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BOUNDED-HOP PERCOLATION AND
WIRELESS COMMUNICATION
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Abstract

Motivated by an application in wireless telecommunication networks, we consider a two-
type continuum-percolation problem involving a homogeneous Poisson point process
of users and a stationary and ergodic point process of base stations. Starting from a
randomly chosen point of the Poisson point process, we investigate the distribution of the
minimum number of hops that are needed to reach some point of the base station process.
In the supercritical regime of continuum percolation, we use the close relationship
between Euclidean and chemical distance to identify the distributional limit of the rescaled
minimum number of hops that are needed to connect a typical Poisson point to a point
of the base station process as its intensity tends to 0. In particular, we obtain an explicit
expression for the asymptotic probability that a typical Poisson point connects to a point
of the base station process in a given number of hops.
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1. Introduction and main results

We consider a model for a wireless telecommunication network where users are scattered at
random in the entire Euclidean plane. In order to meet the users’ communication demands, the
operator sustains a network of base stations. In classical cellular networks, the base stations
subdivide the plane into serving zones and all users inside a serving zone communicate directly
with the associated base station. Although such networks exhibit a simple hierarchical topology,
installation and upkeep are costly. Indeed, to guarantee good quality of service to all users, the
operator either needs to install (and maintain) a relatively dense network of base stations, or
the base stations’ transmission powers must be sufficiently high so that distant users can also
be served.

In the early 2010s network operators started to deploy wireless networks of the fourth
generation, called the long-term evolution (LTE). Since the advent of LTE technology, operators
have the possibility to reduce the number of required base stations substantially by using relays.
As of today, this means installing fixed relays at locations that have been chosen in advance.
For future generation networks it is desirable to extend this concept through the intelligent
use of ad hoc technology. To be more precise, we assume that each user has a (comparatively
small) transmission radius. A direct communication between users is possible if they are within
each others communication radii. Additionally, by forwarding messages via chains of directly
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connected users, base stations can communicate with distant users, even if transmission radii
are comparatively small.

Despite these virtues, having users act as relays entails a major drawback regarding the
quality of service for delay-sensitive applications. Indeed, the forwarding of messages via
several hops induces substantial delay in message transmission. Hence, in network planning,
it is crucial to have detailed knowledge of distributional properties of the minimum number of
hops to a base station.

In the random-graphs community, the minimum number of hops that are needed to connect
two vertices of a graph is known as the chemical distance. In supercritical Bernoulli percolation
on the lattice, chemical distance has been investigated in [1] and [2]. Loosely speaking, for
distant points in the infinite connected component, the chemical distance is approximately
proportional to the Euclidean distance, where the proportionality factor is called the time
constant. The extension of this result to the setting of continuum percolation [15] will be
the major tool for establishing the distributional limit of the rescaled minimum number of hops
needed to connect a user to a base station.

Next, we provide a precise definition of the wireless spatial telecommunication network
under consideration. It consists of two types of network components. The first component is
formed by network users. They are modeled by a homogeneous Poisson point process X in R

d ,
d ≥ 2, with some intensity λ ∈ (0, ∞). The base stations constitute the second component.
We assume that they are of the form Y = rY (1), where Y (1) is assumed to be a stationary
(with respect to translations in R

d ) and ergodic point process that is independent of X and
has a finite and positive intensity. For ease of notation, we assume this intensity to be equal
to 1. Here, r ≥ 0 is some scaling parameter controlling the intensity of base stations. Since
we only assume stationarity and ergodicity, our results are valid under rather weak conditions
on the spatial distribution of base stations. For instance, they can be applied to stationary
point processes that are obtained from Z

d through translation by a random vector uniformly
distributed in [0, 1]d as well as to (nonshifted) homogeneous Poisson point processes. In other
words, our results do not depend on the question as to whether the base stations are scattered at
random in the Euclidean plane or are aligned according to a grid that is viewed from a random
reference point.

The random network under consideration can be thought of as a model for a wireless
telecommunication network, where users can connect to base stations indirectly via at most
k ≥ 1 hops of Euclidean distance at most 1 to other network users. To be more precise, we say
that x, y ∈ R

d are k-connectable if there exist (not necessarily distinct) Xi1 , Xi2 , . . . , Xik−1 ∈ X

such that |Xij − Xij+1 | ≤ 1 for all j ∈ {0, . . . , k − 1}, where Xi0 = x and Xik = y. Here,
| · | denotes the standard Euclidean norm in R

d . We say that x, y are connectable if they are
k-connectable for some k ≥ 1. In Figure 1, we show a realization of the network model, where
the points of X and Y are represented by dots and squares, respectively. Points of X that are
1-connectable to some point of Y are shown as solid lines and open circles, while points of X

that are 2-connectable but not 1-connectable to some point in Y appear as dotted lines and open
dotted circles.

In the following, we write Hr(x) for the smallest number k ≥ 1 such that x ∈ R
d is

k-connectable to some point of Y = rY (1). The main object of investigation in this paper is the
quantity

�(k, r) = λ−1
E#

{
Xi ∈ X ∩ [− 1

2 , 1
2

]d : Hr(Xi) ≤ k
}
,

i.e. the normalized expected number of points in X ∩ [− 1
2 , 1

2 ]d that are k-connectable to some
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Figure 1: Realization of the network model.

base station. In fact, we show that �(k, r) admits a more natural representation as the limit of
the average number of points in X inside a large box that are k-connectable to a point of Y .

Proposition 1. Let k ≥ 1 and r > 0. Then, almost surely,

�(k, r) = lim
n→∞ λ−1n−d#

{
Xi ∈ X ∩

[
−n

2
,
n

2

]d

: Hr(Xi) ≤ k

}
.

Let Bs(x) = {y ∈ R
d : |x − y| ≤ s} denote the Euclidean ball of radius s > 0 centered

at x ∈ R
d . Provided that k and r are of the same order, the asymptotic behavior of �(k, r)

depends sensitively on whether the intensity λ is below or above the critical intensity λc in
continuum percolation. To be more precise, λc is the infimum over all intensities λ > 0 for
which the union

⋃∞
i=1 B1/2(Xi) almost surely has an unbounded connected component.

Concerning the subcritical regime, our first main result shows that �(k, r) decays polyno-
mially in r as r → ∞. In the following, we write o for the origin in R

d and C(o) denotes the
set of all Xi ∈ X that are connectable to o.

Theorem 1. Let λ < λc and r > 0. Then,

sup
k≥1

�(k, r) ≤ λ−1r−d
E#C(o).

Note that for λ < λc, we have E#C(o) < ∞; see, e.g. [6, Theorem 12.35]. However,
as λ → λc, the bound in Theorem 1 becomes less useful as E#C(o) → ∞. In dimension
2 the speed of divergence is conjectured to be polynomial in (λ − λc)

−1 of order 43
18 ; see [6,

Chapter 9].
Next, consider the supercritical case, i.e. let λ > λc. By a central result in continuum

percolation [10, Theorem 2.1], the set
⋃∞

i=1 B1/2(Xi) contains a unique unbounded connected
component. In the following, C∞ ⊂ X denotes the subset of all elements of X that are
contained in this unbounded connected component. We write θ for the probability that there
exists Xi ∈ C∞, with |Xi | ≤ 1.

In order to describe the asymptotic behavior of �(k, r) for large k and r , it is important to
understand that the chemical distance between two points of C∞, i.e. the minimum number
of hops needed to establish a connection, grows linearly in the Euclidean distance of the two
points. This can be formalized in different ways.
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First, fixing any point Xi ∈ C∞, there should exist an almost sure finite random variable ρi

such that for every Xj ∈ C∞ the chemical distance between Xi and Xj is at most ρi |Xi −Xj |.
As observed in [4, Lemma 5.2], when considering Bernoulli site percolation on the lattice, the
corresponding result can be derived by adapting the bond percolation argument established
in [1, Lemma 2.4].

Additionally, when disregarding points in a small neighborhood of Xi , the random variable ρi

can be replaced by a deterministic quantity μ ∈ (0, ∞) that does not depend on i. To be more
precise, we put q(x) = Xj if Xj is the element of C∞ minimizing the distance to x ∈ R

d .
Then, Dn denotes the minimum integer k ≥ 1 such that q(o) and q(ne1) are k-connectable,
where e1 = (1, 0, . . . , 0) is the first standard unit vector in R

d . Using Kingman’s subadditive
ergodic theorem, it was shown in [15] that there exists a real number μ ∈ (0, ∞) such that
almost surely, limn→∞ n−1Dn = μ; see also [2] for the corresponding statement on the lattice.

With this background, we can now provide a heuristic explanation for the asymptotic behavior
of Hr as r tends to ∞, where we put Hr = Hr(o). As a corollary, we deduce the limiting
value of �(k, r) if the speed at which k and r tend to ∞ is chosen so that their quotient tends
to some constant. The reader who is interested in the precise mathematical result may jump to
Theorem 2 below. Regarding the heuristic, the Slivnyak–Mecke theorem [13, Corollary 3.2.3]
implies that

�(k, r) = P(r−1Hr ≤ r−1k).

Hence, it suffices to understand the asymptotic distribution of r−1Hr as r → ∞. We stress that
the following heuristic considerations are only valid in the regime r → ∞. First, points of X

can only connect to points of Y that are contained in the unbounded connected component of
continuum percolation and the probability that a given point of Y is contained in the unbounded
connected component is given by θ . Hence, instead of rY (1), we consider the process of
relevant points rY (θ), where Y (θ) is obtained from Y (1) by independent thinning with survival
probability θ . Then, for a given point of X to be connectable to some point of Y , the former
must also belong to the unbounded connected component, which occurs with probability θ .
Moreover, the closest point of rY (θ) is at Euclidean distance r min{|y| : y ∈ Y (θ)} and it can be
reached in at most μr min{|y| : y ∈ Y (θ)} hops. This heuristic is made precise in our second
main result, where we use the convention 0 · ∞ = 0.

Theorem 2. Let λ > λc. Then, r−1Hr converges in distribution to the random variable

(1 − Z) · ∞ + Zμ min{|y| : y ∈ Y (θ)},
where Z is a Bernoulli random variable that is independent of Y (θ) and which assumes the
value 1 with probability θ .

In other words, the asymptotic distribution of r−1Hr is a mixture between a Dirac measure
at ∞ and the contact distribution of the point process μY (θ). In particular, Theorem 2 can be
used to compute limr→∞ P(Hr ≤ cr).

Corollary 1. Let λ > λc and assume that limr→∞ r−1k(r) = c for some c ∈ (0, ∞). Then,

lim
r→∞ �(k, r) = θP

(
o ∈

⋃
Yj ∈Y (θ)

Bc/μ(Yj )

)
.

If Y (1) is a homogeneous Poisson point process with intensity 1, then Y (θ) is a homogeneous
Poisson point process with intensity θ . Hence, we have the following result.
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Corollary 2. Let Y (1) be a homogeneous Poisson point process with intensity 1. Then, under
the assumptions of Corollary 1,

lim
r→∞ �(k, r) = θ(1 − exp(−θκdcdμ−d)),

where κd denotes the volume of the unit ball in R
d .

The limiting distribution provided in Theorem 2 depends on λ implicitly via θ and μ. In order
to develop an intuition on the order of λ that is needed to achieve a given (high) connectivity
probability, it is useful to have some information on the behavior of the percolation probability θ

and the time constant μ as a function of λ. Concerning θ , it was shown in [11, Corollary of
Theorem 3] that θ = θ(λ) converges exponentially fast to 1 as λ tends to ∞. In our third main
result, we show that asymptotically μ − 1 = μ(λ) − 1 tends to 0 as λ → ∞ and that the
convergence occurs at least at a polynomial speed.

Theorem 3. We have μ(λ) − 1 ∈ O(λ−1/d(log λ)1/d) as λ → ∞.

This paper is organized as follows. In Section 2 we establish the ergodic representation of
�(k, r) announced in Proposition 1 and investigate the asymptotic behavior of �(k, r) in the
subcritical regime. That is, we prove Theorem 1. Section 3 is devoted to the proof of Theorem 2
which describes the distributional limit of the rescaled minimum number of hops r−1Hr in the
supercritical regime. Finally, in Section 4 we prove Theorem 3, i.e. we show that the time
constant μ tends to 1 as the intensity tends to ∞. Additionally, we provide a lower bound for
the speed of this convergence.

2. Proofs of Proposition 1 and Theorem 1

The proof of Proposition 1 is based on the multidimensional ergodic theorem. To apply
this result, it is important to note that the homogeneous Poisson point process is mixing [13,
Theorem 9.3.5], so that the pair of independent stationary point processes (X, Y ) are again
ergodic; see [8, Theorem 3.6].

Proof of Proposition 1. For z ∈ R
d let

Wz = #
{
Xi ∈ X ∩ ([− 1

2 , 1
2

]d + z
) : Hr(Xi) ≤ k

}

denote the number of points in X ∩ ([− 1
2 , 1

2 ]d + z) that are at most k hops away from some
point of Y . From the ergodic theorem for spatial processes (see, e.g. [8, Theorem 2.13]), we
conclude that the random variable

�m = m−d

∫
[−m/2,m/2]d

Wz dz

converges almost surely to

E

∫
[−1/2,1/2]d

Wz dz = E#
{
Xi ∈ X ∩ [− 1

2 , 1
2

]d : Hr(Xi) ≤ k
}
.

Moreover, we assert, that for sufficiently large n ≥ 1, the expression

n−d#
{
Xi ∈ X ∩ [− 1

2n, 1
2n

]d : Hr(Xi) ≤ k
}
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is bounded below and above by n−d(n − 1)d�n−1 and n−d(n + 1)d�n+1, respectively. Once
this assertion is shown sending n → ∞ completes the proof. In order to achieve this goal, we
observe that

(n + 1)d�n+1 =
∑

{Xi∈X : Hr(Xi)≤k}
νd

((−Xi + [− 1
2 , 1

2

]d) ∩ [−t 1
2 (n + 1), 1

2 (n + 1)
]d)

≥ #
{
Xi ∈ X ∩ [− 1

2n, 1
2n

]d : Hr(Xi) ≤ k
}
,

where νd denotes the Lebesgue measure in R
d . Since the lower bound can be shown using a

similar argument, the assertion follows. �
To prepare the proof of Theorem 1, we note that it is possible to express �(k, r) as the

expected value of the suitably weighted size of the cluster at a typical point of Y . To be more
precise, for y ∈ R

d , let Ck(y) denote the set of all Xi ∈ X such that Xi is k-connectable to y.
Additionally, put κ(Xi) = #{Yj ∈ Y : Xi ∈ Ck(Yj )}.
Lemma 1. Let k ≥ 1 and r > 0. Then,

�(k, r) = λ−1
E

∑
Yj ∈Y∩[−1/2,1/2]d

∑
Xi∈Ck(Yj )

κ(Xi)
−1.

Proof. The claimed identity is a consequence of the mass-transport principle [3]. Indeed,
define a function 	 : Z

d × Z
d → [0, ∞) by mapping a pair of sites (z, z′) ∈ Z

d × Z
d to

	(z, z′) =
∑

Yj ∈Y∩([−1/2,1/2]d+z)

∑
Xi∈Ck(Yj )∩([−1/2,1/2]d+z′)

κ(Xi)
−1.

Then,
∑

z′∈Zd 	(o, z′) = ∑
Yj ∈Y∩[−1/2,1/2]d

∑
Xi∈Ck(Yj ) κ(Xi)

−1. On the other hand,

∑
z∈Zd

	(z, o) =
∑
Yj ∈Y

∑
Xi∈Ck(Yj )∩[−1/2,1/2]d

κ(Xi)
−1

=
∑

Xi∈X∩[−1/2,1/2]d

∑
{Yj ∈Y : Xi∈Ck(Yj )}

κ(Xi)
−1

= #
{
Xi ∈ X ∩ [− 1

2 , 1
2

]d : Xi is k-connectable to some point of Y
}
.

By stationarity, we obtain

E

∑
z∈Zd

	(z, o) =
∑
z∈Zd

E	(z, o) =
∑
z∈Zd

E	(o, −z) = E

∑
z∈Zd

	(o, z),

which concludes the proof. �
Since κ(Xi) ≥ 1 for all Xi ∈ Ck(Yj ), the independence of X and Y implies that

E

∑
Yj ∈Y∩[−1/2,1/2]d

∑
Xi∈Ck(Yj )

κ(Xi)
−1 ≤ E

∑
Yj ∈Y∩[−1/2,1/2]d

#Ck(Yj )

≤ E

∑
Yj ∈Y∩[−1/2,1/2]d

E#Ck(o).

In particular, Lemma 1 gives rise to a simple upper bound for �(k, r).
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Proposition 2. Let k ≥ 1 and r > 0. Then, �(k, r) ≤ λ−1r−d
E#Ck(o).

We note two corollaries of Proposition 2. First, k must grow at least linearly in r for �(k, r)

to have a nonzero limit.

Corollary 3. If k = k(r) ∈ o(r) then limr→∞ �(k, r) = 0.

Proof. Since Ck(o) is contained in Bk(o), we deduce that E#Ck(o) ≤ kd
E#(X ∩ B1(o)).

In particular, applying the upper bound from Proposition 2 proves the claim. �
Moreover, Proposition 2 is also useful for proving Theorem 1.

Proof of Theorem 1. Combining the trivial inequality #Ck(o) ≤ #C(o) with Proposition 2
yields the desired bound. �

3. Proof of Theorem 2

In this section we prove Theorem 2. To this end, we fix λ > λc throughout the entire section.
Using the notation of Theorem 2, let W = (1 − Z) · ∞ + Zμ min{|y| : y ∈ Y (θ)}. In order to
show that r−1Hr converges to W in distribution, we fix an arbitrary a ≥ 0. Then, we proceed
in three steps.

Lemma 2. It holds that limr→∞ P(Hr = ∞) = 1 − θ .

Lemma 3. It holds that lim infr→∞ P(Hr ≤ ra) ≥ P(W ≤ a).

Lemma 4. It holds that lim supr→∞ P(Hr ≤ ra) ≤ P(W ≤ a).

As a first auxiliary result, we note that asymptotically the events that points in R
d belong to

the unbounded connected component become independent.

Lemma 5. Let λ > λc and z1, . . . , zm be distinct points in R
d \ {o}. Furthermore, let Er =

Er({z1, . . . , zm}) denote the event that #C(o) = ∞ and #C(rzi) = ∞ for some i ∈ {1, . . . , m}.
Then, limr→∞ P(Er) = θ(1 − (1 − θ)m).

Proof. Choose δ > 0 such that the cubes [−δ, δ]d , z1 + [−δ, δ]d , . . . , zm + [−δ, δ]d are
disjoint. Furthermore, let G(y, r) denote the event that the connected component of B1/2(y) ∪⋃

j≥1 B1/2(Xj ) at y ∈ R
d is not contained in y + [−rδ + 1, rδ − 1]d . Since the events

G(o, r), G(rz1, r), . . . , G(rzm, r) are independent, we can conclude that

lim
r→∞ P(Er) = lim

r→∞ P(G(o, r))

(
1 −

m∏
i=1

(1 − P(G(rzi, r)))

)
= θ(1 − (1 − θ)m),

if we can show that limr→∞ P(G′(y, r)) = 0 holds for everyy ∈ R
d , whereG′(y, r)denotes the

event that the connected component of B1/2(y)∪⋃
j≥1 B1/2(Xj ) at y is finite, but not contained

in y + [−rδ + 1, rδ − 1]d . To achieve this goal, note that under the event
⋂

r>0 G′(y, r) the
connected component of B1/2(y) ∪ ⋃

j≥1 B1/2(Xj ) at y is infinite. Hence,

lim
r→∞ P(G′(y, r)) = P

(⋂
r>0

G′(y, r)

)
= 0,

as required. �
Lemma 5 allows us to compute limr→∞ P(Hr = ∞).
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Proof of Lemma 2. First, we note that lim supr→∞ P(Hr < ∞) ≤ θ . Indeed, applying
Fatou’s lemma to the nonpositive random variable P(Hr < ∞ | Y (1)) − 1, we obtain

lim sup
r→∞

P(Hr < ∞) = 1 + lim sup
r→∞

P(Hr < ∞) − 1

≤ 1 + E

(
lim sup
r→∞

P(Hr < ∞ | Y (1)) − 1
)
,

which is equal to θ , i.e. the probability that C(o) is unbounded. For the reverse inequality, let
n ≥ 1 be arbitrary. Uniqueness of the infinite connected component [10, Theorem 2.1] shows
that Hr < ∞ almost surely under the event that #C(o) = ∞ and #C(rYj ) = ∞ for some
Yj ∈ Y (1) ∩ [−n/2, n/2]d . Hence, by Fatou’s lemma and Lemma 5,

lim inf
r→∞ P(Hr < ∞)

≥ E

(
lim inf
r→∞ P(#C(o) = ∞ and sup

Yj ∈Y (1)∩[−n/2,n/2]d
#C(rYj ) = ∞ | Y (1))

)

= θE(1 − (1 − θ)#(Y (1)∩[−n/2,n/2]d )).

Letting n → ∞ completes the proof of the lower bound. �

For the proofs of Lemmas 3 and 4, we need two further auxiliary results which are immediate
corollaries to the shape theorem [15, Theorem 2.2]. Loosely speaking, the following auxiliary
results encode the intuition that asymptotically two users in the unbounded connected compo-
nent of continuum percolation are k-connectable if and only if their Euclidean distance is of
order at most k/μ.

Lemma 6. Let a > 0 and λ > λc be arbitrary. Then, for every ε ∈ (0, 1),

lim
r→∞ P(E(r, ε)) = 0,

where E(r, ε) denotes the event that there exists Yj ∈ Y (1) ∩ Ba(1−ε)/μ(o) such that #C(o) =
#C(rYj ) = ∞, but o is not �ra-connectable to rYj .

Lemma 7. Let a > 0 and λ > λc be arbitrary. Then, for every ε ∈ (0, 1),

lim
r→∞ P(F (r, ε)) = 0,

where F(r, ε) is the event that the origin is �ra�-connectable to some point in R
d\Bra(1+ε)/μ(o).

After these preliminary results, we now proceed with the proof of Lemma 3.

Proof of Lemma 3. Put E∗(r, ε) = {#C(o) = ∞} ∩ E∗∗(r, ε), where E∗∗(r, ε) denotes the
event that there exists Yj ∈ Y (1) ∩ Ba(1−ε)/μ,(o) with #C(rYj ) = ∞. Then,

P(Hr ≤ ra) ≥ P(E∗(r, ε)) − P(E(r, ε)).

By Lemma 6, P(E(r, ε)) is negligible as r → ∞. Hence, by Lemma 5,

lim inf
r→∞ P(Hr ≤ ra) ≥ θE(1 − (1 − θ)#(Y (1)∩Ba(1−ε)/μ(o))).
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Finally, as Y (θ) is an independent thinning of Y (1), we obtain

P(μ min{|Yj | : Yj ∈ Y (θ)} ≤ a(1 − ε)) = E(P(Y (θ) ∩ Ba(1−ε)/μ(o) �= ∅ | Y (1)))

= E(1 − (1 − θ)#(Y (1)∩Ba(1−ε)/μ(o))).

Letting ε → 0 completes the proof. �
In order to complete the proof of Theorem 2, it remains to prove Lemma 4. First, we note

that, asymptotically, distinct points that are connectable must be contained in the unbounded
connected component of continuum percolation.

Lemma 8. Let λ > λc and z1, . . . , zm be distinct points in R
d \{o}. Let Fr = Fr({z1, . . . , zm})

denote the event that #C(o) < ∞ and o is connectable to some rzi . Then, limr→∞ P(Fr) = 0.

Proof. Denote by δ the minimum of the pairwise distances between elements of the set
{o, z1, . . . , zm}. Let F ′

r (z) denote the event that #C(z) < ∞, but z ∈ R
d is connectable to

some point with distance at least rδ. Then, by stationarity,

P(Fr) ≤ P(F ′
r (o)) +

m∑
i=1

P(F ′
r (zi)) = (m + 1)P(F ′

r (o)).

Moreover, if o is connectable to some point with distance at least rδ for every r > 0, then
#C(o) = ∞. In particular, limr→∞ P(F ′

r (o)) = P(
⋂

r>0 F ′
r (o)) = 0. �

Now, we can complete the proof of Theorem 2.

Proof of Lemma 4. First, we observe that

P(Hr ≤ ra) ≤ P(F (r, ε)) + E(P(Fr(Y
(1) ∩ Ba(1+ε)/μ(o)) | Y (1)))

+ E(P(Er(Y
(1) ∩ Ba(1+ε)/μ(o)) | Y (1))).

Hence, we conclude from Lemmas 7 and 8 that it suffices to investigate the third summand.
Now, applying Lemma 5, we have

lim sup
r→∞

E(P(Er(Y
(1) ∩ Ba(1+ε)/μ(o)) | Y (1))) ≤ E( lim

r→∞ P(Er(Y
(1) ∩ Ba(1+ε)/μ(o)) | Y (1)))

= θE(1 − (1 − θ)#(Y (1)∩Ba(1+ε)/μ(o))).

Repeating the final steps used in the derivation of Lemma 3 completes the proof. �

4. Proof of Theorem 3

Loosely speaking, in order to prove Theorem 3, we can proceed similarly as in [15, Lemma
3.4] and modify the arguments used in the lattice setting [2]. The general construction presented
in these papers is useful for the proof of Theorem 3, but the identification of the behavior of
μ = μ(λ) as λ → ∞ requires a more refined analysis.

It is convenient to introduce a specific family of site percolation processes. For this purpose,
we describe certain useful configurations. Loosely speaking, it is only possible to connect
q(o) to q(ne1) by a path of at most μn hops with μ very close to 1 if the vast majority of
segments in this path are almost horizontal. We achieve this geometry by considering regularly
placed positions on the segment [o, ne1] and imposing that there is a point of the Poisson
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point process close to most of these positions. The precise level of closeness is controlled
by a parameter ε ∈ (0, 1/d). First, for z ∈ Z

d , we need to ensure that any two points of
X ∩ (z + [−(1 − ε)/2, (1 − ε)/2]d) can be connected via hops of distance at most 1 to other
points of X ∩ (z + [−(1 − ε)/2, (1 − ε)/2]d). To be more precise, E1,ε(z) denotes the event
that (X− (1−ε)z)∩Qi �= ∅ for all i ∈ {1, . . . , (2d)d}, where Q1, . . . , Q(2d)d is a subdivision
of [−(1 − ε)/2, (1 − ε)/2]d into congruent subcubes of side length (1 − ε)/(2d). In particular,
if Qi ∩ Qj �= ∅ then

|xi − xj | ≤ 2
√

d(1 − ε)

2d
≤ 1

holds for all xi ∈ Qi, xj ∈ Qj .
Second, we demand that X has a point close to z ∈ Z

d . This will allow us to pass
through linear arrangements of adjacent cubes without deviating too much from the line
segment connecting the centers of these cubes. More precisely, E2,ε(z) denotes the event
that (X − (1 − ε)z) ∩ [−ε/4, ε/4]d �= ∅. Note that |x − y| ≤ 1 for all x ∈ [−ε/4, ε/4]d and
y ∈ ((1 − ε)e1 + [−ε/4, ε/4]d). Finally, for ε ∈ (0, 1), we say that a site z ∈ Z

d is ε-good if
E1,ε(z) ∩ E2,ε(z) occurs.

To begin with, we show that linear arrangements of good sites can be traversed quickly.

Lemma 9. Let j ≥ 1 and ε ∈ (0, 1) be such that the site ie1 is ε-good for all i ∈ {0, . . . , j}.
Furthermore, let Xi0 , Xi1 ∈ X be such that Xi0 ∈ [−ε/4, ε/4]d and Xi1 ∈ (j (1 − ε)e1 +
[−ε/4, ε/4]d). Then, Xi0 and Xi1 are j -connectable.

Proof. Proceeding inductively, it suffices to consider the j = 1 case. But for j = 1, the
claim follows from the previous observation that |Xi0 − Xi1 | ≤ 1. �

Even for large values of the intensity λ, the probability that the site ie1 is ε-good for all
i ∈ {0, . . . , m} decays exponentially fast in m. Therefore, we have to deal with the occasional
occurrence of defects. In the following, we say that a set of sites � ⊂ Z

d is ∗-connected if it
forms a connected set in the graph whose vertices are given by Z

d and where z, z′ ∈ Z
d are

connected by an edge if |z − z′|∞ ≤ 1. We need a crude upper bound for the number of steps
required to traverse a set of cubes associated with a ∗-connected set of ε-good sites.

Lemma 10. Let ε > 0 and � ⊂ Z
d be a finite ∗-connected set of ε-good sites. Furthermore,

let Xi0 , Xi1 ∈ X be such that Xi0 ∈ (1 − ε)(z + [− 1
2 , 1

2 ]d), Xi1 ∈ (1 − ε)(z′ + [− 1
2 , 1

2 ]d) for
some z, z′ ∈ �. Then Xi0 and Xi1 are k-connectable for k = (3 + (2d)d)#�.

Proof. If z = z′, then the definition of ε-goodness implies that Xi0 and Xi1 are k′-connectable
for k′ = 2 + (2d)d . Next, if z, z′ are such that |z − z′|∞ ≤ 1, then, again by the definition of
ε-goodness, there exist Xj0 , Xj1 ∈ X with Xj0 ∈ (1 − ε)(z + [− 1

2 , 1
2 ]d), Xj1 ∈ (1 − ε)(z′ +

[− 1
2 , 1

2 ]d), and |Xj0 − Xj1 | ≤ 1. Hence, the proof of Lemma 10 is completed by an elementary
induction argument on the length of the path in � connecting z and z′. �

The next step is to combine Lemmas 9 and 10 into an upper bound that is useful in situations
where the ∗-connected ε-bad components associated with the sites ie1, i ∈ {0, . . . , m} only
cover a small proportion of these sites. More precisely, let Um be the union of the ∗-connected
ε-bad components associated with the sites ie1, i ∈ {0, . . . , m}. If ie1 is ε-good, then we define
its ∗-connected ε-bad component to be empty. Note that Um is almost surely finite provided
that λ is sufficiently large.

Let U
(∞)
m denote the unbounded connected component of Z

d \ Um. In particular, U
(∞)
m

is also ∗-connected. Then, U ′
m = Z

d \ U
(∞)
m consists of m′ ≥ 1 ∗-connected components
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Figure 2: Construction of the sequences {ai}1≤i≤m′′ and {bi}1≤i≤m′′ . The dashed line shows a possibility
of a short path circumventing the obstacles.

U
(1)
m , . . . , U

(m′)
m . Let ∂U

(i)
m denote the outer boundary of U

(i)
m , i.e. ∂U

(i)
m consists of all z ∈

Z
d \ U

(i)
m such that |z − z′|∞ = 1 for some z′ ∈ U

(i)
m . Note that ∂U

(i)
m is ∗-connected, since

the outer boundary of any ∗-connected set is again ∗-connected, see [7, Lemma 2.23] (related
results can be found in [5] and [14]).

Next, we identify subsets of {o, e1, . . . , me1} that form linear arrangements of ε-good
sites. To be more precise, we construct two finite increasing subsequences {ai}1≤i≤m′′ and
{bi}1≤i≤m′′ of {0, . . . , m} inductively as follows. If {o, e1, . . . , me1} ⊂ U ′

m, then we put
m′′ = 0. Otherwise, choose a1 = min{i ≥ 0 : ie1 �∈ U ′

m} as the first site that is not contained
in U ′

m. If neither of a1e1, (a1 +1)e1, . . . , me1 is contained in U ′
m, then we put b1 = m, m′′ = 1,

and terminate the construction. Otherwise, let b1 = inf{i ∈ {a1, . . . , m} : ie1 ∈ U ′
m} − 1 be

the predecessor of the next site after a1 that is contained in U ′
m. In particular, there is some i1 ∈

{1, . . . , m′} such that (b1 + 1)e1 ∈ U
(i1)
m . Define a′

2 = max{i ∈ {b1, . . . , m} : ie1 ∈ ∂U
(i1)
m }.

If a′
2 = b1 then put m′′ = 1 and terminate the construction. Otherwise, define a2 = a′

2 and
continue inductively. See Figure 2 for an illustration of this construction.

We make two crucial observations. First, the sites je1 are ε-good for all j ∈ {ai, . . . , bi} and
i ∈ {1, . . . , m′′}. Second, if j < m′ then the sites bj e1, aj+1e1 are contained in the ∗-connected
set ∂U

(ij )
m . This allows us to make use of Lemma 10.

To summarize, we have derived bounds on the number of hops for traversing linear arrange-
ments of ε-good cubes and for making detours around defects. These bounds are sufficient for
our purposes provided that neither o nor me1 are contained in U ′

m. In that situation, we need the
following auxiliary result, where for A ⊂ Z

d we put A ⊕ [− 1
2 , 1

2 ]d = ⋃
z∈A(z + [− 1

2 , 1
2 ]d).

Lemma 11. Let i ∈ {1, . . . , m′} and Xi0 ∈ C∞ be such that Xi0 ∈ (1 − ε)(U
(i)
m ⊕ [− 1

2 , 1
2 ]d).

Then, there exists Xi1 ∈ X ∩ (1 − ε)(∂U
(i)
m ⊕ [− 1

2 , 1
2 ]d) such that Xi0 and Xi1 are (c1#U

(i)
m )-

connectable, where c1 = c1(d) ≥ 1 is a constant depending only on the dimension d.

Proof. Loosely speaking, we proceed as follows. Since Xi0 is contained in C∞, it is
k-connectable to the boundary of (1−ε)(U

(i)
m ⊕ [− 1

2 , 1
2 ]d) for some k ≥ 1. Then, we make use

of the observation in [15, Lemma 3.4] that the minimum such k cannot be too large in comparison
to #U

(i)
m . To be more precise, let γ = 〈Xi0 = Xj1 , . . . , Xjk

〉 be some path in X consisting of
hops of distance at most 1 such that i1 = jk is contained in (1 − ε)(∂U

(i)
m ⊕ [− 1

2 , 1
2 ]d).

We note that there is a constant c′
1 = c′

1(d) ≥ 1 with the following property. There exists
a finite subset S of R

d consisting of at most c′
1#U

(i)
m elements and such that for every y ∈

(1 − ε)((U
(i)
m ∪ ∂U

(i)
m ) ⊕ [− 1

2 , 1
2 ]d) there exists y′ ∈ S with |y − y′| ≤ 1

2 . If there exist
y1, . . . , yk ∈ S with |Xj�

− y�| ≤ 1
2 for every � ∈ {1, . . . , k} and such that for every

� ∈ {1, . . . , k} there exists at most one �′ ∈ {1, . . . , k} \ {�} with y� = y�′ , then the claim
follows from the observation that k ≤ 2#S ≤ 2c′

1#U
(i)
m . Hence, it remains to transform γ into a

path γ ′ with that property. This can be achieved by using Lawler’s method of loop erasure [9].
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To be more precise, let � ∈ {1, . . . , k} be the largest index such that |Xj�
− y1| ≤ 1

2 .
In particular, |Xj1 − Xj�

| ≤ 1 and |Xj�
− Xj�+1 | ≤ 1. Now the construction proceeds

inductively by defining γ ′ as the path obtained by pasting the paths 〈Xj1 , Xj�
, Xj�+1〉 and γ ′′,

where γ ′′ is the loop erasure of the path 〈Xj�+1 , . . . , Xjk
〉. �

Let mε(n) be the unique integer contained in the interval[
n

1 − ε
− 1

2
,

n

1 − ε
+ 1

2

)
.

Combining Lemmas 9–11, we can now construct a short path connecting q(o) and q(ne1). First,
by Lemma 11, q(o) and q(ne1) can be connected to points in X ∩ (1 − ε)(∂U

(1)
m ⊕ [− 1

2 , 1
2 ]d)

and X∩(1−ε)(∂U
(m′)
m ⊕ [− 1

2 , 1
2 ]d), respectively, by paths of at most 2c1#U ′

mε(n) hops in total.
Next, by Lemma 9, for any i ∈ {1, . . . , m′′} every point in X ∩ (ai(1 − ε)e1 ⊕ [−ε/4, ε/4]d)

is (bi − ai)-connectable to every point in X ∩ (bi(1 − ε)e1 ⊕ [−ε/4, ε/4]d). Aggregating over
i ∈ {1, . . . , m′′} this gives paths of at most mε(n) hops in total. Finally, using Lemma 10 to
provide the missing links between these paths, we arrive at a path connecting q(o) to q(ne1) in
at most

k = mε(n) + (3 + (2d)d)

m′∑
i=1

#∂U
(i)
mε(n) + 2c1#U ′

mε(n) (1)

hops. This construction is illustrated in Figure 2. In order to translate this observation into an
upper bound for μ, it is important to have some control on the size of the random variables∑m′

i=1 #∂U
(i)
mε(n) and #U ′

mε(n). In the following, we write qλ,ε for the probability that a fixed site
is ε-bad. In particular,

qλ,ε ≤ (2d)d exp(−λ(1 − ε)d(2d)−d) + exp(−λ2−dεd). (2)

Lemma 12. If qλ,ε < 2−3d−1 then limm→∞ P(
∑m′

i=1 #∂U
(i)
m ≥ 23d+23dqλ,εm) = 0.

Proof. Note that any site in
⋃m′

i=1 ∂U
(i)
m is ∗-adjacent to an ε-bad ∗-connected component

intersecting {o, e1, . . . , me1}. It may happen that several sites in
⋃m′

i=1 ∂U
(i)
m share the same

neighbor in Um, but for each site in Um the number of such sites in
⋃m′

i=1 ∂U
(i)
m does not

exceed 3d . Therefore,
m′∑
i=1

#∂U(i)
m ≤ 3d#Um.

Furthermore, as shown in [5, Lemma 2.3], #Um is stochastically dominated by
∑m

i=0 Ri , where
{Ri}0≤i≤m is a family of independent and identically distributed random variables such that Ri

has the distribution of the size of the open ∗-connected component at the origin when considering
Bernoulli site percolation with parameter qλ,ε. The number of ∗-connected subsets of sites
containing the origin and consisting of exactly k ≥ 1 sites is bounded above by 23dk; see [12,
Lemma 9.3]. Therefore,

ER0 ≤
∞∑

k=0

k23dkqk
λ,ε = 23d

qλ,ε

(1 − 23d
qλ,ε)2

< 23d+2qλ,ε.

The claim now follows from the law of large numbers. �

Lemma 13. If qλ,ε < 2−3d−1 then limm→∞ P(#U ′
m ≥ 23d+49dd2qλ,εm) = 0.
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Proof. By the isoperimetric inequality [5, Equation (2.1)], #U
(i)
m ≤ d2(#∂U

(i)
m )2 holds for

all i ∈ {1, . . . , m′}. Indeed, [5, Equation (2.1)] yields the desired inequality if the boundary ∂

is formed with respect to the standard adjacency relation on Z
d and the ∗-boundary is always

at least as large as that. Moreover, using the same notation as in the proof of Lemma 12, the
sum

∑m′
i=1(#∂U

(i)
m )2 is stochastically dominated by 9d

∑m
i=0 R2

i , where

ER2
0 ≤

∞∑
k=0

k223dkqk
λ,ε = (23d

qλ,ε + 1)23d
qλ,ε

(1 − 23d
qλ,ε)3

< 23d+4qλ,ε.

As before, the law of large numbers now implies the claim. �
In order to prove Theorem 3, we need to decrease ε accordingly in the size of λ. By the

upper bound on qλ,ε derived in (2), we conclude that if we choose

ε = ε(λ) = 2λ−1/d(log λ)1/d , (3)

then limλ→∞ ε−1qλ,ε = 0.

Proof of Theorem 3. Choose ε as in (3) and put μ+ = 1 + 3ε. Then, it suffices to show
that P(Dn ≥ nμ+) → 0 as n → ∞. Combining (1) with Lemmas 12 and 13, we see that it
suffices to show that mε(n) ≤ n(1 + 2ε). But since 1/(1 − ε) < 1 + 2ε, this is an immediate
consequence of the definition of mε(n). �
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