�
∗
j <

J∑
j=1

μj�
∗
jAj = π−

J∑
j=1

λjAj + (1 − π−)

J∑
j=1

λj <

J∑
j=1

λjAj . (13)

We now show that the vector �∗ is on the boundary, i.e.

J∑
j=1

Aj�
∗
j = c0. (14)

If we assume that

lim
N→+∞

(
LN

j (0)

N

)
= (�∗

j ),

from Theorem 1 and the definition of (mN(t)), we know that, for the convergence of processes,
the following relation holds:

lim
N→+∞

(
mN(t)

N

)
= (κ0), with κ0 :=

J∑
j=1

Aj�
∗
j − c0.

For N0 ∈ N, ε > 0, and N ≥ N0,
∫ 1

0
1{|mN(u)| ≥ εN} du ≤

∫ 1

0
1{|mN(u)| ≥ εN0} du.

Using again Theorem 1 and the fact that �∗ is an equilibrium point of the dynamical system,
we have, for the convergence in distribution,

lim
N→+∞

∫ 1

0
1{|mN(u)| ≤ εN0} du = π�∗([−εN0, εN0]).

The left-hand side of the above expression can be arbitrarily close to 1 when N0 is large.
By convergence of the sequence (mN(t)/N) to (κ0), it follows that, for the convergence in
distribution, the relation

lim
N→+∞

∫ 1

0
1{|mN(u)|/N ≥ ε} du = 0
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holds for ε > 0, which implies that κ0 = 0. Thus, relation (14) holds. Finally, from (12)
and (14), we obtain (10). We conclude, therefore, that �∗ ∈ 	0, the associated process (m�∗(t)),
is necessarily ergodic by Proposition 2 and (13).

To prove that the �∗ defined by (10) and (11) is indeed an equilibrium point of the dynamical
system defined by (9), we need to show that the right-hand side of (11) is indeed equal to
π�∗(Z∗−). This is proved in Proposition 5 of Section 4. �

3.2. Convergence of invariant distributions

In this section we use our main result to establish the convergence of the invariant distribution
of the process (mN(t)) as N gets large. This will yield, in particular, the convergence with
respect to N of the probability of not downgrading a request at equilibrium.

Lemma 1. If the process (L̃N
j (t)) is the process (LN

j (t)) at equilibrium then, for any ε > 0
and T > 0,

lim
N→+∞ P

(
sup

0≤t≤T

sup
2≤j≤J

L̃N
j (t)

N
≤ ρj + ε

)
= 1.

Proof. Let (LN
j (t)) be the process with initial state empty, then we can easily construct a

coupling such that
LN

j (t) ≤ Q̃N
j (t), t ≥ 0, 2 ≤ j ≤ J,

holds almost surely, where (QN
j (t)) is the M/M/∞ queue associated to class j requests. We

deduce that
L̃N

j (0) ≤st Q̃N
j (0),

where Q̃N
j (0) is a Poisson random variable with parameter ρjN and ‘≤st’ is the stochastic

ordering of random variables. We can, therefore, construct another coupling such that

L̃N
j (t) ≤ Q̃N

j (t), t ≥ 0, 2 ≤ j ≤ J,

where (Q̃N
j (t)) is a stationary version of the M/M/∞ queue associated to class j requests.

The lemma is then a consequence of the following convergence in distribution of processes:

lim
N→+∞

(
Q̃N

j (t)

N

)
= (ρj ) for 2 ≤ j ≤ J ;

see, for example, Theorem 6.13 of [15, p. 159]. �

Definition 4. Let (y(t)) be the dynamical system on S satisfying

d

dt
y1(t) = −μ1y1(t) + λ1 +

( J∑
k=2

λk

)
1

�A

J∑
k=1

Ak(λk − μkyk(t)),

d

dt
yj (t) = −μjyj (t) + λj

1

�A

J∑
k=1

(Akμkyk(t) − λk), 2 ≤ j ≤ J,

(15)

with

�A =
J∑

k=1

λk(Ak − 1).
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Lemma 2. If y(0) ∈ 	0 and if there exists an instant T > 0 such that y(t) ∈ 	0 for t ∈ [0, T ],
then (y(t)) and (�(t)) coincide on the time interval [0, T ], where (�(t)) is the solution of (9)
with �(0) = y(0).

Proof. The proposition is a simple consequence of the representation (9) of the differential
equations defining the dynamical system (�(t)) and of the explicit expression of the quantity
π�(Z

∗−) given by (22) when � ∈ 	0; see (6). �
In the next proposition we investigate the stability properties of (y(t)).

Proposition 4. Let H0 be the hyperplane

H0 := {z ∈ S : 〈A, z〉 = c0}.
If y(0) ∈ H0 then y(t) ∈ H0 for all t ≥ 0 and (y(t)) is converging exponentially fast to �∗
defined in Proposition 3.

Proof. It is easily checked that

d

dt
〈A, y(t)〉 = 0,

so that, if y(0) ∈ H0, then the function t �→ 〈A, y(t)〉 is constant and equal to c0, hence,
y(t) ∈ H0 for all t ≥ 0.

For 2 ≤ j ≤ J ,

d

dt
yj (t) = λjb0 − μjyj (t) + λj

J∑
k=2

bkyk(t),

with

b0 = μ1c0 − �

�A

and bj = Aj(μj − μ1)

�A

.

In matrix form, if z(t) = (y2(t), . . . , yJ (t)), it can be expressed as

d

dt
z(t) = eb + Bz(t), (16)

with eb = b0(λ2, . . . , λJ ) ∈ R
J−1 and B = (Bjk, 2 ≤ j, k ≤ J ) with

Bjk = λjbk − μj 1{k = j}.
If v = (v2, . . . , vJ ) is an eigenvector for the eigenvalue x of B, then

(x + μj )vj = λj

J∑
k=2

bkvk, 2 ≤ j ≤ J,

hence, x is an eigenvalue if and only if it is a solution of

F(x) :=
J∑

j=2

bjλj

x + μj

= 1.

If L is the number of distinct values of μj , 2 ≤ j ≤ J , such that μj �=μ1, then the above equation
shows that an eigenvalue is a zero of a polynomial of degree at most L. Using condition (R),
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it is easy to check that the relation F(0) < 1 holds. In particular, 0 is not an eigenvalue and,
consequently, B is invertible. Due to the poles of F at the −μj , 2 ≤ j ≤ J , and the relations
F(0) < 1 and μj ≥ μ1 for 2 ≤ j ≤ J , we have already L negative solutions of the equation
F(x) = 1. All eigenvalues of B are thus negative, consequently, exp(tB) converges to 0; see,
for example, [2, Corollary 2, Chapter 25].)

Equation (16) can be solved as

z(t) = etB(z(0) + B−1eb) − B−1eb.

Therefore, the function (z(t)) has a limit at ∞ given by −B−1eb, which is clearly (�∗
j , 2 ≤ j ≤

J ). The proposition is proved. �
We are now ready to prove the main result of this section.

Theorem 2. If �∗ is the quantity defined in Proposition 3 then the equilibrium distribution of
(mN(t)) converges to π�∗ when N goes to ∞.

Proof. Recall that mN(t) = 〈A, LN(t)〉 − CN
0 and let 
N be the invariant distribution

of (LN(t)). It is assumed that the distribution of LN(0) is 
N for the rest of the proof. In
particular, (mN(t)) is a stationary process.

We first prove that (LN(0)/N) converges in distribution to �∗. The boundary condition
〈A, LN(0)〉 ≤ CN yields that the sequence of random variables (LN(0)/N) is tight. If
(LNk (0)/Nk) is a convergent subsequence to some random variable �∞, by Theorem 1, it
follows that, for the convergence in distribution,

lim
k→+∞

((
LNk(t)

Nk

))
= (�(t))

holds, where (�(t)) is a solution of (9) with initial point at �(0) = �∞. Note that (�(t)) is a
stationary process, its distribution is invariant under any time shift.

By Lemma 1, it follows that the relation �j (t) ≤ ρj , for 2 ≤ j ≤ J , holds almost surely
on any finite-time interval and, by Proposition 1, 〈A, �(t)〉 ≤ c0 also holds almost surely on
finite-time intervals.

Assume that 〈A, �(0)〉 < c0 holds. The ordinary differential equations defining the limiting
dynamical system are given by

d

dt
�j (t) = −μj�j (t) + λj , 1 ≤ j ≤ J,

as long as the condition 〈A, �(t)〉 < c0 holds, hence, on the corresponding time interval, we
have

�j (t) = ρj + (�j (0) − ρj )e
−μj t , 1 ≤ j ≤ J,

so that

〈A, �(t)〉 = 〈A, ρ〉 +
J∑

j=1

Aj(�j (0) − ρj )e
−μj t .

Since 〈A, ρ〉 > c0, there exists some t1 > 0 such that 〈A, �(t1)〉 = c0.
Hence, by the stationarity in distribution of (�(t)), we can shift time at t0 and assume that

〈A, �(0)〉 = c0. On this event

J∑
j=1

μj�j (0)Aj ≥ μ1

J∑
j=1

�j (0)Aj = μ1c0 > � =
J∑

j=1

λj . (17)
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Similarly, since �j (0) ≤ ρj for all 2 ≤ j ≤ J ,

J∑
j=1

Aj(λj − μj�j (0)) = λ1 − μ1c0 + μ1

J∑
j=2

Aj�j (0) +
J∑

j=2

Aj(λj − μj�j (0)) (18)

= −μ1c0 +
J∑

j=1

Aj(λj + (μ1 − μj )�j (0))

≥ −μ1c0 +
J∑

j=1

Aj(λj + (μ1 − μj )ρj )

= −μ1c0 +
J∑

j=1

Ajλj

μ1

μj

= μ1(〈A, ρ〉 − c0)

> 0,

and the last quantity is independent of �(0). From (17) and (18) we see that �(0) ∈ 	0 and,
by (9) and (15), they also hold for t in a small neighborhood I of 0 independent of �(0) so
that �(t) ∈ 	0 for t ∈ I . Consequently, the dynamical system (�(t)) never leaves 	0. From
Lemma 2 we see that the two dynamical systems (�(t)) and (y(t)) (with y(0) = �(0)) coincide.
Hence, on the one hand, (�(t)) is a stationary process and, on the other hand, it is a dynamical
system converging to �∗, we deduce that it is constant and equal to �∗. We have thus proved
that the sequence (LN(0)/N) converges in distribution to �∗.

Using again Theorem 1, it follows that, for the convergence in distribution,

lim
N→+∞

∫ 1

0
f (mN(u)) du =

∫
Z

f (x)π�∗(dx)

holds for any function f with finite support on Z. Using the stationarity of (mN(t)) and
Lebesgue’s Theorem, we obtain

lim
N→+∞ E(f (mN(0))) =

∫
Z

f (x)π�∗(dx).

The theorem is proved. �
Since a job arriving at time t is not downgraded if mN(t) < 0, we have the following

corollary.

Corollary 1. As N goes to ∞, the probability that, at equilibrium, a job is not downgraded in
this allocation scheme but is converging to π−, as defined in (10), is

π− = c0 − �/μ1

〈A, ρ〉 − �/μ1
.

4. Invariant distribution

We assume in this section that � ∈ 	0, as defined in Proposition 2, so that (m�(t)) is an
ergodic Markov process. The goal of this section is to derive an explicit expression of the
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invariant distribution π� on Z of (m�(t)). At the same time, Proposition 5 below gives the
required argument to complete the proof of Proposition 3 on the characterization of the fixed
point of the dynamical system.

4.1. Functional equation

In the following we denote by Y� a random variable with distribution π� = (π�(n), n ∈ Z).
For r > 0, we will use the notation

D(r) = {z ∈ C, |z| < r}, Dc(r) = {z ∈ C, |z| > r}, γ (r) = {z ∈ C, |z| = r}.
For the sake of simplicity, we will use D = D(1) and Dc = Dc(1).

Lemma 3. With the notation

ϕ+(z) = E(zY�1{Y� ≥ 0}), ϕ−(z) = E(zY�1{Y� < 0}),
the random variable Y� is such that

P1(z)ϕ+(z) = P2(z)ϕ−(z), (19)

where P1 and P2 are polynomials defined by

P1(z) =
J∑

j=1

[(λj + μj�j )z
AJ − λj z

AJ +1 − μj�j z
AJ −Aj ],

P2(z) =
J∑

j=1

[λj z
AJ +Aj + μj�j z

AJ −Aj − (λj + μj�j )z
AJ ].

(20)

Proof. For z ∈ γ (1), define fz : Z �→ C such that fz(x) = zx for x ∈ Z. Equilibrium
equations for (m�(t)) yield the identity∑

x,y∈Z, x �=y

π�(x)Q�(x, y)(fz(y) − fz(x)) = 0,

where Q� is the Q-matrix of (m�(t)) given by (5). After some simple reordering, we have

E(zY�1{Yl ≥ 0})
J∑

j=1

(λj (1 − z) + μj�j (1 − z−Aj ))

= −E(zYl 1{Yl < 0})
J∑

j=1

(λj (1 − zAj ) + μj�j (1 − z−Aj )). (21)

Using the definition of ϕ+(z) and ϕ−(z), (21) can be rewritten as (19). �
Proposition 5. If � ∈ 	0 then

π�(Z
∗−) =

∑J
j=1(Ajμj�j − λj )∑J

j=1 λj (Aj − 1)
. (22)

In particular, if �∗ ∈ S is given by (10) then

π�∗(Z∗−) = c0 − �/μ1

〈A, ρ〉 − �/μ1
.
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Note that the right-hand side of this equation is precisely π− of (11), which is the result
necessary to complete the proof of Proposition 3.

Proof. With the same notation as before, from (19),

ϕ−(z)

ϕ+(z)
= P1(z)

P2(z)

holds for z ∈ C, with z ∈ γ (1). By definition of ϕ−(z) and ϕ+(z),

lim
z→1

ϕ−(z) = π�(Z
∗−) and lim

z→1
ϕ+(z) = 1 − π�(Z

∗−).

Since 1 is a zero of P1 and P2, this yields

π�(Z
∗−)

1 − π�(Z
∗−)

= P ′
1(1)

P ′
2(1)

=
∑J

j=1(Ajμj�j − λj )∑J
j=1 Aj(λj − μj�j )

.

Using the expression of (�∗
j ), with some algebra, we obtain

π�∗(Z∗−) =
(

c0 −
J∑

j=1

λj

μ1

)/( J∑
j=1

ρjAj −
J∑

j=1

λj

μ1

)
= π−.

The proposition is proved. �
Relation (19) is valid on the unit circle, however, the function ϕ+ (respectively, ϕ−) is defined

on D (respectively, Dc). This can then be expressed as a Wiener–Hopf factorization problem
analogous to the one used in the analysis of reflected random walks on N. This is used in the
analysis of the GI/GI/1 queue; see, for example, [3, Chapter VIII] or [15, Chapter 3]. In a
functional context, this is a special case of the Riemann problem; see [9]. In our case, this
is a random walk in Z, with a drift depending on the half-space where it is located. The first
(respectively, second) condition in the definition of the set 	0 in definition (6) implies that the
drift of the random walk in Z

∗− (respectively, in N) is positive (respectively, negative).
The first step in the analysis of (19) is to determine the locations of the zeros of P1 and P2.

This is the purpose of the following lemma.

Lemma 4. (Location of the zeros of P1 and P2.) Let � be in 	0.

(i) Polynomial P2 has exactly two positive real roots 1 and z2 ∈]0, 1[. There are AJ − 1
roots in D(z2) and AJ − 1 roots whose modulus are strictly greater than 1.

(ii) Polynomial P1 has exactly two positive real roots 1 and z1 > 1. The AJ − 1 remaining
roots have a modulus strictly smaller than 1.

Proof. First note that P2 is a polynomial with the same form as the f defined in [4,
Equation (13)] (with ej = Aj , κj = λj , and ê = AJ ). The roots of Q are exactly the
roots of f . Lemma 4(i) follows from [4, Lemma 2.2].

The proof of assertion (ii) uses an adaptation of the argument for the proof of [4, Lemma 2.2].
Define the function f (z) = z−AJ P1(z). Recall that P1 is a polynomial with degree AJ + 1.
There are exactly two real positive roots for P1. Indeed, f (1) = 0 and it is easily checked
that f is strictly concave with

f ′(1) =
J∑

j=1

(−λj + Ajμj�j ) > 0,
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since � ∈ 	0, by the second condition in definition (6). Hence, P1 has a real zero z1 greater
than 1.

Let r ∈ (1, z1) be fixed, note that P1(r) > 0. Define

f1(z) = KzAJ with K =
J∑

j=1

(λj + Ajμj�j ), f2(z) =
J∑

j=1

(λj z
AJ +1 + μj�j z

AJ −Aj ),

so that P1 = f1 − f2.
Fix some z ∈ γ (r). By expressing these functions in terms of real and imaginary parts,

zAJ = α1 + iβ1 and f2(z) = α2 + iβ2,

we obtain

|f1(z) − f2(z) − bzAJ |2 = |K(α1 + iβ1) − b(α1 + iβ1) − (α2 + iβ2)|2
= (Kα1 − α2)

2 + (Kβ1 − β2)
2 + H

= |f1(z) − f2(z)|2 + H, (23)

with

H = (bα1)
2 − 2bα1(Kα1 − α2) + (bβ1)

2 − 2bβ1(Kβ1 − β2)

= b(b − 2K)(α2
1 + β2

1 ) + 2b(α1α2 + β1β2).

Using the Cauchy–Schwarz inequality, we obtain

α1α2 + β1β2 ≤ 1

K
|f2(z)||f1(z)| ≤ 1

K
f2(r)f1(r),

since |fi(z)| ≤ fi(|z|) for i = 1, 2. Thus,

H

b
= (b − 2K)(α2

1 + β2
1 ) + 2(α1α2 + β1β2)

≤ (b − 2K)
f1(r)

2

K2 + 2f2(r)
f1(r)

K

= f1(r)

K2 ((b − 2K)f1(r) + 2Kf2(r))

= f1(r)

K2 (bf1(r) − 2KP1(r)).

Since P1(r) > 0, b can be chosen so that bf1(r) < 2KP1(r). From the above relation and (23),
it follows that, for z ∈ γ (r),

|f1(z) − f2(z) − bzAJ | < |f1(z) − f2(z)|
holds. By Rouché’s theorem, it follows that, for any r ∈ (1, z1), P1 has exactly AJ roots in
D(r). We conclude that P1 has exactly AJ roots in D̄. It is easily checked that if z ∈ γ (1) and
z �∈ R then the real part of P1(z) is positive, hence, z cannot be a root of the polynomial P1.
Consequently, P1 has exactly AJ − 1 roots in D. The lemma is proved. �
Definition 5. For U ∈ {P1, P2}, denote by ZU the set of the zeros of U different from 1.
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Define

�(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ϕ+(z)λJ
−1(z − z1)

∏
q∈ZP2 ∩Dc

(z − q)−1, z ∈ D,

ϕ−(z)�−1
∏

q∈ZP2 ∩D

(z − q)
∏

p∈ZP1∩D

(z − p)−1, z ∈ Dc,

with � = λ1 + · · · + λJ and retaining the same notation as before. By definition, function �

is holomorphic in D and Dc and, from (19), is continuous on γ (1). The analytic continuation
theorem (for example, [16, Theorem 16.8]) yields that � is holomorphic on C. For z ∈ Dc,

|ϕ−(z)| ≤ E(1{Y� < 0}|z|Y�) ≤ 1

|z| ,

since the cardinality of ZP1 ∩ D (respectively, ZP2 ∩ D) is AJ − 1 (respectively, AJ ), the
holomorphic function � is, therefore, bounded on C. By Liouville’s theorem, � is constant
and equal to κ ∈ C. Therefore,

ϕ+(z) = −κλJ (z − z1)
−1

∏
q∈ZP2 ∩Dc

(z − q), z ∈ D,

ϕ−(z) = κ�
∏

q∈ZP2 ∩D

(z − q)−1
∏

p∈ZP1∩D

(z − p), z ∈ Dc.
(24)

Recall that ϕ(z) = ϕ+(z) + ϕ−(z) = E(zY�) is a generating function, in particular, ϕ(1) = 1.
Substituting the previous expressions for ϕ+ and ϕ− into ϕ+(1) + ϕ−(1) = 1, we obtain

1 = −κ
∏

q∈ZP2 ∩D

(1 − q)−1 1

1 − z1
(P ′

1(1) + P ′
2(1)),

hence, using (20),

κ = z1 − 1

�A

∏
q∈ZP2 ∩D

(1 − q),

where �A is introduced in Definition 4. Note that κ is positive. We can now state the main
result of this section.

Proposition 6. (Invariant measure.) If � ∈ 	0 is defined by (6) then the invariant measure π�

can be expressed, for n ∈ Z, as

π�(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−κ
∑

q∈ZP2 ∩D

P1(q)q−n−1

(q − z1)(q − 1)R′
D(q)

, n < 0,

κ

(
αn + P2(z1)z

−n−1
1

(z1 − 1)RD(z1)

)
, 0 ≤ n < AJ − 1,

κ
P2(z1)z

−n−1
1

(z1 − 1)RD(z1)
, n ≥ AJ − 1,

where z1 is defined in Lemma 4, and P1 and P2 by (20),

RD(z) =
∏

q∈ZP2 ∩D

(z − q), κ = (z1 − 1)RD(1)

�A

for 0 ≤ n < AJ − 1,
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and αn is the coefficient of degree n of the polynomial

− 1

z − z1

(
P2(z)

(z − 1)RD(z)
− P2(z1)

(z1 − 1)RD(z1)

)
.

Proof. Note that, for z ∈ C,

∏
p∈ZP1∩D

(z − p) = − 1

�

P1(z)

(z − z1)(z − 1)
.

For z ∈ Dc,
ϕ−(z) = κ�

∏
q∈ZP2 ∩D

(z − q)−1
∏

p∈ZP1∩D

(z − p).

Since |ZP1 ∩ D| = AJ − 1 < AJ = |ZP2 ∩ D| by Lemma 4, ϕ− has the following partial
fraction decomposition:

ϕ−(z) = −κ
∑

q∈ZP2 ∩D

P1(q)

(q − z1)(q − 1)R′
D(q)

1

z − q

=
∞∑
i=0

−κ
∑

q∈ZP2 ∩D

P1(q)qi

(q − z1)(q − 1)R′
D(q)

1

zi+1 .

Denote

RDc(z) =
∏

q∈ZP2 ∩Dc

(z − q) = P2(z)

λJ (z − 1)RD(z)
,

then

ϕ+(z) = −κλJ

RDc(z)

z − z1
= κ

(
−λJ

RDc(z) − RDc(z1)

z − z1
+ P2(z1)

(1 − z1)RD(z1)

1

z − z1

)
.

We conclude by using the expression of κ obtained before. �
4.2. Some moments of (π�∗)

Using the probability generating function ϕ(z) of π�∗ from (24), we can derive an explicit
expression of the mean, the variance, and the skewness of such a distribution. The skewness of
a random variable X is a measure of the asymmetry of the distribution of X,

skew(X) := E([X − E(X)]3);
see, for example, [6].

Proposition 7. If Y�∗ is a random variable with distribution π�∗ then

E(Y�∗) = AJ + θ2

2θ1
− S(1),

var(Y�∗) = θ2 + 2θ3

6θ1
−

(
θ2

2θ1

)2

− (S(1) + S′(1)),

skew(Y�∗) = θ3
2

4θ3
1

+ θ2
θ2 − 2θ3

4θ2
1

+ θ4 − θ3

4θ1
− (S(1) + 3S′(1) + S′′(1)),
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Figure 1: The histogram of Y�∗ with the parameters J = 5, A = (1, 2, 4, 8, 16), λ = (0.25, 0.2, 0.15,

0.1, 0.05), μ = (1, 1, 1, 1, 1), and c0 = 0.97.

where, for i ≥ 1,

θi =
J∑

j=2

λjA
i−1
j (Aj − 1),

and

S(z) = 1

z − z1
+

∑
q∈ZP2 ∩D

1

z − q
,

with RD(z) defined in Proposition 6.

The proof is straightforward, modulo some tedious calculations of the successive derivatives
of ϕ(z) evaluated at 1. In Figure 1, we see that the distribution of Y�∗ is significantly asymmet-
rical; for this example, E(Y�∗) = 8.048 19, var(Y�∗) = 77.2284, and skew(Y�∗) = 0.967 069.

5. Applications

5.1. Comparison with a pure loss system

In this case, a request which cannot be accommodated is rejected right away. Recall that,
with probability 1, our algorithm does not reject any request. The purpose of this section is to
discuss the price of such a policy. Intuitively, at equilibrium the probability WL of accepting a
job at requested capacity in a pure loss system is greater that the corresponding quantity WD for
the downgrading algorithm; see Proposition 8 below. A further question is to assess the impact
of such a policy, i.e. the order of magnitude of the difference WL − WD.

Under the same assumptions about the arrivals and under condition (R), with � = λ1 +
· · · + λJ , then, as N gets large, the equilibrium probability that a request of class 1 ≤ j ≤ J is
accepted in the pure loss system is converging to βAj , where β ∈ (0, 1) is the unique solution
of the equation

J∑
j=1

Ajρjβ
Aj = c; (25)

https://doi.org/10.1017/apr.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.15


648 C. FRICKER ET AL.

see [13]. Consequently, the asymptotic load of accepted requests is given by

WL := 1

�

J∑
j=1

ρjβ
Aj .

Under the downgrading policy, the equilibrium probability that a job is accepted without
degradation is given by π−, the asymptotic load of requests accepted without degradation
is

WD := 1

�

J∑
j=1

ρj

c0 − �/μ1

〈ρ, A〉 − �/μ1
for c0 ∈ (�/μ1, c).

Note that, when the service rates are constant and equal to 1 then WL (respectively, WD) is the
asymptotic throughput of accepted requests (respectively, of nondegraded requests).

The following proposition establishes the intuitive property that a pure loss system has better
performances in terms of acceptance.

Proposition 8. For c0 ∈ (�/μ1, c), the relation WD ≤ WL holds.

Proof. The representation of these quantities yields that the relation needed for the proof is
equivalent to

J∑
j=1

ρjβ
Aj

( J∑
j=1

ρjAj −
J∑

j=1

λj

μ1

)
−

J∑
j=1

ρj

(
c0 −

J∑
j=1

λj

μ1

)
≥ 0.

Using the fact that c0 < c and (25), it is enough to show that the quantity

	 :=
J∑

j=1

ρjβ
Aj

( J∑
i=1

ρjAi −
J∑

i=1

λi

μ1

)
−

J∑
j=1

ρj

( J∑
i=1

Aiρjβ
Ai −

J∑
i=1

λi

μ1

)

is positive. But this is clear since

	 =
∑

1≤i,j≤J

ρiρj (Aj (β
Ai − βAj )) +

∑
1≤i,j≤J

ρj

λi

μ1
(1 − βAj )

=
∑

1≤i<j≤J

ρiρj ((Aj − Ai)(β
Ai − βAj )) +

∑
1≤i,j≤J

ρj

λi

μ1
(1 − βAj )

and the terms of both series of the right-hand side of this relation are nonnegative due to the
fact that 0 < β < 1. �

Numerical experiments have been performed to estimate the difference WL − WD; see
Figure 2. The general conclusion is that, at moderate load under condition (R), the downgrading
algorithm performs quite well with only a small fraction of downgraded jobs. As it can be seen
this is no longer true for high load, where, as expected, most of the requests are downgraded
but no requests are lost.
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Figure 2: Asymptotic load of nondowngraded/accepted requests with A1 = 1, c = 1, c0 = 0.99, and
all service rates equal to 1. (a) J = 2, A2 = 3, λ1 = 0.2, and (R) with condition λ2 ∈ (0.2633, 0.79).

(b) J = 3, A2 = 2, λ1 = λ2 = 0.2, and (R) with condition λ3 ∈ (0.03, 0.49).

5.2. Application to video transmission

We consider now a link with a large bandwidth, 10.0Gbps, in charge of video streaming.
Requests that cannot be immediately served are lost. Video transmission is offered in two
standard qualities, namely, low quality (LQ) and high quality (HQ). From Añorga et al. [1],
the bandwidth requirement for YouTube’s videos at 240p is 1485Kbps, and for 720p it is
2737.27Kbps.

Using the values above, after renormalization, we take A1 = 1, N = CN = 7061 and
A2 = 2, c = 1. Jobs arrive at rate λ2 in this system asking for HQ transmission, but clients
accept to watch the video in LQ. In particular, λ1 = 0. Service times are assumed to be the
same for both qualities and taken as the unity, μ1 = μ2 = 1. Condition (R) is satisfied when

0.5 < λ2 < 1.

We define C0 = αC, with 0 < α < 1. The quantity αε is defined as the largest value of α such
that the loss probability of a job is less than ε > 0. With the notation of Section 4, we write

αε = sup{α ∈ (0, 1) : P(Y�∗ + C0 > C) < ε}.
Note that this is an approximation, since the variable Y�∗ corresponds to the case when the
scaling parameter N goes to ∞.

Using the explicit expression of the distribution of Y�∗ of Proposition 6, in Figure 3 we plot
the threshold αε that ensures a loss rate less than ε as a function of ε, for several values of λ2.
In the numerical example, taking C0 = 0.98C is sufficient to obtain a loss probability less than
10−7.

Now let π−
ε be the value of π− defined by Corollary 1 for C0 = αεC. Recall that π−

ε , given
by (11), is the asymptotic equilibrium probability that a job is not downgraded, i.e.

π−
ε = αε

λ2
− 1.
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Figure 3: Maximal threshold for a loss probability equal to ε.

Figure 4: Fraction of nondowngraded jobs at equilibrium for the downgrading policy compared to the
fraction of lost jobs in a pure loss system.

For comparison, β is defined as the corresponding acceptance probability when no control
is used in the system. We show, in Figure 4, the relation between these quantities and the
workload λ2, for fixed loss rates of 10−3, 10−6, and 10−9. We have β = 1 − 1/(2λ2); see
[15, Proposition 6.19]. The difference β − π− can be seen as the fraction of jobs which are
downgraded for our policy but lost in the uncontrolled policy. Intuitively, it can be seen as the
price of not rejecting any job. Note also that the curves plotting π−

ε for ε = 10−3, 10−6, 10−9

are close and that β is larger than π−. We remark nevertheless that, for high loads, the system
cannot hold these demands because our policy is no longer effective.
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