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SUMMARY
PMs with two rotations and one translation (2R1T) have been used as skeletons in various advanced
manufacturing equipment where high accuracy and stiffness are basic requirements. Considering
the advantages of redundant actuation and overconstrained structure, such as reduced singularities
and improved stiffness, a new 2R1T overconstrained PM with actuation redundancy, called Hex4, is
proposed in this paper. This is a 2-PUR/2-RPU PM (where P denotes an actuated prismatic joint, U a
universal joint, and R a revolute joint) that is actuated by four prismatic joints. Compared with some
existing 2R1T overconstrained PMs with actuation redundancy, the main advantage of the proposed
PM is that the heavy motors of two limbs are mounted on the base to reduce the movable mass
and improve dynamic response. First, mobility analysis, inverse kinematics, and velocity analysis
are presented. Then, the local transmission index and good transmission workspace are used to
evaluate the motion/force transmissibility of the Hex4 PM. The variation tendencies of the two indices
with different link parameters are investigated. The singularity is then discussed by considering the
motion/force transmissibility. Finally, link parameters are optimized to obtain an improved good
transmission workspace. It is shown that the proposed PM has a good potential for high precision
applications.

KEYWORDS: Parallel manipulator, Actuation redundancy, Overconstrained structure, Optimal
design.

1. Introduction
In recent years, parallel manipulators (PMs) have drawn considerable interest from both academia
and industry.1−7 It should be mentioned that we only consider the PMs with rigid links in this paper.
Benefitting from their closed loop structures, PMs have improved accuracy, rigidity, and loading
capability when compared with the serial architectures. In particularly, three degrees-of-freedom
(DOFs) PMs with two rotations and one translation (2R1T) have been used as parallel modules
in various manufacturing equipment where high accuracy and stiffness are required.1−4 Z3 head,2

Exechon,3 and Tricept4 are typical examples of successful application.
High accuracy and stiffness should be regarded as important criteria to evaluate whether a 2R1T

PM is suitable for some advanced manufacturing applications, for example, five-axis machining.
Considering the advantages of redundant actuation, such as the elimination of singularities and
improved stiffness, a 2R1T PM with actuation redundancy may be a good choice to achieve high
accuracy and stiffness. There are two ways to implement actuation redundancy in a PM: either replace
passive joints with actuated joints, or add an actuated limb chain without changing the mobility of
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the PM.8,9 The latter is the preferred approach because it leads to higher stiffness and better force
distribution. Much progress has been made concerning kinematic analysis, force distribution, stiffness
analysis, and singularities in relation to the latter category.10−25 This work also focuses on the latter
type of redundantly actuated 2R1T PMs.

Different from the PMs with proper constraint, the overconstrained PM is a special type of PM that
some constraint wrenches acting on the moving platform are linearly dependent. These common or
redundant constraints increase the capability to act against the external force/torque without affecting
the mobility of the PM. The overconstrained systems are suitable for industrial applications requiring
high rigidity and large payload.26,27 Therefore, a 2R1T PM with an overconstrained structure can be
regarded as a way to achieve high precision applications. The Exechon robot3 used for machining,
drilling, and assembling tasks is a typical example of successful application that is based on a 2UPR-
SPR overconstrained PM. Here, U, P, R, and S denote the universal joint, actuated prismatic joint,
revolute joint, and spherical joint, respectively.

For reasons of structural and actuation symmetry, there is a tendency to add limited DOFs limbs
with actuation to a 2R1T PM to construct a redundantly actuated 2R1T PM with overconstrained
structure. However, it is a very challenging task because the added limited-DOFs limb introduces
new structural constraints and may change the mobility of the target PM. The well-known 2R1T PM
with non-redundant actuation and proper constraint, 3-RPS PM, proposed by Hunt1 as an example,
is composed of a fixed base, a moving platform, and three identical rigid RPS limbs. The three
constrained wrenches generated by three limbs restrict one rotational and two translational motions
of the moving platform. Adding a limited-DOFs limb, for example, an actuated RPS limb, to the
3-RPS PM yields a 4-RPS PM with mobility that differs from that of the 3-RPS PM. The change in
mobility is caused by the constraint generated by the new RPS limb, which changes the constraint
system that is spanned by all limb constraints. In contrast, it is feasible to add a 6DOF SPS limb
to a 3-RPS PM to implement redundant actuation without changing the mobility of the 3-RPS PM,
because the added SPS limb imposes no constraints on the moving platform, namely, the 3-RPS/SPS
PM is a redundantly actuated PM with proper constraint.

To the best of our knowledge, there are only several redundantly actuated 2R1T PMs with
overconstrained structure, such as 2-UPR/2-RPU,28 2-URR/2-RRU,28 and 2UPR-2PRU,29 where R
denotes the actuated revolute joint. A new 2R1T 2-PUR/2-RPU overconstrained PM with actuation
redundancy is presented, hereinafter referred to as Hex4. The Hex4 PM belongs to the family of
RPR-equivalent PM.30 Compared with some existing 2R1T PMs with actuation redundancy and
overconstrained structure, the main advantages of the proposed PM are a reduction in the movable
mass and an improved dynamic response produced by the fixed linear motors of the two PUR limbs.
Meanwhile, this PM has high stiffness because of its overconstrained structure.

Kinematic performance evaluation of a PM is indispensable in the pre-design stage. Based on
the algebraic characteristics of the Jacobian matrix of a PM, several indices have been proposed
and widely used for performance evaluation, including manipulability31 and condition number.32

However, there is much controversy surrounding about these Jacobian-based indices: (a) they are
coordinate dependent; and (b) the units of the elements of the Jacobian matrix are inconsistent when
applied to PMs with both rotational and translational DOFs.33 These inherent characteristics lead to
unclear physical meanings and subsequently cause erroneous interpretations.

To avoid the drawbacks associated with Jacobian-based indices, motion/force transmission
index34−40 based on screw theory41 can be used to evaluate the kinematic performance. This index
describes the ability of the linkages to transmit input motion/force to the output link, or the ability to
sustain the payload applied to the end effector. A local minimized transmission index (LMTI)39,40 for
transmission evaluation of redundantly actuated PMs has been proposed that separated the redundantly
actuated PM into a set of non-redundant PMs by removing the redundant limbs from the redundantly
actuated PM in turn. Despite the coordinate independence of this index, the influences of the redundant
actuator and limb are not considered. Here, we use a new index proposed by the authors28 for the
performance evaluation and dimensional optimization of Hex4. First, by locking some actuators in an
ergodic manner, the targeted redundantly actuated PM is separated into several subsidiary one-DOF
PMs that are actuated by two or more actuators. Then, the index of output transmission performance is
proposed by calculating the mean value of the instantaneous power produced by these one-DOF PMs.
Finally, a local transmission index (LTI) is defined as the minimum value of the index of output and
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Fig. 1. Hex4 parallel manipulator: (a) CAD model and (b) schematic representation.

input transmission performance. The LTI is coordinate free and dimensionless. Compared to other
indices, this index considers the influences of redundant actuator and limb, and describes the intrinsic
characteristic of a redundantly actuated PM more precisely. In this paper, this index is also used to
analyze the singularities of the Hex4 PM.

This paper is organized as follows. Section 2 describes the Hex4 PM. Section 3 presents the
mobility analysis using Lie group theory. Sections 4 and 5 deal with the inverse kinematics and
velocity, respectively. Section 6 presents the motion/force transmission performance atlases of the
LTI and the good transmission workspace (GTW). Section 7 discusses the singularities of the PM in
detail. Section 8 illustrates the optimization procedure considering the GTW. Section 9 presents the
conclusions.

2. Description of the HEX4 Parallel Manipulator
A computer-aided design (CAD) model and a schematic of the Hex4 PM are shown in Fig. 1. The
moving platform is connected to a fixed base by four actuated kinematic limbs. The first limb A1B1

and second limb A2B2 are two identical PUR kinematic chains in which the first revolute axes of the
U joints are coincident with each other. The second revolute axes of the U joints are parallel to the
axis of the R joint connected to the moving platform and are perpendicular to the P joints. The third
limb A3B3 and fourth limb A4B4 are RPU kinematic chains. The axes of the R joints in limbs 3 and 4
are perpendicular to the P joints and parallel to the first revolute axes of the U joints in limbs 3 and
4. Meanwhile, the second revolute axes connected to the moving platform are coincident with each
other. The position and orientations of the moving platform can be determined by combining the four
displacements of the actuated P joints.

Let A1 and A2 denote the centers of the U joints in limbs 1 and 2, respectively, and let A3 and A4

denote the centers of the R joints in limbs 3 and 4, respectively. The centers of the R joints in limbs
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Table I. Kinematic joints and Lie subgroups of displacements.

Lie Associated kinematic
subgroups Motion joints

{R(N, u)} Rotation around the axis in direction u Revolute joint
and passing through point N

{T (s)} Translation along vector s Prismatic joint
{C(N,u)} Cylindrical motion of a given axis (N, u) Cylindrical joint
{G(u)} Gliding motion (two translations and a rotation) Planar joint

in a plane perpendicular to vector u

1 and 2 are denoted by B1 and B2, respectively, while the centers of the U joints in limbs 3 and 4 are
denoted by B3 and B4, respectively.

Coordinate frames are established as shown in Fig. 1(a). A fixed coordinate frame O-XYZ is
attached to the fixed base. The origin O is at the midpoint of A3A4. We let the X -axis always point
in the direction of OA1, the Y -axis point along OA4, and the Z axis point vertically downward. A
moving coordinate frame o-xyz is attached to the moving platform (Fig. 1(a)) with its x-axis along oB1

and its y-axis along oB4. The z-axis points vertically downward with respect to the mobile platform.
The lengths of the linkages in the Hex4 PM are defined as follows: A1B1 = A2B2 = l, oo

′ = H ,
oB1 = oB2 = l1, oB3 = oB4 = l2, and OA3 = OA4 = l3.

3. Mobility Analysis
Analysis of the mobility of the Hex4 mechanism is conducted here using Lie group theory.42 To assist
the reader, we give a brief introduction to this theory. The sets of relative motion (also called motion
sets) allowed by the revolute, prismatic, cylindrical, and planar joints are displacement Lie subgroups,
as listed in Table I.

The motion set of the moving platform in a parallel mechanism is given by the intersection of
kinematic bonds associated with all the limbs connected to that platform, i.e.

{M} = n∩
i=1

{Li} , (1)

where {M} denotes the motion set of the moving platform, {Li} is the kinematic bond of limb i, ∩ is
the intersection sign in Lie group theory, and n is the number of limbs. In the Hex4 PM, the kinematic
bond of limb 1 is given as

{L1} = {T (u)} {R (A1, u)} {R (A1, v)} {R (B1, v)} , (2)

where u and v are the directional vectors of the first and second rotational axes, respectively, of the
universal joint. It is easy to show that the first two subgroups {T (u)}{R(A1, u)} constitute a cylindrical
subgroup{C(A1, u)}. Because of the closure of products in {C(A1, u)}, we have

{L1} = {R (A1, u)} {T (u)} {R (A1, v)} {R (B1, v)} . (3)

Because vector u remains perpendicular to vector v, the combination of the last three subgroups
in Eq. (3) can be regarded as the kinematic bond of a planar subgroup {G(v)}. Hence, Eq. (3) can be
written as

{L1} = {R (A1, u)} {G (v)} . (4)

Similarly, the kinematic bond of limb 2 can be identified as

{L2} = {R (A2, u)} {G (v)} . (5)
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Fig. 2. Possible applications of a Hex4 PM: (a) large-scale workpiece machining and (b) five-face milling
machining.

The first rotational axes of the universal joints in limbs 1 and 2 are coincident and parallel to vector
u, which means {R(A1, u)} = {R(A2, u)} = {R(O, u)}.

So we have

{L1} ∩ {L2} = {R (A1, u)} {G (v)} ∩ {R (A2, u)} {G (v)}
= {R (O, u)} {G (v)} .

(6)

The kinematic bond of limb 3 is

{L3} = {R (A3, u)} {T (x)} {R (B3, u)} {R (B3, v)} , (7)

where vector x is along the axis of the prismatic joint. Since x is perpendicular to u, the first three
subgroups in Eq. (7) constitute a planar subgroup. Hence, we have

{L3} = {G (u)} {R (B3, v)} . (8)

Similarly, the kinematic bond of limb 4 is identified as

{L4} = {G (u)} {R (B4, v)} . (9)

In limbs 3 and 4, the second rotational axes of the universal joints are coincident and parallel to
vector v, which means {R(B3, v)} = {R(B4, v)} = {R(M, v)} (M is an arbitrary point on line B3B4).

So we have

{L3} ∩ {L4} = {G (u)} {R (B3, v)} ∩ {G (u)} {R (B4, v)}
= {G (u)} {R (M, v)} .

(10)

Therefore, the motion set of the moving platform is

{M} = {L1} ∩ {L2} ∩ {L3} ∩ {L4}
= {R (O, u)} {G (v)} ∩ {G (u)} {R (M, v)}
= {R (O, u)} {T (w)} {R (M, v)} ,

(11)

in which w is a vector that is perpendicular to both u and v. Equation (11) means that the Hex4 PM
has two rotations and one translation, with one rotation around line A1A2 and the other around line
B3B4. The mechanism is a typical RPR-type parallel mechanism.5,28 In terms of its applications, the
proposed PM could be used in machining a workpiece with a curved surface by adding an articulated
RR serial chain (Fig. 2(a)) or mounting it on an X–Y gantry (Fig. 2(b)).
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4. Inverse Kinematics
Determining the inverse kinematics of the Hex4 PM involves determining the actuated displacements
(q1, q2, q3, q4) given the orientations and position (α, β, zo) of the moving platform, where qi (i =1,
2, 3, 4) denotes the distance between the point O and Ai when i =1, 2, and the distance between
the point Ai and Bi when i =3, 4. α and β denote the rotational angel around the X -axis and y-axis,
respectively, and zo denotes the operation distance between the point O and o. Here, the values of
rotational angles α and β are assumed to be zero when the moving platform is parallel to the fixed
base.

The rotation matrix between the o-xyz and the O-XYZ can be written as

ORo = RX (α) Ry (β )

=
⎛
⎝1 0 0

0 cα sα

0 −sα cα

⎞
⎠

⎛
⎝ cβ 0 sβ

0 1 0
−sβ 0 cβ

⎞
⎠ ,

=
⎛
⎝ cβ 0 sβ

−sαsβ cα sαcβ

−cαsβ −sα cαcβ

⎞
⎠

(12)

where RX (α) and Ry(β ) represent the rotational matrices around X -axis and y-axis, respectively. The
s and c denote the sine and cosine functions, respectively.

As shown in Fig. 1, the position vector AiBi with respect to O-XYZ is denoted by ibi (i = 1, 2, 3,
4). Because of the structural constraints, the point o is always limited into the plane YOZ, and the
coordinates of the point o with respect to the O-XYZ can be defined as p = ( 0 zosα zocα)T, as shown
in Fig. 3. The position vectors OAi and oBi with respect to the fixed frame are denoted by ai and obi,
respectively, and can be written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1 = (
q1 0 0

)T

a2 = (−q2 0 0
)T

a3 = (
0 −l3 0

)T

a4 = (
0 l3 0

)T

, (13a)

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ob1 = ORo
(

l1 0 0
)T

ob2 = ORo
(−l1 0 0

)T

ob3 = ORo
(

0 −l2 0
)T

ob4 = ORo
(

0 l2 0
)T

. (13b)
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Through geometric constraint, the position vectors ibi can be written in the form

ibi = p + obi − ai. (14)

Using Eqs. (12)–(14), the inverse kinematics of the Hex4 PM can be written as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q1 = l1cβ + e1

q2 = l1cβ + e2

q3 =
√

e2
3 + f 2

3

q4 =
√

e2
4 + f 2

4

, (15)

where e1 =
√

l2 − (zo − l1sβ )2, e2 =
√

l2 − (zo + l1sβ )2, e3 = l3 − l2cα + zosα , e4 = l3 − l2cα −
zosα , f3 = zocα + l2sα , and f4 = zocα − l2sα .

5. Velocity Analysis
Here, the Jacobian matrix represents the mapping between the rates q̇ = ( q̇1 q̇2 q̇3 q̇4 )T of the
actuators and the velocity Ẋ = ( α̇ β̇ żo )T of the moving platform. Differentiating both sides of
Eq. (15) leads to

Jqq̇ = JxẊ , (16)

where

Jq =

⎛
⎜⎜⎜⎜⎝

Jq11 0 0 0

0 Jq22 0 0

0 0 Jq33 0

0 0 0 Jq44

⎞
⎟⎟⎟⎟⎠ , Jx =

⎛
⎜⎜⎜⎜⎝

Jx11 Jx12 Jx13

Jx21 Jx22 Jx23

Jx31 Jx32 Jx33

Jx41 Jx42 Jx43

⎞
⎟⎟⎟⎟⎠ ,

Jq11 = e1, Jq22 = e2, Jq33 = q3, Jq44 = q4, Jx11 = 0, Jx12 = zol1cβ − q1l1sβ, Jx13 = l1sβ − zo,

Jx21 = 0, Jx22 = −zol1cβ − q2l1sβ, Jx23 = −l1sβ − zo, Jx31 = l3(l2sα + zocα ), Jx32 = 0,

Jx33 = zo + l3sα, Jx41 = l3(l2sα − zocα ), Jx42 = 0, and Jx43 = zo − l3sα.

Multiplying both sides of Eq. (16) with J−1
q yields

q̇ = J−1
q JxẊ = JẊ, (17)

where J is a 4 × 3 Jacobian matrix.

6. Motion/Force Transmissibility

6.1. Local transmission index for redundantly actuated PMs
The LTI38 is important for evaluating the performance of a PM. It can be divided into two parts, the
input transmission index (ITI) and the output transmission index (OTI), which represent the power
transmission efficiency from the actuated joints to the limbs and from the limbs to the moving platform,
respectively. Considering the input transmission performance and output transmission performance
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simultaneously, the LTI can be defined as

λi =
∣∣$Ai ◦ $Ti

∣∣∣∣$Ai ◦ $Ti

∣∣
max

, (18a)

ηi =
∣∣$Oi ◦ $Ti

∣∣∣∣$Oi ◦ $Ti

∣∣
max

, (18b)

and

� = min {λi, ηi} , (18c)

where λi, ηi, and � denote the ITI, OTI, and LTI of limb i, respectively. $Ai denotes the unit input
twist screw (ITS) associated with the actuated joint in the limb i. $Oi denotes the output twist screw
(OTS) of the moving platform when all the actuators except that in the limb i are locked. $Ti denotes
the transmission wrench screw (TWS) of the limb i. The � ranges from zero to unity, and a larger
� means better motion/force transmissibility. Although the twist/wrench screw in Eq. (18) contains
combined units, these indices are dimensionless scalars. More details about Eq. (18) can be found in
Ref. [38].

Equation (18c) cannot be applied directly to redundantly actuated PMs. Here, a recently proposed
procedure28 is used to evaluate the motion/force transmissibility of Hex4 PM by virtually separating
the proposed PM into several one-DOF PMs that are actuated using two or more actuators. The validity
of this method has been demonstrated in Ref. [28]. The procedure for evaluating the LTI of each point
in the workspace is described below.

Step 1: Determine the TWS in each limb of the Hex4 PM. Without loss of generality, limb 1 is
taken as an example. Via screw theory, the twist system is given as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

$11 = (
0 0 0; 1 0 0

)
$12 = (

1 0 0; 0 0 0
)

$13 = (
0 cα −sα; 0 q1sα q1cα

)
$14 = (

0 cα −sα; −zB1 cα − yB1 sα xB1 sα xB1 cα

) , (19)

where $i j represents the unit twist associated with the jth kinematic joint of the ith limb, and xBi ,
yBi , and zBi are the coordinates of points Bi with respect to the O-XYZ. The TWS should be linearly
independent of all the passive twist screws. Since the actuated joint of limb 1 is a P joint, the TWS of
limb 1 is reciprocal of [$12 $13 $14] and is given by

$T1 = (
xB1 − q1 yB1 zB1; 0 −q1zB1 q1yB1

)
. (20)

Similarly, the TWSs of the other three limbs can be derived as follows:⎧⎪⎨
⎪⎩

$T2 = (
q2 + xB2 yB2 zB2; 0 q2zB2 −q2yB2

)
$T3 = (

0 e3 f3; −l3 f3 0 0
)

$T4 = (
0 −e4 f4; l3 f4 0 0

) . (21)

Step 2: List the locked/active TWSs and form a new wrench system corresponding to a 2-PUR/2-
RPU PM, from which the OTS is obtained. Locking the actuators installed in two arbitrary limbs,
the corresponding TWSs in these two limbs turn into extra constraint wrenches of the moving
platform. Adding the three original constraint wrenches, the moving platform sustains a five-order
wrench system. The OTS can thus be obtained by reciprocal screw theory. For the Hex4 PM, there
are N = C2

4 = 6 combinations for selecting the two locked limbs. The corresponding locked/active
combinations of limbs are listed in Table II.
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Table II. Locked/active combinations of limbs.

Locked Active Wrench system of
Case limbs limbs moving platform

1 1,2 3,4 U1 = [$C1 $C2 $C3 $T1 $T2]
2 1,3 2,4 U2 = [$C1 $C2 $C3 $T1 $T3]
3 1,4 2,3 U3 = [$C1 $C2 $C3 $T1 $T4]
4 2,3 1,4 U4 = [$C1 $C2 $C3 $T2 $T3]
5 2,4 1,3 U5 = [$C1 $C2 $C3 $T2 $T4]
6 3,4 1,2 U6 = [$C1 $C2 $C3 $T3 $T4]

The PM with case 1 is selected here as an example. As listed in Table II, the new wrench system
imposed on the moving platform after locking two actuators can be written as

U1 = [
$C1 $C2 $C3 $T1 $T2

]
, (22)

where $Ci denote the ith unit constraint wrench imposed on the moving platform. Using reciprocal
screw theory, the instantaneous one-DOF twist $1

O of the moving platform can be obtained from

$1
O ◦ U1 = 0. (23)

There are six cases for the Hex4 PM. Once these cases are finished, proceed to Step 3. Until then,
return to Step 2 and select the next case.

Step 3: Calculate the OTI and ITI. For a given output twist, the output transmissibility is influenced
only by the TWSs of the active limbs. Thus, the OTI of case 1, which reflects the power coefficient
between the active transmission wrenches and the output twist, can be written as

η1 = min

⎧⎨
⎩

∣∣∣$1
O ◦ $T3

∣∣∣ +
∣∣∣$1

O ◦ $T4

∣∣∣∣∣∣$1
O ◦ $T3

∣∣∣
max

+
∣∣∣$1

O ◦ $T4

∣∣∣ ,
∣∣∣$1

O ◦ $T3

∣∣∣ +
∣∣∣$1

O ◦ $T4

∣∣∣∣∣∣$1
O ◦ $T3

∣∣∣ +
∣∣∣$1

O ◦ $T4

∣∣∣
max

⎫⎬
⎭ . (24)

From Eq. (24), the output transmissibility of the one-DOF PM is the coupled effect of two active
limbs. For a redundantly actuated PM, the output transmission performance will exceed neither the
maximum nor the minimum of those of the one-DOF PMs. Thus, the OTI of the redundantly actuated
Hex4 PM in this study is defined as the average value of all cases as

OTI : η = 1

6

6∑
g=1

ηg. (25)

In addition, the ITI of limb i (i =1, 2, 3, 4) can be easily obtained using Eq. (18a).

Step 4: Obtain the LTI of a certain configuration. Considering both the input and output
transmissibility, the LTI for the Hex4 PM can be defined as

LTI : � = min {λi, η} . (26)

For the Hex4 PM, the design parameters are set as follows: l1 = 250 mm, l2 = 250 mm, l3 = 400
mm, −40◦ ≤ α ≤ 40◦, and −40◦ ≤ β ≤ 40◦. Here, we consider the LTI distribution in a constant
operation distance, zo = 600 mm. The length of link parameter l is defined as

l = zo + l1sβmax, (27)
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Fig. 4. LTI distributions of the Hex4 PM: (a) three-dimensional workspace and (b) orientation workspace.

which means that the Hex4 PM can achieve the extreme rotation of angle β in a given operation
distance.

The LTI distributions of the Hex4 PM are shown in Fig. 4 where the color bar is used to represent the
value of the LTI. The red points marked “� = 0.5” form two curves, and the LTI of each configuration
on these curves is equal to 0.5. Figure 4(a) shows the LTI variation in a three-dimensional workspace
with a tool-head length H = 50 mm. It is clear that the distribution is symmetrical about the planes
X = 0 andY = 0. In the orientation workspace as shown in Fig. 4(b), the LTI distribution is completely
symmetrical with respect to both angles. Figure 4 shows that the closer the configuration is to the initial
situation, the better the motion/force transmission performance will be. Furthermore, in contrast with
angle α, the motion/force transmission performance decreases more quickly when angle β deviates
from 0◦.

The LTI distributions for different architectural parameters in the orientation workspace are shown
in Fig. 5. It is obvious that no matter the variation of the design parameters (l1, l2, l3), the tendency of
the LTI in the orientation workspace is similar to the case for Fig. 4(b). Unlike the influences of design
parameters l1 and l3, the tendencies of the LTI distributions shown in Fig. 5(d)–(f) are the same; the
parameter l2 has no impact on the LTI distribution, which may be related to the special structure of
the PUR limb.
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Fig. 5. LTI distributions for different architectural parameters: (a) l1 = 230 mm, (b) l1 = 260 mm, (c) l1 =
290 mm, (d) l2 = 240 mm, (e) l2 = 270 mm, (f) l2 = 300 mm, (g) l3 = 375 mm, (h) l3 = 425 mm, and (i) l3 =
475 mm.

6.2. Global transmission index for redundantly actuated PMs
Because the LTI represents only the motion/force transmissibility in a single configuration, it is
necessary to define an index that can describe the performance in a set of poses. According to the
actual situation and the definition of the transmission angle,43 it is assumed here that the region for
which � ≥ 0.5 can be considered as the GTW. The new index can thus measure the global motion/force
transmissibility of a PM, and is defined as

σ =
∫

SG
dW∫

S dW
, (28)

where W is the reachable workspace, and SG and S denote the areas of the GTW and overall possible
workspace, respectively. Obviously, σ is dimensionless, and it ranges from zero to unity; the closer
σ is to unity, the better the transmissibility of the Hex4 PM.

The effects of the architectural parameters l1, l2, and l3 on the GTW are shown in Fig. 6. Figure 6(a)
shows the relationship between the GTW parameter and l1: the bigger the value of l1, the better the σ

value of the PM. Interestingly, Fig. 6(b) shows that no matter how l2 changes, the value of σ remains
the same. Figure 6(c) shows the relationship between the GTW parameter and l3: the bigger the value
of l3, the worse the σ value of the Hex4 PM. Consequently, the influences of architectural parameters
are different with each other, which should be considered in the dimensional optimization.
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Fig. 6. Tendencies of σ for different architectural parameters: (a) l1, (b) l2, and (c) l3.

7. Singularity Analysis
Kinematic analysis and optimization of a PM inevitably requires a singularity analysis. Singular
configurations can cause a PM to be uncontrollable or have undesirable stiffness, both of which
should be avoided before planning the motion trajectory. Gosselin and Angeles44 obtained kinematic
singularities from the mathematical characteristics of Jacobian matrices, whereas Liu et al.45 did so
by means of motion/force transmissibility. Here, singularities of the Hex4 PM are investigated using
the classification proposed in ref. [45].

7.1. Input transmission singularity and inverse kinematic singularity
An input transmission singularity occurs when the ith limb cannot obtain power from the
corresponding actuator,45 i.e., the transmission efficiency between the ITS and TWS is zero:

$Ai ◦ $Ti = 0. (29)

Equation (29) holds only when rotational angle α or β is at an extreme value. For cases of extreme
β (either positive or negative) as shown in Fig. 7(a), the green points marked “input transmission
singularity” form two curves of input transmission singular loci, and each configuration on these
curves is singular because limb 1 or 2 is perpendicular to the guide A1A2. For cases of extreme α, as
shown in Fig. 8, the center of the U joint of limb 3 or 4 overlaps that of the R joint, which cannot
happen in a real application.

In fact, an input transmission singularity is the same as an inverse kinematic singularity.44 A point
on the curve of input transmission singular loci also corresponds to a configuration in which the PM
has an inverse kinematic singularity, i.e., |JT

x Jx| �= 0 and |Jq| = 0, in which any one of Jqii (i = 1, 2,
3, 4) is equal to zero.
(1) Jq11

= 0 or Jq22
= 0 holds if

l = ∣∣zo ∓ l1sβ

∣∣ . (30)

The above condition occurs only if link AiBi (i = 1, 2) is perpendicular to slider A1A2. Two singular
configurations corresponding to Eq. (30) are shown in Fig. 7(a). Additionally, if links A1B1 and A2B2

are both perpendicular to the slider, the Hex 4 PM is also at an inverse kinematic singular configuration,
as shown in Fig. 7(b).

Here, screw theory is used to verify the situation when link A1B1 is perpendicular to slider A1A2.
The twist system of limb 1 can be written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

$11 = (
0 0 0; 1 0 0

)
$12 = (

1 0 0; 0 0 0
)

$13 = (
0 cα −sα; 0 q1sα q1cα

)
$14 = (

0 cα −sα; −zB1 cα − yB1 sα q1sα q1cα

) . (31)
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Fig. 7. Input transmission singularities when β is at an extreme value: (a) first configuration and (b) second
configuration.

Limb 3

(a) (b)

RPU

Overlapped

(A3)B3

Limb 4
RPU

Overlapped

(A4)B4

Fig. 8. Input transmission singularities when α is at an extreme value: (a) first configuration and (b) second
configuration.

From Eq. (31), we find that $14 is a combination of $11 and $13, so the rank of the twist system is
three. The wrench system of limb 1 can be expressed as

⎧⎪⎨
⎪⎩

$r
11 = (

0 0 0; 0 sα cα

)
$r

12 = (
0 1 0; 0 −q1tanα 0

)
$r

13 = (
0 0 1; 0 −q1 0

) , (32)

where $r
i j denotes the jth unit constraint wrench exerted on the moving platform by

the ith limb. Similarly, the wrench systems of the other three limbs can be derived as
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follows: {
$r

21 = (
0 0 0; 0 sα cα

)
$r

22 = (
0 −cα sα; 0 0 0

) , (33a)

{
$r

31 = (
0 0 0; 0 sα cα

)
$r

32 = (
1 0 0; 0 zo/cα 0

) , (33b)

and {
$r

41 = (
0 0 0; 0 sα cα

)
$r

42 = (
1 0 0; 0 zo/cα 0

) . (33c)

Therefore, the twist system that is simultaneously reciprocal to Eqs. (32) and (33) can be written
as {

$pm
1 = (

1 0 0; 0 0 0
)

$pm
2 = (

0 cα −sα; −zo q1sα q1cα

) . (34)

Equation (34) shows that the Hex4 PM only remains two DOFs in this configuration: one rotation
around the X -axis and another around the y-axis.

For the case of Fig. 7(b), the wrench system of limb 2 is different from that of Eq. (33a), being
given by ⎧⎪⎨

⎪⎩
$r

21 = (
0 0 0; 0 sα cα

)
$r

22 = (
0 1 0; 0 q1tanα 0

)
$r

23 = (
0 0 1; 0 q1 0

) . (35)

where tan denotes the tangent function.
The twist system in this singular configuration can be written as

$pm
1 = (

1 0 0; 0 0 0
)
. (36)

Equation (36) shows that in this configuration, the only DOF of the Hex4 PM is rotation around
the X -axis.
(2) Jq33

= 0 or Jq44
= 0 holds if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α = ∓arccos

(
l2
l3

)

zo = l2
√

l3
2 − l2

2

l3cα

. (37)

We find that the angle β has no impact on the inverse singularities. The configurations expressed
by Eq. (37) correspond to those shown in Fig. 8; however, these cannot occur in a real application.

7.2. Output transmission singularity
An output transmission singularity of a PM with actuation redundancy occurs only if the motion of
the moving platform cannot be achieved by the TWSs, i.e., the mean instantaneous output power
produced by the TWS and OTS of the subsidiary one-DOF PMs is zero:

η = 0. (38)

However, based on Eqs. (24) and (25), the output transmission efficiency of the PM cannot be zero.
In other words, there is no configuration in which the output power of each of the one-DOF PMs is
zero. Consequently, the Hex4 PM has no output transmission singularity.
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7.3. Combined transmission singularity
A combined transmission singularity occurs only if ITI = 0 and OTI = 0 simultaneously. Combining
the above analyses, it is clear that the Hex4 PM has no combined transmission singularity.

In summarizing the above analyses, the Hex4 PM only has inverse transmission singularities, which
can be avoided in actual applications.

8. Optimization of Design Parameters
In this study, optimization of the design parameters of the Hex4 PM is based on the GTW. The rotation
angles and operating distance are set as follows: α ∈ [−40◦, 40◦], β ∈ [−40◦, 40◦], and zo = 1.5l3.
Under actual conditions, the design parameters of the mechanism cannot be selected arbitrarily because
of the effects of assembly and movement. There are many methods to optimize the design parameters,
such as genetic algorithm46 and interval analysis,47,48 which can consider many different constraints
simultaneously, and provide guaranteed results. Here, the parameter-finiteness normalization method
(PFNM) proposed by Liu. et al.49 is used to optimize the design parameters of Hex4 PM. Compared
to other methods, the PFNM achieves the reduction of the parameter number and converts the infinite
parameter space into a finite space. Meanwhile, based on the normalized factor, this method limits
the boundary of each normalized parameter. Through this method, the performance distributions of
the objective mechanism with different design parameters can be found in the finite design space. For
Hex4 PM, the design parameters are normalized as

⎧⎪⎨
⎪⎩

D = l1 + l2 + l3
3

r1 = l1
D

, r2 = l2
D

, r3 = l3
D

, (39)

where D is a normalized factor and ri is a normalized non-dimensional parameter. Considering
practical applications, the normalized parameters should satisfy

{
r1, r2 ≤ r3

0 < r1, r2, r3 < 3
. (40)

As shown in Fig. 9, the parameter design space49 includes all possible points. The relationship
between the parameters in three-dimensional space (r1, r2, r3) and those in plan space (s, t) is described
as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r1 = 3

2
+

√
3

2
t − s

2

r2 = 3

2
−

√
3

2
t − s

2
r3 = s

or

⎧⎪⎨
⎪⎩

s = r3

t = r1 − r2√
3

. (41)

The design steps for performance optimization are as follows.

Step 1: Identify the regions. The distributions of GTW can be obtained as shown in Fig. 10,
which has been divided into three regions with different colors based on the range of σ .
Region I—in which σ ∈ (0, 0.2)—is regarded as having poor global motion/force transmission,
region II—in which σ ∈ [0.2, 0.4)—is regarded as having medium global motion/force
transmission, and region III—in which σ ≥ 0.4—is regarded as having good global motion/force
transmission.

Step 2: Select three groups of data points randomly from each region I, II, and III; altogether, nine
groups of data points are chosen in this study. For each group, the non-dimensional parameters
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Fig. 9. Model of the parameter design space: (a) spatial view and (b) plan view.

r1, r2, and r3 can be obtained using Eq. (41). Using Eqs. (39) and (41), one can then obtain
the design parameters l1, l2, and l3 and the two plan-space parameters s and t , as listed in
Table III.
Step 3: Determine the normalized factor D and dimensional parameters l1, l2, and l3. In view of
the actual operating region, the normalized factor D is determined as 500 mm. For example, the
design parameters in group 1 are chosen as the results, i.e., r1 = 0.95, r2 = 0.37, and r3 = 1.68.
The values of li can then be obtained using Eq. (39), i.e., l1 = 475 mm, l2 = 185 mm, and l3 =
840 mm.
Step 4: Check whether the dimensional parameters obtained in Step 3 are suitable for
actual applications. If the actual assembly conditions are satisfied, the procedure is finished;
otherwise, return to Step 3, choose another group of data from the region, and repeat Steps 3
and 4.

Figure 11 shows comparisons of the motion/force transmissibility in regions I, II, and III, for which
the design parameters in groups 3, 6, and 9 are chosen as examples. As shown in Fig. 11(c), the value
of GTW in region III is 0.437, which is better than that in either of the other two examples. The results
demonstrate that region III could be selected as the optimal region, and the parameters in group 9 can
be chosen as optimized design parameters.

9. Conclusions
A new 2R1T overconstrained PM with actuation redundancy, Hex4 PM, is proposed. This PM is
actuated by four P joints, and two of them are mounted on the fixed base to reduce the movable
mass and improve the dynamic response. Mobility analysis indicates that the proposed PKM has
one translational DOF and two rotational DOFs. The inverse kinematics are straightforward and
consequently can simplify the dynamic modeling and control. The LTI and GTW are used to evaluate
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Fig. 10. Optimization of GTW for the Hex4 PM: (a) distribution of σ and (b) design regions I, II, and III.

Table III. GTW in the design regions.

Region Group s t r1 r2 r3 l1 l2 l3 GTW

1 1.68 0.34 0.95 0.37 1.68 475 185 840 0.189
I 2 1.72 0.26 0.87 0.41 1.72 435 205 860 0.124

3 1.76 0.18 0.78 0.46 1.76 390 230 880 0.063
4 1.40 0.46 1.20 0.40 1.40 600 200 700 0.387

II 5 1.56 0.50 1.15 0.29 1.56 575 145 780 0.322
6 1.58 0.36 1.02 0.4 1.58 510 200 790 0.258
7 1.24 0.30 1.14 0.62 1.24 570 310 620 0.414

III 8 1.26 0.36 1.18 0.56 1.26 590 280 630 0.422
9 1.30 0.48 1.27 0.43 1.3 635 215 650 0.437

the motion/force transmission characteristics of the Hex4 PM. The variation tendencies of the two
indices show that the influence of each link parameter (l1, l2, and l3) is totally different. Based on
the motion/force transmissibility, it is found that the proposed PM only has inverse transmission
singularities, which can be avoided in actual applications. An optimized Hex4 PM was obtained after
optimizing the link parameters with respect to the GTW.

From this paper, it can be concluded that the Hex4 PM has a great potential in applications where
high rigidity, dexterity and accuracy are required. And the LTI can be widely used for performance
research works focusing on mechanisms with actuation redundancy. Future work includes building a
prototype of the Hex4 PM based on the optimal parameters, and conducting some experiments such
as calibration and verification.
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Fig. 11. Comparisons of motion/force transmissibility: (a) region I with l1 = 390 mm, l2 = 230 mm, and l3 =
880 mm (group 3), (b) region II with l1 = 510 mm, l2 = 200 mm, and l3 = 790 mm (group 6), and (c) region
III with l1 = 635 mm, l2 = 215 mm, and l3 = 650 mm (group 9).
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