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Ooid growth: Uniqueness of time-invariant,
smooth shapes in 2D†
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Evolution of planar curves under a nonlocal geometric equation is investigated. It models the simul-
taneous contraction and growth of carbonate particles called ooids in geosciences. Using classical
ODE results and a bijective mapping, we demonstrate that the steady parameters associated with
the physical environment determine a unique, time-invariant, compact shape among smooth, convex
curves embedded in R

2. It is also revealed that any time-invariant solution possesses D2 symmetry.
The model predictions remarkably agree with ooid shapes observed in nature.
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1 Introduction

A geometric, non-local Partial Differential Equation (PDE) is considered to model the shape evo-
lution of millimetre-sized carbonate particles called ooids. They form in shallow tropical coastal
waters and are widely investigated as important markers of coastal environments in the geo-
logical past. In [5], a simple, two-dimensional model of ooid growth is introduced as a natural
extension of the global model of [6]. The latter hypothesised and experimentally verified that
ooids reflect a precious balance between increase and reduction of the grain’s net volume. In the
pointwise model of [5] the curve representing the shape is mapped in the local normal direc-
tion. The speed of the motion is driven by three well-distinguished physical processes. These are
chemical precipitation leading to radial accumulation of material, abrasion of the grain due to
collisions with the seabed and sliding friction, which takes effect at shallow shores. [5] present
numerical evidence about time-invariant solutions, and remarkable resemblance to cross-sections
of real ooids is found. Furthermore, a hypothesis about the bold intermediate layers widely
observed in ooid cross sections is established. This paper is devoted to the rigorous investigation
of the existence and uniqueness of time-invariant solutions of the model introduced in [5].

Generally speaking, shape evolution of particles is widely investigated both in the mathe-
matical and in the geoscientific literature (e.g. [1], [3] and the citations therein). Most of the
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treated models are local ones, i.e. the evolution is determined by some pointwise law; the curve-
shortening flow [4] is a good example for such a model in two spatial dimensions. Perhaps
investigation of ancient solutions under some prescribed flow (e.g. [2]) is the closest to our
problem; however, here the simultaneous presence of growth and reduction of the shape makes
it straightforward to seek compact, time-invariant shapes under the flow.

2 The model and the main results

Shape evolution might be interpreted as a process that moves any point x = (x, y) of a closed,
non-self-intersecting curve � embedded in R

2 to the inward normal direction n with a speed
v that depends on intrinsic features of the curve and parameters characterising the physical
environment. The geometric evolution equation to model ooid growth introduced in [5] reads

xt = v = c3 (−1 + c1Aκ + c2Ay cos γ ) n, (2.1)

where A is the – time-dependent – area enclosed by � and the subscript t refers to differentiation
with respect to time. κ and γ stand for the curvature and the turning angle, respectively (cf.
Figure 1). Any parametrisation of � makes the quantities κ and/or γ in (2.1) to be dependent on
derivatives with respect to the parametrisation, which reveals that (2.1) is in fact a parabolic PDE.

Following the lead of [5], we assume that � possesses a unique maximal diameter (line e
between points P and P′ in Figure 1), which is designated to be the x axis of an orthonormal basis
located at the middle point of the PP′ segment. This assumption makes friction well defined in
the model: the affine law in the third term of (2.1) produces abrasion in points far away from
axis x, which is expected from a sliding motion parallel to it. Nonetheless, other formulations of
sliding friction might be physically plausible. However – as it is pointed out in [5] – the two, area-
dependent terms in (2.1) result in a second-order approximation of the change in the net volume
which justifies our choice, both in formulating the frictional law and making the collisional and
frictional terms proportional to the enclosed area (a.k.a. the net volume in 2D).

Now γ denotes the angle between the x direction and the local tangent to the curve. c1, c2 and
c3 are positive real parameters associated with the physical environment and they are assumed
to be time independent during the course of shape evolution. Their dimensions are length−1,
length−3 and length/time, respectively. The three key physical processes driving the evolution
can be easily identified: in the brackets the first negative term stands for growth, in the second
term abrasion is assumed to be a curvature-driven process and finally the affine term is associated
with friction. As abrasion and friction are proportional to mass (and growth is not), the last two
terms in 2D depend on the global quantity A. As the first term is negative and the other two are
positive, we seek compact invariant shapes (denoted as �∗) that fulfil

−1 + c1Aκ + c2Ay cos γ = 0, ∀x ∈ �∗. (2.2)

Note that �∗ is independent of c3 as it scales solely the time and cannot be reconstructed by
pure observation of the shape. In [5], it is demonstrated that although the friction term contains
orthogonal affinity, ellipses are not invariant solutions. In this paper we show that among smooth,
convex curves any time-invariant shape under the above-defined flow must possess D2 symme-
try (i.e. its symmetry group is generated by a non-square rectangle). Furthermore, for a given
parameter pair (c1, c2) the invariant shape is unique.
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174 A. A. Sipos

FIGURE 1. Notations. A non-self-intersecting curve with a uinque maximal diamater PP′ (a) and it’s
segment (b).

Theorem 1 Let the parameters in (2.2) be time-invariant, positive constants (c1 > 0 and c2 ≥ 0).
Then any smooth, convex, time-invariant curve �∗ satisfying (2.2) in all of its points and
embedded in R

2 possesses D2 symmetry.

Theorem 2 The smooth, convex, time-invariant curves under the flow in (2.2) are uniquely
determined by c1 and c2, and for any positive values of these parameters there exists a �∗ curve.

We prove the first theorem in Section 3, where we assume that A is known a priori, this case
is referred to as local equation to distinguish it from the general non-local equation. Section 4 is
devoted for the proof of Theorem 2. Finally, conclusions are drawn.

3 The local equation

For a moment let us assume that the area of the invariant curve is known a priori. (This assump-
tion can be justified by imagining the flow with fixed parameters to be run until a steady state.
If it happens, the area can be measured.) Without loss of generality we consider solely the curve
segment �̄ between the leftmost point P and the one that possesses a horizontal tangent and a
positive y coordinate (point Q). In order to simplify the derivations, we use several parametrisa-
tions of the curve segment in the sequel: parametrisation with respect to the arc length (natural
parametrisation), to the y coordinate and to the γ turning angle, respectively. Derivatives with
respect to the parametrisation is denoted by lower indexes.

In the local equation A is fixed; hence it is convenient to introduce ĉ1 = c1A and ĉ2 = c2A,
which renders (2.2) into

−1 + ĉ1κ + ĉ2y cos γ = 0. (3.1)

Lemma 3.1 For fixed parameters ĉ1 and ĉ2, there is at most one curve segment �̄ that fulfils
equation (3.1) in all of its interior points.

Proof For a moment we reconsider the natural parametrisation of the curve with the arch length
parameter s. If s increases clockwise, then xs = cos γ and ys = sin γ . Recall that the derivative of
the slope with respect to the arch length equals the curvature. The chain rule yields

κ( y) := −γs = −γyys = −γy sin γ = (cos γ )y, (3.2)
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where the negative sign indicates that γ ( y) is decreasing between points P and Q (Figure 1(b)).
For brevity let

q : = ĉ2

2ĉ1
. (3.3)

Introducing φ( y) := ĉ1 cos(γ ( y)), substituting (3.2) into (3.1) and applying (3.3) yield

−1 − ĉ1γy sin γ + ĉ2y cos γ = −1 + φy + 2qyφ = 0, (3.4)

which is a first order, linear Ordinary Differential Equation (ODE). Classical results of ODE
theory provide existence and uniqueness for φ( y) and consequently for κ = ĉ−1

1 φy. Specifically,
the integrating factor u( y) reads

u( y) := exp
∫

2qydy = exp qy2. (3.5)

Recall that in our model γ (0) = π/2, which yields φ(0) = 0. Hence, the Cauchy problem in
(3.4) with the initial condition φ(0) = 0 possesses the following solution:

φ( y) =
∫ y

0 u(η)dη

u( y)
=
∫ y

0
exp

(
q
(
η2 − y2

))
dη. (3.6)

The curvature function readily follows from (3.2)

κ( y) = 1

ĉ1
φy = 1

ĉ1

(
1 − 2qy

∫ y

0
exp

(
q
(
η2 − y2

))
dη

)
. (3.7)

Detailed investigation of the properties of κ( y) is needed for further development. From the
r.h.s. of (3.4), the first, second and third derivatives of φ( y) are obtained.

φy = −2qyφ + 1, (3.8)

φyy = −2qyφy − 2qφ, (3.9)

φyyy = −2qyφyy − 4qφy. (3.10)

Using these, the following properties of κ( y) can be settled:

(1) φ( y) and consequently κ( y) are C∞, which is obvious from (3.6) and (3.7).
(2) κ(0) is positive and equals ĉ−1

1 . As κ(0) = ĉ−1
1 φy(0), the claim follows.

(3) κ( y) has a local maximum at y = 0. Firstly, κy(0) = ĉ−1
1 φyy(0) = −2ĉ−1

1 qφ(0) = 0 indi-
cates that y = 0 is indeed a critical point. Secondly, κyy(0) = ĉ−1

1 φyyy(0) = −ĉ−1
1 4qφy(0) =

−4ĉ−1
1 q < 0, which demonstrates that the critical point at y = 0 is a maximum.

(4) κ( y) → 0 as y → ∞. Using l’Hopital’s rule we have

lim
y→∞ yφ( y) = lim

y→∞
y
∫ y

0 exp(qη2)dη

exp(qy2)
= lim

y→∞
(1 + 2qy2) exp(qy2)

(2q + 4q2y2) exp(qy2)
= 1

2q
.

This result, equation (3.8), and the fact that ĉ1 and q are fixed parameters yield the desired
result as

lim
y→∞ κ( y) = lim

y→∞
1

ĉ1
(−2qyφ + 1) = 0.
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(5) There is exactly one point, denoted to y0, where κ( y) vanishes and y0 solely depends on
q. By definition φ( y) ≥ 0 with φ(0) = 0. An analogous argument to point (4) above shows
that limy→∞ φ( y) = 0. The positivity of φ( y) and q yield that φyy in (3.9) is negative at any
critical point for 0 < y < ∞. Hence, as φ( y) is smooth, it follows that there is one, and only
one point at which φy = 0; hence y0, at which κ( y) vanishes, exists and it is unique.

(6) There is no local extrema for κ( y) between 0 < y < y0, and thus it is monotonic in this
range. Note that points (2) and (5) yield κ( y) > 0 and subsequently φy > 0 for 0 < y < y0.
Now, as φ( y) is positive, (3.9) shows that φyy < 0 in 0 < y < y0. Hence, κy = ĉ−1

1 φyy is
strictly negative excluding any critical point between y = 0 and y = y0.

To realise an invariant shape �∗ we need γ ( y) itself. By the virtue of equation (3.2)

γ ( y) = arccos

(∫ y

0
κ(η)dη

)
. (3.11)

Since arccos(.) is monotonic decreasing in [0, 1], the area below the solution function κ( y) deter-
mines a unique γ ( y). In other words ĉ1 and q (or ĉ1 and ĉ2) determine a unique steady state
curve for equation (3.1); we aim to determine the parameter range, where the curve is smooth.
Apparently, if the area under κ( y) between 0 ≤ y ≤ y0 exceeds 1, then we can construct a smooth
shape: at the unique ȳ < y0 the area below κ( y) equals 1, i.e. this corresponds to point Q with a
tangent parallel to the axis x. This solvability condition can be derived explicitly as follows. For
a smooth shape we need ∫ y0

0
κ(η)dη = 1

ĉ1
φ( y0) ≥ 1. (3.12)

Let us introduce ζ := √
qη and z := √

qy. After changing variables (3.12) reads

√
2√

ĉ1ĉ2

∫ z

0
exp(ζ 2 − z2)dζ ≥ 1, (3.13)

hence the fixed parameters are required to fulfil

√
ĉ1ĉ2 ≤ √

2 max
z≥0

∫ z

0
exp(ζ 2 − z2) =: 	, (3.14)

where the upper bound 	 is approximated numerically as 	 ≈ 0.765. If the condition in (3.14)
is met, then from (3.12) φ(ȳ) = ĉ1 follows.

For 0 ≤ y ≤ ȳ the connection between γ and y is one to one, thus we can draw the physical
realisation. For cases at which condition (3.12) fails, the physical shapes are non-smooth (in
fact, they become concave as the curvature flips sign above y0 and there is no other zero for
κ( y)). As we have seen, κ(0) depends solely on ĉ1 and for fixed q the value of y0 is fixed, too.
The definition in (3.3) and the solvability condition in (3.14) lead to the conclusion that for any
fixed q there exists a ĉ1,crit := 	

√
2q. For 0 < ĉ1 ≤ ĉ1,crit the invariant, smooth curve segment �̄∗

is unique; otherwise, there is no such solution.

For further convenience at a fixed value of q we introduce the set

χq :
{
ĉ1 | 0 < ĉ1 ≤ ĉ1,crit

}
. (3.15)
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Note that to have a nonzero measure of χq one needs ĉ1 > 0. It follows that for ĉ1 > ĉ1,crit the
integral on the left-hand side of (3.12) is smaller than one, which means the associated curve can-
not have a horizontal tangent at any point. Having assumed convex, smooth curves this parameter
range is not in our interest. In case ĉ1 ∈ χq the shape can be realised.

Lemma 3.2 The closed, non-intersecting curve �∗ obtained by reflections of the curve segment
�̄∗ with respect to the axes x and y is a C∞ curve.

Proof By smoothness of the κ( y) function �̄∗ is smooth in its interior points. We need to prove
that �∗ is C∞ in points P, P′, Q and Q′. Without loss of generality, we show smoothness at
points P and Q, and it follows by symmetry for P′ and Q′. For point P observe that from (3.6)
φ( y) = −φ(−y) follows, i.e. φ( y) is an odd function. Following (3.8)–(3.10), it is straightforward
to show that derivatives of φ with respect to y at y = 0 fulfil that:

• odd derivatives are finite,
• even derivatives vanish.

We conclude that φ( y) is analytic at y = 0 which demonstrate that the curve is smooth at point P.
For point Q re-parametrisation of �∗ is essential as parametrisation with respect to y is not

one-to-one for �∗. Let the curve be parametrised with respect to its arch length s in such a way
that at point Q there is s = 0 and s increasing clockwise. By reflection we have y(s) = y(−s). Let
φ̃(s) denote the extension of φ( y) after the re-parametrisation of �∗. In specific, after reflection
we find

φ̃(s) = φ( y(s)) = φ( y(−s)) = φ̃(−s), (3.16)

which shows that φ̃ is an even function at point Q. In specific, at point Q we have φ̃(0) = φ(ȳ) =
ĉ1. Employing (3.8)–(3.10) and the chain rule, we find that derivatives of φ̃ with respect to s at
s = 0 follow the pattern:

• odd derivatives vanish,
• even derivatives are finite.

Once again, we conclude that φ̃(s) is analytic at s = 0; hence the smoothness of the curve at point
Q follows.

Proof of Theorem 1 By Lemma 3.1, positive parameters ĉ1 and ĉ2 determine a unique curve
segment �̄∗ with vertical tangent at point P and horizontal tangent at point Q iff 0 < ĉ1 ≤ ĉ1,crit.
By Lemma 3.2 reflections of �̄∗ with respect to x and y produce a closed, convex, smooth curve.
Finally, assumption of a single maximal diameter e for �∗ implies uniqueness.

Solution of the local equation establishes a solution for the non-local case (equation (2.2)), too.
To see this, let us fix the two parameters, ĉ1 and ĉ2, and follow the lines in this section to obtain
a steady state solution �∗. In case there exists such a solution, measure area A enclosed by the
curve. It simply delivers the parameters of the non-local equation via c1 = ĉ1/A and c2 = ĉ2/A. In
the other way round, if one knows a time-invariant solution of the non-local equation, calculation
of the parameters in the local is straightforward. These observations imply that a smooth solution
of the non-local case must possess D2 symmetry, too.
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Remark 3.1 For ĉ2 = 0 we have q = 0, and hence κ( y) ≡ 1/(ĉ1) = κ(0) implying that in this
case the time-invariant shape is a circle. As the term of friction (the one with parameter ĉ2)
represents an affine flow, in the general case (i.e. ĉ2 �= 0) κ(0) represents the maximal curvature
of the curve.

In the next section, we investigate the connection between the local and non-local models via
the relations between their parameters.

4 The non-local equation

We turn to investigate steady state solutions of the non-local equation (2.2). As we found that the
symmetry group of any invariant solution is D2, we keep investigating a curve segment �̄ (cf.
Figure 1). To investigate uniqueness of solutions in (2.2), let us assign (ĉ1, ĉ2) and (c1, c2) if they
result in an identical time-invariant curve of the proper model. In this sense we can talk about a
mapping between the parameter spaces.

Observe that parameter q in equation (3.3) is invariant under this map because

ĉ1

ĉ2
= Ac1

Ac2
= c1

c2
. (4.1)

In order to facilitate this observation, instead of ĉ2 and c2 we use q as one of the parameters in the
problem. Based on (3.14) and (3.15), in the local model only ĉ1 ∈ χq produces a smooth curve.
For a fixed value of q let the map M be defined as

M : χq →R
+ with ĉ1 �→ c1. (4.2)

Our program is to show that M is injective and surjective; thus it is bijective implying that
smooth solution curves of the non-local equation are unique as we had uniqueness of solutions
for equation (3.4).

Lemma 4.1 Map M is injective.

Proof As we have seen, ĉ1 ∈ χq results in a smooth curve enclosing some positive area A. Based
on our construction, c1(ĉ1) := ĉ1A−1 can be readily computed. It means, injectivity of M follows
from the strict monotonicity of the c1(ĉ1) function over χq. To prove this, let us consider two
smooth solutions (at a fixed value of q) of the local equation in (3.4) identified by the letters i
and j. Their parameters are related as

ĉ j
1 = (1 + ε)ĉ i

1, (4.3)

where without loss of generality ε > 0. By the virtue of equation (3.7) it is clear that not only the
parameters but also the κ( y) functions of the time-invariant curve segments �̄∗

i and �̄∗
j fulfil

κ j( y) = 1

1 + ε
κ i( y) ∀y :

∫ y

0
κηdη ≤ 1. (4.4)

We choose two points along �̄∗
i and �̄∗

j (Figure 2), one for each, in such a way that their turning

angles are identical. The common angle is denoted as γ0 and the ˜(.) sign refers to any quantity
evaluated at these points (e.g. ỹi is the parameter of curve i at the chosen point along �̄∗

i ). As

https://doi.org/10.1017/S0956792519000019 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000019


Ooid growth: Uniqueness of time-invariant, smooth shapes in 2D 179

FIGURE 2. Comparison of two, steady state curve segments, �̄∗
i and �̄∗

j at fixed q. (a) depicts the two seg-
ments and denote the arbitrary point-pair with a fix γ0, which is used to determine the relation between
the areas under the curve segments. (b) shows the graphs of κ( y) curvature functions for �̄∗

i and �̄∗
j ,

respectively.

γ ( y) is monotonic along �̄, the position of the two points is well defined. As it is demonstrated
in Section 3, κ( y) and γ ( y) are related via (3.11); thus for our two curves we find that∫ ỹi

0
κ i(η)dη = cos(γ0) =

∫ ỹ j

0
κ j(η)dη (4.5)

holds, which by the virtue of (4.4) implies ỹi < ỹ j. By the properties of κ( y) and (4.4) it follows
that the curvatures are related via

κ i(ỹi) > (1 + ε)κ j(ỹ j), (4.6)

because ỹi < ỹ j. From this observation and the positivity of all the involved quantities, we
conclude that

ỹ j

(1 + ε)κ j(ỹ j)
>

ỹi

κ j(ỹi)
. (4.7)

We switch to the parametrisation of �̄ with respect to the turning angle γ . Based on (3.2) the
chain rule yields that the Ā area under �̄ can be computed as

Ā =
∫ Q

P
y cos γ ds =

∫ 0

π
2

y

κ
cos γ dγ . (4.8)

As we have demonstrated in (4.7), the argument of the integral in the r.h.s. of (4.8) is smaller
for �̄∗

i than for �̄∗
j , and this holds for any γ ∈ (0, π/2), whence we conclude

1

1 + ε
Ā j =

∫ 0

π
2

y j

(1 + ε)κ j
cos γ dγ >

∫ 0

π
2

y i

κ i
cos γ dγ = Āi. (4.9)

Finally, we apply (4.3) to obtain

Ā j

ĉ j
1

>
Āi

ĉ i
1

. (4.10)
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As a steady state �∗ curve possesses D2 symmetry A = 4Ā follows, and so we are left with the
conclusion that

ĉ i
1

Ai
>

ĉ j
1

A j
, (4.11)

which is exactly the monotonicity of the c1(ĉ1) function. This proves that M is injective, as
different elements in χq cannot be mapped to identical values. It is also worthy to note that for
all ĉ1 ∈ χq the area is obviously positive, and thus c1(ĉ1) is a positive, monotonic, continuous
function.

Lemma 4.2 Map M is surjective.

Proof To prove surjectivity we have to investigate the limits of c1(ĉ1) as ĉ1 is varied. First
we turn to investigate the limit as ĉ1 → 0 (q is still fixed). From Section 3, we know that the
curvature along �̄ is maximal at point P (κ(0)) with κ(0) = ĉ−1

1 and it is minimal at point Q with
κ(ȳ) = ĉ−1

1 (1 − 2qȳφ(ȳ)) = ĉ−1
1 (1 − 2qȳĉ1). Curvature of any planar curve is the reciprocal of the

r radius of its osculating circle. It provides an estimate on the area of the curve via r2
minπ < A <

r2
maxπ , where rmin and rmax are the minimal and maximal radii of the osculating circles along the

curve, respectively. Putting it together we obtain the following inequality:

ĉ1

π

(
ĉ1

1 − 2qȳĉ1

)−2

<
ĉ1

A(ĉ1)
<

ĉ1

π
ĉ−2

1 . (4.12)

Recall that ȳ ≤ y0, hence Lemma 3.1 yields that at a fixed q the value of ȳ is finite. It means that
both the lower and the upper expressions in the above inequality approach +∞ as ĉ1 → 0. We
conclude

lim
ĉ1→0

ĉ1

A(ĉ1)
= +∞. (4.13)

Finally we investigate the ĉ1 → ĉcrit limit. As ĉcrit is finite it is enough to investigate the Ā(ĉ1)
area in the limit. We consider the already used identity between the curvature and the arch length.
Taking again the parametrisation with respect to γ , we write

κ(γ ) = −
(

dS(γ )

dγ

)−1

, (4.14)

where S(γ ) is the arch length between point P and the point with turning angle γ . As at ĉ1 = ĉcrit

the curvature at point Q vanishes, we conclude that

lim
γ→0

dS(γ )

dγ
= lim

γ→0

1

κ(γ )
= ∞. (4.15)

Thus the curve is unbounded. As the area Ā under �̄ can be computed from the arc length
(y is finite!), we obtain

lim
ĉ1→ĉ1,crit

S = lim
ĉ1→ĉ1,crit

A = ∞, (4.16)

https://doi.org/10.1017/S0956792519000019 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000019


Ooid growth: Uniqueness of time-invariant, smooth shapes in 2D 181

which provides the required limit as

lim
ĉ1→ĉcrit

ĉ1

A(ĉ1)
= 0. (4.17)

It means, the range of M is indeed R
+ and based on the injectivity part of the proof the

preimage is precisely χq.

Remark 4.1 The arguments above show that the solution curve � is compact for any 0 < ĉ1 <

ĉ1,crit and 0 ≤ ĉ2 < ∞. Using (3.14) we see that compactness holds for parameters
√

ĉ1ĉ2 < 	.
� is not compact iff

√
ĉ1ĉ2 = 	

Proof of Theorem 2 As M is injective and surjective, we conclude that it must be one-to-one
and onto. This means that the nonlocal equation in (2.2) produces a unique, compact solution
among smooth curves for any positive c1 and c2.

Remark 4.2 We proved that time-invariant, smooth curves under the flow in (2.1) are uniquely
determined by the c1 and c2 parameters and they possess D2 symmetry. Observe that uniqueness
stems from the linear ODE obtained for cos γ ( y), which ensures uniqueness for the κ( y) curva-
ture function. It seems that other laws either to the abrasion or to the friction term might destroy
this linearity. It seems even more probable that other non-local quantities (instead of A in (2.1))
would lead to either collapse of the injectivity or the surjectivity of the map M.

5 Conclusion and outlook

Based on physical intuition a model of ooid-growth in 2D was introduced in [5]. There a
remarkable similarity between model predictions and natural shapes was found. Here we rig-
orously prove existence and uniqueness of time-invariant shapes under the flow. Investigation
of a broad class of related flows is an interesting future project, as well as the investigation
of the spatial version of the model. The practical significance of the presented results lies in
the unique relation between the physical relation of the time-invariant shape and the model
parameters. It implies that pure observation of ooid shapes and cross sections can be directly
used to deduce features of the physical environment that formed the particle. Hence, this work
motivates deeper understating of the connections between the model parameters and physical
characteristics.
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