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decomposition of ISAR images using
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Air target recognition is a critical step in the radar processing chain and reliable features are necessary to make a decision. The
number and position of jet engines are useful features to perform a pre-classification and give a list of possible targets. To
extract these features, a sparse decomposition framework for inverse synthetic aperture radar (ISAR) images is presented.
With this framework different components of the target can be detected, if signal models for these parts are available. To
use it for the detection of jet engines, a review of a signal model for air intakes, which was developed by Borden, is given.
This model is based on the common assumption that the propagation of electromagnetic waves inside jet engines has the
same dispersive behavior as inside waveguides. With this model a decomposition of a real ISAR image, measured with the
tracking and imaging radar system of Fraunhofer FHR, into point-like scattering centers and jet engines is presented.
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I . I N T R O D U C T I O N

In the field of non-cooperative target recognition with radar,
several different techniques have been introduced for the clas-
sification of air targets. All of these techniques extract informa-
tion from the scattered signal, like micro Doppler modulations
from moving parts, especially jet engine modulation (JEM)
produced by the fan or compressor of the engine [1]. Other
techniques, like high-resolution range profiles [2, 3] or
inverse synthetic aperture radar (ISAR) [1, 4], exploit
the imaging capabilities of radar. For these techniques a
waveform with a high bandwidth, like a linearly frequency
modulated (LFM) chirp, is necessary [5]. Most of the
high-resolution-based classifiers are trained on a limited
amount of similar targets and are used to distinguish between
them. This procedure is based on the assumption that the
class such as airliner, business jet, fighter or transport aircraft
can be discriminated by a previously applied classifier.

This paper is an extension of [6] and a technique, which
can be used as part of a pre-classification stage to eliminate
a huge number of potential targets, is presented. With the pro-
posed decomposition of ISAR images, the number and pos-
ition of jet engines of targets visible in ISAR images can be
determined. With these features a separation of targets with

wing- and fuselage-mounted engines is possible, further is
the number of engines significant for a list of possible
targets used for the final classification [7]. The efforts pre-
sented in the past to locate jet engines in ISAR images are
based on the Doppler spread and the resulting JEM lines. In
[8], range-Doppler signatures with short dwell times were
used to detect jet engines along the target. In [9], an algorithm
to detect the range position of jet engines in ISAR images was
introduced that utilizes the occurring JEM lines. A drawback
of both given examples is that only the range position of the
jet engines can be determined with these methods. With the
method proposed here also the cross range position and the
number of engines can be extracted.

For the feature extraction, a sparse decomposition of the
ISAR image is performed. To achieve a separation between
engine scatterers and normal scattering centers, two different
signal models are necessary to form the dictionary for the
sparse decomposition. As signal model for the normal scatter-
ing centers, the common isotropic point scattering model is
used. For the engine scattering, a waveguide scattering
model, which is very common to model jet engines [10] is uti-
lized. This model describes a dispersive behavior of the cavity
of the engine, such that the LFM chirp is extended in time and
produces artifacts in the image. For these artifacts, a mathem-
atical description that is used as model for the decomposition
algorithm was introduced by Borden [11]. Both models are
reviewed in Section II and the sparse decomposition frame-
work is presented in Section III. An example of the decompos-
ition applied to a real ISAR image, measured with the tracking
and imaging radar (TIRA) of Fraunhofer FHR, is shown in
Section IV. Finally, Section V concludes the paper and
points out some open problems for future research.
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I I . I S O T R O P I C A N D W A V E G U I D E
S C A T T E R I N G S I G N A L M O D E L S

For the proposed framework two distinguishable signal
models of jet engines and point targets are necessary. The
general idea of the engine model is to model the entrance
structure as a circular terminated waveguide. Within this
model the scattered field �ES of the jet engines can be consid-
ered as a sum of three independent parts, which are depicted
in Fig. 1. These scattering mechanisms are a strong reflection
�ES

rim from the edge at the opening of the engine, weak reflec-
tions �ES

ext from the exterior of the engine and the reflection
�ES

wg from the fan or the first stage of the compressor inside
the engine [12]

�ES = �ES
rim + �ES

ext + �ES
wg . (1)

The first two elements of the sum are non-dispersive and
can be modeled as common isotropic frequency-independent
scatterers. With y as the range and x as the cross-range direc-
tion this model is written as

sp(kx, ky, x, y) = e−j2(kxx+ky y), (2)

which is used to describe a scattering center in the two-
dimensional (2D) k-space domain [5]. kx and ky are the wave-
numbers in there specific directions, calculated with the
small aperture approximation by kx ¼ ksin(Q) ≈ kQ and
ky ¼ kcos(Q) ≈ k, where Q is the azimuth angle of the
target and k is the wavenumber of the transmitted instantan-
eous frequency. With a band-limited 2D inverse Fourier trans-
form we get the point spread function (PSF) in the image
domain, a 2D sinc-function

PSFp(x′, y′) =
∫∫

K

e−j2(kxx+kyy)ej2(kxx′+kyy′)dkxdky

≈A · sinc(�kDQ(x′ − x)) sinc(Dk(y′ − y)),
(3)

which will be used in the dictionary for the standard scatterer
at position (x′,y′). The inverse Fourier transform is
band-limited because the covered area K of kx and ky is
limited. DQ is the totally covered aperture during the
imaging process, Dk is the used bandwidth in k-space
kmax 2 kmin and �k = (kmin + kmax)/2. The complex scaling

factor A can be ignored in the proposed framework, since
this is working on the magnitude image and uses normalized
PSFs. An example of the PSF, weighted with a Hamming
window, is shown in Fig. 3(a).

Inside a waveguide, the propagation speed of the electro-
magnetic wave depends on the frequency, which is called
waveguide dispersion. This dispersion will spread the trans-
mitted LFM waveform in time and thus the pulse compres-
sion, which is fitted to a certain pulse length, will lead to
delayed returns in the received signal. These duct delayed
returns produce artifacts in the range direction of the image
behind the physical position of the waveguide structure. An
example of these delayed returns is depicted in Fig. 2(a),
which is a nose on ISAR image of a small business jet. The
duct delayed returns can be seen behind the engines, of
which the position is visible in the target shape in Fig. 2(b).

To model this waveguide effect, the standard model sp

in (2) must be corrected with a dispersion term including a
wavenumber ky in range, which is nonlinearly dependent on
the frequency v

swg (ky, L,v) = e−j2Lky(v). (4)

This term represents the propagation of the incident wave to
the terminated end of the waveguide over its length L and
back. The general form of the wavenumber in dispersive
media is given by [13]

k(v) = −j
c0

������������
jv+ a + b

√ ������������
jv+ a − b

√
. (5)

The appropriate choice of a and b in a hollow metallic wave-
guide are a ¼ 0 and b ¼ jvc, which is the cut-off frequency of
the propagating mode. With this substitution, (5) results in

kwg(v) =
1
c0

���������
v2 − v2

c

√
. (6)

Using (6) as ky(v) in (4), the corrective term becomes

swg(ky, L, d) = e−j2L
������
k2

y−k2
m

√
, (7)

where km is the cut-off wavenumber of the mode m. It is
known from electromagnetic theory that inside waveguides
electromagnetic waves propagate in discrete modes km,
which depend on the diameter d of the opening [13]. Thus,

Fig. 1. Different scattering mechanisms of a jet engine. Fig. 2. Image and shape of the target. (a) Testimage, (b) shape of the target.
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(7) must be replaced by a sum over the propagating modes if
an inlet is located at the corresponding position [14],

swg (ky,Q, L, d) = 1
ky

∑M

m=1

Sm(Q, ky)e−j2L
������
k2

y−k2
m

√
. (8)

The term Sm(Q, k) in (8) represents the energy spread of the
waveform. Since the opening of the engine is large compared
with the wavelength of the radar, many modes will propagate
inside the waveguide and the energy of the waveform is spread
over them. The number of modes M is limited by the largest
transmitted frequency kmax,

M = max m|km ≤ kmax{ }. (9)

To calculate the PSF of a waveguide scatterer, the inverse
Fourier transformation of the corrected range term with the
standard model in cross-range must be determined, which
leads to [11]

PSF(x, y)

≈ sinc(�kDQx)︸�����︷︷�����︸
PSFx

∑M

m=1

Sm

∫2kmax

2kmin

1
ky

e−j2L
������
k2

y−k2
m

√
ejkyydky︸��������������������︷︷��������������������︸

PSFy

. (10)

Equation (10) is a multiplication of two separated imaging
kernels in the x- and in the y-direction. The kernel in the
x-direction only depends on the carrier frequency �k and the
complete rotation angle DQ of the target and is the same as
for the standard signal model. The kernel in range direction
is a weighted sum of integrals, that still has to be examined
and for a more detailed version of the following deviation of
the PSF, the reader is referred to the original paper of
Borden [11] or his textbook [14]. The first step is the
substitution

e−j2L
������
k2

y−k2
m

√
= 2j

���������
k2

y − k2
m

√ ∫1

L
J0 2km

���������
y′2 − L2

√( )
e−j2kyy′dy′,

(11)

where J0( . ) is the Bessel function of the first kind. With this
substitution and a rearrangement of ky, the integral in (10) can
be written as

2j
∫1

L
J0 2km

���������
y′2 − L2

√( )

×
∫2kmax

2 max(kmin,km)

�������������
1 − km

ky

( )2
√

ej2ky(y−y′ )dkydy′,

(12)

where the lower bound of the initial integral in (10) is changed
since components below the cut-off frequency of the specific
mode will be exponentially damped. The expression in (12)
can be interpreted as a convolution of the Bessel function
with the second integral, which can be approximated as

∫2kmax

2 max(kmin,km)

�������������
1 − km

ky

( )2
√

ej2ky(y−y′)dky

≈ aDk(1,c)sinc Dk(1,c)(y − y′)
( )

ej2�k(1,c)(y−y′ ).

(13)

In (13), the width of the sinc-function depends on the band-
width of this specific mode, which is defined as Dk(1,c) ¼

kmax 2 max (kmin, km). �k(1,c) is the center frequency of the
mode defined as (max (kmin, km) + kmax)/2. With these defi-
nitions the final version of the imaging kernel in range direc-
tion is

PSFy =
∑M

m=1

2jSmaDk(1,c)

∫1

L
J0 2km

���������
y′2 − L2

√( )
· · ·

× sinc(Dk(1,c)(y − y′))ej2�k(1,c)(y−y′)dy′.

(14)

From (14) it is visible that the down-range effect in the
image domain has the form of the function J0(y), shifted
according to y � ��������

y2 − L2
√

dilated by y � 2kmy and
blurred by the sinc(Dk(1,c)(y 2 y

′
)) function. In this first

approach the amplitudes Sm are given by 1/m and the
energy of the PSF is normalized to one.

A point not considered by this model is the length of the
artifacts in the ISAR image. Since the Bessel function is
damped with a factor of y21/2 for large y, the tail would be
visible over the complete image, if the image is depicted in
an appropriate dynamic range in dB. In the example of
Fig. 2(a), it can be seen that the damping is much stronger
than the term of the Bessel function. Because of this, the
Bessel function is truncated after a certain reasonable length.
An example of a 2D waveguide PSF is depicted in Fig. 3(b).

I I I . S P A R S E D E C O M P O S I T I O N
F R A M E W O R K

The sparse decomposition framework is based on the assump-
tion that the ISAR image I(x, y) under test can be represented
as a sum of an Image Ip(x, y) with point-like scatterers and an
image Iwg(x, y) with waveguide scatterers,

I(x, y) = Ip(x, y) + Iwg(x, y). (15)

This framework is closely related to the one in [15], where
SAR images were decomposed in clutter and target content
by a technique called morphological component analysis
[16]. To separate the image in the two components, a so
called dictionary F is needed for each of the components.
These dictionaries must represent the corresponding content
sparsely and should be inefficient to represent contents of
the other component. In the proposed framework, the

Fig. 3. Point spread functions for different scattering mechanisms. (a) PSF
point scatterer, (b) PSF waveguide scatterer.
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dictionaries contain the different PSFs of point-like and wave-
guide scatterers at all possible positions in the image. In the
literature on sparse representation, the single functions of
the dictionary are called atoms. With these dictionaries both
components can be described by a matrix vector multiplica-
tion of the dictionary with a corresponding coefficient
vector, a:

Ip(x, y) = Fpap, (16)

Iwg (x, y) = Fwgawg . (17)

To form the dictionaries in (16) and (17) the 2D PSFs are vec-
torized into 1D vectors. Thus the images Ip and Iwg, marked in
the equations as 2D, are also 1D vectors. For the following
description of the algorithm, the so-called lp-norm

||x||p =
∑N

i=1

|xi|p
( )1/p

(18)

is used regularly to measure different properties of length N
vectors x. For p ¼ 2 this expression is equivalent to the
Euclidean norm, the limiting case for p � 0 gives the
number of elements not equal to zero and is called the l0-norm

||x||0 = #{xi|xi = 0}, (19)

although it is not a norm in the mathematical meaning.
Nevertheless, using this definition, the l0-norm becomes a
direct measure for the sparsity of a signal.

As already mentioned in Section II, the PSFs of both the
point-like and waveguide scatterers are normalized to an
energy (l2-norm) of one, leading to a dictionary with normal-
ized atoms. With these dictionaries, an optimization problem
can be formulated that minimizes the number of coefficients
in a, while the error of the representation is below a certain
value s

min
ap,awg

||ap||0 + ||awg ||0 s.t.

||I −Fpap −Fwgawg ||2 , s.

(20)

The problem stated in (20) is NP-hard and thus not efficiently
solvable, but several algorithms have been proposed over the
last years using either a greedy approach or a convex relax-
ation of the problem [17]. In this paper, a very basic greedy
approach called matching pursuit [18] is used to perform
the sparse decomposition and is implemented by matrix
vector multiplications. In the first iteration of this algorithm,
the input image is correlated with all atoms in the dictionary
and the maximum correlation index is used as coefficient in a.
Then the selected atom is weighted with the correlation index
and subtracted from the input image, leading to the residual of
the current iteration. After that, this procedure is repeated
with the residual instead of the input image until a stopping
criteria is met. As stopping criteria, a maximum number of
iterations or the approximation error s can be used.

I V . E X P E R I M E N T A L R E S U L T S

In this section, the decomposition result of a real ISAR image,
measured by the TIRA of Fraunhofer FHR, is presented. The
ISAR image of a small business jet is depicted in Fig. 2(a), the
shape of the target can be seen in Fig. 2(b).

For the model, the diameter of the engine and the assumed
length of the waveguide structure are needed. In the first experi-
ment, an opening diameter of 90 cm and a length of 30 cm are
used to generate the model. The length of the waveguide is
approximated by the distance from the entrance to the first com-
pressor stage. As mentioned at the end of Section II, the length of
the Bessel function is important to model the damping in range.
To consider this damping, the length of the Bessel function is
limited to 4.5 m. This cut of the Bessel function is necessary
because the model used in Section II assumes a perfectly con-
ducting material for the waveguide. In reality the material is
not a perfect conductor and the corrective term in (4) must be
extended with a real exponential term that represents the
damping and the decay of the artifacts in the image.

The result of the decomposition can be seen in Fig. 4 in the
form of detected coordinates for the two different scattering
mechanisms. The coordinates of the detected waveguide scatteres
are labeled by triangles in the plots on the right side. The match-
ing pursuit algorithm was stopped after 150 iterations and in

Fig. 4. Detected point-like (left) and waveguide scatterer (right). (a) 50
iterations, (b) 50 iterations, (c) 100 iterations, (d) 100 iterations, (e) 150
iterations, (f) 150 iterations.
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Fig. 4 the detected coordinates are shown after 50, 100 and 150
iterations. The last two images thus represent the final result.

In the images on the right side of Fig. 4, the detected wave-
guide scattering centers clearly form two pointclouds at the
position of the jet engines. Two false alarms are visible in the
center of the target, but with a clustering algorithm an auto-
matic detection and location of the engines should be possible.
The two false alarms are marked by a red circle in Fig. 4(f).

V . C O N C L U S I O N A N D F U T U R E
W O R K

The sparse decomposition of ISAR images is a promising tool
for feature extraction and a successful example of a model
based signal processing approach. In this paper, we validated
the model presented by Borden and showed a successful
detection of jet engines. Nevertheless, this work can only be
seen as a first step toward feature extraction via a model-based
sparse decomposition; there remain many open questions and
challenges for the future. One challenge is the shift from the
image domain to the raw data domain, and thus incorporate
the feature extraction into the imaging process. A framework
that has the capability to fulfill this task was presented in [19].
Inside this framework, the mentioned damping term might be
included in the model and thus give a better representation of
the reality. Another open point is the use of more sophisti-
cated algorithms to perform the sparse decomposition, like
the morphological component analysis in [15].
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