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In homogeneous isotropic turbulence, slender rods are known to align with the Lagrangian
stretching direction. However, how the degree of alignment depends on the aspect ratio
of the rod is not understood. Moreover, particle-laden flows are often anisotropic and
inhomogeneous. Therefore we study the alignment of rods with the Lagrangian stretching
direction in a channel flow, which is approximately homogeneous and isotropic near
the centre but inhomogeneous and anisotropic near the walls. Our main question is
how the distribution of relative angles between a rod and the Lagrangian stretching
direction depends on the aspect ratio of the rod and upon the distance of the rod
from the channel wall. We find that this distribution exhibits two regimes: a plateau
at small angles corresponding to random uncorrelated motion, and power-law tails due
to large excursions. We find that slender rods near the channel centre align better with
the Lagrangian stretching direction compared with those near the channel wall. These
observations are explained in terms of simple statistical models based on Jeffery’s
equation, qualitatively near the channel centre and quantitatively near the channel wall.
Lastly we discuss the consequences of our results for the distribution of relative angles
between the orientations of nearby rods (Zhao et al., Phys. Rev. Fluids, vol. 4, 2019,
054602).

Key words: particle/fluid flow, turbulence simulation

1. Introduction

The angular dynamics of small non-spherical particles advected in turbulence and other
mixing flows is a subject of significant recent interest (Wilkinson, Bezuglyy & Mehlig
2009; Parsa et al. 2012; Chevillard & Meneveau 2013; Gustavsson, Einarsson & Mehlig
2014; Ni, Ouelette & Voth 2014; Byron et al. 2015; Zhao et al. 2015; Einarsson et al. 2016;
Hejazi, Mehlig & Voth 2017; Voth & Soldati 2017; Zhao et al. 2019). In these studies it
is assumed that the particles are small enough so that inertial effects can be neglected
(Subramanian & Koch 2005; Einarsson, Angilella & Mehlig 2014; Einarsson et al. 2015;
Rosén et al. 2015), but the particles are large enough to neglect rotational diffusion
(Hinch & Leal 1972). In this creeping-flow limit, the equation of motion for the angular
dynamics was derived by Jeffery (1922). Jeffery’s theory describes the angular dynamics
of spheroidal particles in terms of their shape and the local fluid-velocity gradients.
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It is usually assumed that the particles are axisymmetric, which means that they have
an axis of continuous rotational symmetry, and that they possess fore-and-aft symmetry.
In this case the main interest lies in the dynamics of the director n that points along
the symmetry axis of the particle. The question is how it tumbles in response to the
fluid-velocity gradients. How such particles spin around their symmetry axis n is usually
not considered. One reason is that the spin is more difficult to measure in experiments, for
axisymmetric particles.

The shape of an axisymmetric particle with fore-and-aft symmetry is parameterised by
its aspect ratio λ = a/b, defined here as the ratio of the symmetry-axis length 2a to the
diameter 2b of the particle. Prolate particles have λ > 1 while oblate particles have λ < 1.
Jeffery considered spheroids (amongst other shapes), and showed that particle shape enters
the angular dynamics in the creeping-flow limit only through the shape parameter (Jeffery
1922; Bretherton 1962)

Λ = λ
2 − 1
λ2 + 1

. (1.1)

The shape parameters Λ = 0, 1,−1 correspond to spherical particles, infinitely slender
rods and infinitely thin discs, respectively.

The studies of particles in turbulence mentioned above refer to homogeneous and
isotropic turbulent flows, or to statistical models for such flows. Due to isotropy, such
flows do not possess a preferred orientation in the laboratory frame. But it turns out
that the particles align with local directions in the flow in intricate ways, not all of them
fully understood. Pumir & Wilkinson (2011) used direct numerical simulation (DNS) of
homogeneous, isotropic turbulence to show that infinitely slender particles tend to align
with the fluid vorticity vector. The vorticity vector is defined as the curl of the fluid
velocity. Many authors (Guala et al. 2005; Pumir & Wilkinson 2011; Parsa et al. 2012;
Chevillard & Meneveau 2013; Gustavsson et al. 2014; Ni et al. 2014) have analysed how
vorticity and slender particles align with the orthogonal system of eigenvectors of the
local fluid strain-rate matrix. These studies show that both slender particles, and vorticity,
align weakly with this frame. Of the three eigenvectors, a slender rod aligns best with
the intermediate eigenvector, to a lesser extent with the maximal eigenvector, and almost
orthogonal to the minimal eigenvector. This result is surprising because it is natural to
expect a slender particle to align best with the maximal eigendirection. This puzzle was
resolved by Xu, Pumir & Bodenschatz (2011) who explained that the orientation of an
infinitely slender particle tends to follow the maximal eigendirection of the strain-rate
matrix, but that the eigensystem of the strain-rate matrix rotates away as the slender
particle turns. In other words, non-intuitive alignment with respect to the eigensystem
of the strain-rate matrix is a consequence of the fact that the time scales of the turbulent
dynamics and that of the orientation of infinitely slender rods are similar.

A third local reference frame is formed by the principal axes of deformation of a fluid
element. An infinitesimal, spherical volume of fluid deforms with time into an ellipsoid.
The principal axes of this ellipsoid form an orthogonal coordinate system. The principal
axis corresponding to the direction of largest stretching defines the Lagrangian stretching
direction. The alignment of the Lagrangian stretching direction has been investigated in
the frame of the eigenvectors of the fluid strain-rate matrix. Girimaji & Pope (1990) found
imperfect alignment of the Lagrangian stretching direction with the maximal eigenvector
of the fluid strain-rate matrix. This was because the eigenvectors of the strain-rate
themselves rotated with time (Drummond & Münch 1990; Girimaji & Pope 1990; She
et al. 1991). The DNS results of Johnson et al. (2017) showed that near the centre of
a turbulent channel flow, similar to homogeneous, isotropic turbulence, the Lagrangian
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stretching direction aligns best with the intermediate eigenvector of the strain-rate matrix.
Near the channel wall, however, the alignment is strongest with the maximal eigenvector.

Compared to vorticity and the eigensystem of the strain-rate matrix, a simpler picture
emerges if one describes local alignment of the rod direction with the eigensystem of the
left Cauchy–Green tensor (Wilkinson et al. 2009; Bezuglyy, Mehlig & Wilkinson 2010;
Wilkinson, Bezuglyy & Mehlig 2011; Ni et al. 2014; Hejazi et al. 2017). There are two
reasons for this simplicity. First, the direction of infinitely slender rods must converge
to the leading eigenvector of the left Cauchy–Green tensor, and second, even though
the eigenvalues of this tensor are not statistically stationary, the eigenvectors become
independent of the initial conditions after an initial transient (Batchelor 1952; Balkovsky
& Fouxon 1999).

One recurring observation is that the alignment of axisymmetric particles in
homogeneous and isotropic turbulent flows is quite insensitive to particle shape for values
of |Λ| close to unity. Parsa et al. (2012), for instance, showed (see figure 3c in that paper)
that the root mean square tumbling rate 〈|ṅ|2〉 in turbulence becomes roughly independent
of shape for |Λ| > 0.8. Ni et al. (2014) showed that slender rods with aspect ratio λ = 20
(Λ = 0.995) follow the Lagrangian stretching direction of the turbulent flow quite closely,
see figure 1(a) in that paper. Parsa et al. (2011) concluded that in two-dimensional chaotic
flows, rods preferentially align with the Lagrangian stretching direction, and that the
alignment is nearly independent of the length of the rods. Related conclusions have
been drawn for active particles. Dehkharghani et al. (2019) considered motile bacteria
with effective aspect ratio λ = 10 in an inhomogeneous flow, with discrete translational
symmetry, and used the Lagrangian stretching direction as a proxy for orientational
alignment of the slender bacteria. Borgnino et al. (2019) found that active particles such
as motile bacteria tend to align with the instantaneous fluid velocity. The conclusion is,
in other words, that slender rods align well with the Lagrangian stretching direction, and
that the alignment is not very sensitive to their aspect ratio in homogeneous isotropic
turbulence. However, the precise dependence of this alignment on the shape parameter of
the particle is not understood.

The presence of bounding walls for turbulent flows, however, breaks homogeneity and
isotropy. A natural question to ask is how the presence of walls affects the alignment
behaviour of slender rods? Zhao & Andersson (2016) found that elongated rods in a
turbulent channel flow align preferentially with the Lagrangian stretching direction, but
that the orientation and rotation behaviours appear to depend quite sensitively upon the
aspect ratio near the wall (Challabotla, Zhao & Andersson 2015; Zhao et al. 2015). Several
authors have analysed how the orientation of slender rods aligns with the laboratory-fixed
basis of a turbulent channel flow. The results were summarised by Voth & Soldati (2017).
Briefly, in the near-wall turbulence the slender rods were found to preferentially align
in the streamwise direction (Mortensen et al. 2008; Marchioli, Fantoni & Soldati 2010)
but thin disks tend to align in the wall-normal direction (Zhao & Andersson 2016). But
near the channel wall vorticity aligns preferentially with the spanwise direction due to the
presence of mean shear (Zhao & Andersson 2016) and thus does not describe alignment of
slender rods. In the case of turbulent channel flows, precisely which mechanisms lead to
alignment between slender rods and the Lagrangian stretching direction is not understood.
Similar to the case of homogeneous, isotropic turbulence, another open question is how
the alignment depends on the shape parameter of the particle.

One motivation for studying particles in a turbulent channel flow is that this problem
is relevant for industrial applications. An example is the flow of fibre suspensions in
papermaking (Lundell, Söderberg & Alfredsson 2011). Such fibres are typically very
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slender. The fibres in the experimental study of Carlsson, Söderberg & Lundell (2010) are
0.7 mm long on average, with average diameter 18 μm. This corresponds to Λ = 0.999,
very close to unity. Further, industrial flows are usually inhomogeneous and lack isotropy,
certainly near the walls that contain them. In a turbulent channel flow near the channel
centre the turbulent velocity-gradient fluctuations are approximately homogeneous and
isotropic, but near the wall the fluid velocity-gradient fluctuations are anisotropic in
addition to having a large mean shear component.

We therefore investigate the alignment statistics of relative angles between a small
slender rod and the Lagrangian stretching direction in a turbulent channel flow. We
study how the distribution of relative angles depends on the particle aspect ratio and
on the distance of the particle from the channel wall. Our numerical studies employ
DNS of a turbulent channel flow with a friction Reynolds number Reτ = 180 (Challabotla
et al. 2015).

Overall we find that the distribution of relative angles between the orientation of a
slender rod and the Lagrangian stretching direction has a power-law tail for large angles,
cut off by a plateau of width δΛ = 1 −Λ at small angles. Since we consider directors
symmetric under reflection, the relative angle is bounded between −π/2 and +π/2. This
means that a clear power-law tail is observed only when δΛ � π/2. In fact, for the largest
value δΛ = 0.1 which we have considered, the power-law tails are not so clear. When the
relative angular separation between a thin rod and the Lagrangian stretching direction is
small, the orientations of the two are essentially uncorrelated. However, in rare cases, the
relative angle can show excursions to large angles followed by relaxation back to small
angles. These large excursions give rise to power-law tails in the distribution of the angle
between the rod orientation and the Lagrangian stretching direction. The width of the
plateau describes the variance of the relative angles and depends on the shape parameter,
Λ, of the rod as well as the distance of the particle from the channel wall. For the same
shape parameter Λ, we find that the plateau is broader near the channel wall than near
the channel centre, indicating that a slender rod exhibits stronger alignment with the
Lagrangian stretching direction near the channel centre than near the channel wall.

We explain the observations using idealised statistical models for relative angles based
on Jeffery’s equation. The models assume that the fluid-velocity gradients experienced by
the tracer rod fluctuate rapidly (Gustavsson et al. 2016). This white-noise limit has also
proved useful in understanding the dynamics of relative separations of spherical particles
in turbulence (see Gustavsson et al. (2016) for a review) and has been used to study
relative angles between nearby rods in turbulence (Zhao et al. 2019). In turbulence, near the
channel centre, the fluid-velocity gradients fluctuate on the same time scale as the angular
dynamics of slender rods. Yet, our approximation preserves the qualitative behaviour of
relative angle dynamics because the time scale of particle angular dynamics and the
Lagrangian stretching direction are independent of the time scale of velocity-gradient
fluctuations. However, our model for the channel centre is two-dimensional, and so it
is merely a caricature of the complete three-dimensional problem. By contrast, near the
channel wall, the white-noise limit turns out to be a good approximation due to the
slow angular dynamics of slender rods in strong mean shear. This allows us to obtain
quantitatively accurate results. Our models are obtained by linearising the equations
of motion in the relative angle, and thus are subject to the regime of validity of this
assumption. Near the channel centre we find the model works well up to δΛ ∼ O(10−1).
Near the channel wall, the regime of validity is described by the ratio of the strength of
velocity-gradient fluctuations to the mean shear-rate.

The equation of motion that we obtain for the relative angle is analogous to a stochastic
differential equation with additive and multiplicative noises. Mathematically, the observed
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plateau and power-law tails are a consequence of the additive and multiplicative terms,
respectively (Kesten 1973; Deutsch 1994; Gustavsson, Mehlig & Wilkinson 2015).
However, the physical mechanism leading to large excursions near the channel centre
is completely different from the mechanism near the channel wall. Near the channel
centre the relative angular dynamics are purely diffusive. The corresponding diffusion
coefficient increases with the angular separation. Near the channel wall, on the other hand,
the dynamics are a result of the weak velocity-gradient fluctuations and the strong mean
shear. The weak velocity-gradient fluctuations modify both the width of the plateau and
the power-law exponent in the steady-state distribution of relative angles compared with
the case of shear without fluctuations.

The remainder of this paper is organised as follows. In § 2 we briefly describe the
background, explaining what is known about the alignment of rods in turbulent flows,
introducing our notation and describing the numerical method for DNS of channel flow.
Section 3 summarises the results of our DNS studies, characterising the alignment of the
particle-orientation vector n with the Lagrangian stretching direction near the channel
centre and near the wall. In § 4 we explain the observations near the channel centre
qualitatively, and near the channel wall quantitatively by using simple models based on
Jeffery’s equation. In § 5 we discuss the consequences of our findings for the problem of
angular structure functions. Section 6, finally, contains our conclusions.

2. Background

2.1. Angular dynamics of axisymmetric particles in turbulence
The centre of mass of small inertialess particles simply follows the flow

ẋ = u(x(t), t), (2.1)

assuming that spatial diffusion is negligible. Here x(t) is the centre of mass position of the
particle at time t, and u(x(t), t) is the fluid velocity at the particle position at time t. The
orientation n of an axisymmetric, rigid particle with shape parameter Λ follows Jeffery’s
equation (Jeffery 1922)

ṅ = B(x(t), t)n − [n · B(x(t), t)n]n, (2.2)

with B = O +ΛS, where O and S are the antisymmetric and symmetric parts of the
fluid-gradient matrix A.

As mentioned in the introduction, effects of rotational diffusion and rotational inertia
are neglected in Jeffery’s theory. We note that (2.2) holds not only for particles with
continuous rotational symmetry, but also for crystals with discrete point-group symmetries
(Fries, Einarsson & Mehlig 2017; Fries et al. 2018), although there is no general formula
for the parameter Λ in terms of particle dimensions and shape.

In order to obtain the Lagrangian stretching direction, first one defines the deformation
tensor D as the solution of the differential equation

d
dt

D(t) = A(t)D(t), with initial condition D(0) = 1. (2.3)

The left Cauchy–Green tensor M(t) is then formed as M = DDT. The tensor
M(t) is symmetric with eigenvalues σ1(t) > σ2(t) > σ3(t) > 0, and eigenvectors
êL1(t), êL2(t), êL3(t). The leading eigenvector êL1(t) corresponding to the largest eigenvalue
σ1 is called Lagrangian stretching direction, while the eigenvector êL3 corresponding to the
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smallest eigenvalue σ3 is the compressing direction. The middle eigenvector, êL2, forms an
orthonormal coordinate system with the other two. In the case of an incompressible flow,
TrA = 0 so that the eigenvalues of the left Cauchy–Green tensor satisfy σ1σ2σ3 = 1. In
the long-time limit, the equation of motion of the Lagrangian stretching direction êL1(t)
(Balkovsky & Fouxon 1999) reduces to the equation for n(t) given by (2.2) for an infinitely
slender rod,Λ = 1. Further, in the long-time limit, an infinitely slender rod aligns perfectly
with the Lagrangian stretching direction.

But how well do rods with finite aspect ratios follow the Lagrangian stretching direction?
In other words, how sensitive is the angular dynamics to small deviations δΛ from
Λ = 1? To quantify this we compute the steady-state distribution of the Euler angles α
and β that quantify the angular separations between the orientation vector n and êL1 in
the êL1–êL3 plane (yaw) and out of the êL1–êL3 plane (pitch), respectively, as shown in
figure 1(a). The surface element for the angles α, β on the unit sphere is cosβ dα dβ. Thus,
a uniform distribution of orientations on the unit sphere corresponds to P(α, β) ∝ cosβ.
Consequently, the uniform marginal distributions corresponding to angles α and β are
P(α) = const. and P(β) ∝ cosβ, respectively. Note that for β � 1, cosβ ≈ 1 and thus for
angles smaller than order unity, one may safely approximate P(β) ∼ const. as the reference
uniform distribution of the angle β.

In the laboratory frame of the turbulent channel flow, we define x̂ to be the flow
direction, ŷ to be the spanwise direction and ẑ to be the wall-normal direction. Euler
angles θ and φ are defined, respectively, as the angle between the orientation vector n
and the x̂–ẑ plane, and the angle between the projection of n in the x̂–ẑ plane and x̂, see
figure 1(b).

We define two different coordinate systems because even though the goal is to
understand angular dynamics in the frame defined by the eigenvectors of the left
Cauchy–Green tensor, statistical model calculations are more tractable in the laboratory
frame. All DNS results compute the distributions of angles α, β directly. In § 4, we use
statistical models to analytically understand the distributions of relative angles. Near
the channel centre we use a two-dimensional toy model to analytically calculate the
distribution of the angle α. Near the channel wall we compute the joint distribution of
φ, δφ for a simple statistical model.

2.2. DNS of channel flow
We perform DNS of a turbulent channel flow at Reτ = 180. The friction Reynolds number
is defined as Reτ = huτ /ν, where h is the channel half-height, uτ is the wall friction
velocity and ν is the kinematic viscosity of the fluid. We choose a domain of size
12h × 6h × 2h with 192 grid points in the streamwise (x̂), spanwise ( ŷ) and wall-normal
(ẑ) directions, respectively. Periodic boundary conditions are imposed in the homogeneous
x̂ and ŷ directions and the no-slip and impermeability conditions are imposed at the walls.
In the following, the subscript + denotes normalisation by the viscous scales, i.e. the
viscous length scale ν/uτ and viscous time scale ν/u2

τ . The corresponding grid resolution
is uniform in the streamwise and spanwise directions, with grid spacings Δx+ = 11.3 and
Δy+ = 5.6. The grid in the wall-normal direction is refined near the wall, and the spacing
Δz+ is 0.9 at the channel walls, but increases to 2.86 at channel centre. A pseudo-spectral
method is applied along the homogeneous directions and a second-order finite-difference
discretisation is used in the wall-normal direction. Time integration is performed using
a second-order explicit Adams–Bashforth scheme with time step Δt+ = 0.036 (Zhao &
Andersson 2016).
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n

êL2

êL1

êL3

α
β

n

ŷ

x̂

ẑ

φ
θ

(b)(a)

FIGURE 1. Euler angles used in analysing the alignment of the particle-symmetry vector n.
(a) Coordinate system defined by the eigenvectors êL1(t), êL2(t) and êL3(t) of the left
Cauchy–Green tensor M(t). Here êL1 and êL3 are the expanding and contracting directions, while
êL2 is chosen to keep the coordinate system right-handed, and α, β are Euler angles in this
reference frame. (b) Fixed Cartesian channel-coordinate system with basis vectors x̂, ŷ and ẑ.
Here x̂ is the streamwise direction, ŷ the spanwise, and ẑ the wall-normal direction of the channel
flow. The Euler angles are φ and θ .

Our simulations show nearly homogeneous and isotropic turbulence near the channel
centre (Andersson, Zhao & Variano 2015). Near the channel wall, however, the flow is
anisotropic (Mansour, Kim & Moin 1988; Pumir 2017). In particular, the no-slip boundary
conditions induce a large mean shear near the wall and low/high speed streaks are
formed in the near-wall region and have been observed in both experiment and numerical
simulations (Kim, Moin & Moser 1987). The near-wall turbulence structures and the
presence of shear play important roles for inertial particle accumulation (Marchioli &
Soldati 2002) and particle rotation (Zhao et al. 2015).

3. DNS results

Figure 2 shows DNS results for the angular dynamics of the orientation n(t) of a
slender rod (Λ = 0.9963) in the channel flow, compared with the angular dynamics of
the Lagrangian stretching direction êL1(t). Figure 2 demonstrates that n(t) aligns quite
well with the Lagrangian stretching direction when the particle is near the centre of the
channel. This observation is consistent with findings in a two-dimensional chaotic flow
(Parsa et al. 2011) and in homogeneous isotropic turbulence (Ni et al. 2014). But when the
particle is near the wall, the angular dynamics of n(t) and êL1(t) seem to be different: while
n(t) tumbles in the near-wall shear flow, the Lagrangian stretching direction aligns with the
streamwise direction, x̂. Small deviations are due to fluid-velocity gradient fluctuations,
but they do not seem to cause êL1(t) to tumble. The alignment behaviour with respect
to the channel coordinate frame exhibited by the slender rod (Λ = 0.9963) in figure 2
is consistent with the streamwise and spanwise alignment of slender rods reported by
Challabotla et al. (2015), see figure 2 in that paper.

In order to investigate and quantify this difference, we compute the probability
distributions of the angles α and β near the centre (see figure 3) and near the wall (see
figure 4). The angles α and β characterise the difference between the particle orientation
vector n(t) and the Lagrangian stretching direction êL1(t). We expect β to show larger
fluctuations than α. This is because α measures the relative angle in the plane of the
Lagrangian stretching direction and the maximal contracting direction (êL3), and so is
controlled by the corresponding eigenvalues σ1 and σ3. By contrast, β measures the
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2400 2600 2800 3000 3200 3400

180
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t+

z+

θ

φ

FIGURE 2. Angular dynamics of a slender rod in the turbulent channel flow. The top two panels
show the Euler angles θ and φ, see figure 1(b), of the Lagrangian stretching direction êL1(t)
(solid red line) and of the orientation vector n(t) of a particle with Λ = 0.9963 (blue dashed
line). The bottom panel shows the z-coordinate of the centre of mass position of the particle in
the channel. The bottom boundary of channel is located at z+ = 0, the centreline at z+ = 180 and
the top boundary at z+ = 360. During the time interval 2700 < t+ < 3200 the particle travels in
the viscous boundary layer, z+ > 355, near the top boundary.

10−6 10−4 10−2 100 10−6 10−4 10−2 100
10−5

10−2

101

104

10−5

10−2

101

104

P(α) P(β)

(b)(a)

βα

FIGURE 3. Distribution of alignment between n(t) and êL1(t) near the channel centre at z+ =
180. Shown are distributions of the Euler angles α and β, figure 1(a). (a) Distribution P(α).
Red triangle, blue square, green circle, magenta diamond, yellow ⊕, orange pentagon symbols
correspond to δΛ = 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, respectively (δΛ = 1 −Λ). Vertical
dashed lines show the cutoff angles where the power-law transitions to a plateau. (b) Same but
for the distribution of β.

relative angle out of the êL1–êL3 plane and thus β is influenced by the intermediate
eigenvalue, σ2. In particular, small α, β correspond to good alignment between the particle
orientation and the Lagrangian stretching direction. Figures 3 and 4 show that the relative
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βα

FIGURE 4. Distribution of alignment between n(t) and êL1(t) near the channel wall at
z+ = 4. Shown are distributions of the Euler angles α and β, figure 1(a). (a) Distribution P(α).
Red triangle, blue square, green circle, magenta diamond, yellow ⊕, orange pentagon symbols
correspond to δΛ = 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, respectively (δΛ = 1 −Λ). Vertical
dashed lines show the cutoff angles where the power-law transitions to a plateau. (b) Same but
for the distribution of β.

angles near the channel wall are larger than near the channel centre for the same shape
parameter Λ.

In figure 3 we plot DNS results for the distribution of the Euler angles α and β near
the channel centre, at z+ = 180. The figure shows distributions with power-law tails that
are cut off at small angles by a plateau in the distribution. The narrow plateaus at small
values of α and β indicate that n(t) and êL1(t) align well most of the time. But we also see
that the distributions have power-law tails, of the form P(α) ∼ αξ . For the largest values
of Λ, close to unity, the exponent is close to ξ = −2, for both α and β. For Λ = 0.9 the
exponents are slightly smaller, although the power laws are not as clear cut for this value
of Λ.

In figure 4 we plot DNS results for the distribution of the angles α and β near the channel
wall at z+ = 4, characterising the difference between the particle-symmetry vector n(t)
and the Lagrangian stretching direction êL1(t) (figure 1a). The distributions look similar to
the corresponding distributions near the channel centre. One difference is that distributions
near the channel wall have a broader plateau than the corresponding distributions near the
channel centre. A broader plateau in the distribution of relative angles corresponds to
larger fluctuations in relative angles between n(t) and êL1(t). Both near the channel centre
and the channel wall, the distributions show a power-law decay for large angles. This is
an indication of large excursions in the relative angles between the orientation vector n(t)
and êL1(t).

In summary, we find that near the channel centre rods with Λ close to unity tend to
align with the Lagrangian stretching direction êL1(t). Zhao & Andersson (2016) found that
very slender rods align with the Lagrangian stretching direction. Our results show that
in fact the distribution of the relative angles between n(t) and êL1(t) has power-law tails
that are cut off at small angles, giving rise to a plateau in the distribution. Figure 5 shows
that the variance of the relative angles α, β near the channel centre is non-zero, indicating
imperfect alignment between rod-like particles and the Lagrangian stretching direction.
It is usually assumed that particles with aspect ratio larger than 10 (δΛ � 0.02) behave
essentially like the Lagrangian stretching direction (Ni et al. 2014). However, we show that
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FIGURE 5. The variances 〈α2〉, 〈β2〉 of the angles α, β as a function of the wall normal
distance z+ for different values of δΛ. Red triangle, blue square, green circle, magenta diamond,
yellow ⊕, orange pentagon symbols correspond to δΛ = 10−6, 10−5, 10−4, 10−3, 10−2, 10−1,
respectively (δΛ = 1 −Λ).

near the channel centre, where turbulence is nearly homogeneous and isotropic, slender
particles exhibit deviations away from the Lagrangian stretching direction. Near the
channel wall, the alignment characteristics are similar: the distributions exhibit power-law
tails at large relative angles and plateaus at small angles. However, the plateaus in the
distributions near the channel wall are broader by an order of magnitude compared with the
corresponding distributions near the centre. This indicates that typically the fluctuations
of relative angles are larger near the wall than near the centre. Figure 5 shows how
the variance of the relative angles α and β decreases as the distance from the channel
wall increases. The observed plateaus indicate random uncorrelated motion for small
angles. We find that the mechanisms near the channel centre and the channel wall are
different. Near the channel centre the distributions are a result of random fluctuations of
the fluid-velocity gradients, whereas near the channel wall the dominant effects are the
strong shear and the weak velocity-gradient fluctuations. In the next Section we discuss
these observations and explain them using simple statistical models.

4. Theory

4.1. Angular dynamics
The relative angular dynamics of spheroidal particles in channel flows can be understood
by considering Jeffery’s equation, (2.2), for the orientation vectors n forΛ = 1 and n1 for
Λ = 1 − δΛ. Recall that the equation of motion of the Lagrangian stretching direction in
the steady state is the same as an infinitely slender rod with Λ = 1. In order to understand
the relative angular dynamics, we first write the equation for the relative orientation, δn =
n − n1. The equations of motion for n, δn, linearised in δn, read

ṅ = An − (n · Sn)n, (4.1a)

δ̇n = −δΛ[Sn − (n · Sn)n] + [A − (n · Sn)]δn − 2(δn · Sn)n. (4.1b)

Here A is the fluid-velocity gradient matrix and S is the symmetric part of A. The
vectors n(t) and δn(t) are computed along tracer particles and so experience fluctuating
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Alignment of rods with the Lagrangian stretching direction 901 A16-11

velocity-gradients along Lagrangian trajectories. Due to the space and time dependence of
the velocity-gradients, (4.1) cannot be analytically integrated. In order to make progress,
in the rest of this section we use a statistical model for the fluid-velocity gradients.
In our statistical model we assume that the fluctuations of fluid velocity-gradients are
much quicker than the time scale associated with the angular dynamics of rods (Zhao
et al. 2019). Such statistical models have led to important insights in the dynamics of
small spherical particles in turbulence (Gustavsson et al. 2016), as well as dynamics of
relative angles between rods in turbulence (Zhao et al. 2019). The flow near the centre
of a turbulent channel flow resembles homogeneous, isotropic turbulence, where the time
scales of angular dynamics of rods and fluctuations of fluid velocity-gradients are in fact
very similar (Pumir & Wilkinson 2011). Nevertheless, we expect our model to qualitatively
describe the relative angular dynamics between slender rods and the Lagrangian stretching
direction because the time scales of these two directions depend on the magnitude of the
velocity gradients and the shape parameter Λ, not on the time scale of the fluid-velocity
gradients. Near the channel wall, by contrast, we find that the angular dynamics of slender
rods are much slower compared with the time scale of velocity-gradient fluctuations. This
is because the large mean shear-rate near the channel wall leads to slow angular dynamics
of rod-like particles. Thus, the statistical model near the channel wall turns out to be
quantitatively accurate.

Equation (4.1) with rapidly fluctuating fluid-velocity gradients can be compared to
multiplicative stochastic differential equations (Deutsch 1994; Gustavsson et al. 2015).
The first term in (4.1b) is independent of δn and the second term contains δn to the
first power. These two terms are analogous to additive and multiplicative noises in
stochastic differential equations because the fluid velocity-gradient matrix is an external
noise for (4.1). Stochastic processes described by stochastic differential equations with
multiplicative and additive noise are known to exhibit power-law tailed distributions, cut
off by plateaus at small angles (Deutsch 1994; Gustavsson et al. 2015). In the rest of this
section we show that this expectation is also true in our statistical models for relative
angles.

4.1.1. Angular dynamics near the channel centre
To qualitatively explain why the distributions in figure 3 have power-law tails we

consider a two-dimensional toy model for the angular dynamics (Zhao et al. 2019). In two
dimensions, the left Cauchy–Green tensor has two eigenvectors, the expanding eigenvector
êL1 and the contracting eigenvector êL3, but not the intermediate eigenvector êL2. This
means that the two-dimensional model may explain the dynamics of the angle α but not
that of the angle β, see figure 1. Following Gustavsson & Mehlig (2016) we model the
homogeneous and isotropic fluid-velocity fluctuations as Gaussian random functions that
are white in time, but have smooth spatial correlations. In two dimensions, (4.1) can be
written in terms of two angles: φ, the angle that the Lagrangian stretching direction makes
with the x-axis in the channel coordinates, and α ≈ |δn|, |δn| � 1, the angular separation
between the particle and the Lagrangian stretching direction. The angular separation
between the Lagrangian stretching direction and the symmetry vector n of a particle with
shape parameterΛ = 1 − δΛ is simply given by α = φ(Λ = 1)− φ(Λ = 1 − δΛ). Here
φΛ follows Jeffery’s equation (2.2), for n = [cosφΛ, sinφΛ]T. In the following we drop
the subscript in φΛ=1.

We start off by assuming the fluid velocity-gradient matrix to be a Gaussian random
variable with time correlation τ . The dimensional parameters of the problem are the
strength of velocity fluctuations, u0, the correlation length η and the correlation time τ .
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901 A16-12 Z. Cui, A. Dubey, L. Zhao and B. Mehlig

Thus there are two relevant time scales, the correlation time τ and the advection time
η/u0. Out of these one can make one dimensionless parameter Ku = u0τ/η (Duncan
et al. 2005). We non-dimensionalise the fluid-velocity gradient as A = (Ku2/τ)A′ and the
time as t = (τ/Ku2)t′ and drop the primes in A, t in the following. Assuming tracelessness,
and isotropy for the fluid gradient matrix A, one finds that A has three independent
components O12, S11, S12. Then for the variables φ and α, (4.1) can be written as

φ̇ = −O12 − sin 2φS11 + cos 2φS12, (4.2a)

α̇ = −(2α cos 2φ + δΛ sin 2φ)S11 + (−2α sin 2φ + δΛ cos 2φ)S12. (4.2b)

The white noise limit is taken as Ku → 0, which corresponds to assuming that the fluid
velocity correlation time is the shortest time scale in the problem, τ � (η/u0). We find
that the drift coefficients vanish. The diffusion coefficients are given by

Dαφ = Dφα = 1
2
δΛ,

Dφφ = 3
2 ,

Dαα = 1
2
(δΛ2 + 4α2).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.3)

The stationary Fokker–Planck equation for the joint distribution P(α, φ) is[
3
2
∂2

∂φ2
+ δΛ

∂2

∂φ ∂α
+ ∂2

∂α2

δΛ2 + 4α2

2

]
P(α, φ) = 0. (4.4)

We obtain the marginal distribution P(α) by integrating out φ from (4.4), requiring
symmetry P(α) = P(−α), and that P(φ) is normalised to unity. The result is

P(α) = δΛ

[(δΛ)2 + 4α2] tan−1
( π

δΛ

) . (4.5)

Equation (4.5) captures the qualitative features mentioned before, namely the power-law
form of the distribution and its cutoff at small angles, of the order of δΛ. In the regime
δΛ � |α| < π/2, where α is much larger than δΛ, the relative-angle distribution exhibits
power-law tails. By contrast, in the regime α < δΛ, the relative-angle distribution shows
a plateau. Equation (4.2b) shows that at small angles α < δΛ, α̇ is dominated by the
additive term, which is the term independent of α. This gives rise to the plateau in
the distribution for α, indicating random uncorrelated motion of φΛ and the Lagrangian
stretching direction.

Using (4.5) we find that 〈α2〉 = 1
2δΛ for δΛ � π, so that the variance of the relative

angle is proportional to the cutoff angle in the distribution of α. The two-dimensional toy
model predicts a linear dependence of the cutoff angle on δΛ. Figure 6(b) shows that the
cutoff angle αc depends linearly on δΛ also in DNS of turbulent channel flow.

Geometrically, the power law in α can be understood as a consequence of the fact that
the Lagrangian stretching direction eL1(x(t), t) acts as an attractor for the orientation field
of particles with shape parameterΛ, φΛ(x(t), t) along the same Lagrangian trajectory x(t).
This clustering of orientations is analogous to spatial clustering of particles in turbulence
in the advective limit (Gustavsson et al. 2016; Meibohm et al. 2017), and correlated random
walks in the inertia free limit (Dubey et al. 2018). Moreover, just as in the case of advected
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FIGURE 6. (a) Mean time between tumbles 〈τ 〉s as a function of δΛ = 1 −Λ for a set of
trajectories in the layer 0 < z+ < 10, s is the mean shear along the observed trajectories. Symbols
correspond to simulation results, the dashed line corresponds to theory. (b) Here, αc as a function
of δΛ for z+ ∼ 4 (red triangles) and z+ ∼ 180 (orange squares) where αc describes the transition
between the power law and the plateau in figure 3(a) in orange, and figure 4(a) in red. Blue circles
and green diamonds correspond to z+ ∼ 10, 20, respectively. The black dashed line shows the
reference slope δΛ1, as predicted by theory.

particles in one dimension, the power law in α is a result of purely diffusive dynamics
with a diffusion coefficient proportional to α2, leading to the same power-law exponent.

In the model the power-law exponent equals −2, and it is independent of δΛ. The
exponent is very nearly −2 for the DNS results but since the theoretical model we have
considered is two-dimensional, we don’t expect it to explain the exponent, but merely the
mechanism. That the model agrees only qualitatively with DNS results is to be expected,
the model neither describes the additional degree of freedom β, nor does it capture the
persistent nature of the turbulent velocity-gradient fluctuations. But numerical simulations
of a three-dimensional model show qualitatively similar results.

4.1.2. Angular dynamics near the channel wall
Near the channel wall the fluid-velocity gradient has a large shear component. Since

the flow is anisotropic it is natural to express the angular dynamics in terms of the
channel-fixed basis x̂, ŷ and ẑ with the corresponding Euler angles θ and φ, figure 1(b).

We consider a simple model for a spheroidal particle experiencing simple shear and
additive noise. Turitsyn (2007) used this model to study the angular dynamics of single
polymers in a chaotic flow with mean shear. While Turitsyn (2007) assumed Λ = 1, here
we consider general values of the shape parameter Λ.

Decompose the fluid gradient matrix A as a sum of the mean Ā and the fluctuations A′

as A = Ā + A′. The only non-zero component of Ā is Āxz = s (Challabotla et al. 2015).
Jeffery’s equation (2.2) for the angles φ, θ in terms of s and A′ is given by

φ̇ = − s
2
(1 −Λ cos 2φ)+ ηφ, (4.6)

θ̇ = −Λ s
4

sin 2φ sin 2θ + ηθ . (4.7)

Here ηφ and ηθ are fluctuating terms which in general depend on A′, the angles θ, φ and
the shape parameter Λ. In the vicinity of the channel wall the shear strength s is much
larger than the magnitude of fluctuations of the velocity-gradient matrix, and thus the
particle spends long times close to φ = 0. Since we have ηφ = Azx + O(φ)+ O(θ) in the
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901 A16-14 Z. Cui, A. Dubey, L. Zhao and B. Mehlig

limit φ, θ → 0, one can approximate ηφ ≈ Azx . Let the autocorrelation for ηφ be given
by 〈ηφ(0)ηφ(t)〉 = C0 f (|t|/τ), so that C0 quantifies the magnitude of the fluctuations and
τ is the correlation time. Then, (4.6) has three time scales, 1/s, 1/

√
C0 and τ . Near the

wall the shear strength is much larger than the strength of the fluctuations, s � √
C0. This

gives that the dynamics of φ is comprised of two regions, the deterministic fast region
with time scale 1/s and the stochastic slow region with time scale 1/

√
C0. Observation of

typical trajectories show that near the channel wall the fluctuations of ηφ are much faster
than the time scale of the slow, stochastic φ dynamics. Thus we take the white noise limit
as τ

√
C0 → 0, while holding 2D = ∫∞

−∞ dtηφ(0)ηφ(t) ∝ C0τ constant.
Figure 2 appears to show a marked difference between the dynamics of

the Lagrangian stretching direction and a rod-like particle with Λ = 0.9963. In
particular one observes that near the wall, the Lagrangian stretching direction
seems to align along x̂ whereas Λ = 0.9963 seems to tumble along the same
trajectory. This can be explained by calculating the mean time between tumbles,
defined as the average time taken by the particle to travel from φ = +π/2 to
φ = −π/2, figure 6(a). A theoretical calculation using (4.6), see appendix A,
shows good quantitative agreement with simulations. This is expected, considering that
the parameter

√
C0τ ∼ 10−3 for the trajectory set used to obtain figure 6(a), so that the

white noise limit is a good approximation.
Next we analyse the dynamics for φ. This is because the φ dynamics are independent

of θ , whereas the θ dynamics are slave to the process φ.
Assuming ηφ to be a Gaussian random variable, white in time, with the intensity

of fluctuations 2D = ∫∞
−∞ dtηφ(0)ηφ(t), Turitsyn (2007) obtained the Fokker–Planck

equation for the distribution of φ,

∂P(φ, t)
∂t

= s
2
∂

∂φ
[(1 −Λ cos 2φ)P(φ, t)] + D

∂2

∂φ2
P(φ, t). (4.8)

Equation (4.8) differs from (9) in Turitsyn (2007) because we consider general values of
Λ and not justΛ = 1, and that the strength of fluctuations D is defined slightly differently.
Following Turitsyn (2007), the steady-state distribution P(φ) is obtained as the time
independent solution of (4.8),

P(φ) = N
∫ π

0
dx exp − s

2D
(x −Λ cos(2φ − x) sin x). (4.9)

Here one integration constant is determined by periodic boundary conditions, P(π/2) =
P(−π/2), and N is a normalisation constant which can be computed using∫ π/2

−π/2 dφP(φ) = 1.
In order to understand how the relative angle between a slender rod and the Lagrangian

stretching direction behaves, next we rewrite (4.1) for the relative angle, δφ = φ(Λ =
1)− φ(Λ = 1 − δΛ). The joint equations of motion for φ, δφ up to the second order in
δφ are given by,

φ̇ = − s
2
(1 − cos 2φ)+ ηφ, (4.10)

˙δφ = s
2
δΛ cos 2φ − (sΛ sin 2φ)δφ + (sΛ cos 2φ)δφ2. (4.11)

First assume φ takes its mean value, φ0 ≈ (
√

π/Γ (1/6))( 3
2)

1/3(D/s)1/3 � 1. Then we
have ˙δφ ≈ (s/2)δΛ− (sΛ2φ0)δφ + (sΛ)δφ2 to the first order in φ0. This equation has
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fixed points φ0 ± φ0

√
1 − δΛ/2Λφ2

0 . For δΛ � 2Λφ2
0 there is a stable fixed point at

δφc ≈ δΛ/4Λφ0 and an unstable fixed point at 2φ0 − δΛ/4Λφ0. At the end of this
section, we argue that near the channel wall the distributions of α and β get large
contributions from the distributions of φ and θ . Thus the stable fixed point explains the
linear dependence of αc on δΛ near the channel wall, figure 6(b).

When δΛ = 2Λφ2
0 , the two fixed points merge to one, and for δΛ > 2Λφ2

0 there are no
fixed points. For δΛ > 2Λφ2

0 the linear term in ˙δφ can be ignored. For the following we
restrict ourselves to the regime δΛ � 2Λφ2

0 and ignore the δφ2 term in (4.11):

φ̇ = − s
2
(1 − cos 2φ)+ ηφ,

˙δφ = s
2
δΛ cos 2φ − (sΛ sin 2φ)δφ.

⎫⎬
⎭ (4.12)

Chertkov et al. (2005) and Turitsyn (2007) argued that the θ distribution must have
power-law tails in the case of a single polymer in a shear flow, with different power-law
exponents arising from deterministic and stochastic φ dynamics, but were unable to
analytically estimate the value of the exponent for the stochastic region. Similarly, we find
that the δφ distribution exhibits two regimes corresponding to deterministic and stochastic
φ dynamics, both of which lead to power-law tails for the distribution of δφ with different
exponents. In addition we calculate the power-law exponent both in the deterministic and
the stochastic region. The deterministic regime |φ| � φ0 leads to a power-law exponent
−3/2Λ for P(δφ) and the stochastic regime |φ| � φ0 with power law exponent −1 − 1/Λ
for P(δφ).

First consider the deterministic regime, |φ| � φ0, δφ > δΛ/4Λφ0. In this regime the
terms ηφ for φ̇ and (s/2)δΛ cos 2φ for ˙δφ in (4.12) can be ignored. These equations can
then be integrated to obtain δφ = C sin2Λ φ where C is an integration constant. Using
P(φ) ∼ φ−2, we obtain P(δφ) ∼ δφ−3/2Λ by a change of variables.

Next consider the stochastic regime |φ| � φ0, δφ > δΛ/4Λφ0. Then the term
(s/2)δΛ cos 2φ in (4.12) can be ignored. The steady-state Fokker–Planck equation reads,

∂

∂φ

[
sin2 φ + ε2 ∂

∂φ

]
P(φ, δφ) = −Λ ∂

∂δφ
[sin 2φδφP(φ, δφ)], (4.13)

where we have defined ε2 = D/2s in analogy with Meibohm et al. (2017). Numerics
suggest that the joint probability factorises in the stochastic regime, so that P(φ, δφ) =
f (φ)g(δφ). We use separation of variables and obtain g(δφ) ∝ δφ−1−μ/Λ. The equation for
f (φ) is a generalised eigenvalue problem,

∂

∂φ

[
sin2 φ + ε2 ∂

∂φ

]
f (φ) = μ sin 2φ f (φ). (4.14)

It is possible to obtain an eigenvector corresponding to the eigenvalue μ = 1 for (4.14).
The eigenvector has two undetermined integration constants which must be found by
matching to the solution for large φ and normalisation. Thus we conclude that g(δφ) =
δφ−1−1/Λ is a solution for the tail of the distribution of δφ in the regime |φ| � φ0, δφ >

δΛ/4Λφ0. When Λ ≈ 1 this would lead to a power law for δφ with exponent ≈ −2. In
figure 4(a) we have plotted the distribution for α which shows a power-law distribution
for large α, with exponent roughly −2. We argue next that since α must be closely related
to δφ near the channel wall, the observed exponent −2 for α can be explained by our
calculation for δφ.
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So far we have analysed the dynamics for the angle φ in the channel frame for particles
with shape parameter Λ. Since the Lagrangian stretching direction spends long times
aligned with x̂, and the Lagrangian contracting direction spends long times aligned with
ẑ, α, β get large contributions from δφ, δθ , respectively. This means that near the channel
wall one can use δφ and δθ as a proxy for understanding α and β, respectively. The precise
calculation of the distributions of α, β is an open question left for future work.

In the presence of strong mean shear and weak velocity-gradient fluctuations we have
shown that the width of the plateau in the distribution of relative angles scales linearly
with δΛ and that the power-law exponent for the tail of the distribution is −3/2Λ and
−1 − 1/Λ in the deterministic and stochastic regimes, respectively. Consider the relative
angle in the case of constant shear without fluctuations. In the long time, the Lagrangian
stretching direction reaches a steady state φ = 0, and thus the distribution of δφ has a
plateau whose width scales as δΛ1/2 and an exponent −2 for the power-law tail of the
distribution. Thus, the presence of weak fluctuations affects the relative angular dynamics
sensitively and the observations cannot be explained in terms of just the strong mean shear.

5. Discussion

We have seen that the alignment of slender rods with the Lagrangian stretching direction
in a channel flow depends on the distance of the particle from the channel wall, as well
as the particle shape parameter Λ. We found that the distributions of relative angles have
power-law tails. A power-law tail implies that the relative angle exhibits large excursions.
The power-law tails are cut off at small angles by a plateau. A plateau in the distribution
implies that the relative angles are essentially uncorrelated at small angles. Near the
channel centre the power law is a result of purely diffusive dynamics for the relative
angle. Near the channel wall, by contrast, the power-law exponent is a result of the
stochastic Lagrangian stretching direction dynamics and thus is a consequence of weak
velocity-gradient fluctuations in addition to the strong mean shear. The plateau is broader
near the channel wall than near the channel centre for particles with the same shape
parameter. The width of the plateau near the channel wall depends on the ratio of the
mean shear to the fluctuation strength of the velocity-gradient matrix element Azx . Since
the variance of the relative angle is described by the width of the plateau in the distribution,
the large relative angles near the wall are a result of the mean shear strength being much
larger than the velocity-gradient fluctuations. In general this implies that the particles show
better alignment near the channel centre compared with near the channel wall.

A related important problem is understanding the relative angle between two particles
as they approach each other. Since the velocity field is smooth at small scales, one might
expect that as non-spherical particles approach each other, they tend to align in the same
direction. However, Zhao et al. (2019) found that the relative angles between non-spherical
particles close to each other show large excursions away from zero. This is quantified by
the angular structure functions. The angular structure functions, 〈|ψ(r)|p〉, of spheroidal
particles are a measure of the relative orientations of two particles with the same shape
parameter Λ at distance r. For homogeneous isotropic turbulence, the structure functions
were studied by Zhao et al. (2019). The problem we have considered in this study, the
relative angular orientation of a rod-like particle with respect to the Lagrangian stretching
direction, is closely related to the structure functions.

Firstly, the problem of understanding the angular structure functions can be broken
down into two parts: (a) understanding how a particle with shape parameterΛ aligns with
respect to the Lagrangian stretching direction, which is a unique local reference vector; and
(b) how the Lagrangian stretching directions at a spatial separation r align with respect
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FIGURE 7. Angular structure functions Sp(r) plotted as a function of the particle separation r
for Λ = 0.8. Green diamonds, red triangles, orange squares, blue circles correspond to z+ ∼
0–5, 5–15, 15–25, 175–185, respectively. The left and right panels show the structure functions
for p = 1 and p = 2, respectively. The dashed lines show power-law fits in the limit R/η → 0.
Observe that the scaling behaviour in the viscous layer z+ < 5 is different from the scaling in
the buffer layer, and near the centre of the channel.

to each other. In this article we have tackled problem (a). Secondly, in two dimensions,
the equations of motion for the angular structure functions, (A 1a)–(A 1c) in Zhao et al.
(2019), exhibit striking similarities to the equations of motion for the problem discussed
in this article (4.2a), the angular separation of a particle with shape parameter Λ and the
Lagrangian stretching direction.

In particular, the two equations for the angular separations have the same multiplicative
term (n · Sn). The two equations have different additive terms where the cutoff in (4.2a)
is set by the small value δΛ and the cutoff in the case of Zhao et al. (2019) is set by the
small separation R. In general, however, the required distribution of δψ is conditioned on
small R, which might in turn modify the distribution of the multiplicative term n · Sn.
However, the calculation of this precise distribution remains an open problem.

In a channel flow, one observes different scalings for the angular structure functions
near the wall, in the viscous layer (z+ < 5), compared with the rest of the channel
(figure 7). The smaller value of the scaling exponent near the wall implies larger
relative angles between particles compared with the rest of the channel. Physically, we
expect the mechanism causing larger relative angles between nearby particles near the
channel wall to be related to the larger relative angles between the passive directors
and the local Lagrangian stretching direction; however, the precise calculation is left for
future work.

6. Conclusions

We investigated the alignment of slender rod-like particles with the local Lagrangian
stretching direction in a turbulent channel flow. Fluid flow close to the centre of a turbulent
channel flow resembles homogeneous, isotropic turbulence, where it is usually assumed
that rods with aspect ratio larger than 10 behave essentially like the Lagrangian stretching
direction. Zhao & Andersson (2016) found that near the wall of a turbulent channel flow,
slender rod-like particles tend to align with the Lagrangian stretching direction. We asked
how this alignment depends on the particle shape parameter Λ, and upon the distance
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of the particle from the channel wall. To this end we calculated the distribution of the
relative angles between a particle with shape parameter Λ = 1 − δΛ and the Lagrangian
stretching direction for different particle shape parameters and distances from the channel
wall.

We found that the distribution of relative angles exhibits power-law tails at large angles
cut off by plateaus at small angles both near the channel centre and the channel wall.
At small angular separations the relative angles essentially perform uncorrelated random
motion, leading to plateaus in the relative angle distributions. However, the relative angle
exhibits large excursions away from alignment. These large excursions lead to power-law
tails in the distributions of relative angles. The variance of the relative angle is closely
related to the width of the plateau which depends on the distance of the particle from
the channel wall as well as the shape parameter. We found that the width of the plateau
is proportional to δΛ both near the channel centre and near the channel wall. However,
the plateau near the channel wall is much broader than near the channel centre. Thus,
we showed that the alignment of a slender rod with the Lagrangian stretching direction
is stronger near the channel centre than near the channel wall. A non-zero variance of
the distribution of relative angles indicates imperfect alignment, both near the channel
centre and near the channel wall. Therefore, in contrast to usual expectations, our results
indicate that a rod with a finite aspect ratio aligns imperfectly with the Lagrangian
stretching direction. The misalignment increases with δΛ, and with decreasing distance
to the channel wall.

We explained these observations using simple statistical models based on Jeffery’s
equation. Near the channel centre where turbulence is approximately homogeneous and
isotropic, we used a two-dimensional toy model to qualitatively understand the distribution
of relative angles. The two-dimensional toy model used to understand angular dynamics
near the channel centre merely qualitatively explains the origin of plateaus and power-law
tails in relative angle distributions using the white-noise approximation. In a turbulent
channel flow, the orientational dynamics near the channel centre is three-dimensional,
and the fluctuations of the velocity gradients are correlated in time. Taking into account
time correlations and three-dimensional dynamics is an open question. Near the channel
wall, where the turbulent velocity-gradient fluctuations are small and the mean shear-rate
is large, we used the diffusion approximation for the three-dimensional dynamics to
find excellent agreement with numerical simulations. The diffusion approximation works
quantitatively near the channel wall because for very slender particles and for the
Lagrangian stretching direction, the time scale of angular dynamics is much slower than
the time scale of fluctuations of the velocity-gradient term Azx , which acts as additive
noise. Our model near the channel wall predicts the distribution of δφ, one relative angle
in the laboratory frame. Using the fact that near the channel wall, the eigenvectors êL1, êL2
and êL3 of the left Cauchy–Green tensor align well with x̂, ŷ and ẑ, respectively, we argued
that the distribution of δφ should closely resemble the distribution of α. However, a direct
analytical calculation of the relative angles α, β near the channel wall is a second open
question. Finally, it is important to consider the range of shape parameters over which our
models for relative angles are valid. The important assumption in our models both near
the channel centre and channel wall is linearisation in the relative angles. Near the channel
centre this approximation is valid up to δΛ ∼ O(10−1). By contrast, near the channel wall
this happens when δΛ ∼ (D/s)2/3, in our DNS this corresponds to δΛ ∼ 0.01. Zhao &
Andersson (2016) noted that rod-like particles with λ = 50 (δΛ ≈ 10−4) tend to align well
with the Lagrangian stretching direction, but λ = 3 (δΛ = 0.2) do not. Thus our model
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explains why the particle with δΛ ≈ 10−4 tends to align with the Lagrangian stretching
direction, however, for δΛ = 0.2 our linearised model is not valid.

Mathematically, the fact that the distributions of relative angles are plateaus for small
angles followed by power-law tails at large angles can be seen as a consequence of the
general structure of the equations for relative orientations, (4.1b), which is analogous to
that of a multicomponent stochastic process with additive and multiplicative noise (Kesten
1973; Deutsch 1994). The additive term gives rise to the plateau whereas the multiplicative
term gives rise to the power-law tail.

The plateau followed by a power-law tail in the distribution indicates that the particles
spend most of the time at small relative angles, performing uncorrelated random motion,
but rarely the relative angles show large excursions away from alignment. The power-law
exponent for the tails of the relative angle distributions quantifies the frequency of the
excursions. Near the channel centre, the power-law tails are a result of diffusive relative
angular dynamics, with a diffusion coefficient that increases with increasing relative
angle. This is analogous to the relative separation of advected particles in turbulence
(Gustavsson et al. 2016; Meibohm et al. 2017). On the other hand, near the channel wall
the power-law tails are a result of the weak velocity-gradient fluctuations and strong mean
shear. This is because the dynamics of the relative angle between a very slender particle’s
orientation and the Lagrangian stretching direction depends sensitively on the dynamics
of the Lagrangian stretching direction, which in turn depends on the strong mean shear
and the weak fluctuations of the velocity-gradient matrix element Azx . The equation of
motion of the Lagrangian stretching direction in the long-time limit is the same as that
of a single infinitely slender polymer, whose dynamics in strong mean shear with weak
isotropic fluctuations was analysed by Turitsyn (2007).

The variance of the relative angle is given by the width of the plateau of the distribution.
In our two-dimensional toy model, the width of the plateau is of the order of δΛ near the
centre, but the model near the channel wall predicts a width of the order of δΛ(s/D)1/3.
Here s is the strength of the mean shear and D corresponds to the strength of fluctuations of
the fluid velocity-gradient matrix element Azx . Since s/D � 1, the plateau is broader near
the channel wall, which explains the large relative angles between particle orientation and
the Lagrangian stretching direction near the channel wall. Thus the large relative angles
observed near the channel wall are a consequence of both the weak fluctuations of the
fluid velocity-gradient element Azx and the strong mean shear. The importance of weak
velocity-gradient fluctuations can be seen by the fact that in the absence of fluctuations,
when the velocity-gradient matrix is constant with only a shear component, the width of
the plateau scales as δΛ1/2 instead of δΛ, as observed.

The alignment of elongated particles along streamlines is important for the papermaking
industry (Carlsson et al. 2010) as well as bacteria density profiles in inhomogeneous
flows (Dehkharghani et al. 2019). Our results near the channel wall also explain how this
orientation depends on the shape parameter of the particle. Another important question
for the papermaking industry is the relative alignment of two nearby fibres. We have
argued that this problem of understanding the relative angle distribution between two
nearby elongated particles is related to the problem we have considered in the present
study, and leave the calculation of the relative angle between nearby particles for arbitrary
shape parameter for future work. Further, it would be interesting to analyse the relative
angular dynamics between thin discs and the Lagrangian contracting direction. We expect
the distributions of relative angles to also exhibit plateaus for small angles and power-law
tails for large angles.
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Appendix A. Time between subsequent tumbles

In order to explain the observed difference in tumbling characteristics for particles
with Λ = 1 and Λ = 0.9963 (figure 2), we calculate the mean time between subsequent
tumbles as a function of the shape parameter Λ. Dehkharghani et al. (2019) performed
the same calculation for shape parameter Λ = 1. Turitsyn (2007) calculated the mean
tumbling frequency and the distribution of times between subsequent tumbles, both for
Λ = 1. We define the time between subsequent tumbles as the time it takes for particles to
travel from φ = +π/2 to φ = −π/2. To this end we start with (4.6) for φ,

φ̇ = − s
2
(1 −Λ cos 2φ)+ ηφ. (A 1)

Here ηφ is a Gaussian random variable, with 〈ηφ(t)〉 = 0, 〈ηφ(t)ηφ(t′)〉 = 2Dδ(t − t′). The
corresponding Fokker–Planck equation can be written,

∂P(φ, t)
∂t

= LFPP(φ, t), (A 2)

LFP(φ) = D
∂

∂φ
exp

(
− f (φ)

D

)
∂

∂φ
exp

(
f (φ)

D

)
, (A 3)

where f (φ) = (s/2)(φ − (Λ/2) sin 2φ). Then the mean exit time T1(φ
′) to exit the domain

Ω = [π/2,−π/2) starting at φ′ = π/2 can be calculated as follows. Let P(φ, t | φ′, 0)
be the transition probability from φ′ at time 0 to φ at time t. The initial condition for
the transition probability is P(φ, 0 | φ′, 0) = δ(φ − φ′). The probability that a trajectory
starting at φ′ ∈ Ω at time 0 is still in the domain Ω at time t is

∫
Ω

dφP(φ, t | φ′, 0).
This gives 1 − ∫

Ω
dφP(φ, t | φ′, 0) as the cumulative probability that the first exit time is

greater than t. This means that the probability density for the first exit time ρ(t) is given
by

ρ(t) = −
∫
Ω

dφ
∂

∂t
P(φ, t | φ′, 0). (A 4)

Thus one obtains the mean first exit time as,

T1(φ
′) =

∫ ∞

0
dt tρ(t) = −

∫
Ω

dφ
∫ ∞

0
dt t

∂

∂t
P(φ, t | φ′, 0). (A 5)
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Defining p1(φ, φ
′) = − ∫∞

0 dt t(∂/∂t)P(φ, t | φ′, 0), we obtain by integration by parts,
p1(φ, φ

′) = ∫∞
0 dt P(φ, t | φ′, 0). Then we have,

LFPp1(φ, φ
′) =

∫ ∞

0
dt
∂

∂t
P(φ, t | φ′, 0) = −δ(φ − φ′). (A 6)

Thus p1(φ, φ
′) satisfies the differential equation,

LFPp1(φ, φ
′) = −δ(φ − φ′), (A 7)

where p1(φ, φ
′) must satisfy the same boundary conditions as P(φ, t | φ′, 0). For the

calculation of the mean time it takes a trajectory starting at φ′ = π/2 − 0 to travel to
−π/2 we use reflecting boundary condition at π/2 and absorbing boundary condition at
−π/2. Then, (A 7) can be integrated to give,

p1(φ,π/2 − 0) = − 1
D

exp
(

− f (φ)
D

)∫ φ

−π/2
dy exp

(
f (φ)

D

)∫ y

π/2
dzδ(z − π/2 + 0).

(A 8)
This gives for the mean time between tumbles,

T1(π/2 − 0) =
∫ −π/2

π/2
dφ p1(φ,π/2 − 0)

= 1
D

∫ π/2

−π/2
dφ exp

(
− f (φ)

D

)∫ φ

−π/2
dy exp

(
f ( y)

D

)
. (A 9)

The corresponding equation in Dehkharghani et al. (2019) is SI appendix, (19), withΛ = 1
and different boundary conditions. We further simplify this expression and obtain the
asymptotics in the limit of small and large δΛ. Physically this corresponds to the transition
in the shape parameter where the additive noise ηφ is no longer important. We obtain,

T1 = 1
D

∫ π/2

−π/2
dφ
∫ 0

−π/2−φ
dy exp

( s
2D
( y −Λ cos( y + 2φ) sin y)

)
, (A 10)

when s/D � 1, the inner integral gets a large contribution near y = 0, and decays quickly
away from y = 0, therefore we replace the lower limit in the inner integral by −∞, then
one can perform the integral over φ to obtain

T1 = π

D

∫ 0

−∞
dy exp

( s
2D

y + log I0

( s
2D
Λ sin y

))
, (A 11)

= π

D

∫ ∞

0
dy exp

(
− s

2D
y + log I0

( s
2D
Λ sin y

))
, (A 12)

where we have changed integration variables y → −y, and I0(z) is the modified Bessel
function. Next we use the asymptotic expansion of the modified Bessel function for large
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argument, log I0(z) ∼ z − 1
2 log(2πz) to obtain

T1 = π

D

∫ ∞

0
dy exp

(
− s

2D
y + s

2D
Λ sin y − 1

2
log

(
2π

s
2D
Λ sin y

))
. (A 13)

Using the Taylor expansion of the sine function we get,

T1 = π

D

∫ ∞

0
dy exp

(
− s

2D
y + s

2D
Λ

(
y − y3

6

)
− 1

2
log

(
2π

s
2D
Λy
))
. (A 14)

Thus we have,

T1 =
√

π121/6

D

(
D
sΛ

)2/3 ∫ ∞

0
dy

1√
y

exp

(
−
(

3
2

)1/3 ( s
D

)2/3 δΛ

Λ1/3
y − y3

)
. (A 15)

The behaviour of the integrand changes depending on the magnitude of the coefficient of
y in the integrand. In the limit δΛ → 0 the linear term can be neglected and the result is

T1 =
√

π24/331/6Γ ( 7
6)

D

(
D
s

)2/3

. (A 16)

On the other hand when δΛ � (D/s)2/3, the linear term dominates over the cubic term,
and the result is

T1 =
√

2π

s
δΛ−1/2, (A 17)

as predicted by Jeffery’s theory.
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