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We present several new inequalities for Euler’s beta function, B(z,y). One of our
results states that the beta function can be approximated on (0, 1] x (0, 1] by rational
functions as follows,

G—ni-p) _1 (1-2)(1 )
z(1+z)y(l+y) < zy B(z,y) < ﬁz(1+z)y(1+y)7

with the best possible constants a = 1 and 8 = %7‘(2 —4=2.57973....

1. Introduction

The classical beta and gamma functions, also known as Euler’s integrals of the first
and second kind, respectively, are defined by

1
B(z,y) = / twfl(l — t)yfl dt, z,y >0,
0

and
I'(z) = / e ft" 1 dt, x> 0.
0
They are closely connected by the elegant identity
@) (y)
B(z,y) = ————, ,y > 0.
(z,9) Twry oY

Since both functions play an important role in various branches of mathematics and
mathematical physics, they have been investigated intensively by many authors. We
refer to the monographs [1,6,7].

In the past, numerous papers were published presenting remarkable inequalities
involving the gamma function (see [11] and the extensive list of references given
therein). But only few inequalities for the beta function and its relatives can be
found in the literature (see [4,9,12,13,15-18]). It is the aim of this article to add
to the list of beta-function inequalities.

In 2000, Dragomir et al. [9] proved that the beta function can be approximated
by 1/(zy). More precisely, they proved

1

Y
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In [4], it was shown that i can be replaced by the best possible constant 0.08731.. ..
In view of (1.1), it is natural to ask for a corresponding result, which holds for
z,y € (0,1]. In §3 we present sharp upper and lower rational bounds for the differ-
ence 1/(zy) — B(x,y), valid for all z,y € (0,1]. Moreover, we show that the beta
function can be approximated on (0, 1] x (0, 1] by the logarithmic derivative of the
gamma function. Our third result provides double inequalities for B(z,y), which
hold for 2,y > 1 and min(z,y) < 1 < max(z,y), respectively. And, finally, we prove
a new functional inequality for the beta function, which is closely related to the
triangle inequality

(B(z,2))* < (B(z,y))*+ (B(y,2))*, 0<z<y<z a€R. (1.2)

Throughout this paper, we denote by v = 0.57721... Euler’s constant and by
1 = I"/I the psi (or digamma) function. In order to prove our theorems, we need
some lemmas. They are collected in the next section. The numerical values have
been calculated by MAPLE (V Release 5.1).

2. Lemmas

In this section, we set 8 = §7T2 —4 =2.57973.... The first lemma presents some
basic formulae, which can be found in [1, ch. 6].

LEMMA 2.1. For all x > 0, we have

oo 1 oo
1yt () = —:/ —at dt, n=12..., (21
( ) 1/} (:E) n kZ:O (CL’+I€)”+1 0 € 1—67t ) n y 4y 3 ( )

Iz +1)=al(z), 1/1(")(:10—1-1):1/1(")(:10)—#(—1)"%, n=0,1,2,..., (2.2)

x

I(2z) = 2ﬁf(:ﬂ)F(m +32), ¥(2z) =3v(x) + 3¥(z + 3) +1og2, (2.3)
Ia+a) =
m ~z27 ap(z) ~logx, x — oo. (2.4)

The following monotonicity properties are proved in [2,3].
LEMMA 2.2.
(i) Let n > 1 be an integer and ¢ = n + 1. The functions

(n+1)
x = mT/J—(iﬂ) and x> 2°(=1)"T ™ (z)

P (x)

are strictly increasing on (0, 00).

(ii) The function p(x) = xp(x) is negative and strictly decreasing on (0, x¢), where
xo = 0.216.... Also, p is strictly convex on (0, 00).
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LEMMA 2.3. Let

() = ¥(x+2) = P(22),
(z) = ¢'(z +2) — 2¢'(22),
uz(z) = 9" (z +2) — 49" (22),
(2) = 2(1 + ) + 28(1 - ),
(2) = (1+2)* = B(1 - z)*.
Then uy, —ug, us and vy are positive and decreasing on (0,1). The function vy is
increasing on (0,1) and has precisely one zero, namely x1 = 0.232. ...

Proof. It suffices to consider uy, us and uz. Let 0 < = < 1. Applying (2.1), we get

/ o i M(9r) — S 1 _ 8
UB(m)_T/} (:E-|-2) 81/} (2 )_sz_o((m—’_2+k)4 (2:E—|—/17)4>.

Since
1 < 8
(x+2+ k)4 = (22 + k)4

for k > 0,

we obtain u4(z) < 0 and uz(z) > ug(1) = 1.46. ... This implies u)(x) = uz(z) > 0
and us(z) < up(1) = —0.89.... Hence v (z) = uz(z) < 0 and uy(z) > ui(1) = 3.
O
LEMMA 2.4. For all z € (0,1], we have

(L(z+2))?

<
0s I'(2x)

+ (1 —x)? — (1 + )2

Proof. Let uy, ug, ug, v, vy and x; be defined in lemma 2.3. Since vo(x) < 0 for
0 <z < x1, we may assume that z € (z1,1]. Let

f(z) =2log I'(x +2) — log I'(2z) — log((1 + z)? — B(1 — x)?).

Then we obtain

Further, we have

g'(x) = wa(z)v1(2) + uz(x)va(2) + B -1

and
g"(z) = 2(1 — B)uy (z) + 2uz(x)vi(z) + usz(z)va(2).
Let 21 <r <2 <s < 1. From lemma 2.3 we get

g"(z) < 2(1 — B)ui(s) + 2uz(s)vi(s) + us(r)va(s) = h(r,s), say.
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The numerical values

h(z1,0.35) < h(0.232,0.35) = —7.03. ..,
1h(0.35,0.48) = —0.04. ..,
h(0.48,0.61) = —1.17...,
h(0.61,0.75) = —0.38.. ..,
h(0.75,0.89) = —0.26.. .. ,
h(0.89,1) = —0.79. ..

imply that ¢”(z) < 0 for € [z1,1]. Since g(1)

= ¢’(1) = 0, we conclude that
g(z) < 0. This leads to f(z) > f(1)=0forz; <z <1

O
LEMMA 2.5. Let 0 < x < y < 1. Then we have
(z+y)ly(e+y) —dl@+2)]< 1.
Proof. Let 0 < 2 <y <1 and
f(@y) = @+ y)lb(r+y) -y +2)]
We have

Of(z,y)

o =P(x+y) Y@ +2)+ (@ +y)'(z+y)

and

, o0
w:21//(ac+y)+(:10+?J)T///(QU‘HJ):222L 0

dy? —(r+y+k)?
This implies
f(z,y) <max(f(z,z), f(z,1)). (2.5)
Let .
g(x) = b(x +2) — h(22) - .

Using (2.1) and (2.3), we get

2/ (2) = 20/ (2 +2) — (2 + 1) — ¥(2) + = = / T et A dr,

2

where
—2t
te 3t/2

A(t) = T—[2 -

—e'l<0 fort>0.

Thus g is strictly decreasing on (0,00), and we obtain
g(z) 2g(1)=0 for0<az<1. (2.6)

Since f(z,z) = —2zg(x) — 1 and f(z,1) = —1, we conclude from (2.5) and (2.
that f(z,y) < —1.

o=
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LEMMA 2.6. Let 0 < x <y < 1. Then we have
0< [z +2) —d(@+y)* +9'(z +2) - ¢/(z +).
Proof. Let 0 < 2 <y <1 and

flay)=E+2)—d@+y)P+ ¢ (@+2) - ¢ (@+y).

Then
vty Oy o ¥ty o v
Vizt+y) oy ( +y)—w,(x+y) +2@+y)(z+y) - +2)] (2.7)

Applying (2.2), we get

V'(z)  —242%"(2+1)
P(z) 1+ 22(z+1) 7

From (2.8) and lemma 2.2 (i), we obtain

Vaty)

z z>0. (2.8)

- X 4y 29
(w+y)w,(m+y) (2.9)
so that (2.7), (2.9) and lemma 2.5 yield 0f (z,y)/0y < 0. Thus f(z,y) = f(z,1) = 0.
O
LEMMA 2.7. For all z € (0, 1], we have
: (L= +2)* _
Yz +2) T on) <p-1L (2.10)
Proof. We define, for z € (0, 1],
1
flx) = ]]:((Z—ii)) and g(z) = —z(z +1)%47"Y/ (z + 2).
Using (2.2) and (2.3), we conclude that (2.10) is equivalent to
0< (B=1)dn) "2 f(2) + g(z) = h(z), say.
Differentiation gives
f@) = f@)(@+3) —y@+1)]<0
and
g'(x) _ Yz +2)
(z+2) o(2) —6(:E)+(:E+2)wl(m+2), (2.11)
where
§(z) = (m+2)(l+i —lo 4>
N x x+1 &%)
We have

22+ (x 4+ 1)%(1 + 2% log2)
z2(z +1)2

—16'(2) = > 0,
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so that (2.11) and lemma 2.2 (i) yield

g'(x) ¥"(2)

2 >0(1)+2—==058....
g 2
Hence f and g are decreasing on (0, 1]. This leads to h(z) = h(1) = 0. O
LEMMA 2.8. For all z € (0,1], we have
(L(z+2))?
[z +2) - T/J(%)]W +a(B-1)—=(F+1)<0.

Proof. Let 0 < 2 <1 and

(L= +2))?

1) = W(a +2) = pEnli—Fos

+z(f-1)—(B+1).

We obtain
(F(z+2)*

/(@) = (e +2) = ¢ +9' (o +2) = 20/ (20) e B - (212)

Applying lemma 2.6, we get
2[Yp(x + 2) — (22)] + ¢ (x + 2) — 2¢/(22) = =/ (z + 2). (2.13)
From (2.12), (2.13) and lemma 2.7, we obtain

(L= +2))?
I'(2z)

Thus f(z) < f(1) = 0. O

fl@)=2p—1-9¢/'(z+2) > 0.

LEMMA 2.9. Let

v) = p(22) — (),
wa(x) =Y (z) — 2¢'(22),
ws(z) = z[y(2z) — P (x)].

The functions wy and we are positive and decreasing and (0,00), whereas ws is
positive and increasing on (0,00).

Proof. Let x > 0. We have
—u}(2) = wa(w) = L[/ () — ' ( + 1)) > 0
and
wh(e) = A (2) — " (x + )] <.
Further,
2ws(x) = e[(e + ) — ¥() + log4] > 0,

2wl (x) = (z + ) — () + logd + {2 + 3) — (@)
Zufi(a) = 2+ 3) — 0 @)+ 0+ 4) ().
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Using the integral formula given in (2.1) and the convolution theorem for Laplace
transforms, we get

2 [ee)
—wj (z) = / e "EA(t) dt,
x 0
where ) .
t s
Aty =——= -2 | —=ds.
®) 1+et/2 /0 1oz’
We have
, t2€7t/2
A(O):O and A(t):m>0 for t > 0,
so that we obtain w4 (x) > 0 for > 0. Since lim, o w}(z) = 0, we conclude that
w4 is positive on (0, 00). O

LEMMA 2.10. For all z € (0,1], we have

Y(z)

Y'(x)

Proof. Let a = 6y/n% and let p, g, w1, wa, w3 be defined in lemmas 2.2 and 2.9,
respectively. Further, let

wy(z) = 2?Y'(z) and  f(z) = [Y(2) —»(22)]Y(z) — ay'(2).

Lemma 2.2 yields that —p is positive and increasing on (0,z¢) and that wy is
increasing on (0,00). Thus we get, for 0 < z < o,

22 f(z) = ws(x)(—p(z)) — aws(z) = w3(0)(—p(0)) — aw4(0.22) = 0.12....
Differentiation gives
—f'(@) = wa(2)(=¢(2)) + w1 ()¢ (x) + )" (x).
Applying lemma 2.9, we get, for 0.21 <r <z < s < 1,
—f'(@) 2 wa(s)(=(s)) +wi(s)y'(s) + ay”(r) = g(r,s), say.
We have

2 < () - pa)]

9(0,21,0.24) = 2.37. . .,
9(0.24,0.27) = 4.77. ..,
9(0.27,0.31) = 1.64. ..,
9(0,31,0.36) = 0.78. ...,
9(0.36,0.42) = 0.73. ..,
9(0.42,0.50) = 0.26.. . .,
9(0.50,0.61) = 0.08.. ..,
9(0,61,0.77) = 0.02. . .,

9(0.77,1) = 0.12. . ..

This implies that f'(z) < 0 for z € [0.21,1]. Since f(1) = 0, we conclude that f is
positive on [0.21,1). O
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Further, we need the following integral inequalities, which are due to Steffensen.
A proof is given in [16, §2.16].

LEMMA 2.11. Let f and g be integrable functions on [a,b]. If [ is strictly decreasing
on (a,b) and 0 < g <1 on (a,b), then

b

b a+\
" rmar< [rmamar< [ roar
where A = f;g(t) dt.

3. Main results
First, we present sharp rational bounds for B(z,y), which are valid for z,y € (0, 1].

THEOREM 3.1. For all real numbers xz,y € (0,1], we have

1-2)(1—-vy) i_ N (1—2)(1—1y)
z(1+2)y(1+vy) < - B(x,y) </8£E(1+m)y(1+y)’ (3.1)

with the best possible constants
a=1 and B=3r>—4=257973....
Proof. Let 0 < 2 <y <1 and
flxyy)=logl(x+y+1)—logI'(z+2)—logI'(y +2) + log 2.
Differentiation gives

%:w(x+y+1)—w(:ﬂ+2)<o,

which implies
f@,y) = f(y,y) =logI'(2y + 1) — 2log I'(y + 2) + log2 = g(y), say.
Since
39 (y) = v(2y + 1) — Py +2) <0,
we get
g9(y) = g(1) = 0.

Hence f(z,y) > 0, which is equivalent to the left-hand side of (3.1) with o = 1.
To prove the second inequality of (3.1) with 8 = §7T2 — 4, we show that

D@+ 2Ty +2) o
h(z,y) = Tty + (@y+1)(B—1) = ( +y)(/6’+fl)0><0 o
or r<y<l1.
We have
P — e+ ) - vl + ) S 51— (1)
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and

*h(z,y)
0z?

[(z+2)I(y+2)
I'(z+vy)

= (W(z+2) =@+ yP+3' (@ +2) ¢ (z+y))

Applying lemma 2.6, we get 9*h(x,y)/0z% > 0, which leads to

Oh(x, Oh(x, r 2))2
e < D ) - - 5. (32)
z=y
From lemma 2.8, we conclude that 0h(z,y)/0x < 0, so that lemma 2.4 gives
r 2))?
) > hly) =S 4 50—~ (14 >0

It remains to show that in (3.1) the constants & = 1 and 8 = §7T2 — 4 are sharp.
Double-inequality (3.1) is equivalent to

+Dy+1)(, Ta+HI(y+1)
o< G (- ) <

If we let « tend to 0, then (3.3) gives a < y + 1, which implies o < 1.
Next, we set ¢(x,y) = I'(x + 1)I'(y + 1)/I'(z + y). Then the right-hand side
of (3.3) yields

(3.3)

@+ D+ Da@y) —aly) g4
1—y z—1 s

We let  tend to 1 and obtain
2(y +1) 9q(x,y) :2(y+1)w<y+1)—w<2)
1—y ox 1 y—1

r=

< B

And, if y tends to 1, then 4¢/(2) = §7T2 — 4 < . This completes the proof of theo-
rem 3.1. O

The psi function and its derivatives have a number of interesting applications.
For example, certain trigonometric integrals can be expressed in a closed form
in terms of 1 (see [10]). A close relationship between ¢(™(z) (with z = 1 and
T = %) and Bernoulli and Euler numbers is presented in [14]. And, in a recently
published article [5], it is proved that the constants of Landau and Lebesgue can be
approximated by the psi function. We now provide sharp upper and lower bounds
for B(x,y) in terms of ¥(x)(y).

THEOREM 3.2. For all real numbers x,y € (0,1], we have

(w(w)w(y)

.~ )a < B(z,y) < (— (3.4)

with the best possible constants

a:6—220.35090... and [ =1.
T
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Proof. To establish the left-hand side of (3.4) with o = 6v/72, we define, for 0 <
r<y<l,
f(@,y) =log I'(x) +log I'(y) —log I'(x + y)
—alog(—¢(r)) — alog(—¥(y)) + 2alogy.

Applying lemma 2.10, we get

of(x,y) bl _ @)
< (e —wize) — a8 <0

This leads to

f(z,y) = fly,y) = 2logI'(y) —log I'(2y) — 2alog(—4(y)) + 2 log .

Applying lemma 2.10 again, we obtain

1df(y.y) B  Y(y)
5 dy P(y) — ¥(2y) o) <0
Thus f(y,y) = f(1,1) =0.
Since p(z) = xzv(z) is convex on (0,00) with p(0) = —1 < —y = p(1), we get

Y(z)

1
- <{—= for0<z <1
x g

Theorem 3.1 implies
1
B(z,y) < — for0< 2,y <1,
Ty

so that we obtain

Y()Y(y)

B(z,y) < 5 for 0 < z,y < 1.
Y

Finally, we show that the best possible constants in (3.4) are given by o = 6v/72

and § = 1. Setting = = y, the left-hand side of (3.4) yields, for z € (0, 1),

2log I'(x) — log I'(2x)
s 2log(—¢(z)) — 2logy Qe), sy

We apply I’Hospital’s rule and get

. (@) —$(2a) Gy
z—1 e=1 P(z)/YP(z)  w
And, if y = 1, then the right-hand side of (3.4) gives, for « € (0, 1),
—logx <5
log(1 — zp(x + 1)) — logx — log~y
We let z tend to 0 and obtain § > 1. O
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REMARK 3.3. A simple calculation shows that, for all z,y € (0, 1), the upper bound
for B(z,y) given in (3.1) is better than the upper bound in (3.4), whereas the lower
bounds given in (3.1) and (3.4) cannot be compared. This means that the function

Y(@)Y(y) \ (1—x)(1—-y) 1 6
(“’)H( 72 )*ﬂmum)y(wy)_m_y’ =

attains positive and negative values on (0,1) x (0, 1).

The next theorem presents inequalities for the beta function, which are valid on
[1,00) x [1,00) and (0, 1] x [1,00), respectively.

THEOREM 3.4. For all real numbers x,y > 1, we have
1 min(z,y) 1 min(z,y)
1l - — <1-min(z,y)B(z,y) <1 - ——/——— - (3
(1 ) minte ) Bir) <1~ (i ) (35)

If 0 < min(z,y) <1 < max(z,y), then (3.5) holds with the inequalities reversed. In
both cases, the sign of equality is valid if and only if x =1 ory = 1.

Proof. We consider two cases.

CasE 1 (1 <z <y). Wedefine f(t) = (1—¢)*"! and g(¢t) = t¥~!. Then f is strictly

decreasing on (0,1) and 0 < g(t) < 1 for ¢ € (0,1). Applying lemma 2.11 with a = 0,
b=1, A= 1/y, we get

1 1/y
/ (1—t)""tdt < B(z,y) < / (1—t)"tdt,
1 0

-1/y

which leads to (3.5) with ‘<’ instead of ‘<.

Case 2 (0<z<1<y). Weset f(t)=—(1—¢)*! and g(¢t) = t¥~!. Then lemma
211 witha=0,b=1, A = 1/y gives

1 1/y
—/ (1—t)*"tdt < —B(z,y) < —/ (1—¢t)*dt.
1-1/y 0

This yields (3.5) with ‘>’ instead of ‘<. O
The well-known inequality
0< (y—2)(z—x)z+(z—y)(z—y)y*+(x—2)(y—2)z%, z,y,2>0, a€ R, (3.6)

is due to Schur. A proof and an extension of (3.6) can be found in [16, §2.17].
The following result, which is also valid for all z,y,z > 0 and o € R, presents a
beta-function variant of Schur’s inequality:

0 < (y—2)(z=2)(B(y, 2))" +(z—y)(z—y)(B(x, 2)) "+ (z—2)(y—2)(B(z,9))*. (3.7)

The sign of equality holds in (3.7) (and also in (3.6)) if and only if x =y = z.
Inequality (3.7) and its counterpart (1.2) both follow easily from the fact that
x — B(x,y) is strictly decreasing on (0, 00). We now provide a companion of (3.7)
involving two parameters.
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THEOREM 3.5. Let o # 0 and 3 > 0 be real numbers. The inequality

(z =)’ (B(z,2))* < (y — )’ (B(a,9))" + (= — 9)°(B(y, 2))* (3.8)
holds for all real numbers x, y, z with 0 < x <y < z if and only if a <0 < B < 1.

Proof. Let a < 0 < f < 1. If x = y or y = z, then equality is valid in (3.8). Hence
we may assume that 0 < < y < z. Then (3.8) can be written as

e () () () (e2). e

y—x<1 and 0<ﬂ<1,
x z—x

Since
0<

we conclude that the expression on the right-hand side of (3.9) is decreasing with
respect to 3. This implies that it suffices to prove (3.8) for & < 0 and § = 1. We
define

fayy, z 0, 8) = (y=2)°(B(z,9)*+ (=) (B(y,2))* — (z=2)*(B(x,2))*. (3.10)
Differentiation yields

Of(x,y, 2z 0,1)

P = Az, z; ) — Az, y; @), (3.11)

where
Az, z;a) = (B(x,2))"[1 = a(z = 2)((z) = ¢(x + 2))].
Further, we have
1 OA(z, z; )
a(B(x, z)) 0z
= [Y(2) =z + 21 = alz = 2)(Y(z) = Y(z + 2))]
—(x) + (@ +2) + (2 —2) (@ +2).  (3.12)

Since the expression on the right-hand side of (3.12) is strictly decreasing with
respect to a, we obtain
1 OA(z, z; )
a(B(x, 2)) 0z

>1(2) = ¥(2) + (z —2))'(x + 2) > 0.
Hence z — A(z, z; «) is strictly decreasing on [y, 00), so that (3.11) implies

Of(x,y, z0,1)
Oz

This leads to f(z,y,2;a,1) > f(y,y,2;a,1) = 0.
Next, let (3.8) be valid for all z, y, z with 0 < < y < z. We assume that § > 1.
Then we get

< 0.

[y, z50,08) 2 0= f(y,y,z:0,8) for0<z<y<z
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This implies

af(%y;% O[,,B)

e =(z—y)’ ' (By,2)"B —alz —y)(W(y) — ¥y + 2))] <O0.

Hence 0 < a(z —y)(¢¥(y) —¥(y + z)), which is false for all z, which are sufficiently
close to y. Thus 0 < 8 < 1. We suppose that @ > 0 and 0 < y < z. Then we obtain

. f(x7yaz7 aaﬂ) yel B
e=0  (I'(x))*

Hence o < 0. O

REMARK 3.6. The proof of theorem 3.5 reveals that if « < 0 < 8 < 1, then equality
holds in (3.8) if and only if z = y or y = 2.

REMARK 3.7. There do not exist real parameters a # 0 and 8 > 0 such that the
converse of (3.8) is valid for all z, y, z with 0 < <y < z. To prove this, we denote
by f the function defined in (3.10) and assume that

flz,y,z;0,0) <0 for0<z<y<z (3.13)

If a > 0, then (3.13) gives, for f/a <z <y < z,

3 a
- I'(z) -~
— 2B o < (222 (P@))o | 222l ) JB-ow, 3.14
0< -2 Bl < (2] ) (# s ) - (3.14)
Applying (2.4), we conclude that the product on the right-hand side of (3.14) con-
verges to 0 if z tends to co. Thus a < 0. From theorem 3.5, we obtain g > 1.
Further,

8f(x7y7 Z;Ol,ﬂ)
ox

f(m7yaz;a:ﬂ)<f(y;y,2;a,ﬂ) and

This leads to a(z —y) (¥ (y) —¥(y+2)) < B, which is false for all sufficiently large z.
REMARK 3.8. In [9], it is proved that, for ,y > 0,
B(z,2)B(y,y) < B(z,y). (3.15)

Using the integral formula

(see [1, p. 258]), we get, for z,y > 0,

B(:L’7£L’) + B(y:y) - 2B(£L’7y)

-[ el )

> 0. (3.16)
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Thus B(z,y) separates the arithmetic and geometric means of B(z,x) and B(y,y).
Inequalities (3.15) and (3.16) are the best possible in the following sense. Let

M, (a,b) = (3(a” + ")V (r£0), Moy(a,b) = Vab,

be the power mean of order r of a,b > 0.
The double inequality

M, (B(z,z), B(y,y)) < B(z,y) < M,(B(z, ), B(y,y)) (3.17)

holds for all x,y > 0 if and only if u < 0 and v > 1.

Since the power mean is increasing on R with respect to its order (see [8, p. 159]),
we conclude from (3.15) and (3.16) that if u < 0 and v > 1, then (3.17) is valid for all
x,y > 0. Conversely, we assume that there exist parameters u,v with0 < u < v <1
such that (3.17) holds for all z,y > 0. Setting y = 1, the left-hand side yields

(Bl + 1) < B = =,

which is false for all sufficiently large . Further, the right-hand side of (3.17) gives
eB(x,1) < 2(3((Bx,z))" + 1))/,

We let x tend to 0 and obtain 1 < 21=1/?, This leads to v > 1.

References

1 M. Abramowitz and I. A. Stegun (eds). Handbook of mathermnatical functions with forrmdas,
graphs and matheratical tables (New York: Dover, 1965).
2 H. Alzer. A power mean inequality for the gamma function. Monatsh. Math. 131 (2000),
179-188.
3 H. Alzer. Mean-value inequalities for the polygamma functions. Aequat. Math. 61 (2001),
151-161.
4 H. Alzer. Sharp inequalities for the beta function. Indagationes Math. 12 (2001), 15-21.
5 H. Alzer. Inequalities for the constants of Landau and Lebesgue. J. Cormput. Appl. Math.
139 (2002), 215-230.
6 G. D. Anderson, M. K. Vamanamurthy and M. K. Vuorinen. Conformal invariants, inequal-
ities, and quasiconformal maps (Wiley, 1997).
7 G. E. Andrews, R. Askey and R. Roy. Special functions (Cambridge University Press,
1999).
8 P. S. Bullen, D. S. Mitrinovié¢ and P. M. Vasié¢. Means and their inequalities (Dordrecht:
Reidel, 1988).
9 S. S. Dragomir, R. P. Agarwal and N. S. Barnett. Inequalities for beta and gamma functions
via some classical and new integral inequalities. J. Inequal. Appl. 5 (2000), 103-165.
10 H. E. Fettis. On some trigonometric integrals. Math. Comp. 35 (1980), 1325-1329.
11 W. Gautschi. The incomplete gamma function since Tricomi. In T#icomu’s ideas and con-
termporary applied mathermatics. Atti Convegni Lincei, vol. 147, pp. 203-237 (Rome: Accad.
Naz. Lincei, 1998).
12 A. Gupta. On a g-extension of ‘incomplete’ beta function. J. Indian Math. Soc. 66 (1999),
193-201.
13 E. A. Karatsuba and M. Vuorinen. On hypergeometric functions and generalizations of
Legendre’s relation. J. Math. Analysis Applic. 260 (2001), 623-640.
14 K. S. Kolbig. The polygamma function 1/1““)(1) for x = i and z = %. J. Comput. Appl.
Math. 75 (1996), 43-46.
15 G. Lochs. Abschétzung spezieller Werte der unvolllstandigen Betafunktion. Arz. Osterr.
Akad. Wissensch. 123 (1986), 59-63.

https://doi.org/10.1017/5S030821050000264X Published online by Cambridge University Press


https://doi.org/10.1017/S030821050000264X

Some beta-function inequalities 745

16 D. S. Mitrinovié. Analytic inequalities (Springer, 1970).
17 W. Raab. Die Ungleichungen von Vietoris. Monatsh. Math. 98 (1984), 311-322.

18 L. Vietoris. Qber gewisse die unvollstiandige Betafunktion betreffende Ungleichungen.
Sitzungsber. Osterr. Akad. Wissensch. 191 (1982), 85-92.

(Issued 22 August 2003)

https://doi.org/10.1017/5S030821050000264X Published online by Cambridge University Press


https://doi.org/10.1017/S030821050000264X

