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Abstract

The aim morphing of this study is to detect and reconstruct a fault in angle-of-attack sensor and pitot probes that are
components in commercial aircrafts, without false alarm and no need for additional measurements. Real flight data
collected from a local airline was used to design the relevant system. Correlation analysis was performed to select
the data related to the angle-of-attack and airspeed. Fault detection and reconstruction were carried out by using
Adaptive Neural Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANN), which are machine-
learning methods. No false alarm was detected when the fault test following the fault modeling was carried out at
0-1 s range by filtering the residual signal. When the fault was detected, fault reconstruction process was initiated
so that system output could be achieved according to estimated sensor data. Instead of using the methods based on
hardware redundancy, we designed a new system within the scope of this study.

Nomenclature

E expected value

g gravitational acceleration (m/s?)

i boole variable

J subscript index

k index

n total data

p correlation coefficient

R gas constant (J/kgK)

t time (s)

T, sea-level temperature (K)

X input data

Y output data

o, consolidated angle-of-attack data (deg)

o the vector involving left, right and back-up angle-of-attack measurement signal (deg)
ol the angle-of-attack data (deg)

£ threshold value for the unfiltered residual signal
& threshold value for the filtered residual signal
v mean value

Po sea-level density value (kg/m?)

o the density value (kg/m?)

fod standard deviation

® relative density value
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1.0 Introduction

While accidents on the aircrafts can be reduced with the training to be given to the flight crew, the elim-
ination of the faults on the aircraft requires engineering work. Therefore, the starting point of this study
was the question of what can be done to eliminate these faults. Accidents have occurred due to angle-of-
attack and airspeed sensors. A Boeing 737 Max aircraft belonging to Lion airlines crashed in the Java
Sea due to an angle-of-attack sensor failure on October 29, 2018. A Boeing 737 Max aircraft belonging
to Ethiopian Airlines crashed near the town of Bishoftu also as a result of an angle-of-attack sensor
failure on March 10, 2019. An Airbus A330 aircraft belonging to Air France crashed in the Atlantic
Ocean due to pitot probes icing on June 1, 2009. It was reported that pitot probes were clogged by ice
crystals during the cruise. An Airbus A330 aircraft belonging to Etihad Airways crashed in Australia
on November 13, 2013. It was reported that pitot probes were clogged by mud dauber nest. An Antonov
An-148 belonging to Saratov Airlines crashed in the Moscow due to pitot probes icing on February 11,
2018 [1].

Commercial aircraft manufacturers such as Boeing and Airbus generally add at least one sensor for
angle-of-attack and at least two sensors for airspeed as backups. However, no matter how many redundant
components are used for each sensor, all of the sensors will show incorrect data in case of any icing.
Fault detection and reconstruction systems used for modern aircrafts in the literature are methods such
as majority voting and weighted mean based on the majority accuracy of the primary/redundant sensors
on the aircrafts. As shown in Eq. (1), output is computed by using weighted average method when fault-
free condition. As shown in Eq. (2), in case of fault, if the sensor data variation of a sensor is more
than that of other two, the average of other two sensors is transferred to the output. However, if the two
sensor data are incorrect, in this case, the incorrect sensor data is transferred to the output [2]. The best
example here is the Air France Flight 447 accident on June 1, 2009. In the triple redundant pitot probe
system, two probes are frozen, so the average of the erroneous data is transferred to the output.

o = %medl’an @ + }1 (min (&) + max (@)) M

1 3 .
o, = 5 Zk:l Ol Ly (2)

Therefore, instead of adding a new sensor, it would be more advantageous to detect and reconstruct
the fault according to the estimated sensor data. In this way, flight crew will be prevented from flying
according to faulty data. In addition, weight and production/maintenance costs can be saved by reducing
hardware redundancy. The point to note here is that the data used for the reconstruction of faulty values
are not obtained from any redundant element and are estimated from other data. The real flight data
collected from a local airline was used for the system design. Firstly, data related to the angle-of-attack
and airspeed were selected by correlation analysis. Based on the related data, the required values of the
angle-of-attack and airspeed data were estimated. Machine learning methods are widely used in recent
studies for modeling and estimation especially in the aerospace fields [3-9]. In this study, machine
learning based methods which are Adaptive Neural Fuzzy Inference System (ANFIS) and Artificial
Neural Networks (ANN) were used in the estimation phase [38]. MATLAB software was used for all
the calculations.

Angle-of-attack sensors are very important components because they drive systems such as stall
warning, stall margin information on airspeed indicators, and pitch limit indicator (PLI). For direct
measurement of the angle-of-attack generally pivoted vanes or pressure type sensors are used in the
literature. Pivoted vane sensors are placed either on the common boom with receivers of the total and
static pressure or could also be mounted in the selected locations, but these type of sensors have some
disadvantages due to its structure that changes with flight. However, pressure type sensors have different
measurement method and this sensors operate based on measuring differential pressure on the flowed
body using the air pressure with two pairs of holes placed symmetrically in relation to the central hole
[10]. It is indicated that the improvement of angle-of-attack systems is useful for the stall prevention. It
is examined that an alternative measurement method for pressure type sensors resulting the increasing
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number of the sensors would increase the accuracy of the estimation [11]. In addition, the angle-of-attack
sensor faults were examined and the accuracy of this sensors are tried to increase in some studies [12,13].
Faults that may occur in the pitot-static system affect the airspeed, vertical speed and altitude data. There
are two angle-of-attack sensors on commercial aircrafts (one captain-side angle-of-attack sensor, one
F/O-side angle-of-attack sensor). Likewise, there are three pitot probes on commercial aircrafts (one
captain-side pitot probe, one F/O-side pitot probe and one stand-by pitot probe). In addition, there are
four Air Data Modules (ADM) that convert the air data received from the ports into numerical values
and send them to the Air Data Inertial Reference Unit (ADIRU) [14]. The different manufacturers such
as Aerosonic, AeroControllex, Collins Aerospace and Honeywell provide the relevant components for
commercial aircrafts. There is no need for two ADM units with the removal of the one redundant angle-
of-attack sensor and two redundant pitot probes in this study. By removing the redundant elements,
an average of about 7 kg weight is saved on the aircraft. If the turbo fan CFM56 type engines using in
commercial aircrafts are taken as an example, the thrust-specific fuel consumption (TSFC) of the relevant
engines is approximately 0.667 kg/kg.hr (18.9 g/kN.s) [15]. In other words, the relevant aircrafts burn a
total of 4.669 kg of fuel per hour for the redundant components. Considering that the relevant aircrafts
fly 12 hours a day, approximately 20 tons of fuel is wasted annually due to redundant components [16].
In addition, with the reduction of fuel burned, an annual distance gain of 8,000 km was achieved for
the aircraft (these aircrafts burn an average of 2.51 kg of fuel per km [17]). CO, emissions and fuel
consumption in relevant aircrafts are associated with a 3.16 kg CO,/kg jet fuel coefficient [18]. Since
20 tons of fuel could be saved in the study, approximately 63.2 tons less CO, emission was achieved
annually.

The literature includes studies conducted based on the aircraft modeling [3,19-26]. However, studies
based on the aircraft modeling have mostly been carried out for certain sensors and certain fault condi-
tions during the cruise. In addition, these studies include certain assumptions, model uncertainties and
measurement errors. If we explain some of the related studies; Zolghadri et al. (2015) examined the
model and signal based fault detection methods for the aircraft electric flight control system (EFCS).
The methods examined have been tested on a realistic aircraft model or with real flight data from an
Airbus A380 aircraft [22]. Sercekman and Kutay (2018) proposed an innovative approach to an observer-
based fault detection method. Fault detection was performed by evaluating the significant changes in the
behaviour of the aircraft according to the predicted fault-free behaviour using the standard kalman fil-
ter as an observer [23]. Lijia ef al. (2019) designed a fault detection system for the unmanned aerial
vehicle location system by using the observer and radial-based functional network structure together
[24]. He et al. (2020) created a model-based fault detection and diagnosis system by using the observer
and kalman filter structure separately for the inertial measurement unit in aircraft. While the observer
structure gives faster results in fault detection, fault detection can be carried out more precisely in the
kalman filtered structure [25]. There are studies that do not detect faults, but are aimed at providing
alternative data source based on real flight data using artificial neural networks [4,27]. In the first study,
thrust data was tried to be calculated by using airspeed, altitude and temperature. In the second study,
airspeed data was tried to be estimated without pitot-static system measurements. Among the studies
carried out, there are studies in which all flight conditions (climb, cruise, descent) are taken for the fault
detection and reconstruction based on real flight data [28,29]. However, these studies examine certain
sensors and certain fault conditions (hard or soft bias). In addition, fault detection time delay and false
alarms are encountered in these studies. If we mention about some practical work; Airbus A320, A330
and A340 are equipped with a Backup Speed Scale (BUSS), which is a theoretical airspeed is estimated
from just pitch and thrust data; however, the system failed on Air France 447. Boeing attempted to solve
this problem as equip the Boeing 787 with a virtual airspeed sensor calculated from angle-of-attack
and inertial data which is named as Synthetic Air Speed (SAS); however, this system failed on Jetstar
flight JQ 07. Although there are very important theoretical and practical studies, there is no generally
used fault detection and reconstruction system in aircrafts. In this study, instead of a single fault type
for angle-of-attack and airspeed sensors, different fault scenarios that can be encountered in all flight
phases are examined. In addition, a more reliable fault detection and reconstruction system was created
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Figure 1. Block diagram of the fault detection and reconstruction system.
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by eliminating the fault detection time delay and false alarm conditions that occurred in the related stud-
ies, and an alternative data source for angle-of-attack and airspeed was obtained for commercial aircrafts.
Furthermore, instead of system like BUSS and SAS, the designed system contains more parameters for
estimation. In this study, it is stated that the higher number of correlated input parameters result in better
estimation phase as it is stated in further works of some studies.

2.0 Research methodology
2.1 General structure of the fault detection system

The fault detection phase consists of; residual generation (the difference between faulty data and esti-
mated data), residual evaluation (according to a certain threshold value) and decision-making [30]. As it
can be seen in Eq. (3), faulty system data “Y(k)” was formed by adding fault model “f(k)” at “t; <t <t,”
time interval on fault-free system data “y(k)”. Estimated system data “§(k)” is independent of fault.

Y(k) = y(k) +f(k) 3

According to Eq. (4), residual value “r(k)” is equal to the difference between faulty system data “Y(k)”
and estimated system data “y(k)”.

r(k) =Y (k) — (k) “

Threshold value being “e” as seen in Eq. (5), system will initiate fault detection when the absolute value
of the residual exceeds the threshold.

lr(k)| > & &)

The block diagram of the system designed for the fault detection and reconstruction is given in
Fig. 1. When a fault is detected, it is intended to compensate the fault effects for safe operations. Thus,
in order to increase the system performance, the faulty output measurements must be reconstructed.
The estimated system data “j(k)” provides the necessary information for this reconstruction. A simple
fault reconstruction strategy is to replace the faulty output measurements “Y(k)” with the compensated
measurements “Y(k)-r(k)” which means “y(k)”. The accuracy of any fault detection system depends on
detection time, false alarm rate and whether fault is detected or not [31].

In this study, we examined types of fault within the fault limits allowed by the authorities like FAA
(Federal Aviation Administration). While the absolute value of the difference between the captain and
F/O indicators for the angle-of-attack sensor should not exceed 10 degrees, for the airspeed sensor should
not exceed 4 knots. It is stated that there is no fault condition up to these values, and they are acceptable.
The angle-of-attack sensor output signal is affected by aerodynamic vibrations, which can oscillate the
sensor data. Relevant sensors may contain bias faults due to magnetic environmental conditions [32].
One of the main reasons for these systems to fail is the clogging of the pitot-static system by ice or
foreign objects. In the pitot probe, the total pressure inlet hole, the static pressure inlet hole or the drain
hole can be clogged. If the total pressure inlet hole is clogged after the pitot tube drain hole is clogged,
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Table 1. Some information about the flight data

Airspeed Vertical Pitch Total air
Altitude (CAS) Angle-of-attack speed angle temperature N12
(ft) (knot) (deg) (ft/min)  (deg) (degC) (rpm)

Mean 2.6474e4+04 224.45 —1.2164 —4.1752  2.3991 —15.265  74.6664
Median 36,994 251 —0,88 0 2.8000 —19.500  89.6000
Standard 1.4768e+4-04 76 2.1543 875.3582 1.9648 12.314 26.2614
deviation

Minimum 0 45 —18.46 —3344 -3 —38 19.1000
Maximum 37,048 327 9.14 4,272 17.4000 9.750 99.5000

and then the static pressure inlet hole on the pitot tube is clogged, the airspeed data will remain stuck
at its last value. However, if the total pressure inlet hole is clogged first, then the airspeed indicator will
go to zero and stuck. Examples include freezing water, insects that nest while the aircraft is parked, or
the pitot tube and/or static hole covers not removed prior to flight. In addition, the water accumulated in
the pitot-static system lines moves in the pipes with the effect of the acceleration force and changes the
pressure of the trapped air, and it causes oscillation effect on the indicators [33].

2.2 Feature extraction and correlation analysis
Firstly, data related to angle-of-attack and airspeed data were selected by using correlation analysis. In
other words, the features to be used in the system were selected with correlation analysis and the data
was extracted. This makes it possible to process large data. Since the number of features are reduced,
the training phase of the relevant algorithms takes less time. The accuracy is increased since the training
data is cleared of unnecessary features. Some information about the flight data are given in Table 1.
Flight data used for the analysis; static pressure (hPa), altitude (ft), barometric altitude (ft), CAS
(knot), TAS (knot), AOA (angle-of-attack, deg), vertical speed (ft/min), body rate roll (deg/s), body
rate pitch (deg/s), body rate yaw (deg/s), roll angle (deg), pitch angle (deg), heading (deg), SAT (static
air temp, degC), TAT (total air temp, degC), N11 (engine N1 shaft speed, rpm), N12 (engine N2 shaft
speed, rpm). The airspeed is corrected as IAS (indicated airspeed) — CAS (calibrated airspeed) — EAS
(equivalent airspeed) — TAS (true airspeed). As it can be seen in Eq. (6), TAS depends on the density
value (po: air density at the sea level and p: air density at the related altitude, kg/m?).

EAS p
TAS = — =— 6
N ((p po) ©

Since there is a relation between density (p, kg/m?) and altitude (h, m) data according to Eq. (7),
TAS varies according to the altitude data [34]. Therefore, it would be more accurate to use CAS in
calculations. As, T, =288 K, g =9.81 m/s? and R =287 J/kgK;

0 h 4.259
Zo(1-—s (7)
Po ( 44308)

The correlation coefficient is a coefficient that indicates the direction and size of the relationship
between independent variables. The related coefficient takes a value between —1 and +1, and the
closer to —1 or 41, the more linearity of the relationship. This coefficient is obtained by dividing the
covariance of the two examined variables by the product of the standard deviations of the variables. The
correlation coefficient is calculated as given in Equation (8), and variables are taken without correlation
when |p| <0.05 in all practical applications [35].

EX—p) (Y —pu,
p = COE D) EX— ) (Y —m) ®

0.0, 0.0,
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Table 2. Related data for angle-of-attack and correlation coefficients

Related Static Body Pitch

data for pressure CAS rate angle Heading SAT TAT NI11 NI12
angle-of-attack  (hPa) (knot) pitch (deg/s) (deg) (deg) (degC) (degC) (rpm) (rpm)
Corr. coeff.( p) 0.3128 0.5067 0.2252 0.5249 0.1956 0.2540 0.2241 0.3734 0.3723

Table 3. Related data for airspeed and correlation coefficients
Related data Static pressure Pitch angle Heading  SAT TAT N11 N12
for airspeed (hPa) (deg) (deg) (degC) (degC) (rpm) (rpm)
Corr. coeff.( p) 0.8342 0.4652 0.3731 0.8075 0.7455 0.7674 0.7656

In this study, firstly, the correlation analysis was carried out between the angle-of-attack data and
other data and the absolute values of the correlation coefficients were obtained. Accordingly, the data
related to the angle-of-attack as a result of the correlation analysis is a total of 12 (since |p| <0.05,
vertical speed, roll rate, yaw rate and roll angle have been eliminated). The altitude value is calculated
according to the static pressure and the static pressure, altitude data and the altitude data read from the
barometric altimeter are fed from the same source. Therefore, static pressure (p = 0.3128), which has
the highest correlation between them, was included in the study. In addition, as mentioned before, CAS
data was included in the study because TAS data changes with altitude. In this way, data related to the
angle-of-attack and their correlation coefficients are given in Table 2.

Next, the correlation analysis was carried out between the airspeed data and other data, and the abso-
lute values of the correlation coefficients were obtained. Accordingly, the data related to the airspeed as
a result of the correlation analysis is a total of 10 (since |p| <0.05, vertical speed, roll rate, pitch rate,
yaw rate and roll angle have been eliminated). The altitude value is calculated according to the static
pressure and the static pressure, altitude data and the altitude data read from the barometric altimeter
are fed from the same source. Therefore, static pressure (p =0.8342), which has the highest correla-
tion between them, was included in the study. The calibration of the angle-of-attack data is carried out
according to the Mach number, which is an airspeed data indication. In other words, the airspeed data
and therefore the calculated Mach number are inaccurate, affecting the calibrated angle-of-attack data
[36]. Although the correlation coefficient between these two data is (p =0.5067), the angle-of-attack
data was not included in the airspeed sensor fault analysis. In this way, data related to the airspeed and
their correlation coeflicients are given in Table 3.

2.3 Training by adaptive neural fuzzy inference system
In this study, ANFIS and ANN were used in fault detection and system reconstruction. The advantage
of using relevant methods when compared to model-based ones in the literature such as Kalman filter
and Luenberger observer is that relevant methods are model-free and it has error tolerance. Therefore,
this machine learning methods can easily be used for non-linear systems such as aircrafts without the
obligation of having certain assumptions [37]. In addition, the proposed approach presents more pre-
ciseness, fast fault detection and reconstruction without increasing system complexity, computational
power and cost and it is suitable fast real time operations. Normalization process was not carried out
for this study. This can be useful in some case where all parameters must have the same positive scale.
However, it causes outliers to be lost. Because of that, normalisation step was not preferred to use in
this study. As a result of the comparison of ANFIS and ANN, it was observed that the ANN gives more
accurate results for this study.

Adaptive neural fuzzy inference system produces a single output and uses the weighted average
defuzzification method. Output membership functions are all the same type of constant or linear func-
tion. The items that need to be determined in order to use the application are the number of linguistic
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Figure 2. Neural network structure.

variables, membership function type, degree of fuzzy inference, optimisation method, error tolerance
and epoch number [38]. Three membership functions are defined for each input to train ANFIS. Each
type of membership function has been tested (triangular, trapezoidal, generalised bell-shaped, gaussian,
pi-shaped, sigmoidal). The output membership function is taken as constant in the fuzzy inference
section. Optimiation method selected as hybrid. Error tolerance is set to zero. The epoch number was
taken as 3 (usually gives the optimal result in the 2" epoch) for ANFIS training. Training and test data
has been chosen randomly (%70-%30). The most related data have been chosen, as too many rules
can occur. The most related data according to the correlation coefficients for angle-of-attack; static
pressure, calibrated airspeed, pitch angle, engine N1 shaft speed. The relevant four values form the
input of the ANFIS, while the angle-of-attack forms the output data. RMSE was calculated for each
membership function, and minimum RMSE (0.914030) was obtained for the triangular membership
function. The most related data according to the correlation coefficients for airspeed; static pressure,
pitch angle, static air temperature, engine N1 shaft speed. The relevant four values form the input of the
ANFIS, while the airspeed forms the output data. RMSE was calculated for each membership function,
and minimum RMSE (4.832116) was obtained for the triangular membership function.

2.4 Training by artificial neural network
A neural network consists of an input layer, hidden layer, and an output layer. In this study, a feedforward
multilayer perceptron was used. MATLAB Neural Network Toolbox was used for the operations. A
neural network structure is given in Fig. 2.

Levenberg Marquardt (trainlm) was preferred for the training algorithm. Back propagation algorithm
(learngdm) is used as learning algorithm, while Tan-Sigmoid Transfer Function (tansig) is used as acti-
vation function. In order to use Tan-Sigmoid Transfer Function, input values are first normalised between
(—1, 1) and consequently output values are obtained between (—1, 1). Tan-Sigmoid Transfer Function
is given in Equation (9) [38].

Tansig (n) = &)

S E—
(1 4+e2)
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Figure 3. The ANN structure for the angle-of-attack.

The hidden layer number is taken as 1 for the algorithm to work faster. One of the most important
parameters in training an artificial neural network is how many neurons are in the hidden layers. Since
there are no definite rules in determining this situation, the appropriate number can be determined
by gradually increasing starting from certain numbers. The total input output real data set which is
collected from a commercial aircraft is (36,550) and the total input output dataset is randomly divided
into training (25,585) and test set (10,965). The net output of the neural network is calculated using
Equation (10) [38].

Net __ e —Net

F(Nety=S——¢ (10)

eNet + e—Net

3.0 Simulation results

In order to compare ANFIS and ANN, first the ANN was trained and tested for the most related data
for the angle-of-attack. The relevant four values form the input of the ANN, while the angle-of-attack
forms the output data. The data estimation performance parameter RMSE of the ANN is 0.8780 for four
neurons structure in the hidden layer and 0.8170 for eight neurons structure in the hidden layer. After
that, analysis will be carried out based on related data for the angle-of-attack. Correlation analysis
results of nine input data related to the angle-of-attack were found in section 2.2. In Fig. 3, the ANN
structure created for nine related data of the angle-of-attack is given.

The numbers of 3, 9 and 18 neurons structure were examined for the related data with the angle-
of-attack. The angle-of-attack regression curves for 18 neurons structure for training, validation and
test of the network are shown in Fig. 4. The test data estimation performance parameters root mean
squared error (RMSE) and coeficient of determination (R?) are given in Table 4. The network that has
the minimum RMSE and the maximum R? was accepted as the best model.

When examining the relevant values for the angle-of-attack, 18 neurons structure gives the best test
result. In Fig. 5(a), the real and estimated angle-of-attack data are given for 18 neurons structure. As can
be seen, the estimated angle-of-attack values displayed in orange match with the real angle-of-attack
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Table 4. RMSE and R? for estimation of the angle-of-attack

The hidden layer neuron RMSE R?

3 0.7702 0.872

9 0.5832 0.927

18 0.5127 0.943

Training: R=0.97155 Validation: R=0.97377
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Figure 4. The angle-of-attack regression curves for 18 neurons structure.

values shown in blue throughout most of the flight. In Fig. 5(b), the absolute value of the difference
“|r(k)|”, between the real angle-of-attack data without fault “y(k)” and the estimated angle-of-attack
data “y(k)” is given.

As mentioned in section 2.1, it is stated that there is no fault condition up to the threshold value of
¢; =10 degrees for the angle-of-attack data. It was subjected to an evaluation according to the relevant
threshold value and although the system was tested according to non-fault data, it was observed that
false alarm occurred at t = 10,621.s due to estimation error (the corresponding value is 10.1933).

If an examination is carried out for the airspeed; first, the ANN was trained and tested for the most
related data. The relevant four values form the input of the ANN, while the airspeed forms the output
data in training. The data estimation performance parameter RMSE of the ANN is 5.3644 for four
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Figure 5. The real and estimated angle-of-attack data and the absolute value of the difference.
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Figure 6. The real and estimated airspeed data and the absolute value of the difference.

neurons structure and 4.0871 for eight neurons structure. After that, analysis will be carried out based
on related data for the airspeed. Correlation analysis results of seven input data related to the airspeed
were found in section 2.2. The numbers of 3, 7 and 14 neurons structure were examined for the related
data with the airspeed. When examining the relevant values for the airspeed, 14 neurons structure gives
the best test result (RMSE = 1.1944). In Fig. 6(a), the real and estimated airspeed data are given for
14 neurons structure. As can be seen, the estimated airspeed values displayed in orange match with the
real airspeed values shown in blue throughout most of the flight. In Fig. 6(b), the absolute value of the
difference “|r(k)|”, between the real airspeed data without fault “y(k)” and the estimated airspeed data
“Y(k)” is given.

As mentioned in section 2.1, it is stated that there is no fault condition up to the threshold value of
&; =4 knots for the airspeed data. It was subjected to an evaluation according to the relevant threshold
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Table 5. Comparison of analysis methods for the data estimation

Sensor type Analysis method RMSE

Angle-of-attack ANFIS triangular membership function 0.914030
ANN 4 inputs and 8 neurons structure 0.8170
ANN 9 inputs and 18 neurons structure 0.5127

Airspeed ANFIS triangular membership function 4.832116
ANN 4 inputs and 8 neurons structure 4.0871
ANN 7 inputs and 14 neurons structure 1.1944

Box and whisker plots for the angle-of-attack data
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Figure 7. Box and whisker plots for the data estimation.

value and although the system was tested according to non-fault data, it was observed that false alarms
occurred at 93 points due to estimation error. The minimum estimation error RMSE among the meth-
ods examined for the estimation of the angle-of-attack and airspeed test data are given in Table 5. In
the next part of the study, firstly, each fault scenario will be modeled and the absolute values of the
residual signals obtained here will be filtered through the “gaussian filter” for the angle-of-attack and
the “movmean filter”, for the airspeed and false alarm conditions will be eliminated and faults will be
tried to be detected.

From those results, it is seen that the ANN gives more accurate results for this study. In Fig. 7, box and
whisker plots are given for each method. A box plot provides a visualisation of summary statistics. In
the evaluation carried out on the basis of the median values of the estimated sensor data and the bottom
and top of the boxes, it was seen that the ANN estimates the real sensor data with higher accuracy.
Therefore, instead of adding a new sensor, the estimated values that will be using for the fault detection
and reconstruction according to the required values will be obtained from artificial neural networks.

4.0 Fault modeling, detection and system reconstruction

In this study, bias (positive or negative offset), oscillation, stuck at last sensor value, stuck at zero, NRZ
(Non-Return to Zero), drift error (runaway error) and noise type (white noise, random noise) faults
which may occur in the sensors according to real flight data have been examined. The flight phases
where the faults occurred were modeled according to the climb after approximately t =900.s, the cruise
after approximately t = 2,500.s and the descent after approximately t = 8,500.s of the flight. Information
on the faults modeled for the angle-of-attack sensor are given in Table 6.
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Table 6. Faults modeled for the angle-of-attack sensor

Fault type Flight Fault amplitude Fault time interval (s) Fault detection
{f(k)} phase (degree) it <t<t)} time (s)
Bias Climb 10 degrees 1,000 <t <2000 Instant
Oscillation Climb 10 degrees amplitude cos wave with 2000 <t<2,500 1

10 hertz frequency
NRZ Cruise 10 degrees amplitude square wave 2,500 <t<3,500 1

with 10 hertz frequency
Drift Cruise 3t 7,500 <t<7,505 Instant
Noise Descent Random noise 9,000 <t<9,500 Instant
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Figure 8. Bias type fault detection and reconstruction for the angle-of-attack sensor.

While the absolute values of the residual signals for bias, oscillation, NRZ, drift and noise type faults
modeled according to Table 6 are given as unfiltered and filtered in Fig. 8(a), Fig. 9(a), Fig. 10(a),
Fig. 11(a) and Fig. 12(a), the fault reconstructions by using the analytical redundant system are seen in
Fig. 8(b), Fig. 9(b), Fig. 10(b), Fig. 11(b) and Fig. 12(b). The fault can be intervened instantaneously by
transferring the estimated values “j(k)” to the output, obtained by using ANN instead of the faulty values
“Y(k)”. Here, after filtering the residual signal, a new threshold value is determined (¢,=6 degrees)
instead of the £,=10 degrees for the angle-of-attack. The threshold change could be seen in Fig. 8(a),
Fig. 9(a), Fig. 10(a), Fig. 11(a) and Fig. 12(a). As shown in the Fig. 8, Bias type fault is generated
at t=1,000.s (the part where the orange-coloured filtered signal exceeds the threshold value of £,=6
degrees is t = 1,000.s, and this value is 6.0766). As shown in the Fig. 9, Oscillation type fault is generated
at t=2000.s (the part where the orange-coloured filtered signal exceeds the threshold value of £,=6
degrees is t =2001.s and this value is 7.6545). As shown in the Fig. 10, NRZ type fault is generated
at t=2,500.s (the part where the orange-coloured filtered signal exceeds the threshold value of £,=6
degrees is t=2,501.s and this value is 7.7283). As shown in the Fig. 11, Drift type fault is generated
at t=7,500.s (the part where the orange-coloured filtered signal exceeds the threshold value of ¢,=6
degrees is t =7,500.s and this value is 6.2414). As shown in the Fig. 12, Noise type fault is generated
at t=9,000.s (the part where the orange-coloured filtered signal exceeds the threshold value of £,=6
degrees is t =9,000.s and this value is 7.1447). Next, a fault analysis will be carried out for the airspeed
sensor. Information on the faults modeled for the airspeed sensor are given in Table 7.
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Figure 9. Oscillation type fault detection and reconstruction for the angle-of-attack sensor.
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Figure 10. NRZ type fault detection and reconstruction for the angle-of-attack sensor.

While the absolute values of the residual signals for stuck at last sensor value and stuck at zero type
faults modeled according to Table 7 are given as unfiltered and filtered in Fig. 13(a) and Fig. 14(a),
the fault reconstructions by using the analytical redundant system are seen in Fig. 13(b) and Fig. 14(b).
Here, after filtering the residual signal, a new threshold value is determined (e, = 3 knots) instead of
the &; =4 knots for the airspeed. The threshold change could be seen in Fig. 13(a) and Fig. 14(a). As
shown in the Fig. 13, Stuck at last sensor value type fault is generated at t =2000.s (the part where the
orange-coloured filtered signal exceeds the threshold value of &, = 3 knots is t =2000.s and this value is
3.0228). As shown in the Fig. 14, Stuck at zero type fault is generated at t = 8,000.s (the part where the
orange-coloured filtered signal exceeds the threshold value of ¢, = 3 knots is t = 8,000.s and this value
is 125.7958).
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Table 7. Faults modeled for the airspeed sensor

Fault type Flight  Fault amplitude Fault time interval (s) Fault detection
{f(k)} phase  (knot) it <t<t,)} time (s)
Bias Climb 4 knots 1,000 <t< 1,500 Instant
Oscillation Climb 4 knots amplitude cos 1,000 <t <2000 Instant
wave with 10 hertz
frequency
Stuck at last Climb 286 knots 2000.s Instant
sensor value
Stuck at zero Cruise  Zero 8,000.s Instant
NRZ Descent 4 knots amplitude square 8,500 <t <9,000 Instant
wave with 10 hertz
frequency
Noise Descent Random noise 9,000 <t<9,500 Instant
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Figure 11. Drift type fault detection and reconstruction for the angle-of-attack sensor.

Conclusions

In this study, fault detection and reconstruction were carried out by using Adaptive Neural Fuzzy
Inference System (ANFIS) and Artificial Neural Networks (ANN) by estimating the required values
of the angle-of-attack and airspeed data in all flight phases. Correlation analysis was performed to select
the data related to the angle-of-attack and airspeed. The residual signals were filtered to eliminate the
false alarm conditions. The absolute values of the residual signals obtained were evaluated according
to a certain threshold value. The fault detection and reconstruction were carried out 01 s for angle-of-
attack sensor and instantaneously for airspeed sensor. The point to note here is that the data used for the
fault reconstruction are not obtained from any redundant element and are estimated from other data. In
other words, a visual sensor structure is created with the help of the analytical relations. In addition, the
proposed scheme provides an alternative method for calculating angle-of-attack and airspeed data. In
this study, a safer fault detection and reconstruction system was created for angle-of-attack and airspeed
sensors, with an annual fuel saving of approximately 20 tons, gaining distance of 8,000 km and CO,
emission less than 63.2 tons, without relying on hardware redundancy and pitot-static measurements.
Instead of a system like BUSS and SAS used in commercial aircrafts, the designed system contains
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Figure 13. Stuck at last sensor value type fault detection and reconstruction for the airspeed sensor.

more parameters for estimation and the higher number of input parameters and hidden layer neurons
give more accurate results as it is stated in further works of some studies and in our study. In order to
prevent accidents in aircrafts, a system that works in real time and accurately can be installed on aircrafts.
Since future works will be on fault detection and reconstruction using online training, methods such as
deep learning are not preferred because they are not faster than the classical Artificial Neural Network
algorithms. Also, the accuracy of the system could be measured with real flight data after the relevant
aircraft have been modeled using flight dynamics. The desired aircraft could be modeled using aero-
dynamic flight coefficients. When modeling aircraft, aircraft dynamics, validated models of the flight
environment and pilot behaviour will be included in the relevant aircraft system. After the modeling of
the desired aircraft, analysis such as fault detection, diagnosis and estimation for the relevant aircraft are
examined in the desired flight conditions.
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