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Local linear fitting is a popular nonparametric method in statistical and econometric
modeling. Lu and Linton (2007, Econometric Theory 23, 37–70) established the
pointwise asymptotic distribution for the local linear estimator of a nonparametric
regression function under the condition of near epoch dependence. In this paper, we
further investigate the uniform consistency of this estimator. The uniform strong and
weak consistencies with convergence rates for the local linear fitting are established
under mild conditions. Furthermore, general results regarding uniform convergence
rates for nonparametric kernel-based estimators are provided. The results of this
paper will be of wide potential interest in time series semiparametric modeling.

1. INTRODUCTION

Local linear fitting is a popular nonparametric method in nonlinear statistical and
econometric modeling. See, for example, Fan and Gijbels (1996), Fan and Yao
(2003), and Li and Racine (2007). Lu and Linton (2007) recently established the
pointwise asymptotic distribution (central limit theorem) for the local linear esti-
mator of a nonparametric regression function under the weak assumption of near
epoch dependence, which covers a wide range of popular time series econometric
models. In this paper, we further investigate the uniform consistency of this non-
parametric estimator for near epoch dependent (NED) processes. The results of
this paper will be of wide potential interest in time series semiparametric model-
ing (see, e.g., Andrews, 1995) and structured nonparametric modeling (see, e.g.,
Linton and Mammen, 2005).
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Uniform consistency results of nonparametric kernel-based estimators have
been studied by many authors, as they are useful in many applications such as
semiparametric estimation and specification testing. For recent developments, the
reader is referred to Liebscher (1996), Masry (1996), Bosq (1998), Fan and Yao
(2003), Hansen (2008), and Kristensen (2009) and the references therein. A rather
obvious feature of the preceding literature is that the observed time series are gen-
erally assumed to be α-mixing (i.e., strongly mixing). α-mixing dependence has
been one of the most popular dependence conditions in statistics and economet-
rics. Indeed, the stationary solutions of many linear and nonlinear time series
models are α-mixing under some suitable conditions; see, for example, Withers
(1981), Tjøstheim (1990), Tong (1990), Masry and Tjøstheim (1995), Lu (1998),
and Cline and Pu (1999).

However, from a practical point of view, α-mixing dependence suffers from
many undesirable features. As pointed out by Davidson (1994) and Lu (2001),
the α-mixing condition is difficult to verify in practice, especially in the case of
compound processes. For example, the autoregressive conditional heteroskedas-
ticity (ARCH) model and its generalized version GARCH have been proved to
be α-mixing under some mild conditions (Bollerslev, 1986; Lu, 1996a, 1996b;
Carrasco and Chen, 2002). But for compound processes such as autoregressive
moving average process with ARCH or GARCH errors, it is still difficult to
show whether they are α-mixing or not except in some very special cases. In fact,
even very simple autoregressive processes may not be α-mixing for some cases.
Andrews (1984) showed that the stationary solution to a simple linear AR(1)
model of the form

Xt = 1

2
Xt−1 + et , (1.1)

with et ’s being independent symmetric Bernoulli random variables taking values
−1 and 1, is not α-mixing. Hence, it is natural to consider a more generalized ver-
sion of stochastic processes beyond α-mixing process in both linear and nonlinear
time series analysis.

In this paper, we consider the stationary NED or stable process, which includes
the α-mixing process as a special case. One can allow some types of nonsta-
tionarity, but this complicates the notation considerably, so we do not formally
consider this but discuss subsequently some special cases. Let both {Yt } and {Xt }
be stationary processes of R1- and Rd -valued, respectively. Based on a stationary
process {εt }, {Yt } and {Xt } are defined by

Yt = �Y (εt ,εt−1,εt−2, . . .),

Xt = (Xt1, . . . , Xtd)� = �X(εt ,εt−1,εt−2, . . .),
(1.2)

whereX� denotes the transpose ofX, �Y :R∞ −→R
1 and �X :R∞ −→R

d are
two Borel measurable functions, and {εt } may be vector-valued. The definition of
NED process is provided as follows.
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DEFINITION 1. The stationary process {(Yt , Xt )} is said to be near epoch
dependent in Lν-norm (NED in Lν) with respect to a stationary α-mixing process
{εt }, if

vν(m) = E|Yt −Y (m)
t |ν +E‖Xt −X(m)

t ‖ν → 0, ν > 0, (1.3)

as m → ∞, where | · | and ‖ · ‖ are the absolute value and the euclidean norm
of Rd , respectively, Y (m)

t = �Y,m(εt , . . . , εt−m+1), X
(m)
t = (X (m)

t1 , . . . , X (m)
td )� =

�X,m(εt , . . . , εt−m+1), and �Y,m and �X,m are R1- and Rd-valued Borel mea-
surable functions with m arguments, respectively. We call vν(m) the stability co-
efficients of order ν of the process {(Yt , Xt )}.

The concept of NED process dates back to Ibragimov (1962) and was further
developed by Billingsley (1968), McLeish (1975a, 1975b, 1977), and Lin (2004).
Basically, most of these authors assumed that {εt } is a martingale difference or
is ϕ-mixing. It has been used in econometrics following Bierens (1981); see, for
example, Gallant (1987), Gallant and White (1988), and Andrews (1995). In this
paper, we are concerned with NED process with respect to the stationary α-mixing
process {εt }. The NED process can easily cover some important compounded
econometric processes and many nonlinear processes that are not α-mixing.

There has been some literature on estimation and testing issues for NED pro-
cesses. Andrews (1995) established uniform convergence with rates for nonpara-
metric density and regression estimators based on the local constant paradigm
under NED conditions. Lu (2001) established asymptotic normality for kernel
density estimators for NED processes. Ling (2007) developed a strong law of
large numbers and a strong invariance principle for NED sequences when {εt } is
independent and used the results to test for change points. Lu and Linton (2007)
established the pointwise asymptotic distribution of local linear estimators for
NED process. In this paper, we further establish the uniform strong and weak
convergence rates of the local linear estimators. In particular, we obtain the uni-
form rate over expanding subsets of the covariate support. We also provide new
results on estimation of a countable number of regression functions, for exam-
ple, gj (x) = E(Yt |Xt− j = x), j = 1,2, . . .. This application occurs naturally in a
number of time series settings (Hong, 2000; Linton and Mammen, 2005) but does
not appear to have been formally treated before at this level of generality. We es-
tablish the uniform rate of convergence of the local linear estimators uniformly
over j also.

The proofs for the main results are different from those in Andrews (1995),
which may be the only existing uniform convergence results for nonparametric
kernel estimation under the NED assumption. Andrews (1995) made use of a
Fourier transformation of the kernel and obtained a number of uniform consis-
tency results for the nonparametric density and regression estimators based on the
local constant approximation. In this paper, we will use the local linear approach
and then establish the uniform consistency results by approximating the NED
process by an α-mixing process and applying some effective ways such as finite
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covering and truncation methods in the proofs. The rate we obtain is constrained
by the amount of dependence but does not explicitly depend on it, as it does in
Andrews (1995), thereby yielding faster convergence rates in general. This means
that in some special cases our convergence rate is optimal (see Stone, 1980).

We remark that an alternative extension of dependence beyond mixing can also
be found in Nze, Bühlmann, and Doukhan (2002) and Nze and Doukhan (2004).
These authors investigated a class of dependent processes they call “weakly de-
pendent,” the definition of which is quite involved. They established the asymp-
totic normality and uniform consistency of the local constant nonparametric
regression estimator under some conditions, which included a fixed compact
support.

The rest of the paper is organized as follows. The local linear fitting and the
uniform convergence rates of the proposed local linear estimators are presented
in Section 2. The general results of uniform convergence rates for nonparametric
kernel-based estimators are provided in Section 3. Application of our results in
estimation of a countable number of conditional expectations is given in Section 4.
The technical lemmas and the proofs of the main results are collected in two
Appendixes.

2. UNIFORM CONVERGENCE RATES OF LOCAL LINEAR FITTING

In this section, we study the local linear estimator of the conditional mean regres-
sion function defined by

g(x) := E(Yt |Xt = x) . (2.1)

Local linear fitting is a widely used nonparametric estimation method, and we
refer to Fan and Gijbels (1996) for a detailed account of this subject. The main
idea of local linear fitting consists in approximating, in a neighborhood of x, the
unknown regression function g(·) by a linear function. Under the condition that
g(·) has continuous derivatives up to the second order, we have

g(z) ≈ g(x)+ (g′(x))�(z−x) =: a0 +a�1 (z−x).
Locally, this suggests estimating (a0, a

�
1 ) = (g(x), (g′(x))�) by(

â0
â1

)
:= arg min

(a0,a1)∈Rd+1

T

∑
t=1

(Yt −a0 −a�1 (Xt −x))2 K

(
Xt −x

h

)
, (2.2)

where h := hT is a sequence of bandwidths tending to zero at an appropriate rate
as T tends to infinity and K (·) is a kernel function with value in R+. Denote the
local linear estimators of (g(x), (g′(x))�) by (ĝ(x), (ĝ′(x))�), where ĝ(x) = â0
and ĝ′(x) = â1.

There has been rich literature on the uniform convergence rates for the local lin-
ear estimators under mixing conditions; see, for example, Masry (1996), Fan and
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Yao (2003), and Hansen (2008). Lu and Linton (2007) established the pointwise
asymptotic distribution for the local linear estimators under the NED condition.
In this section, we provide the uniform convergence rates for ĝ(x) over expand-
ing sets. The distribution of the covariates plays a role in determining the rate at
which the set considered may expand, and such set is defined by

{x : ‖x‖ ≤ CT }, where CT = (log T )τ∗ T τ 0 , τ ∗ ≥ 0, τ 0 ≥ 0. (2.3)

Define

aT ( f ) := inf‖x‖≤CT
f (x) > 0, (2.4)

where f (·) is the density function of {Xt }. Let

MT =
⎡⎣{T 1−2/p0 hd

log T

}1/2
⎤⎦ , ρT =

{
log T

T hd

}1/2

, (2.5)

where p0 = 2 + ε∗ and ε∗ > 0 and [a] stands for the integer part of a real
number a.

We first introduce some regularity conditions to establish the uniform conver-
gence rates for the proposed estimators.

A1. The kernel function K (·) is positive, bounded, and Lipschitz continuous
such that

|K (x1)− K (x2)| ≤ CK ‖x1 −x2‖ ,

where CK is some positive constant. Furthermore,
∫
Rd ‖u‖2 K (u)du < ∞.

A2.

(a) The density function f (·) is continuous on Rd . Furthermore, the joint
density function f0 j (·, ·) of (X0,Xj ) exists and satisfies that for some
positive integer j∗ and all j ≥ j∗, f0 j (x1,x2) < Cf for all (x1,x2) ∈R2d ,
0 < Cf < ∞.

(b) The regression function g(·) has continuous derivatives up to the second
order over Rd .

A3.

(a) {Yt ,Xt } is stationary NED in L p0 -norm with respect to a stationary α-
mixing process {εt }, E|Yt |p0 < ∞, where p0 = 2+ ε∗.

(b) The mixing coefficient αt of the stationary α-mixing {εt }
satisfies αt ≤ Cαt−θ0 , 0 < Cα < ∞, θ0 > β1, β1 =(
(3p0 +6)/4p0 + ( 1

2 + τ 0)d
)/(

1
2 − (1/p0)

)
, where τ 0 is defined

in CT of (2.3).
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A4.

(a) There exist two sequences of positive integers mT and M∗
T , which satisfy

mT → ∞, mT = o(M∗
T ),

M∗
T = o(MT ), M∗

T hd = o(1),
(

M∗
T

)−(θ0ε∗/(4+ε∗))+1
h−d = o(1),

(2.6)

where θ0 is defined in A3(b). Furthermore,

h−d−1ρ−1
T v1(mT ) = O(1),

h−2d
(
v

1/2
2 (m)+h−(ε∗/(2+ε∗))v(ε∗/2+ε∗)

1 (mT )
)

= o(1).

(b) The bandwidth h satisfies, as T → ∞,

h → 0, (log T )(θ0/2)+β3 h−(θ0d/2)−β2 T (β1−θ0)((1/2)−(1/p0)) → 0,

(2.7)

where β2 = (7+2d)d
4 and β3 = (2τ∗−1)d

2 + 1
4 .

Remark 2.1. A1 is a mild condition on the kernel function K (·), and some
commonly used kernel functions such as the standard normal probability density
function can be shown to satisfy A1. By contrast, Masry (1996) required ker-
nels that have compact support. A2(a) and (b) are some conditions on the density
functions and the regression function, and they are similar to the corresponding
assumptions in Lu and Linton (2007). If the regression function g is less smooth
than assumed here, one obtains a different magnitude of the bias terms, but other-
wise the argument goes through. A3 provides the moment conditions on {Yt ,Xt }
and the mixing coefficient condition for {εt }. There is a trade-off between the mo-
ment condition and dependence, and we work in the special case with at least two
moments because the case with fewer moments requires different techniques; see,
for example, Lu and Cheng (1997), who considered pointwise strong consistency
of kernel regression estimators, and Kanaya (2010) for uniform convergence un-
der weaker moment conditions.

A4(a) is on the stability coefficient defined by (1.3) in Section 1 and can be
satisfied by some interesting time series models under mild conditions (see, e.g.,
Lu and Linton, 2007 Sect. 4.1). When p0 = 3, d = 1, and θ0 is large enough, by
letting

mT =
√

T 1/3h

(log T )2 , M∗
T =

√
T 1/3h

log T
, h ∝ T −1/5,

we can show that (2.6) is satisfied. The crucial assumption A4(b) allows for slow
decay in general, but it can be simplified in some special cases. For example, if
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θ0 → ∞ (α-mixing process decays with the exponential rate), the second term in
(2.7) can be rewritten as

T (1/2)−(1/p0)h
d
2

(log T )
1
2

(
(log T )−β3/θ0 hβ2/θ0 T −β1((1/2)−(1/p0))/θ0

)
→ ∞.

As β1, β2, and β3 are constants, this means that

β1(
1

2
− 1

p0
)/θ0 → 0, β2/θ0 → 0, β3/θ0 → 0, as θ0 → ∞.

Hence, for the case of θ0 → ∞, the second term in (2.7) is just slightly stronger
than

T (1/2)−(1/p0)hd/2

(log T )1/2 → ∞,

which is comparable to condition (12) in Hansen (2008) and is slightly stronger
than the condition T hd/ log T → ∞ as p0 → ∞.

As the NED condition (with respect to the α-mixing {εt }) is more general than
the mixing condition in Hansen (2008), to obtain the same convergence rates in
this paper, we need some technical assumptions on the mixing coefficient and
stability coefficients that are a bit more involved. However, the moment condition
on {Yt } in A3(a) is the same as the corresponding moment condition in Hansen
(2008).

We first give the uniform convergence rate of the local linear estimator ĝ(x)
in probability. Denote bT (g) = sup

‖x‖≤CT

∥∥ f (x)g′′(x)
∥∥, where g′′(x) denotes the

d × d matrix of second partial derivatives of the function g(·) and the norm here
is the matrix euclidean norm ||A|| = tr(A� A)1/2 for matrix A.

THEOREM 2.1. Suppose that the conditions A1–A4 are satisfied. Then, we
have

sup
‖x‖≤CT

∣∣ĝ(x)− g(x)
∣∣= OP

(
ρT +bT (g)h2

aT ( f )

)
, (2.8)

where aT ( f ) and ρT are defined in (2.4) and (2.5), respectively.

Remark 2.2. The preceding theorem can be regarded as an extension of Theo-
rem 10 in Hansen (2008) from α-mixing process to NED process. Hansen (2008)
used the slightly different condition that the second derivatives of g(x) f (x)
are bounded, whereas we allow that bT (g) = sup

‖x‖≤CT

∥∥ f (x)g′′(x)
∥∥ increases

with T . If the second-order derivatives of g(x) and f (x) are uniformly bounded,
bT (g) < Cg for some 0 < Cg < ∞. Then (2.8) would become

sup
‖x‖≤CT

∣∣ĝ(x)− g(x)
∣∣= OP

(
ρT +h2

aT ( f )

)
. (2.9)
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Furthermore, if we let CT = C and aT ( f ) > c0 > 0, (2.9) becomes

sup
‖x‖≤C

∣∣ĝ(x)− g(x)
∣∣= OP

(
ρT +h2

)
. (2.10)

Taking h ∝ (log T/T )1/(4+d), the right-hand side becomes (log T/T )2/(4+d),
which is the optimal rate in the compactly supported independent and identically
distributed case (see, e.g., Stone, 1980). This bandwidth is consistent with A4
under some restrictions on p0, d, θ0, τ 0 and the stability coefficients v j , j = 1,2.
Equation (2.10) can be regarded as the extension of some existing results under
the mixing dependence assumption such as Theorem 6.5 in Fan and Yao (2003).

Remark 2.3. We next briefly discuss some nonstationary extensions. There
has been a lot of work recently on nonparametric regression with nonstationary
covariates; see, for example, Wang and Phillips (2009) and included references.
One particularly tractable type of nonstationarity is that of local stationarity; see,
for example, Dahlhaus (1997). Suppose the data come from a triangular array
Zt,T = {Yt,T ,Xt,T , t = 1, . . . ,T }. The stochastic process {Zt,T } is called locally
stationary if there exists a stationary stochastic process {Z̃u,t }, u ∈ [0,1], such that

P

{
max

1≤t≤T

∣∣∣Zt,T − Z̃t/T,t

∣∣∣≤ DT T −1/2
}

= 1 (2.11)

for all T , where {DT } is a well-defined positive process satisfying for some η > 0,
E
(|DT |4+η

)
< ∞; see Koo and Linton (2010). For locally stationary processes,

our results will go through provided all conditions are made on Z̃u,t to hold uni-
formly over u ∈ [0,1].

Remark 2.4. Our CT defined in (2.3) is quite general to cover different situa-
tions in applications of Theorem 2.1. For example, if taking CT = (log T )1/d T 1/τ 0

as in Hansen (2008), the uniform convergence rate on the right-hand side of (2.8)
would become inapplicable when the regressor is gaussian, by noticing that when
{Xt } is real-valued gaussian, it is easy to check that

inf|x |≤cT
f (x) ∝ exp

{
− c2

T

2

}
, cT → ∞,

which implies that

aT ( f ) ∝ exp

{
− C2

T

2

}
∝ exp

{
−T 2/τ 0(log T )2/d

2

}
,

and the convergence rate on the right-hand side of (2.8) would tend to infinity.
Hence, it is more sensible for us to consider the uniform convergence rate of the
local linear estimator with gaussian regressors by letting τ 0 = 0 in CT (i.e., CT =
(log T )τ∗ ) defined in (2.3). Hence, our results are more widely applicable than the
results of Hansen (2008), who only considered the form of CT = (log)1/d T 1/τ 0 .
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We next establish the uniform strong convergence rate of the local linear esti-
mator ĝ(x).

THEOREM 2.2. Suppose that the conditions in Theorem 2.1 are satisfied,
E|Yt |s1 < ∞, s1 > 2p0,

T h−(d+1)v1(mT )ρ−1
T = O

(
(log T )−(1+ς)

)
, ς > 0, (2.12)

and

(log T )(θ0/2)+β3 h−(θ0d/2)−β2 T 1+(β1−θ0)((1/2)−(1/p0)) = O
(
(log T )−(1+ς)

)
.

(2.13)

Then, we have

sup
‖x‖≤CT

∣∣ĝ(x)− g(x)
∣∣= O

(
ρT +bT (g)h2

aT ( f )

)
a.s. (2.14)

3. GENERAL RESULTS

Let {Yt ,Xt } be a stationary NED sequence defined in Section 1. We next consider
the weighted average form

WT (x) = 1

T hd

T

∑
t=1

Yt KT

(
Xt −x

h

)
, (3.1)

where h is the bandwidth and KT (·) : Rd → R is a kernel-based weight func-
tion. By suitable choice of KT (·) and �(·), many kernel-based nonparametric
estimators such as the kernel density estimator, Nadaraya–Watson estimator, and
local polynomial estimator can be written in the form of (3.1). In this section,
we provide some general results for uniform convergence rates of WT under our
NED assumption, from which we can derive the two theorems in Section 2 con-
veniently. Hansen (2008) established the weak and strong uniform convergence
rate of WT (x) for stationary α-mixing process. We will provide the uniform con-
vergence rate for WT (x) when the α-mixing dependence is replaced by the NED
condition.

To establish the uniform convergence rate of WT (x), we need the following
regularity condition on KT (·).

A5. The kernel-based weight function KT (·) is integrable, bounded, and Lip-
schitz continuous satisfying

sup
T ≥1

|KT (x1)− KT (x2)| ≤ C∗
K ‖x1 −x2‖ ,

where C∗
K is some positive constant.

The uniform convergence rate results for WT (x) are provided in the following
two theorems.
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THEOREM 3.1. Suppose that the conditions A2(a) and A3–A5 are satisfied.
Then we have

sup
‖x‖≤CT

|WT (x)−E [WT (x)]| = OP (ρT ) , (3.2)

where ρT is defined in (2.5).

THEOREM 3.2. Suppose that the conditions in Theorem 3.1, (2.12), and (2.13)
are satisfied, E|Yt |s1 < ∞, s1 > 2p0. Then, we have

sup
‖x‖≤CT

|WT (x)−E [WT (x)]| = O (ρT ) a.s., (3.3)

where ρT is defined in (2.5).

Remark 3.1. The preceding theorems establish the weak and strong con-
vergence rates for WT (x). We remark that under some suitable conditions, an
L Q0 -convergence of WT (x), for some Q0 > 1, can also be established. Letting
Q1 > Q0 > 1, E |Yt |Q1 < ∞ and the mixing coefficient

αt ≤ C∗
αt−θ∗

0 , θ∗
0 > (Q1 Q0)/2(Q1 − Q0).

Then, applying Theorem 4.1 in Shao and Yu (1996) and following the proofs of
Lemmas A.2 and A.5 in Appendix A, we can show that, if {(Xt ,Yt )} is NED with
the stable coefficient decaying at a geometric rate,

sup
‖x‖≤CT

(
E |WT (x)−E [WT (x)]|Q0

)1/Q0 = O
(

T −1/2h((1−Q1)d)/Q1
)

(3.4)

under mild conditions.

Remark 3.2. It is of interest to consider the uniform consistency over the set
{x : f (x) ≥ dT }, dT → 0, similarly to Andrews (1995). Under some conditions
on f (·) and dT , we conjecture that the uniform convergence rates obtained in this
paper also hold over the set {x : f (x) ≥ dT }. We will consider this in future study.

4. ESTIMATION OF A COUNTABLE NUMBER OF CONDITIONAL
EXPECTATIONS

Define the quantities gj (x) = E(Yt |Xt− j = x), j = 1,2, . . ., where both {Yt } and
{Xt } are real-valued. There are many cases of interest that require estimation of
this whole family of regression functions. For example, consider the quantity

G(x) =
∞
∑
j=1

wj gj (x), (4.1)

where wj , j ≥ 1, are summable weights and the sum in (4.1) is assumed to be well
defined. This quantity is of interest in a number of applications, and we discuss
three examples in detail here.
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Hong (2000) proposed a test of serial independence of an observed scalar se-
ries Xt . In practice checking the independence of Xt from Xt−1, Xt−2, . . . is
very difficult because of the curse of dimensionality. He proposed checking all
pairwise joint relationships (Xt , Xt− j ) for departures from the null. An alter-
native approach is to check all pairwise conditional relationships Xt |Xt− j ; for
example, to check whether all functions g∗

j (x) = E(Xt |Xt− j = x), j ≥ 1, are
constant. This can be done by evaluating an empirical version of the weighted

sum sup
x

∞
∑

j=1
wj |g∗

j (x)− gj |, where wj and gj , j ≥ 1, are summable weights and

average values, respectively.
Linton and Mammen (2005) considered the semiparametric volatility model for

observed returns Xt = σ tεt with εt and ε2
t − 1 martingale difference sequences

and

σ 2
t =

∞
∑
j=1

ψ j (θ)g̃(Xt− j ),

where g̃(·) is an unknown function and the parametric family {ψ j (θ) : θ ∈
�, j = 1, . . . ,∞} satisfies some regularity conditions. This model includes the
GARCH(1,1) as a special case. They assumed that {Xt } is stationary and ge-
ometrically mixing. They obtained a characterization of the function g̃(·) that
involves a weighted sum of the form (4.1); specifically, the quantity g∗

θ (x) =
∞
∑

j=1
ψ j (θ)ηj (x). They proposed an estimation strategy for the unknown quan-

tities, which requires as input the estimation of ηj (x) = E(X2
t |Xt− j = x) for

j = 1,2, . . . , J (T ), where J (T ) = c log T for some c > 0. They required bounding
the estimation error of ηj (x) uniformly over x and over j = 1,2, . . . , J (T ). They
provided only a sketch proof of this result in the case where the process is as-
sumed to have compact support and to be strongly mixing with geometric decay.
We next give more definitive results under weaker conditions.

As a final motivation, consider the nonparametric prediction of a future value
X0 given a sample {X−1, . . . , X−T }. Linton and Sancetta (2009) established
consistency of estimators of E(X0|X−1, . . .) under weak conditions, but rates
of convergence are not available, and practical performance is likely to be
poor. Instead, it makes sense to use lower dimensional predictors, but which
one? Consider the following model averaging approach, which makes use of

a large number of low dimensional predictors; that is, to use
J (T )

∑
j=1

wT, j ĝj (X− j )

to estimate E(X0|X−1, . . .), where wT, j , j = 1, . . . , J (T ), are weights such

that
J (T )

∑
j=1

wT, j = 1, J (T ) is an increasing sequence and ĝj (·), j ≥ 1, are the

nonparametric regression fits.
Let

G(x1, x2, . . .) = E(Xt |Xt−1 = x1, Xt−2 = x2, . . .)
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be the best prediction function. Then

Gw(x1, x2, . . .) =
J (T )

∑
j=1

wT, j g
∗
j (xj ), g∗

j (x) = E(Xt |Xt− j = x),

can be considered as an approximation to G(x1, x2, . . .). One can choose the
weights according to several criteria, which we do not go into here. In this case, to
show the rate of uniform convergence of Ĝw(x1, x2, . . .) to Gw(x1, x2, . . .), where

Ĝw(x1, x2, . . .) =
J (T )

∑
j=1

wT, j g̃j (xj )

and g̃j (·) is the local linear estimator of g∗
j (·), it suffices to control the rate for

each g̃j (xj ) uniformly over j = 1, . . . , J (T ). We next give a result that establishes
the same rate of convergence as in Theorem 2.1 but uniformly over j also. We
just need some restriction on the rate at which J (T ) can increase to infinity. Our
result allows J (T ) to grow at a polynomial rate in some cases.

PROPOSITION 4.1. Suppose that {Xt } is stationary NED in L p0 -norm with
respect to a stationary α-mixing process {εt } with E |Xt |p0 < ∞, A2 is satisfied
when g(·) is replaced by g∗

j (·), and the remaining conditions of Theorem 2.1 are
satisfied. Furthermore, suppose that

J (T )h−(d+1)v1(mT )ρ−1
T = O(1)

and

J (T )(log T )(θ0/2)+β3 h−(θ0d/2)−β2 T (β1−θ0)((1/2)−(1/p0)) = o(1).

Then we have

max
1≤ j≤J (T )

sup
|x |≤CT

∣∣∣g̃j (x)− g∗
j (x)
∣∣∣= OP

(
ρT +bT h2

aT ( f )

)
, (4.2)

where bT = max
1≤ j≤J (T )

bT (g∗
j ) and bT (g∗

j ) is defined as bT (g) in Section 2.

Remark 4.1. In the preceding result, we establish the weak convergence rate
for g∗

j (x) uniformly over j and x . The strong uniform convergence rate result for
g∗

j (x) can also be established by applying proofs similar to those of Theorems 2.2
and 3.2.
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APPENDIX A: Some Useful Lemmas

We next provide some critical lemmas, which are necessary for the proofs of the main
results. The first one is the Bernstein inequality for α-mixing process, which can be found
in several books such as Fan and Yao (2003).

LEMMA A.1. Let {Zt } be a zero-mean real-valued α-mixing process satisfying
P(|Zt | ≤ B) = 1 for all t ≥ 1. Then for each integer q ∈ [1, T

2 ] and each ε > 0, we have

P

(∣∣∣∣∣ T

∑
t=1

Zt

∣∣∣∣∣> T ε

)
≤ 4exp

(
− ε2q

8v2(q)

)
+22

(
1+ 4B

ε

)1/2
qα

([
T

2q

])
, (A.1)

where v2(q) = 2σ 2(q)/p2 + Bε/2 with p = T
2q and

σ 2(q) = max
1≤ j≤2q−1

E
(
([ j p]+1− j p)Z[ j p]+1 + Z[ j p]+2 +·· ·+ Z[( j+1)p]

+(( j +1)p − [( j +1)p])Z[( j+1)p]+1
)2

.
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Letting Y (m)
t be defined as in Definition 1, we establish the result on the moment of

Y (m)
t in Lemma A.2, which follows.

LEMMA A.2. Suppose that the sequence {Yt } is NED in Ls with E|Yt |s < ∞ for s ≥ 1.

Then we have E
∣∣∣Y (m)

t

∣∣∣s < ∞.

Proof. Note that Y (m)
t = Yt + Y (m)

t − Yt . By applying the Cr inequality and (1.3) in

Definition 1, we can prove that E
∣∣∣Y (m)

t

∣∣∣s < ∞. n

Define

W (m)
T (x) = 1

T hd

T

∑
t=1

Y (m)
t KT

(
X

(m)
t −x

h

)
. (A.2)

The next lemma shows that WT (x) can be approximated by W (m)
T (x) in probability as

m → ∞, which is critical for uniform weak convergence rate of WT (x).

LEMMA A.3. Suppose that the conditions of Theorem 3.1 are satisfied. Then, we have

sup
‖x‖≤CT

∣∣∣WT (x)− W (m)
T (x)

∣∣∣= OP

(
h−d−1v1(m)

)
. (A.3)

Proof. Observe that

WT (x)− W (m)
T (x) = 1

T hd

T

∑
t=1

(
Yt KT

(
Xt −x

h

)
−Y (m)

t KT

(
X

(m)
t −x

h

))

= 1

T hd

T

∑
t=1

Y (m)
t

(
KT

(
Xt −x

h

)
− KT

(
X

(m)
t −x

h

))

+ 1

T hd

T

∑
t=1

(
Yt −Y (m)

t

)
KT

(
Xt −xt

h

)
=: IT,1(x)+ IT,2(x). (A.4)

We first consider IT,2(x). Noting that E
∣∣∣Y (m)

t −Yt

∣∣∣ = v1(m) and by the boundedness

condition on KT (·) (see A5 in Section 3), we have

sup
‖x‖≤CT

∣∣IT,2(x)
∣∣ ≤ h−d sup

‖x‖≤CT

∣∣∣KT (Xt −x
h )

∣∣∣ ∣∣∣Y (m)
t −Yt

∣∣∣= OP

(
h−dv1(m)

)
. (A.5)

For IT,1(x), note that

IT,1(x) = 1

T hd

T

∑
t=1

Yt

(
KT

(
Xt −x

h

)
− KT

(
X

(m)
t −x

h

))

+ 1

T hd

T

∑
t=1

(
Y (m)

t −Yt

)(
KT

(
Xt −x

h

)
− KT

(
X

(m)
t −x

h

))
=: IT,3(x)+ IT,4(x). (A.6)
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By the Lipschitz continuity of KT (·), we have uniformly for ‖x‖ ≤ CT ,∣∣∣∣∣KT

(
Xt −x

h

)
− KT

(
X

(m)
t −x

h

)∣∣∣∣∣= OP (v1(m)/h). (A.7)

By (A.7), we have

sup
‖x‖≤CT

∣∣IT,3(x)
∣∣= OP

(
h−d−1v1(m)

)
. (A.8)

On the other hand, we have

sup
‖x‖≤CT

∣∣IT,4(x)
∣∣= OP

(
h−d−1v2

1(m)
)

. (A.9)

In view of (A.4)–(A.6), (A.8), and (A.9), we can show that (A.3) holds. n

LEMMA A.4. Suppose that the conditions of Theorem 3.2 are satisfied. Then, we have

sup
‖x‖≤CT

∣∣∣WT (x)− W (mT )
T (x)

∣∣∣= O
(
ρT
)

a.s., (A.10)

where mT satisfies the condition A4(a) and ρT is defined in (2.5).

Proof. Let IT,1(x) and IT,2(x) be defined as in (A.4). By (2.12) and the Markov in-
equality, we have

∞
∑

T =1
P
(∣∣∣Y (mT )

t −Yt

∣∣∣> ρT hd
)

≤ ∞
∑

T =1
ρ−1

T h−d
E

∣∣∣Y (mT )
t −Yt

∣∣∣
≤ C

∞
∑

T =1
ρ−1

T h−dv1(mT ) = C
∞
∑

T =1

1
T log1+ς T

< ∞.

(A.11)

By the boundedness condition on KT (·) and (A.11), we have

sup
‖x‖≤CT

∣∣IT,2(x)
∣∣≤ 1

T hd

T
∑

t=1

∣∣∣Y (mT )
t −Yt

∣∣∣ sup
‖x‖≤CT

∣∣∣KT (Xt −x
h )

∣∣∣
= O(ρT ) a.s.

(A.12)

Analogously, we can show that sup
‖x‖≤CT

∣∣IT,1(x)
∣∣ = O(ρT ) a.s., which together with

(A.12) implies that (A.10) holds. n

LEMMA A.5. Let rT be a sequence of positive integers such that mT /rT = o(1) and

Ur (x) = 1

hd

rT

∑
t=1

Y (mT )
t KT

(
X

(mT )
t −x

h

)
. (A.13)

Suppose that the conditions of Theorem 3.1 are satisfied. Then, we have

Var[Ur (x)] = O(rT h−d ). (A.14)
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Proof. For simplicity, we let m = mT and r = rT in this proof. Observe that

Var[Ur (x)] = �(1)+�(2), (A.15)

where

�(1) = 1

h2d

r

∑
t=1

Var

[
Y (m)

t KT

(
X

(m)
t −x

h

)]
,

�(2) = 1

h2d

r

∑
t=1

∑
s �=t

Cov

[
Y (m)

t KT

(
X

(m)
t −x

h

)
, Y (m)

s KT

(
X

(m)
s −x

h

)]
.

We first consider �(1). It is easy to check that

�(1) ≤ 1

h2d

r

∑
t=1

E

[
(Y (m)

t )2 K 2
T

(
X

(m)
t −x

h

)]

= 1

h2d

r

∑
t=1

E

[
Y 2

t K 2
T

(
Xt −x

h

)]

+ 1

h2d

r

∑
t=1

E

[(
(Y (m)

t )2 −Y 2
t

)
K 2

T

(
X

(m)
t −x

h

)]

+ 1

h2d

r

∑
t=1

E

[
Y 2

t

(
K 2

T

(
X

(m)
t −x

h

)
− K 2

T

(
Xt −x

h

))]
=: �(3)+�(4)+�(5). (A.16)

By the condition A4(a) and standard but tedious calculation similar to that in the proof
of Lemma A.3, we have

�(3) = O(rh−d ), (A.17)

�(4) = O
(

rh−2dv
1/2
2 (m)

)
= o(rh−d ). (A.18)

Letting BT = (h/v1(m))1/(2+ε∗) = (h/v1(m))1/p0 , we have

E

[
Y 2

t

(
K 2

T

(
X

(m)
t −x

h

)
− K 2

T

(
Xt −x

h

))]

= E
[

Y 2
t I (|Yt | ≤ BT )

(
K 2

T

(
X

(m)
t −x

h

)
− K 2

T

(
Xt −x

h

))]

+E
[

Y 2
t I (|Yt | > BT )

(
K 2

T

(
X

(m)
t −x

h

)
− K 2

T

(
Xt −x

h

))]
= O

(
B2

T v1(m)h−1 + B−ε∗
T

)
= O

(
(h/v1(m))−ε∗/p0

)
,

where I (·) is the indicator function. Then it is easy to check that
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�(5) = O
(

rh−2d (h/v1(m))−ε∗/p0
)

= o(rh−d ), (A.19)

as h−d−(ε∗/(2+ε∗))vε∗/(2+ε∗)
1 (m) = o(1) in A4(a).

Then, by (A.17)–(A.19), we have

�(1) = O(rh−d ). (A.20)

We next turn to the calculation of �(2). Note that

�(2) = 1

h2d

r

∑
t=1

∑
|s−t |≤M∗

T

Cov

[
Y (m)

t KT

(
X

(m)
t −x

h

)
, Y (m)

s KT

(
X

(m)
s −x

h

)]

+ 1

h2d

r

∑
t=1

∑
|s−t |>M∗

T

Cov

[
Y (m)

t KT

(
X

(m)
t −x

h

)
, Y (m)

s KT

(
X

(m)
s −x

h

)]
=: �(6)+�(7), (A.21)

where M∗
T is defined in the condition A4(a).

By standard calculation, we have

�(6) = 1

h2d

r

∑
t=1

∑
|s−t |≤M∗

T

Cov

[
Yt KT

(
Xt −x

h

)
, Ys KT

(
Xs −x

h

)]
+ O

(
r M∗

T h−2d
(
v

1/2
2 (m)+ (h/v1(m))−ε∗/p0

))
, (A.22)

which together with h−2d
(
v

1/2
2 (m)+ (h/v1(m))−ε∗/p0

)
= o(1) in A4(a) and the fact that

M∗
T = o(h−d ), implies that

�(6) = O(r M∗
T ) = o(rh−d ). (A.23)

On the other hand, noting that {Y (m)
t ,X

(m)
t } is an α-mixing process with mixing coeffi-

cient

αm(t) ≤
{

αt−m , t ≥ m +1;
1, t ≤ m,

we have

�(7) ≤ C

h2d

r

∑
t=1

∑
|s−t |>M∗

T

α
ε∗/(4+ε∗)|s−t |−m

⎧⎨⎩E
⎡⎣∣∣∣∣∣Y (m)

t KT

(
X

(m)
t −x

h

)∣∣∣∣∣
2+(ε∗/2)

⎤⎦⎫⎬⎭
4/(4+ε∗)

≤ C

h2d

r

∑
t=1

∑
|s−t |>M∗

T

(|s − t |−m)−θ0ε∗/(4+ε∗)

×
⎧⎨⎩E
⎡⎣∣∣∣∣∣Y (m)

t KT

(
X

(m)
t −x

h

)∣∣∣∣∣
2+(ε∗/2)

⎤⎦⎫⎬⎭
4/(4+ε∗)

. (A.24)
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By Lemma A.2, we have

E

⎡⎣∣∣∣∣∣Y (m)
t KT

(
X

(m)
t −x

h

)∣∣∣∣∣
2+(ε∗/2)

⎤⎦< ∞. (A.25)

By the condition A4(a), (A.24), and (A.25), we have

�(7) ≤ C

h2d

r

∑
t=1

∑
s>M∗

T /2

s−θ0ε∗/(4+ε∗)

⎧⎨⎩E
⎡⎣∣∣∣∣∣�(Y (m)

t )KT

(
X(m)

t −x
h

)∣∣∣∣∣
2+(ε∗/2)

⎤⎦⎫⎬⎭
4/(4+ε∗)

≤ C

h2d

r

∑
t=1

∑
s>M∗

T /2

s−θ0ε∗/(4+ε∗) ≤ Crh−d
(
(M∗

T )−θ0ε∗/(4+ε∗)+1h−d
)

= o(rh−d ).

(A.26)

By (A.21), (A.23), and (A.26), we have �(2) = o(rh−d ), which together with (A.15)
and (A.20) implies that (A.14) holds. n

APPENDIX B: Proofs of the Main Results

We first prove Theorems 3.1 and 3.2 and then provide the proofs of the uniform conver-
gence rate results in Sections 2 and 4. In fact, the results in Sections 2 and 4 can be obtained
as applications of Theorems 3.1 and 3.2. As in the proof of Lemma A.5, we let m = mT
throughout this Appendix.

Proof of Theorem 3.1. Note that

sup
‖x‖≤CT

|WT (x)−E[WT (x)]| ≤ sup
‖x‖≤CT

∣∣∣W (m)
T (x)−E[W (m)

T (x)]
∣∣∣

+ sup
‖x‖≤CT

∣∣∣WT (x)− W (m)
T (x)

∣∣∣
+ sup

‖x‖≤CT

∣∣∣E[WT (x)]−E[W (m)
T (x)]

∣∣∣
=: �T,1 +�T,2 +�T,3. (B.1)

By Lemma A.3, we have

�T,2 = OP

(
h−d−1v1(m)

)
= OP (ρT ), �T,3 = O(ρT ). (B.2)

By (B.1) and (B.2), to prove (3.2), we need only to show that �T,1 = OP (ρT ). Recall

that {Y (m)
t ,X

(m)
t } is an α-mixing process with mixing coefficient

αm(t) ≤
{

αt−m , t ≥ m +1;
1, t ≤ m.

We cover the set {x : ‖x‖ ≤ CT } by a finite number of subsets Sk , k = 1, . . . , NT , which
are centered at sk with radius ρT hd+1. Observe that
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�T,1 ≤ max
1≤k≤NT

sup
‖x‖∈Sk

∣∣∣W (m)
T (x)− W (m)

T (sk)
∣∣∣

+ max
1≤k≤NT

sup
‖x‖∈Sk

∣∣∣E[W (m)
T (x)]−E[W (m)

T (sk)]
∣∣∣

+ max
1≤k≤NT

∣∣∣W (m)
T (sk)−E[W (m)

T (sk)]
∣∣∣

=: �T,4 +�T,5 +�T,6. (B.3)

By the Lipschitz continuity of KT (·) in A5, we have

max
T ≥1

max
1≤k≤NT

sup
x∈Sk

∣∣∣∣KT

(
Xt −x

h

)
− KT

(
Xt − sk

h

)∣∣∣∣≤ max
1≤k≤NT

sup
x∈Sk

∥∥∥∥x− sk

h

∥∥∥∥ . (B.4)

By (B.4) and noting that E
∣∣∣Y (m)

t

∣∣∣< ∞ by Lemma A.2, we have

�T,4 = OP

(
ρT hd+1

hd+1

)
= OP (ρT ), �T,5 = O(ρT ). (B.5)

By (B.3) and (B.5), to prove �T,1 = OP (ρT ), we need only to show that �T,6 =
OP (ρT ). Let �T = T 1/p0 ,

Y (m)
t = Y (m)

t I
(
|Y (m)

t | ≤ �T

)
, Ỹ (m)

t = Y (m)
t I

(
|Y (m)

t | > �T

)
,

W (m)
T (x) = 1

T hd

T

∑
t=1

Y (m)
t KT

(
X

(m)
t −x

h

)
,

W̃ (m)
T (x) = 1

T hd

T

∑
t=1

Ỹ (m)
t KT

(
X

(m)
t −x

h

)
.

It is easy to check that

�T,6 ≤ max
1≤k≤NT

∣∣∣W (m)
T (sk)−E

[
W (m)

T (sk)
]∣∣∣

+ max
1≤k≤NT

∣∣∣W̃ (m)
T (sk)−E

[
W̃ (m)

T (sk)
]∣∣∣

=: �T,7 +�T,8. (B.6)

By the Markov inequality and Lemma A.2, for any η > 0,

P
(
�T,8 > ηρT

)≤
T

∑
t=1

E

∣∣∣Y (m)
t

∣∣∣λ0

�
λ0
T

≤ CT �
−λ0
T = O(T 1−λ0/p0) = o(1),

where p0 < λ0 < s0. Hence, we have

�T,8 = oP (ρT ). (B.7)
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Letting

B = �T h−d = T 1/p0 h−d , ε = ηρT , q = T 1+1/p0ρT

in Lemma A.1 and by Lemma A.5, we have

P
(
�T,7 > ηρT

)≤
NT

∑
k=1
P
(∣∣∣W (m)

T (sk)−E
[
W (m)

T (sk)
]∣∣∣> ηρT

)
≤ NT exp

{
−cη2ρ2

T T hd

16

}
+ cNT (log T )(2θ0+1)/4h−(3+2θ0)d/4T (3p0+6)/4p0+θ0(1/p0−1/2)

for some positive constant c. Noting that NT = O

(
Cd

T

ρd
T hd2+d

)
, by the bandwidth condition

in A4(b), we have for η large enough, P
(
�T,7 > ηρT

)= o(1), which implies that

�T,7 = OP (ρT ). (B.8)

By (B.6)–(B.8), we can show that �T,6 = OP (ρT ). Then, the proof of Theorem 3.1 is
completed. n

Proof of Theorem 3.2. By Lemma A.4 and following the proof of Theorem 3.1, we
need only to show that �T,6 = O(ρT ) a.s., where �T,6 is defined in (B.3).

Let �T = T 1/p0 , Y (m)
t , Ỹ (m)

t , W (m)
T (x), W̃ (m)

T (x), �T,7, and �T,8 be defined as in the
proof of Theorem 3.1. By the Markov inequality and Lemma A.2, for any η > 0,

∞
∑

T =1
P
(
�T,8 > ηρT

)≤
∞
∑

T =1

T

∑
t=1

E

∣∣∣Y (m)
t

∣∣∣s1

�
s1
T

≤ C
∞
∑

T =1
T 1−s1/p0 < ∞,

as s1 > 2p0. Hence, we have

�T,8 = o(ρT ) a.s. (B.9)

Letting B = �T h−d = T 1/p0 h−d , ε = ηρT , q = T 1+1/p0ρT in Lemma A.1, by
(2.13) and Lemma A.5, we have

∞
∑

T =1
P
(
�T,7 > ηρT

)≤
∞
∑

T =1

NT

∑
k=1
P
(∣∣∣W (m)

T (sk)−E[W (m)
T (sk)]

∣∣∣> ηρT

)
≤

∞
∑

T =1
NT

(
exp

{
−η2ρ2

T T hd

16

}

+(log T )(2θ0+1)/4h−(3+2θ0)d/4T (3p0+6)/4p0+θ0(1/p0−1/2)

)

≤ C
∞
∑

T =1

1

T log1+ς T
< ∞
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by taking η > 0 large enough. Hence, we have

�T,7 = O(ρT ) a.s. (B.10)

By (B.9) and (B.10), we have �T,6 = O(ρT ) a.s. Then, the proof of Theorem 3.2 is
completed. n

Proof of Theorem 2.1. We only consider the case of d = 1 as the extension to the
case of d ≥ 2 is similar. Then Xt and x become Xt and x , respectively. By the standard
argument of local linear estimator as in Fan and Gijbels (1996),

ĝ(x) =
T

∑
t=1

wT,t (x)Yt ,

where

wT,t (x) =
K
(

Xt −x
h

)(
ST,2(x)−

(
Xt −x

h

)
ST,1(x)

)
T h
(

ST,0(x)ST,2(x)− S2
T,1(x)

) ,

ST, j (x) = 1

T h

T

∑
t=1

(
Xt − x

h

) j
K

(
Xt − x

h

)
, j = 0,1,2.

Then,

ĝ(x)− g(x) =
(

T

∑
t=1

wT,t (x)g(Xt )− g(x)

)
+

T

∑
t=1

wT,t (x)et

=: �∗
T,1(x)+�∗

T,2(x), (B.11)

where et = Yt − g(Xt ).
By Theorem 3.1, for any j ≥ 1,

sup
|x |≤CT

∣∣ST, j (x)−μj f (x)
∣∣= oP (1), (B.12)

where μj = ∫
R

u j K (u)du. By (B.12) and standard calculation, we have

sup
|x |≤CT

∣∣∣�∗
T,1(x)

∣∣∣= OP

(
bT (g)h2

aT ( f )

)
. (B.13)

Hence, to prove (2.8), we need only to show that

sup
|x |≤CT

∣∣∣�∗
T,2(x)

∣∣∣= OP

(
ρT

aT ( f )

)
. (B.14)

By (B.12) and the definition of wT,t (·), to prove (B.14), we need only to show that

sup
|x |≤CT

∣∣∣∣∣ 1

T h

T

∑
t=1

K

(
Xt − x

h

)
et

∣∣∣∣∣= OP
(
ρT
)

(B.15)

and
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sup
|x |≤CT

∣∣∣∣∣ 1

T h

T

∑
t=1

(
Xt − x

h

)
K

(
Xt − x

h

)
et

∣∣∣∣∣= OP
(
ρT
)
. (B.16)

By letting Yt = et in Theorem 3.1, we can show that (B.15) and (B.16) hold. Then, the
proof of Theorem 2.1 is completed. n

Proof of Theorem 2.2. Following the proofs of Theorems 2.1 and 3.2, we can show
that (2.14) holds. The details are omitted here. n

Proof of Proposition 4.1. The detailed proof is similar to the proof of Theorem 2.1. By
the definition of the local linear estimators g̃j (x), j = 1, . . . , J (T ), we have

g̃j (x) =
T

∑
t= j+1

wT, j,t (x)Xt ,

where

wT, j,t (x) =
K
(

Xt− j −x
h

)(
ST, j,2(x)−

(
Xt− j −x

h

)
ST, j,1(x)

)
(T − j)h

(
ST, j,0(x)ST, j,2(x)− S2

T, j,1(x)
) ,

ST, j,k(x) = 1

(T − j)h

T

∑
t= j+1

(
Xt− j − x

h

)k
K

(
Xt− j − x

h

)
.

Then,

g̃j (x)− g∗
j (x) =

(
T
∑

t= j+1
wT, j,t (x)g∗

j (Xt )− g∗
j (x)

)
+ T

∑
t= j+1

wT, j,t (x)ẽt, j

=: �T, j,1(x)+�T, j,2(x),

(B.17)

where ẽt, j = Xt − g∗
j (Xt− j ) = Xt −E(Xt |Xt− j

)
.

Following the proof of Theorem 3.1 with some slight modification, we can show that

max
1≤ j≤J (T )

sup
|x |≤CT

∣∣ST, j,k(x)−μk f (x)
∣∣= oP (1), k ≥ 1. (B.18)

By (B.18), to prove

max
1≤ j≤J (T )

sup
|x |≤CT

�T, j,2(x) = OP

(
ρT

aT ( f )

)
, (B.19)

we need only to show

max
1≤ j≤J (T )

sup
|x |≤CT

∣∣∣∣∣ 1

(T − j)h

T

∑
t= j+1

K

(
Xt− j − x

h

)
ẽt, j

∣∣∣∣∣= OP

(
ρT

aT ( f )

)
(B.20)

and
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max
1≤ j≤J (T )

sup
|x |≤CT

∣∣∣∣∣ 1

(T − j)h

T

∑
t= j+1

(
Xt− j − x

h

)
K

(
Xt− j − x

h

)
ẽt, j

∣∣∣∣∣= OP

(
ρT

aT ( f )

)
.

(B.21)

We only prove (B.20) as the proof of (B.21) is analogous. Let

�T, j (x) = 1

(T − j)h

T

∑
t= j+1

K

(
Xt− j − x

h

)
ẽt, j ,

�
(m)
T, j (x) = 1

(T − j)h

T

∑
t= j+1

K

⎛⎝ X (m)
t− j − x

h

⎞⎠ ẽ(m)
t, j ,

where X (m)
t− j and ẽ(m)

t, j are defined as in Definition 1. Note that E
[
�T, j (x)

] = 0 for all

j = 1, . . . , J (T ). Then, we have

max
1≤ j≤J (T )

sup
|x |≤CT

∣∣�T, j (x)
∣∣

≤ max
1≤ j≤J (T )

sup
|x |≤CT

∣∣∣�(m)
T, j (x)−E

[
�

(m)
T, j (x)

]∣∣∣
+ max

1≤ j≤J (T )
sup

|x |≤CT

∣∣∣�T, j (x)−�
(m)
T, j (x)

∣∣∣
+ max

1≤ j≤J (T )
sup

|x |≤CT

∣∣∣E[�(m)
T, j (x)

]
−E[�T, j (x)

]∣∣∣
=: �T (1)+�T (2)+�T (3). (B.22)

Following the argument in the proof of Lemma A.3, we have

�T (2)+�T (3) = OP (ρT ) (B.23)

as J (T )h−(d+1)v1(m)ρ−1
T = O(1). On the other hand, following the proof of Theorem

3.1, we can show that

�T (1) = OP (ρT ). (B.24)

By (B.22)–(B.24), we can show that (B.20) holds.
By (B.18) and the Taylor expansion, we can show that

max
1≤ j≤J (T )

sup
|x |≤CT

�T, j,1(x) = OP

(
bT h2

aT ( f )

)
. (B.25)

Then, by (B.17), (B.19), and (B.25), we can prove Proposition 4.1. n
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