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Abstract
The network Laplacian spectral density calculation is critical in many fields, including physics, chemistry,
statistics, and mathematics. It is highly computationally intensive, limiting the analysis to small networks.
Therefore, we present two efficient alternatives: one based on the network’s edges and another on the
degrees. The former gives the exact spectral density of locally tree-like networks but requires iterative
edge-based message-passing equations. In contrast, the latter obtains an approximation of the spectral
density using only the degree distribution. The computational complexities are O(|E| log (n)) and O(n),
respectively, in contrast to O(n3) of the diagonalization method, where n is the number of vertices and |E|
is the number of edges.
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1. Introduction
Calculating the Laplacian spectrum of networks is critical in many fields, including physics, chem-
istry, statistics, and mathematics (Trinajstic et al., 1994; Almendral & Díaz-Guilera, 2007; Nadler
et al., 2009; Hakimi-Nezhaad & Ashrafi, 2014). We know that the spectrum encodes structural
characteristics of the network. For example, by analyzing the Laplacian spectrum, we can obtain
its diameter (Chung, 1989), the number of spanning trees (Bollobás, 1998), resistance distance
(Klein & Randić, 1993; Chen & Zhang, 2007), Kirchoff index (Wu, 2004), vertex covers (Chen
& Jost, 2012), Kemeny’s constant (Pan et al., 2018), and chromatic number (Sun & Das, 2020).
Furthermore, they are also associated with dynamic processes, such as network synchronizabil-
ity (Barahona & Pecora, 2002), quantum transition probabilities (Mülken et al., 2005), and global
mean first-passage time (Sun et al., 2017).

Besides, the Laplacian spectral density has been proposed for network structure and dynamics
analysis (Jamakovic & Van Mieghem, 2006; de Lange et al., 2014; Liu et al., 2015), classification
(Wegner et al., 2018), model selection (Granziol et al., 2018), eigenvector localization (Hata &
Nakao, 2017), detectability transitions (Peixoto, 2013), and the number of clusters estimation
(Granziol et al., 2018).

However, the Laplacian spectrum (or spectral density) is known only for a few graph classes,
including trees (Chen & Jost, 2012; Zhang et al., 2008; Sun et al., 2016), quadrilateral (Li &
Hou, 2017), k-triangle, k-quadrilateral (Huang & Li, 2018), hexagonal Möbius (Ma & Bian,
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2019), Erdös–Rényi random graphs, fractal trees and dendrimers (Julaiti et al., 2013), 3-prism
(Ding et al., 2014), Dyson hierarchical (Agliari & Tavani, 2017), Dice Lattice (Li et al., 2016),
and some small-world networks (Liu & Zhang, 2013; Liu et al., 2015). In general, the spec-
trum needs to be computed directly with the help of numerical methods such as the QR
decomposition (Gander, 1980), the power iteration method (Booth, 2006), or the Jacobi eigen-
value algorithm (Sleijpen & Van der Vorst, 2000). A severe practical limitation of all these
approaches is that the computational complexity is O(n3) (where n is the number of vertices of
the network), which precludes their application to large networks. Thus, approximation meth-
ods have been proposed. Most of them focus on calculating the network spectral density (not the
Laplacian spectral density) (Chung et al., 2004; Semerjian & Cugliandolo, 2002; Rogers et al.,
2008; Metz et al., 2011; Nadakuditi & Newman, 2013; Newman et al., 2019; Newman, 2019;
Cantwell & Newman, 2019). Recently, (Cantwell & Newman, 2019) introduced a message-passing
approach for the (normalized) Laplacian spectral density using the local neighborhood of each
vertex. Still, it requires computing matrix inversions and matrix-vector multiplications, which are
computationally expensive (Cantwell & Newman, 2019).

Here, we present two algorithms to compute the (normalized) Laplacian spectral density of
a locally tree-like network, namely edge-based message-passing and degree-based algorithms, in
which computational complexities are O(|E| log n) and O(n), respectively. Our edge-based algo-
rithm calculates the exact Laplacian spectral density of weighted locally tree-like networks with
self-loops. Alternatively, our degree-based algorithm approximates the Laplacian spectral density
of unweighted locally tree-like networks without self-loops using only the degree distribution.
In contrast to (Cantwell & Newman, 2019), neither the edge- nor the degree-based algorithm
requires the computation of matrix inversions or matrix-vector multiplications. Also, different
from the method proposed by (Newman et al., 2019), our edge-based algorithm allows weights at
the edges and self-loops.

2. Spectral density of a matrix
We start with the derivation of a system of message-passing equations for computing the spectra
of weighted networks that are locally tree-like and, in addition, may contain self-loops.

Themain characteristic of a locally tree-like network is that the local neighborhood of any node
is a tree (Kowalska, 1987; Adcock et al., 2013). In other words, consider a specific starting node
and all nodes at a distance of maximum l from the starting node. Then, the sub-graph induced by
this node-set will take the form of a tree, with probability tending to one as the graph size tends to
infinity (Newman, 2018).

Let G= (V , E) be an undirected weighted graph, where V and E are the sets of vertices and
edges, respectively, n= |V| be the number of vertices, andwu,v ∈R be the weight of edge (u, v) ∈ E.
LetM be the weighted n× n adjacency matrix of G defined as follows:

Mu,v =
{
wu,v, if (u, v) ∈ E, and

0, otherwise
(1)

Since the graph G is undirected,M is symmetric, and its n eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn are real.
Notice we do not restrict the values that wu,v can assume; we only require M to be symmetric.
Writing δ(x) for Dirac’s delta function, the spectral density of M is defined as (Newman et al.,
2019):

ρ(x)= 1
n

n∑
i=1

δ(x− λi) (2)
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Expressing Dirac’s delta function as the limit of a Lorentzian (or Cauchy) distribution (Newman
et al., 2019), we can rewrite Equation (2) as:

ρ(x)= − 1
nπ

lim
ε→0+ Im

n∑
i=1

1
x− λi + iε

(3)

Writing I for the identity matrix and z = x+ iε to emphasize that the imaginary part of z is close
to zero (Newman et al., 2019), we obtain

ρ(z)= − 1
nπ

n∑
i=1

1
z − λi

= − 1
nπ

Tr(zI−M)−1 (4)

By expanding the matrix inverse in Equation (4) as a geometric series, we obtain

(zI−M)−1 = 1
z

∞∑
k=0

(
M
z

)k
(5)

This series converges only if |1/z| ≤ |1/λ1| (Newman et al., 2019).
We can express every matrixM as the sum of a diagonal matrixH and a matrixWwith vanish-

ing diagonal elements. In our setting,H then contains the weights of all self-loops of the associated
graph, and W is the weighted adjacency matrix of the associated graph without self-loops. By
introducing the diagonal matrixH(z)= zI−H and its inverseH−1(z) yields

ρ(z)= − 1
nπ

Tr(zI−H−W)−1

= − 1
nπ

Tr(H(z)−W)−1 (6)

= − 1
nπ

Tr
{
H−1(z)(I−H−1(z)W)−1}

By expanding (I−H−1(z)W)−1 in Equation (6), we obtain

(I−H−1(z)W)−1 =
∞∑
k=0

(
H−1(z)W

)k (7)

Finally, using Equation (7) in Equation (6), we obtain

ρ(z)= − 1
nπ

∞∑
k=0

Tr
{
H−1(z)(H−1(z)W)k

}
(8)

The convergence condition of Equation (8) is the same as presented for Equation (5).
The problem is thus reduced to the efficient computation of Tr{H−1(z)(H−1(z)W)k}. This will

be achieved with a message-passing algorithm.

2.1 Edge-basedmessage-passingmethod for weighted locally tree-like networks
In this section, we describe an extension of themessage-passing algorithm developed by (Newman
et al., 2019). (Newman et al., 2019) developed a message-passing algorithm for unweighted sym-
metric adjacencymatrices.We extended it for weighted symmetric adjacencymatrices, whichmay
include self-loops.

A characteristic of locally tree-like networks is that any closed walk’s length has an even number
of steps (because any closed walk traverses the same edge twice) (Newman et al., 2019).
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Since W is the weighted adjacency matrix of a locally tree-like network, H−1(z)W also
describes a locally tree-like network. Therefore, Tr{H−1(z)(H−1(z)W)k} is equal to 0 only when
the exponent k is odd; that is, there are only closed walks of even length.

We can consider the matrixH−1(z)W as a complex weighted adjacency matrix, where the (i, j)-
th position indicates the weight of a walk of length one from node i to node j. To obtain the (i, j)-th
position of (H−1(z)W)2, we sum the values of (H−1(z)W)ir × (H−1(z)W)rj∀1≤ r ≤ n. Notice that
we multiply the weights of the edges (i, r) and (r, j). If the value of (H−1(z)W)ir × (H−1(z)W)r,j
is different from zero, it means that there is a walk of length two from i to j by passing through
the edges (i, r) and (r, j). Thus, by defining the weight of a walk as the product of the edge weights
it traverses, (H−1(z)W)2i,j represents the sum of the walks’ weights from node i to node j passing
through two edges. Hence, (H−1(z)W)kij represents the sum of all the walks’ weights from node i to
node j passing through k edges. Let r be a positive integer and nuv2r (z) be the sum of the (complex-
valued) weights of all closed walks of length 2r that begins by traversing the edge from node u
to node v and ends by traversing the same edge from v to u. Other edges may be traversed many
times, but the edge between u and v is traversed only once each way. Let Nv be the set of neighbor
nodes of v, su,v(z)= (Wu,v)2/{(z −Hu,u)(z −Hv,v)}, and δ(i, j) be the Kronecker delta function.
Then, we have

nuv2r (z)= su,v(z)
∞∑

m=1

⎡
⎢⎢⎣ ∑
w1∈Nv,
w1 	=u

. . .
∑

wm∈Nv,
wm 	=u

⎤
⎥⎥⎦
⎡
⎣ ∞∑
r1=1

. . .

∞∑
rm=1

⎤
⎦ m∏

i=1
nvwi
2ri (z)× δ

(
r − 1,

m∑
i=1

ri

)
(9)

To obtain nuv2r (z), we consider that before the walk ends after traversing edge (u, v), it makesm con-
secutive excursions from node v to each of its neighbors except by u. The total sum of such walks
weight is the product of the weights of distinct excursions, with individual lengths 2r1, . . . , 2rm,
i.e. 2r − 2. To solve Equation (9), we define

huv(z)=
∞∑
r=1

nuv2r (z) (10)

By using Equation (9) into Equation (10), we obtain

huv(z)= su,v(z)
∞∑

m=1

⎡
⎢⎢⎣ ∑
w1∈Nv,
w1 	=u

. . .
∑

wm∈Nv,
wm 	=u

⎤
⎥⎥⎦

m∏
i=1

∞∑
ri=1

nvwi(z)
2ri

= su,v(z)
∞∑

m=1

⎡
⎢⎢⎣∑
w∈Nv,
w 	=u

hvw(z)

⎤
⎥⎥⎦
m

(11)

= su,v(z)
1−∑

w∈Nv,
w 	=u

hvw(z)

We can interpret huv(z) as a message that node u received from v. We calculate it from the
messages received by v from its other neighbors.

To solve our original problem (Equation (8)), we need to obtain the total sum of weighted
closed walks that start and end at node uwith any number of steps. LetNu be the set of neighborsof

https://doi.org/10.1017/nws.2021.10 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2021.10


316 G.E.C. Guzman et al.

node u, then the total sum of weighted closed walks of length 2r that starts and ends at node u
(denoted by nu2r(z)) can be obtained by:

nu2r(z)=
∞∑

m=1

⎡
⎣∑
v1∈Nu

. . .
∑

vm∈Nu

⎤
⎦
⎡
⎣ ∞∑
r1=1

. . .

∞∑
rm=1

⎤
⎦ m∏

i=1
nuvi(z)2ri δ

(
r,

m∑
i=1

ri

)
(12)

To calculate the total sum of the weighted closed walks of node u, we need to sum the values of
nu2r(z)/(z −Hu,u), for all r ≥ 1, i.e.,

gu(z)=
∞∑
r=1

nu2r(z)
z −Hu,u

= 1
z −Hu,u

∞∑
m=1

⎡
⎣∑
v1∈Nu

. . .
∑

vm∈Nu

⎤
⎦ m∏

i=1

∞∑
ri=1

n2riuvi(z) (13)

= 1
z −Hu,u

∞∑
m=1

⎡
⎣∑
v∈Nu

huv(z)

⎤
⎦
m

= 1
z −Hu,u

1
1−∑

v∈Nu h
uv(z)

Now we can express Equation (8) using Equation (13) as follows:

ρ(z)= − 1
nπ

n∑
u=1

1
z −Hu,u

1
1−∑

v∈Nu h
uv(z)

(14)

Finally, by using both Equations (11) and 14, we calculate the spectra of M. First, initialize
the messages huv(z) randomly. Then, iterate Equation (11) until convergence (Newman et al.,
2019; Rogers et al., 2008). Finally, input the obtained huv(z) into Equation (14). This method has a
computational complexity ofO(d|E|), where d and |E| are the diameter and number of edges of the
network (Koller & Friedman, 2009). Nonetheless, in locally tree-like networks, d is proportional
to log (n) (Newman, 2018). Thus, our method has a final complexity of O( log (n)|E|).

2.2 Degree-basedmethods
This section will use the message-passing equations developed in Section 2.1 to develop a degree-
based approximation for the (normalized) Laplacian spectra. We consider that the network is
unweighted and also that it was generated by the configuration model. The network must be
unweighted because, in this case, the degree of a node represents the number of neighbors. Thus,
we can group the vertices by their degree and use the “centroid” as the representative. However,
for weighted graphs, the degree is the sum of the weights of the edges incident to the node. Such
values do not represent the number of neighbors. Thus, we cannot use the same idea. The ratio-
nale to use the configuration model is that it generates locally tree-like networks when the number
of vertices tends to infinity, based on a given degree sequence (Newman, 2018).

In the following subsections, we show how to obtain a degree-based approximation for the
Laplacian and normalized Laplacian spectra.
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2.2.1 Degree-basedmethod for the Laplacian spectral density
Let deg (u) be the degree of node u,D be the degree matrix, whereDi,j = deg (i) if i= j andDi,j = 0
otherwise, and A be the adjacency matrix of the network. The Laplacian matrix L of a network is
defined as:

L=D−A
To obtain the spectral density of L, first, replace H and W by D and −A, respectively. Then, set
D(z) as a diagonal matrix withDi,j(z)= z − deg (i) if i= j, andDi,j(z)= 0, otherwise. Next, we use
them in Equation (8) and obtain

ρ(z)= − 1
nπ

∞∑
k=0

Tr
{
D−1(z)(D−1(z)A)k

}
(15)

Since the adjacency matrixA is composed of only 0s and 1s, that is,Wu,v =Au,v = 1, then suv(z)=
1/((z − deg (u))(z − deg (v))). By using it in Equation (11), we obtain

huv(z)= 1
(z − deg (u))(z − deg (v))

1
1−∑

w∈Nv,
w 	=u

hvw(z)
(16)

ReplacingHu,u byDu,u = deg (u) in Equation (13), we obtain

gu(z)= 1
z −Du,u

1
1−∑

v∈Nu h
uv(z)

(17)

= 1
z − deg (u)

1
1−∑

v∈Nu h
uv(z)

Since we can express Equation (8) using Equation (17), we have that

ρ(z)= − 1
nπ

n∑
u=1

1
z − deg (u)

1
1−∑

v∈Nu h
uv(z)

(18)

Nowwewill show the intuition to construct an efficient degree-based Laplacian spectral density
estimator. For this, we use the message-passing algorithm (Equation (14)) in a network generated
by a configuration model with 10, 000 nodes where half of the nodes have degree 5 and the other
half degree 10. Figure 1 shows a scatter plot of (z − deg (u))huv(z), where z = x+ iε. We observe
two distinct non-overlapping groups corresponding to the degrees of the node v: the red dots
are nodes of degree 5, and the blue dots represent the nodes of degree 10. Therefore, similarly to
(Newman et al., 2019), we could approximate each message by the mean value (centroid) of the
group to which it belongs.

Consider a configuration model where the fraction of nodes with degree k is pk. Our approx-
imation consists of replacing (z − deg (u))huv(z) by the mean value (centroid) hk(z) of messages
sent from nodes with the same degree k of node v. By rearranging the message-passing equation
(Equation (16)), we have that

(z − deg (v))(z − deg (u))huv(z)= 1+ (z − deg (v))(z − deg (u))huv(z)
∑
w∈Nv,
w 	=u

hvw(z) (19)

By replacing (z − deg (u))huv(z) by hk(z) and calculating the average over all edges (u, v), where v
has degree k, we obtain

(z − deg (v))hk(z)= 1+ hk(z)
1

nkpk

u∈Nv∑
v:kv=k

∑
w∈Nv,
w 	=u

(z − deg (v))hvw(z) (20)
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Figure 1. The values of (z− deg (u))huv(z) at z= 7+ εi with ε = 0.01 are plotted in the complex plane for a configuration
model network composed of 10, 000 nodes. Half of the nodes have a degree of 5, and the other half have 10. The colored
clouds correspond to nodes of degree 5 (red) and 10 (blue). The asterisks indicate the means of each cloud, which we used
to develop the degree-based approximation.

The average of (z − deg (v))hvw(z) over different w is independent of k, because in a configuration
model, adjacent nodes v and w are uncorrelated. Then, for large networks, the average of (z −
deg (v))hvw(z) will be equal to the average of the whole network, denoted by h(z):

1
nkpk

u∈Nv∑
v:kv=k

∑
w∈Nv,
w 	=u

(z − deg (v))hvw(z)→ h(z) (21)

Thus, we have (z − k)hk(z)= 1+ (k− 1)hk(z)h(z) or

hk(z)= 1
(z − k)− (k− 1)h(z)

(22)

In a configuration model, given a node, its neighbor node’s degree does not follow the overall
network degree distribution pk. In contrast, it follows a modified distribution named excess degree
distribution (Newman, 2018). Let c=∑

k kpk; then, the excess degree distribution is expressed as:

qk = (k+ 1)pk+1
c

(23)

Then, by using this quantity, the whole network average message is given by:

h(z)=
∞∑
k=1

kpk
c
hk(z)

= 1
c

∞∑
k=1

kpk
(z − k)− (k− 1)h(z)

(24)

=
∞∑
k=0

qk
(z − k− 1)− kh(z)
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We calculate the spectra by making a similar degree-based approximation to the quantities
gu(z) of Equation (17). We assume that gu(z) is well approximated by the mean gk(z) (centroid)
of gu(z) over all nodes u with degree k. In other words, this strategy does not work for graphs that
gk(z) does not represent well the cluster, for example, when gk(z) is outside the cluster. Then, we
obtain

gk(z)= 1
(z − k)− kh(z)

(25)

By summing up all gu(z), we then obtain
n∑

u=1
gu(z)=

∞∑
k=0

npkgk(z)= n
∞∑
k=0

pk
(z − k)− kh(z)

(26)

Finally, by using Equation (26) into Equation (18), we calculate the Laplacian spectral density as
follows:

ρ(z)= − 1
π

∞∑
k=0

pk
(z − k)− kh(z)

(27)

Notice that we can calculate the Laplacian spectral density relying only on the degree distri-
bution (Equations (24) and 27). First, initialize h(z) (e.g., h(z)= 0), and iterate Equation (24)
until convergence. Finally, use Equation (27) to obtain ρ(z). The computational complexity of
this method is dominated by Equation (24), which time complexity is O(n) per iteration. Usually,
the number of iterations is much less than n, thus the computational complexity of our proposal
is O(n).

2.2.2 Degree-basedmethod for the normalized Laplacian spectral density
To develop the degree-based approximation for the normalized Laplacian spectral density, first
we define the normalized Laplacian L of a network as:

L =D−1/2LD−1/2 = I−D−1/2AD−1/2 (28)

Thus, we haveH= I andW= −D−1/2AD−1/2, respectively. Then, we useL in Equation (8), and
obtain

ρ(z)= − 1
nπ

∞∑
k=0

Tr
{
D−1(z)

(
D−1(z)D−1/2AD−1/2)k} (29)

where D(z) is a diagonal matrix with Di,j(z)= z − 1 if i= j, and 0 otherwise. Since
{D−1/2AD−1/2}i,j = 1/

√
deg (i) deg (j) if Ai,j 	= 0, and 0 otherwise; we have that, suv(z)=

1/( deg (u) deg (v)(z − 1)2). Then, we can rewrite Equation (11) as follows:

huv(z)= 1
deg (u) deg (v)(z − 1)2

1
1−∑

w∈Nv,
w 	=u

hvw(z)
(30)

SinceDu,u = 1, we rewrite Equation (13) as follows:

gu(z)= 1
z −Du,u

1
1−∑

v∈Nu h
uv(z)

(31)

= 1
(z − 1)

1
1−∑

v∈Nu h
uv(z)
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Figure 2. The values of deg (u)huv(z) at z= 1+ εi with ε = 0.01 are plotted in the complex plane for a configuration model
network composed of 10, 000 nodes. Half of the nodes have a degree of 5, and the other half have 10. The colored clouds
correspond to nodes of degree 5 (red) and 10 (blue). The asterisks indicate the means of each cloud, which we used to
develop the degree-based approximation.

Then, we express Equation (8) by using Equation (31), and obtain

ρ(z)= − 1
nπ(z − 1)

n∑
u=1

1
1−∑

v∈Nu h
uv(z)

(32)

Similarly to the Laplacian approximation, we consider again the configuration network of size
n= 10, 000, where half of the vertices have degree 5 and the other half have degree 10. Then, we
use the message-passing equation (Equation (14)) to obtain all huv(z). Figure 2 shows a scatter
plot of deg (u)huv(z), where z = x+ iε. We observe two distinct non-overlapping groups corre-
sponding to the degrees of the node v: the red and blue dots correspond to nodes of degree 5 and
10, respectively. We could then approximate each message with the mean value of the group to
which it belongs, similarly as done for the Laplacian approximation.

We consider again the configuration model where the fraction of nodes with degree k is pk.
Our approximation consists of replacing deg (u)huv(z) by the mean value (centroid) hk(z) of mes-
sages sent from nodes with the same degree k of node v. By rearranging the message-passing
Equation (30), we obtain

(z − 1)2 deg (v) deg (u)huv(z)= 1+ (z − 1)2 deg (v) deg (u)huv(z)
∑

w∈Nv,w 	=u
hvw(z) (33)

By replacing deg (u)huv(z) by hk(z), and averaging Equation (33) over all edges (u, v), where v
has degree k, we obtain

(z − 1)2 deg (v)hk(z)= 1+ (z − 1)2hk(z)
(k− 1)
nkpk

u∈Nv∑
v:kv=k

∑
w∈Nv,w 	=u

deg (v)hvw(z) (34)
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Since adjacent nodes v and w are uncorrelated, the average of deg (v)hvw(z) over different w is
independent of k. Then, it will be equal to the average of the whole network (h(z)) as n→ ∞:

1
nkpk

u∈Nv∑
v:kv=k

∑
w∈Nv,
w 	=u

deg (v)hvw(z)→ h(z) (35)

Thus, we have (z − 1)2khk(z)= 1+ (z − 1)2(k− 1)hk(z)h(z) or

hk(z)= 1
(z − 1)2

1
k− (k− 1)h(z)

(36)

Here, we also consider the degree excess distribution. Then, the whole network average message
is given by:

h(z)=
∞∑
k=1

kpk
c
hk(z)

= 1
(z − 1)2c

∞∑
k=1

kpk
k− (k− 1)h(z)

(37)

= 1
(z − 1)2

∞∑
k=0

qk
(k+ 1)− kh(z)

where we made a change of variable k→ k+ 1. Similarly to what we did in Section 2.2.1, we
assume that gu(z) (Equation (31)) can be approximated by gk(z) (centroid), that is, the mean of
gu(z) over all nodes u with degree k. Then, we obtain

gk(z)= 1
(z − 1)

1
1− h(z)

(38)
.

By summing up all nodes, we obtain
n∑

u=1
gu(z)=

∞∑
k=0

npkgk(z)= n
z − 1

∞∑
k=0

pk
1− h(z)

= 1
z − 1

n
1− h(z)

(39)

Finally, by inputing Equation (39) into Equation (32), the normalized Laplacian spectral density
is given by:

ρ(z)= − 1
π(z − 1)

1
1− h(z)

(40)

Then, by using Equations 37 and 40, we obtain the normalized Laplacian spectral density based
only on the degree distribution. First, initialize h(z) with any initial value (e.g., h(z)= 0), and
iterate Equation (37) until convergence. Then, use the calculated value of h(z) into Equation (40)
to obtain ρ(z). The computational complexity of this method is dominated by Equation (37), in
which time complexity is O(n) per iteration. Since the number of iterations is usually much less
than n, the overall time complexity of our proposal is O(n).

3. Experiments and results
To evaluate the advantages and limitations of our proposed methods, we applied them to graphs
generated by three random graph models, namely the Poisson, configuration, and power-law
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Figure 3. Laplacian spectral densities were obtained using the diagonalization (red), edge-based message-passing (blue),
anddegree-based approaches (green). (a) Poisson graph (λ = 5); (b) power-lawgraph generatedbyusing theBarabási–Albert
model (γ = 1 andm= 3); (c) Configuration model with degrees 2, 3, or 4 of equal probabilities; (d) configuration model with
degrees 1, 2, or 3 of equal probabilities. We used the empirical degree distribution obtained from the network as an input of
the degree-based approach. All graphs are composed of n= 10, 000 nodes.

models (Newman, 2018). All three produce locally tree-like networks (Newman et al., 2019). The
Poisson model generates random graphs whose degree distribution follows a Poisson distribu-
tion with a specified mean λ. The configuration model creates random graphs with a given degree
sequence. And the power-law model generates graphs whose degree distribution follows a power-
law distribution (Adamic et al., 2001; Adamic &Huberman, 2000). To generate power-law graphs,
we used the Barabási–Albert model (Albert & Barabási, 2002).

Figures 3 and 4 show the spectra of the Laplacian and normalized Laplacian matrices of graphs
generated with different random graph models. We produced four graphs with n= 10, 000 and
the following setup (similar to the setup presented in (Newman et al., 2019)):

• Poisson graph with mean equals to five (Figures 3(a) and 4(a)).
• Power-law graph generated by using the Barabási–Albert model with parameters γ = 1 and
m= 3 (Figures 3(b) and 4(b)).

• Configuration graphwhose nodes have degrees 2, 3, or 4 with equal probabilities (Figures 3(c)
and 4(c)).

• Configuration graph whose nodes have degrees 1, 2, or 3 with equal probabilities
(Figures 3(d) and 4(d)).

https://doi.org/10.1017/nws.2021.10 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2021.10


Network Science 323

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

Diagonalization
Edge−based
Degree−based

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(c)

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

(d)

Eigenvalue x

Sp
ec

tra
l d

en
si

ty
 ρ

(x
)

Figure 4. Normalized Laplacian spectral densities were obtained by using the diagonalization (red), edge-based message–
passing (blue), and degree-based approaches (green). (a) Poisson graph (mean five); (b) power-law graph generated by using
the Barabási–Albert model (γ = 1 andm= 3); (c) configuration model with degrees 2, 3, or 4 of equal probabilities; (d) con-
figuration model with degrees 1, 2, or 3 of equal probabilities. We used the empirical degree distribution obtained from the
network as an input of the degree-based approach. All graphs are composed of n= 10, 000 nodes.

Notice that the edge-based method obtains good results for all models. The slight differences
between the diagonalization and edge-based approaches are due to the smoothing parameters.
The degree-based approximation presents a reduced performance. It happens because we approx-
imate gu(z) (Equations (17) and 31) by gk(z) (Equations (25) and 38) (see Sections 2.2.1 and
2.2.2 ).

In Figure 4 panel (a), we would expect a semicircular spectral density (Jiang, 2012) because
the Poisson graph is equal to the Erdös–Rényi graph where each edge is present with probability
p= λ/n. However, we observe a non-semicircular shape and a peak at x= 1. It happens because
the network is sparse (Newman et al., 2019).

Figure 5 shows the spectra of the Laplacian matrix of graphs with different sizes (n= 5, 000,
10, 000, 20, 000, and 40, 000) obtained by the diagonalization, edge-based, and degree-based
approaches.We generated the graphs using the configurationmodel. Half of the nodes have degree
5, and the other half have degree 10. Notice that the estimations are very similar. The slight differ-
ences between the diagonalization and edge-based methods are due to the smoothing parameters
used to estimate the spectral densities.

https://doi.org/10.1017/nws.2021.10 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2021.10


324 G.E.C. Guzman et al.

0 5 10 15

0.
00

0.
04

0.
08

0.
12

(a)

Diagonalization
Edge−based
Degree−based

0 5 10 15

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

(b)

0 5 10 15

0.
00

0.
04

0.
08

0.
12

(c)

0 5 10 15

0.
00

0.
04

0.
08

0.
12

(d)

Eigenvalue x

Sp
ec

tra
l d

en
si

ty
 ρ

(x
) 

Figure 5. Laplacian spectral densities of graphs were obtained using diagonalization (red), edge-based message-passing
(blue), and degree-based approaches. We generated the graphs using the configuration model. Half of the nodes have
degree 5, and the other half have degree 10. (a) Laplacian spectral density for n= 5, 000, (b) Laplacian spectral density for
n= 10, 000, (c) Laplacian spectral density for n= 20, 000, and (d) Laplacian spectral density for n= 40, 000. The slight differ-
ence between the diagonalization and edge-basedmethods is due to the smoothness parameter. The reduced performance
of the degree-based approximation is because we approximate gu(z) by gk(z).

Figure 6 shows the Laplacian spectral density of weighted graphs.We sampled the edge weights
from a Gaussian distribution with parameters mean zero and unit variance (Figure 6(a)), an uni-
form distribution (Figure 6(b)), an exponential distribution with mean one (Figure 6(c)), and
Poisson distribution with parameter λ = 2 (Figure 6(d)). In both cases, when the edge weights are
homogeneous or concentrated, the edge-based method presented good spectral densities estima-
tions. It happens because we do not restrict the values that wu,v can take. We only requireM to be
symmetric. We did not apply the degree-based method here because this approach only works for
unweighted locally tree-like graphs, as mentioned in Section 2.2.

Here, we presented two efficient methods to estimate the (normalized) Laplacian spectral den-
sity of big tree-like networks: an edge-based message-passing and a degree-based approach. As
the number of big networks increases (e.g., social networks), we believe that more and more
efficient (almost linear) methods become a must for network data analysis. As future work,
we will modify our edge-based message-passing equations to contemplate weighted asymmetric
matrices.
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Figure 6. Laplacian spectral densities of weighted graphs were obtained using the diagonalization (red) and the edge-based
methods (blue). We did not apply the degree-based method because this approach requires unweighted locally tree-like
graphs.We generated the graphs using the configurationmodel with degrees 5 and 10 of equal probabilities. We sampled the
edge weights from (a) a Gaussian distribution with mean 0 and unit variance, (b) an uniform distribution, (c) an exponential
distribution with mean 1, and (d) a Poisson distribution with mean 2. All graphs are composed of n= 10, 000 nodes.
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