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Two aspects of homogeneous rotating turbulence are quantified through forced direct
numerical simulations in an elongated domain, which, in the direction of rotation, is
approximately 340 times larger than the typical initial eddy size. First, by following
the time evolution of the integral length scale along the axis of rotation `‖, the
growth rate of the columnar eddies and its dependence on the Rossby number
Roε is determined as γ = 3.90 exp(−16.72 Roε) for 0.06 6 Roε 6 0.31, where γ is
the non-dimensional growth rate. Second, a scaling law for the energy dissipation
rate εν is sought. Comparison with current available scaling laws shows that the
relation proposed by Baqui & Davidson (Phys. Fluids, vol. 27(2), 2015, 025107),
i.e. εν ∼ u′3/`‖, where u′ is the root-mean-square velocity, approximates well part of
our data, more specifically the range 0.39 6 Roε 6 1.54. However, relations proposed
in the literature fail to model the data for the second and most interesting range,
i.e. 0.06 6 Roε 6 0.31, which is marked by the formation of columnar eddies. To
find a similarity relation for the latter, we exploit the concept of a spectral transfer
time introduced by Kraichnan (Phys. Fluids, vol. 8(7), 1965, p. 1385). Within this
framework, the energy dissipation rate is considered to depend on both the nonlinear
time scale and the relaxation time scale. Thus, by analysing our data, expressions for
these different time scales are obtained that result in εν ∼ (u′4Ro0.62

ε τ iso
nl )/`

2
⊥

, where `⊥
is the integral length scale in the direction normal to the axis of rotation and τ iso

nl is
the nonlinear time scale of the initial homogeneous isotropic field.

Key words: rotating flows, atmospheric flows

1. Introduction
Many geophysical and man-made fluid flows are affected by the interaction between

system rotation and turbulence (Greenspan 1968; Boffetta & Ecke 2012). An idealized
approach to study rotating turbulence consists in observing the evolution of an
initial homogeneous isotropic flow in a non-inertial rotating frame of reference. This
way, early experimental studies already revealed the main features of homogeneous
rotating turbulence (e.g. Jacquin et al. 1990), although a few of them did not meet
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the condition for homogeneity (e.g. Ibbetson & Tritton 1975; Hopfinger, Browand
& Gagne 1982). When the Rossby number (Ro), i.e. the ratio of the rotational
time scale and the turbulent time scale, was sufficiently small, it was observed that
the energy dissipation rate εν is reduced with respect to the reference non-rotating
isotropic case. Further, the typical cloud of isotropic eddies found in isotropic flows
was strained, and grew in size towards an array of flow structures aligned with
the axis of rotation (columnar eddies). These two features are the traits of rotating
turbulence and have been observed and analysed in a number of recent experimental
and numerical investigations – see e.g. Staplehurst, Davidson & Dalziel (2008), van
Bokhoven et al. (2009), Mininni, Alexakis & Pouquet (2009), Moisy et al. (2011),
Mininni, Rosenberg & Pouquet (2012) and Delache, Cambon & Godeferd (2014), or
Godeferd & Moisy (2015) for a review. Yet, it remains poorly understood how they
are quantitatively related.

For homogeneous isotropic turbulence, it is well accepted that the energy dissipation
rate scales as εν ∼ u3

0/l0, where u0 and l0 are an integral velocity scale and an integral
length scale, respectively (Batchelor 1953). This relation can be interpreted on the
basis of phenomenological arguments as follows. Let us first assume that εν depends
on an energy content, say u2

0, and on a time scale τs characteristic of the downscale
energy transfer: the spectral transfer time. In homogeneous isotropic turbulence, the
only time scale available to be taken as τs is the time scale characteristic of the
nonlinear triadic interactions, τnl. If we further assume that τnl ∼ l0/u0, where l0 is
the typical size of the energy-containing eddies, the dissipation law for homogeneous
isotropic turbulence can be recovered. But for systems in which other time scales are
also relevant, as is the case of magnetohydrodynamics (MHD) or rotating turbulence,
τs might be different from τnl. Within the context of MHD, Kraichnan (1965)
considered that τs is in fact composed of two time scales of opposing effects:
the nonlinear time scale τnl, which can also be considered as the measure of how
fast triple velocity correlations are built up, and the decorrelation time scale τ3,
which indicates how fast these correlations decay in time. Exploiting these ideas, he
suggested that the energy flux (energy dissipation rate) was directly proportional to
τ3 and inversely proportional to τnl.

Following this line of thought, one alternative to relate the energy dissipation rate
to the formation of columnar eddies in rotating turbulence is to find approximations
for τnl and τ3 that involve integral length scales and the rotation rate. However, this
is not straightforward. First, owing to the fact that the distribution of energy is not
isotropic, two distinct integral length scales in homogeneous rotating turbulence exist,
i.e. `0⊥ and `0 ‖, which can be defined along the directions normal and parallel to
the axis of rotation, respectively. Which one then is relevant to form τnl? Second,
how does τ3 depend on the time scale imposed by the background rotation, i.e.
τΩ = 1/(2Ω)? In the literature, a few dissipation laws for homogeneous rotating
turbulence have emerged from attempts to estimate the energy flux (Zhou 1995;
Galtier 2003; Nazarenko & Schekochihin 2011; Baqui & Davidson 2015). Despite
the efforts to account for the effects of rotation, the results available in the current
literature regarding whether these laws generally hold or if they specifically apply to
a Rossby-number range are inconclusive or even inconsistent.

Another problem, which is rather more technical, is the fact that the elongated
columnar flow structures restrict the maximum observation time in direct numerical
simulations (DNS) of rotating turbulence. Because simulations of homogeneous flows
often consider periodic boundary conditions, a too small domain size with respect to
the characteristic size of the living eddies can modulate the dynamics of the large
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scales and constrain their size. An obvious solution to circumvent this problem and
avoid numerical artifacts is either to consider larger domains or to generate flow fields
in which the characteristic eddy size is smaller than the domain size. For example, in
the DNS by Baqui & Davidson (2015) the initial characteristic eddy size was 50 times
smaller than the domain size. However, when Ro� 1 this may still be insufficient and
limit the simulation to a few eddy turnover times.

In view of these shortcomings, this study addresses the following two questions:

(i) What is the influence of the Rossby number in the growth rate of the columnar
eddies, in the absence of confinement effects?

(ii) Can we approximate the energy dissipation rate in homogeneous rotating
turbulence in a fashion similar to homogeneous isotropic turbulence, i.e. in
terms of a velocity scale, an integral length scale and the rotation rate?

For this purpose, we consider the evolution of an initial homogeneous isotropic flow
field in a rotating frame of reference. We conduct a systematic study that consists of
21 different rotation rates, thus covering a wide range of Rossby numbers. Our DNS
are carried out in an elongated computational domain that is approximately 340 times
larger than the initial characteristic size of the flow structures, and provides enough
room for the columnar eddies to grow freely. All simulations are performed with a
stochastic large-scale forcing that injects energy at a constant rate. The forcing scheme
is three-dimensional, isotropic and at all times uncorrelated with the velocity field. To
the best of our knowledge, the present database is unprecedented.

This work is organized as follows. In § 2, the governing equations and the numerical
method is detailed together with a description of the simulations and their physical
parameters. The influence of the Rossby number in the growth rate of the columnar
eddies is investigated in § 3, and approximations for the energy dissipation rate are
finally offered in § 4.

2. Numerical set-up
2.1. Governing equations and numerical method

We consider an incompressible fluid in a triply periodic rectangular cuboid of size
2πL1 × 2πL2 × 2πL3 that rotates around Ω . Fluid motion is assumed governed by
the incompressible Navier–Stokes equations:

∇ · u= 0, (2.1)
∂u
∂t
+ (2Ω +ω)× u=−∇q+ ν∇2u+ f . (2.2)

Here, u, ω and f are the velocity, the vorticity and an external force, respectively.
Time is denoted by t, the reduced pressure, into which the centrifugal force is
incorporated, is given by q, and ν denotes the kinematic viscosity of the fluid. The
rotation vector Ω is chosen to be aligned with the 3-direction, i.e. Ω = (0, 0, Ω),
where Ω is the rotation rate. The horizontal dimensions of the rectangular cuboid
(normal to the axis of rotation) are equal, L⊥ = L1 = L2 = 1, whereas the vertical
extension (parallel to the axis of rotation) is by a factor of eight larger than the
horizontal dimensions, i.e. L‖ =L3 = 8.

The numerical method is essentially the same as in Pestana & Hickel (2019b).
Equations (2.1) and (2.2) are solved by a dealiased Fourier pseudo-spectral method
(2/3 rule), where the spatial gradients are computed with the aid of fast Fourier
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transforms (Pekurovsky 2012), and the time stepper employs exact integration of the
viscous and Coriolis forces (Rogallo 1977; Morinishi, Nakabayashi & Ren 2001)
together with a third-order low-storage Runge–Kutta scheme for the nonlinear terms.
The number of degrees of freedom is Np = 7682

× 6144, which has been increased
according to the extended domain size to resolve all scales of motion. The smallest
and largest resolved wavenumbers per direction are κmin,i=1/Li and κmax,i=Np,i/(3Li),
respectively, where the index i= {1, 2, 3} denotes the different directions.

In all the simulations considered in this study, energy is injected through the
external force f on right-hand side of (2.2). The forcing scheme is designed as
proposed in Alvelius (1999); the force spectrum F(κ) is Gaussian with standard
deviation c= 0.5 and is centred around the forcing wavenumber κf :

F(κ)= A exp(−(κ − κf )
2/c). (2.3)

In (2.3), the prefactor A, which controls the amplitude of F(κ), can be determined
a priori to the simulation and allow us to fix the power input εI . This is only possible
because this forcing scheme ensures that the force–velocity correlation is zero at all
time instants. As a consequence, the injected power is an exclusive product of the
force–force correlation, which is directly related to F(κ). For more details about the
forcing scheme and its design, please refer to Alvelius (1999).

2.2. Description of the simulations and physical parameters
To describe the considered physical problem, we are free to choose six control
parameters. These form the set {κf , εI, ν, L‖, L⊥, Ω}, which involves two physical
units. Thus, a total of four non-dimensional numbers is sufficient to describe the
numerical experiment. The governing non-dimensional numbers can be built by
combination of the free control parameters. For instance, using κf and εI and
assuming that the constant of proportionality is 1, we can construct the velocity
scale uf = ε

1/3
I κ

−1/3
f and the time scale τf = κ

−2/3
f ε

−1/3
I . Additionally, a characteristic

length scale can be taken as `f = 1/κf . Hence, the Reynolds and the Rossby numbers
are defined as

Reε =
ε

1/3
I κ

−4/3
f

ν
and Roε =

κ
2/3
f ε

1/3
I

2Ω
. (2.4a,b)

The two other governing non-dimensional numbers are formed by combining the
forcing wavenumber with the geometric dimensions of the domain to yield κfL⊥ and
κfL‖. The four non-dimensional numbers, {Reε, Roε, κfL‖, κfL⊥}, whose definitions
have been borrowed from Seshasayanan & Alexakis (2018), form the parameter
space henceforth used to characterize the simulations performed in this study. Note,
however, that this set of non-dimensional parameters is not unique. For instance, one
may combine Reε and Roε to form the microscale Rossby number Roλ = Re1/2

ε Roε,
which represents the ratio of rotation and Kolmogorov time scales, or express the
geometric dimensions in terms of the domain aspect ratio Ar =L‖/L⊥.

Another important parameter is the Zeman wavenumber κΩ = (Ω3/εI)
1/2, which

indicates the wavenumber range for which rotational effects are relevant (Zeman 1994;
Delache et al. 2014). The Zeman wavenumber is also automatically set by fixing the
aforementioned parameters as Roε = (κf /κΩ)

2/3/2.
A posteriori, we can compute the usual physical parameters that describe the flow

field. The box-averaged kinetic energy K is given by 〈uiui〉L/2, where the operator
〈·〉L denotes volume averages, and the viscous dissipation rate is εν = 2ν〈SijSij〉L,
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Rossby-number effects in homogeneous rotating turbulence 885 A7-5

where Sij = (∂ui,j + ∂uj,i)/2 is the strain-rate tensor. From K, we define the root-
mean-square (r.m.s.) velocity u′ =

√
2K/3, which is used to define the large-eddy

turnover time Te= u′2/εI . The Taylor microscale is defined as in Pope (2000), i.e. λ=
(15νu′2/εν)1/2. The Taylor-microscale Reynolds number is computed as Reλ = u′λ/ν,
and the Kolmogorov length scale is η= (ν3/εν)

1/4.
Last, we define the integral length scales along the directions normal and parallel

to the axis of rotation. These are constructed from the two-point velocity correlation:

R(r)=
〈ui(x)ui(x+ r)〉L
〈ui(x)ui(x)〉L

, (2.5)

where r = ri êi is an arbitrary position vector. We integrate (2.5) with r = r êr, as in
spherical coordinates, or with r= r⊥ê⊥ and r= r‖ê‖, as in cylindrical coordinates, to
obtain the integral length scales along the respective directions:

`=

∫ πLmin

0
R(r) dr, `⊥ =

∫ πL⊥

0
R(r⊥) dr⊥ and `‖ =

∫ πL‖

0
R(r‖) dr‖. (2.6a−c)

In (2.6), Lmin is taken as min(L‖, L⊥) in the limit of the integral that defines `. To
represent quantities from the initial and isotropic flow field, we use the superscript iso,
as in `iso.

2.2.1. Initial conditions
The initial conditions for the simulations with rotation are produced by injecting

energy at constant rate εI to a fluid that is initially at rest. The energy, which is
injected at wavenumber κf = 8, is progressively distributed over a wider range of
wavenumbers by the velocity triad interactions. When the energy cascade is built
up, the box-averaged kinetic energy K stops growing and a steady state is reached.
The numerical resolution guarantees that at all times κmaxη > 1.5, which is sufficient
to resolve all scales of motion. The initial transient lasts for 20τf or, equivalently,
8.45Te, and afterwards statistics are collected for another 54τf (22.84Te). For the fully
developed field, we find that Reλ ≈ 68, and that the relation `iso

= `iso
‖
= `iso

⊥
holds up

to two decimal places. The latter suggests that the flow field is in fact isotropic.
Other statistics of the steady state match closely with typical values found in DNS

of homogeneous isotropic turbulence. For instance, the skewness and flatness of the
longitudinal velocity derivative ∂u1/∂x1 are −0.51 and 4.8, respectively, in agreement
with Van Atta & Antonia (1980) and Tang et al. (2018). The energy dissipation rate
εν at the steady state is well approximated by εν =Ciso

ε (u
′iso)3/`iso, where Ciso

ε ≈ 0.35 is
the constant of proportionality. Note, however, that the value of this constant depends
on how the two-point correlation in (2.5) is normalized. If we normalize it with 2u′2,
like in Kaneda et al. (2003), instead of 2K, like in (2.5), a factor of 3/2 must be
accounted for to yield Ciso

ε ≈ 0.5 in agreement with the literature; see Ishihara, Gotoh
& Kaneda (2009) for a compilation of other numerical results.

In this study, the goal is not to achieve the highest possible Reynolds number for
a given numerical resolution. Instead, we focus on maximizing the time for which
large-scale eddies with typical size `iso can evolve unbounded, while still resolving
all scales of motion. Therefore, apart from forcing at scales smaller than usual, we
consider an elongated domain with Ar = 8. As a result, the isotropic fields to which
background rotation can be imposed are, in the vertical direction, approximately 340
times larger than `iso and, in the normal direction, 2πL⊥/`iso

≈ 40. In figure 1, we
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FIGURE 1. Two-point velocity correlations showing the ratio of domain size to
characteristic size of the flow structures in the different directions, and one-dimensional
energy spectra showing that the initial conditions are indeed isotropic. (a) Normal R(r⊥)
(– – –) and parallel R(r‖) (——, black) velocity two-point correlations. (b) Perpendicular
and parallel one-dimensional energy spectra: α= 1, β= 3, E11(κ3) (——, blue); and α= 3,
β = 1, E33(κ1) (E).

κfL⊥ κfL‖ (2πL⊥)/`iso
⊥

(2πL‖)/`iso
‖

τf /Te Reε Reλ Np

8 64 39.9 342.5 2.36 55.05 68 7682
× 6144

TABLE 1. Numerical and physical parameters of the initial homogeneous isotropic
turbulent flow field used for the runs with rotation.

show evidence of these aspects. Figure 1(a) confirms through the two-point velocity
correlation along the normal and the parallel directions that the ratio of domain size to
flow structures is indeed significantly larger in the vertical direction. The area below
the curves equals `iso

⊥
/(πL⊥) and `iso

‖
/(πL‖), respectively. Alongside, figure 1(b)

verifies that the velocity fields are isotropic, as the curves for the one-dimensional
energy spectra along the normal and perpendicular directions overlap.

These features are also clearly visible in the flow-field visualization (see figure 2),
where we show a subset of the computational domain with the flow structures
visualized by the Q-criterion of Hunt, Wray & Moin (1988) and coloured by the
normalized projection of the vorticity vector on the axis of rotation, i.e. ω · e‖/‖ω‖.
Reinforcing the aforementioned results, we observe two main points in the isotropic
field that is used as initial condition for the runs with rotation (figure 2a). First, the
flow structures do not display any preferential sense of rotation, which is confirmed by
the uniform distribution of the colours. Second, they are also isotropically arranged
and therefore not aligned along any preferential direction. For a summary of the
numerical and physical parameters of the initial conditions, please refer to table 1.

2.2.2. Runs in a rotating frame of reference
The runs with rotation are constructed by imposing 21 different background rotation

rates to the isotropic flow field shown in figure 2(a); see table 2 for the relevant
numerical and physical parameters. The result is a set of simulations that covers
a broad range of the Roε parameter space, i.e. 0.06 6 Roε 6 1.54. The Zeman
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(a) (b) (c)

x2
x1

Øx3

FIGURE 2. Flow-field visualization of a subset of the computational domain (1/16 of
the entire computational domain), showing half of the horizontal domain extension and a
quarter of the vertical domain size: [0,π]× [0,π]× [0, 4π]. Isocontours of the Q-criterion
(Hunt et al. 1988) coloured by the normalized projection of the vorticity vector along the
axis of rotation, i.e. ω · e‖/‖ω‖. Blue colours indicate structures that rotate in the same
sense as Ω (anticlockwise), whereas orange colours indicate the opposite sense of rotation
(clockwise). (a) Isotropic initial condition. (b,c) The runs with Roε = 0.06 at later time
instants after the onset of rotation, i.e. t= 10.5τf and t= 20τf , respectively.

wavenumber in terms of the Kolmogorov length scale, κΩη, for instance, varies from
0.1 for Roε = 1.54 (weakest rotation case) to 1.1 for Roε = 0.06 (strongest rotation
case). As the numerical resolution provides κmaxη = 1.5 for the fully developed
isotropic reference initial field, for Roε = 0.06, almost all scales of motion are
influenced by the system’s rotation.
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TABLE 2. Numerical and physical parameters for the DNS of homogeneous rotating
turbulence at distinct rotation rates. The runs in group R1 are similar to homogeneous
isotropic turbulence with no characteristic growth of `‖; runs in group R2 are characterized
by strong anisotropy and d`‖/dt> 0 (see § 3).

With increasing rotation rate, the flow field gradually departs from the initial
isotropic state in agreement with previous experimental and numerical studies
(Bartello, Métais & Lesieur 1994; van Bokhoven et al. 2009). This is observed
from visualizing four movies (movie 1, Roε = 0.63; movie 2, Roε = 0.22; movie 3,
Roε = 0.09; and movie 4, Roε = 0.06), which show the evolution of the flow field
in a subset of the computational domain; see our data repository (Pestana & Hickel
2019a, https://doi.org/10.4121/uuid:324788e3-a64f-4786-9ef9-f97d70a29064) for the
animations, and also two movies of the contours of the vorticity vector along the axis
of rotation (ω‖), on a normal (movie 5) and a parallel plane (movie 6). Altogether,
the visualizations indicate that rotation destroys the small structures and modulates
the flow field such that columns elongated in the direction of rotation emerge. These
typical features of rotating turbulence are better appreciated in movies 3 and 4, where
the pairing and stretching of co-rotating eddies are more salient.

To give an impression of the flow field, we include two snapshots in figure 2(b,c)
for the run with Roε = 0.06 (strongest rotation) at times subsequent to the onset of
rotation (t= 10.5τf and t= 20τf ) and visualizations of ω‖ for different Roε in figures 3
and 4.

3. The growth rate of columnar eddies
Now, we present results and discuss the influence of different rotation rates on the

growth of the columnar eddies. For the quantitative analysis, we use integral length
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(a) (b) (c)

-12 -8 -4 0 4 8 12

ø‖/(˚fuf)

FIGURE 3. Instantaneous contours on an x1x2 plane of the vorticity projected along the
axis of rotation: (a) isotropic case; (b) Roε = 0.22; (c) Roε = 0.06. All panels correspond
to the final simulation time t≈ 30τf .

scales, which on the one hand can be used to quantify the typical eddy size that
contributes the most to the total kinetic energy, and on the other hand also serve as an
indicator of anisotropy. Owing to the background rotation, the dynamics of the flow in
the parallel and transverse directions are essentially different, which is reflected in the
temporal evolution of `‖ and `⊥ (Bardina, Ferziger & Rogallo 1985). As will be seen,
the appearance of the columnar eddies in figures 2(b) and 2(c) is strongly reflected in
the growth of the integral length scale along the axis of rotation.

We obtain the time evolution of `‖ and `⊥ by evaluating (2.6) on a series of
instantaneous velocity fields throughout the simulation time; see figure 5. We choose
to split the actual data into two diagrams, which are displayed side by side. The left
panels correspond to cases for which Roε > 0.39 (group R1 in table 2) and the right
panels to Roε 6 0.31 (group R2 in table 2).

For Roε > 0.39 (group R1, figure 5a,c), `‖ and `⊥ remain approximately unchanged
in time and at values similar to the ones at t = 0, which corresponds to the initial
isotropic field. Specifically for Roε = 0.39, the run with highest rotation rate in this
group, the departure from isotropy is marginal and `‖/`⊥≈ 1.5 at the final simulation
time. Differently, for Roε 6 0.31 (group R2, figure 5b,d), the disparity between `‖ and
`⊥ is clear. We observe that `‖ grows substantially in time, whereas variations in `⊥
are small when compared to the latter. For instance, for Roε = 0.06, the final value of
`‖ is 35.05 times greater that its initial value, whereas `⊥ only increases by a factor
of 1.21. Additionally, we observe an intriguing behaviour in `⊥. It initially grows in
time until a maximum is reached; thereupon, it decreases towards a minimum, before
growing again. On the other hand, `‖ increases monotonically and approximately
linearly for t> 10τf .

The growth of `‖ in figure 5(d) is in agreement with the formation of columnar
eddies observed in figure 2(c). In order to identify the dependence between the growth
rate of `‖ and Roε, we have fitted the data for `‖ in the interval 10τf < t< 30τf with
a straight line. The linear fit approximates fairly well the time evolution of `‖ and the
maximum residuum is found for Roε= 0.11, where the discrepancy is around 4.7 % of
the mean value of `‖. The slope of the linear fit non-dimensionalized with the forcing
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FIGURE 4. Instantaneous contours on an x2x3 plane of the vorticity projected on the axis
of rotation: (a) isotropic case; (b) Roε = 0.22; (c) Roε = 0.06. All panels correspond to
the final simulation time t≈ 30τf .
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FIGURE 5. Time evolution of the transverse and parallel integral length scales `⊥ and
`‖, for (a,c) group R1 (1.54 > Roε > 0.39) and (b,d) group R2 (0.31 > Roε > 0.06).

parameters, i.e. γ = κf τf (d`‖/dt), is shown in figure 6 as a function of Roε. For Roε>
0.39, the effects of rotation are irrelevant and γ is approximately zero within statistical
error, suggesting that the integral length scales remain approximately at their initial
value. More precisely, the linear regression leads to both positive and negative values
of γ in this range. Nevertheless, the values are all very small and at most of the
order of O(10−3). On the other hand, the range 0.06 6 Roε 6 0.31 is marked by a
significant rise in γ , and, specifically for this range, a least-squares fit yields the power
law γ = a exp(b Roε) with a= 3.90 and b=−16.72 (figure 6b).

A linear growth rate for `‖ is in agreement with experimental observations
(Jacquin et al. 1990; Staplehurst et al. 2008), numerical simulations (Bartello et al.
1994; Yoshimatsu, Midorikawa & Kaneda 2011) and closure theories such as the
EDQNM2 of Cambon & Jacquin (1989). Nevertheless, the growth rate obtained
here is essentially different from what has been found in previous studies, which
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FIGURE 6. Non-dimensional growth rate γ = κf τf (d`‖/dt) as a function of Roε. The least-
squares fit (——) for the range 0.06 6 Roε 6 0.31 yields the power law γ = a exp(b Roε)
with a= 3.90 and b=−16.72. The thin dashed line (– – –) represents a law of the type
γ ∼ Ro−1

ε , where the constant of proportionality was arbitrarily chosen to fit the leftmost
data point. The dot-dashed line (– · – · –) represents a zero growth rate.

have mostly focused on decaying homogeneous isotropic turbulence. For example,
the laboratory experiments of Staplehurst et al. (2008) and the DNS of Yoshimatsu
et al. (2011) found a growth rate proportional to 1/τΩ = 2Ω , which would result in
γ ∼ Ro−1

ε . As we see from figure 6, our results do not agree with such a scaling,
which suggests a faster increase in γ for decreasing Roε. Nevertheless, it is important
to remark that previous works have analysed the first initial time instants upon the
onset of rotation, while our results include an extended observation time, and it is
therefore a prediction of the growth rate of columnar eddies at later time instants. For
example, the numerical results by Yoshimatsu et al. (2011) consider a total simulation
time of 10τΩ for their strongest rotation case (Roλ = 0.90), whereas our results for
a similar parameter point (run18, Roλ = 0.80) contain approximately 270τΩ . Last,
let us remark that the transition Rossby number found here (based on the disparity
between `‖ and `⊥) is in close agreement with previous observations: for instance,
Moisy et al. (2011) report that anisotropy develops in decaying rotating turbulence
at a macro and a micro Rossby number of 0.4 and 1.8, respectively. In comparison,
results in figure 6 suggest a transition within the range 0.31 < Roε < 0.39, which
corresponds to 2.32< Roλ < 2.91.

Note that to prevent the results from being affected by numerical artifacts, we
stopped the simulations when `‖ was approximately eight times smaller than 2πL‖.
This constraint limited our runs to a duration of 30τf (12.7Te), and was due to
the simulation with Roε = 0.06. Obviously, for the remaining cases, 2πL‖/`‖ > 8
at t = 30τf . The decision of when to interrupt the runs was rather arbitrary, but a
value of eight for the ratio 2πL‖/`‖ is common in DNS of homogeneous isotropic
turbulence (Cardesa, Vela-Martín & Jiménez 2017).

4. Scaling laws for the energy dissipation rate
The analysis for the integral length scales in the previous section has identified two

regimes in our dataset. Whereas the group of runs R1 display a dynamics similar
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FIGURE 7. Time evolution of (a) box-averaged kinetic energy K and (b) energy
dissipation rate εν . (c) The ratio between the normal (εν,⊥) and parallel (εν,‖) energy
dissipation rates; (d) the data from panel (c) averaged over the interval 15τf < t < 30τf
and in terms of Roε.

to homogeneous isotropic turbulence with no characteristic growth of `‖, runs in the
group R2 are characterized by strong anisotropy and γ > 0. In this section, we present
results for the evolution of the energy dissipation rate and seek similarity relations that
can collapse the data in the different regimes.

After the onset of rotation, both K and εν evolve in time according to the
conservation of energy, i.e. dK/dt=−εν + εI . While K grows rapidly (figure 7a), the
viscous dissipation εν first decreases monotonically until a minimum (figure 7b). The
minimum value decreases with Roε, and for the runs of group R2 it scales with Ro0.36

ε

(not shown). After reaching its lowest value, εν continues to grow towards the power
input εI , although the inequality εν <εI remains for some of the cases up to the final
simulation time. Generally speaking, the mismatch between the energy dissipation
rate and the energy input rate in figure 7(b) is stronger for small Roε (group R2).
For the runs in this group, we also observe that the parallel direction contributes
significantly to εν (figure 7c). By splitting the energy dissipation rate into its normal
and parallel contributions such that εν = 2εν,⊥ + εν,‖, where εν,⊥ = (εν,11 + εν,22)/2
and εν,‖ = εν,33, we find that, for decreasing Roε, the contribution due to the parallel
direction increases, whereas for large Roε the energy dissipation rate is equally
partitioned among both directions. For instance, for Roε = 1.54 the ratio εν,⊥/εν,‖ is
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close to 1, while for Roε = 0.06 almost half of the total dissipation stems from εν,‖.
In figure 7(c), we also note that εν,⊥/εν,‖ remains approximately unchanged in time
for t> 15τf . Averaging εν,⊥/εν,‖ (figure 7d) in the interval 15τf < t< 30τf shows that
εν,⊥/εν,‖ scales with Ro0.37

ε for 0.31 < Roε < 0.14, while for smaller Roε the ratio
between normal and parallel dissipation rates seems to reach an asymptotic limit of
0.54 for Roε < 0.9. The latter finding, however, needs to be confirmed by studies at
even lower Roε.

The imbalance εν 6= εI is the footprint of an inverse energy cascade that is triggered
by the Coriolis force, and that leads to the accumulation of energy at the large scales.
This is expected to occur when Roε is below a critical Rossby number that depends
on the geometrical dimensions of the system (Smith, Chasnov & Waleffe 1996;
Deusebio et al. 2014; Pestana & Hickel 2019b). In such cases, however, equilibrium
(εν = εI) can still be restored after long integration times when the energy in the
wavenumbers κ < κf is sufficiently high to contribute to εν (Valente & Dallas 2017;
Seshasayanan & Alexakis 2018). For the runs considered in this study, the critical
Roε is approximately 1, as shown in Pestana & Hickel (2019b).

From figure 7(b), it is evident that a naive scaling in terms of the forcing parameters
cannot cause the different lines in figure 7(b) to collapse, as it would in homogeneous
isotropic turbulence. In other words, an approximation of εν in terms of uf and κf
is invalid because the evolution of εν in figure 7(b) depends clearly on Roε. In
homogeneous isotropic turbulence, the estimation εν ∼ u3

f κf suffices since both uf and
1/κf are proportional to a characteristic velocity and a characteristic length, and this
expression is equivalent to εν ∼ (u′iso)3/`iso. We must therefore search for other ways
to approximate εν in rotating turbulence.

4.1. Spectral transfer time
To address this problem, we followed the methodology introduced by Kraichnan
(1965) within the context of MHD and bridged by Zhou (1995) to homogeneous
rotating flows. The basic idea is that the rate at which energy is transferred to the
smaller scales depends on an energy content and on a time scale, viz. the spectral
transfer time. If we treat the characteristic scales as global quantities instead of
being wavenumber-dependent, the dissipation law can be written in terms of the r.m.s.
velocity and the spectral transfer time as

εν ∼
u′2

τs
. (4.1)

The spectral transfer time, however, is composed of two additional time scales,
namely the nonlinear time scale τnl and the relaxation time scale τ3. Whereas τnl
indicates how fast the triple velocity correlations are built up and favours the forward
energy cascade, τ3 serves as a relaxation time or a measure of how fast the triple
velocity correlations are destroyed. The assumptions that the energy dissipation rate
εν is directly proportional to τ3 and that the energy cascade is local lead to the
so-called ‘golden rule’ (Zhou 1995):

τs ∼
τ 2

nl

τ3
. (4.2)

In (4.2), τnl involves a velocity and a length scale and τ3 can rest on any other
time scales that are relevant for the problem. For instance, in forced homogeneous
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isotropic flows, τ3∼ τf ∼ τnl∼ `
iso/u′iso, which implies τs∼ `

iso/u′iso to recover the well-
known dissipation law εν ∼ (u′iso)3/`iso, extensively verified by DNS and experiments.
For more complex flows, which involve other time scales like rotating turbulence with
the rotation time scale τΩ = 1/(2Ω), the relaxation time scale τ3 can be assumed as a
function of the type τ3 = τ3(τf , τΩ) (Kraichnan 1965; Matthaeus & Zhou 1989; Zhou
1995). Combining (4.1) and (4.2) leads to

εν ∼ u′2
(
τ3

τ 2
nl

)
, (4.3)

and the problem of determining the dissipation law becomes the one of determining
τnl and τ3.

4.2. Evaluation of current available dissipation laws
In the current literature, a few dissipation laws for homogeneous rotating turbulence
have been proposed. For example, the approximations that follow from the theory
of Zhou (1995), Galtier (2003), Nazarenko & Schekochihin (2011) and Baqui &
Davidson (2015) are

εν ∼
u′4

Ω`2
, εν ∼

u′4`‖
Ω`3
⊥

, εν ∼
u′3

`⊥
and εν ∼

u′3

`‖
, (4.4a−d)

respectively. Although these authors do not explicitly present their theories within the
framework of a spectral transfer time, we have taken the freedom to also summarize
the theories within this context.

The law proposed by Zhou (1995), for instance, ignores anisotropy. It assumes
that τnl ∼ `/u′ and that the relaxation time scale is proportional to the rotation time
scale, i.e. τ3 ∼ τΩ , to yield εν ∼ u′4/(Ω`2). In contrast, dimensional analysis for
the weak inertial-wave theory proposed by Galtier (2003), which takes into account
scale anisotropy, results in εν ∼ u′4`‖/(Ω`3

⊥
), where τnl ∼ `⊥/u′ and τ3 ∼ `‖/(Ω`⊥).

When anisotropy is disregarded, however, i.e. `∼ `‖ ∼ `⊥, the predictions by Galtier
(2003) reduce to the relation proposed by Zhou (1995). The critical balance theory
of Nazarenko & Schekochihin (2011) considers that τnl ∼ τ3 ∼ `⊥/u′ and the theory
of Baqui & Davidson (2015) suggests that τnl ∼ τ3 ∼ `‖/u′.

When we apply the scaling laws in (4.4) to the data presented in figure 7(b),
we find a good match for the runs in group R1. In figures 8 and 9, we scale εν
with the different laws; figure 9 shows the inverse of what appears in figure 8.
We present the results in this manner in order to provide a fair treatment and avoid
misinterpretations from arbitrary choice of the axis limits, which can increase/decrease
the spread between the lines.

By comparing figures 8(a) and 9(a), we see that the approximation suggested by
Zhou (1995) cannot collapse the data. Whereas the data for the group R2 appears
close to straight lines in figure 9(a), figure 8(a) shows that they diverge and instead
increase in time. For large Roε, however, both figures show straight lines, suggesting a
correction factor in terms of Roε. For the weak inertial-wave theory, figure 8(b) shows
that the curves of the last five runs in group R2 (lowest Roε) seem to follow a similar
trend. This behaviour, however, is not observed in figure 9(b), which shows that these
lines actually increase in time with approximately the same slope. For the runs in
group R1, figure 9(b) shows a reasonable collapse of the data, which is, however,
opposed by figure 8(b). The predictions by Nazarenko & Schekochihin (2011) in
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FIGURE 8. Compensated time evolution of the energy dissipation rate for 0.06 6 Roε 6
1.54. The various panels correspond to the different scaling laws found in the literature:
(a) Zhou (1995); (b) weak inertial-wave theory of Galtier (2003); (c) critical balance
theory of Nazarenko & Schekochihin (2011); and (d) Baqui & Davidson (2015).

figures 8(c) and 9(c) show that, for large Roε, the curves are flat and tend closer to
each other. This is expected, as `⊥ must tend to `iso for large Roε, and in this limit
the dissipation law of homogeneous isotropic turbulence is recovered. For small Roε,
this scaling delivers approximately straight lines in both diagrams, which suggests
that a correction in terms of Roε might also be possible.
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FIGURE 9. Compensated time evolution of the energy dissipation rate as in figure 8, but
plotted as the inverse. The various panels correspond to the different scaling laws found in
the literature: (a) Zhou (1995); (b) weak inertial-wave theory of Galtier (2003); (c) critical
balance theory of Nazarenko & Schekochihin (2011); and (d) Baqui & Davidson (2015).

The best approximation, at least for part of the dataset (group R1), is obtained with
the scaling law of Baqui & Davidson (2015). Figures 8(d) and 9(d) indicate that this
scaling is suitable for the runs in group R1 (indicated with an arrow in the figures).
For the other runs (group R2), figures 8(d) and 9(d) also provide unsatisfactory results.
We are then motivated to look into a similarity law for this group of runs.
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4.3. A dissipation scaling law for runs in group R2
To find a dissipation law for runs in group R2, we base ourselves on (4.3). The first
question we turn to is the one of finding an approximation for τnl. The nonlinear time
scale involves an estimation of a velocity and a length scale, which we shall assume
as u′ and `⊥, respectively. The reason behind this choice goes as follows. From
figures 5(d) and 7(b), we observe that `⊥ and εν display similar dynamics, although
inverse; the evolution of each variable is the opposite of the other. This behaviour
hints at a dependence of the form εν ∼ 1/`⊥, which can also be justified like in
the critical balance theory (Nazarenko & Schekochihin 2011). Within this theory, the
basic idea is that rotation tends to destroy derivatives along the direction of rotation,
and the advection term is mainly due to the normal velocity gradients and the
normal velocity field. Thus, `⊥ is taken as the relevant length scale for the nonlinear
interactions. On the other hand, for the velocity scale, an alternative would be to
take information about the transverse velocity fields only as in Baqui & Davidson
(2015). Nevertheless, although rotation favours two-dimensionalization, the velocity
field remains three-component and the anisotropy in the Reynolds stress tensor is
minimal (Yeung & Zhou 1998). For the above reasons, we assume τnl ∼ `⊥/u′, and
in a preliminary step (4.3) can be expressed as

εν ∼
u′4

`2
⊥

τ3(τf , τΩ). (4.5)

Now, to determine the relaxation time scale, we rearrange (4.5) so that τ3 appears
as a function of the other terms and we examine its temporal evolution. Figure 10(a)
shows τ3 ∼ εν `

2
⊥
/u′4 over time for all runs. After a transient of approximately 10τf ,

we observe that the curves for different Roε reach a plateau, with a terminal value
that depends on Roε. To determine this dependence, results from figure 10(a) are
then averaged in the interval 10τf < t < 30τf and the mean value is shown against
the corresponding Rossby number in figure 10(b). In the latter, the ordinates appear
normalized by the nonlinear time scale τ iso

nl times Ciso
ε , which is the constant of

proportionality of the dissipation law in homogeneous isotropic turbulence. For
runs in group R1, τ3/(τ

iso
nl Ciso

ε ) increases with Roε and asymptotically approaches 1,
implying that for these Roε the effects of rotation are negligible and the scaling law
of homogeneous isotropic turbulence is recovered. Contrarily, and more surprising,
we see that τ3/(τ

iso
nl Ciso

ε ) follows the power law Roh
ε with h = 0.62 for the runs in

group R2. Consequently, for this group, we can finally express (4.5) as

εν ∼
u′4

`2
⊥

(τ iso
nl Ro0.62

ε )∼
u′3

`⊥

[(
τ iso

nl

τnl

)
Ro0.62

ε

]
. (4.6)

Equation (4.6) summarizes the effects of rotation for the runs with 0.06 6 Roε 6
0.31, and suggests that, in a rotating frame of reference, the disparity between τnl
and τ iso

nl increases, such that the ratio (τnl/τ
iso
nl ) shrinks with the inverse of Ro0.62

ε . In
other words, equation (4.6) implies that the relaxation time scale is τ3 ∼ τ

iso
nl Ro0.62

ε .
Finally, scaling the data in figure 7(b) with (4.6) leads to figure 11, where very good
agreement is found for all the cases in group R2.

4.4. Energy spectra
With a dissipation law at hand, phenomenological arguments can be further employed
to obtain predictions for the scaling exponents of the different energy spectra. In fact,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

97
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.976


Rossby-number effects in homogeneous rotating turbulence 885 A7-19

10010-1

1.0

0.8

0.6

0.4

0.2

RoÓ
0.62

0 10 20 30

RoÓ

t/†f

0.08

0.06

0.04

0.02

Ó ˜
 ¶2 ⊥

/u
�4

† 3
/(

† n
l  

 C
Óiso

)
iso

RoÓ
(a)

(b)

FIGURE 10. Decorrelation (relaxation) time scale τ3: (a) as a function of time and
(b) averaged over the interval 10 6 t 6 30τf and normalized by the nonlinear time scale
τ iso

nl times the proportionality constant Ciso
ε . Two reference lines are included in panel (b).

The horizontal line at the top signals that, for large Roε, the relaxation time scale tends
to the value of the nonlinear time scale of the homogeneous isotropic case. The other line
shows the power-law dependence of the type Roh

ε with h= 0.62 for runs of the group R2.

the different theories presented in (4.4) are associated with predictions for the kinetic
energy spectra. Strictly speaking, the validation of scaling laws for the energy spectra
requires data with a well-defined inertial range, in which the spectral energy flux is
constant and equals εν for a wide range of wavenumbers. In our runs, the latter does
not apply due to the relatively low Reλ (see figure 12).

If we assume that the energy cascade is local, dimensional analysis leads to (Zhou
1995)

εν ∼

(
τ3

τ 2
nl

)
κ‖κ⊥E(κ⊥, κ‖). (4.7)

In the equation above, the energy content of a scale of typical size ` ∼ 1/κ was
assumed to be of the order of κ‖κ⊥E(κ⊥, κ‖), where E(κ⊥, κ‖) is the energy
spectrum and κ⊥ and κ‖ are the wavenumbers in the normal and longitudinal
directions, respectively. Using (4.6) and (4.7), we obtain E(κ⊥, κ‖) ∼ Bκ−2

⊥ κ
−1
‖ , with
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FIGURE 11. Time evolution of the energy dissipation rate scaled according to (4.6) for
0.06 6 Roε 6 0.31.

B = (ενRo−0.62
ε /τ iso

nl )
1/2, whereas the weak inertial-wave theory of Galtier (2003)

predicts that E(k⊥, k‖)∼ k−5/2
⊥ k−1/2

‖ .
A least-squares fit for the case with Roε = 0.31 indicates that E(κ⊥) varies with

κ−2.54
⊥ in the range 1.2< κ⊥/κf < 6 (figure 12d), and that E(κ‖) varies with κ−0.48

‖ in
the range 0.05<κ‖/κf < 0.8 (figure 12f ). The exponents, however, increase with Roε:
for Roε = 0.3 (largest Roε displayed on the right-hand panels of figure 12), we find
that in the same range E(κ⊥) varies with κ−2.17

⊥ and that E(κ‖) changes with κ−0.34
‖ .

For the runs of group R1, we do not observe any significant changes with respect
to the initial isotropic energy spectrum. Differently from the runs in R2, where there
is a substantial accumulation of energy for κ < κf (see e.g. figure 12b), the energy
spectra for runs in group R1 are marginally altered with respect to the isotropic initial
conditions (see left-hand panels in figure 12). There is also no wavenumber range with
a distinctive scaling, apart from the range κ <κf , which scales approximately with κ2,
as in the initial isotropic conditions (Dallas, Fauve & Alexakis 2015).

5. Conclusions

We have investigated the effects of system rotation with Rossby numbers in
the range 0.06 6 Roε 6 1.54 on the evolution of an initial cloud of isotropic eddies.
Differently from other studies, which have focused on the initial transient immediately
after the onset of rotation, we have focused instead on longer time intervals. This was
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FIGURE 12. Energy spectra at the last instant of time, i.e. t= 30τf , for every other case
in table 2: (a,c,e) cases of group R1, and (b,d, f ) cases of group R2. (a,b) Spherical
energy spectra; (c,d) normal energy spectra; and (e, f ) longitudinal energy spectra. The
grey dashed line ( ) represents the initial isotropic state. Colour map is as in table 2.

only possible because our DNS were carried out in elongated domains, which were
340 times larger than the initial characteristic eddy size.

The classical pictures of rotating turbulence were reproduced, in which we observed
the formation of columnar eddies along the axis of rotation and a decrease in the
energy dissipation rate. However, by following the evolution of the integral length
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scales, we identified different dynamics that were shown to depend on Roε. This led us
to separate our dataset into two groups. While the runs in group R1 did not show any
pronounced sign of growth in the integral length scales, for the runs in group R2, `‖
grew substantially and approximately linearly with time. The latter group of runs can
therefore be associated with a regime where the formation of columns predominates,
whereas runs of group R1 are closer to homogeneous isotropic turbulence. Further, we
found that the growth rate of the columnar eddies in group R2 depends exponentially
on Roε, i.e. γ = a exp(b Roε), with a= 3.90 and b=−16.72.

The energy dissipation rate in the group of runs R1 is well approximated by the
scaling law proposed in Baqui & Davidson (2015). For the group R2, which consists
of runs at lower Roε, we have shown that the scaling laws currently available in the
literature fail to approximate εν . Still, we were able to find a similarity relation for
εν in the range 0.06 6 Roε 6 0.31 by applying the ideas introduced by Kraichnan
(1965), in which the spectral transfer time is regarded as composed of two opposing
time scales. First, by observing the inverse relation between `⊥ and εν , we assumed
that `⊥ was the relevant length scale to form τnl. Second, the relaxation time scale
τ3 was shown to depend on a power law of Roε and on τ iso

nl , which implies that
it is exclusively a function of Roε and of the forcing parameters κf and uf . Thus,
we arrived at a similarity law for this Roε range. Scaling εν with (u′4Ro0.62

ε τ iso
nl )/`

2
⊥

collapsed the data for different Roε into a single curve.
Last, we would like to remark that the results for the case where the rotation rate

is highest, i.e. Roε = 0.06, were verified by increasing the numerical resolution and
the domain size by a factor of two in the direction of rotation. However, whether
other dynamics emerge at even lower Roε and the effects of Reε remain to be studied.
In any case, we hope our numerical investigation contributes to the improvement of
turbulence models and stimulates future studies to elucidate and quantify the effects
of the Coriolis force on the evolution of a cloud of isotropic eddies in unbounded
domains.
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