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Energy spectra power laws and structures
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Direct numerical simulations (DNS) of two inviscid flows, the Taylor–Green flow and
two orthogonal interacting Lamb dipoles, together with the DNS of forced isotropic
turbulence, were performed to generate data for a comparative study. The isotropic
turbulent field was considered after the transient and, in particular, when the velocity
derivative skewness oscillates around −0.5. At this time, Rλ ≈ 257 and a one decade
wide k−5/3 range was present in the energy spectrum. For the inviscid flows the
fields were considered when a wide k−3 range was achieved. This power law spectral
decay corresponds to infinite enstrophy and is considered one of the requirements
to demonstrate that the Euler equations lead to a finite time singularity (FTS). Flow
visualizations and statistics of the strain rate tensor and vorticity components in the

principal axes of the strain rate tensor (S̃λ, ω̃λ) were used to classify structures. The

key role of the intermediate component S̃2 is demonstrated by its good correlation
with enstrophy production. Filtering of the fields shows that the slope of the power
law is directly connected to self-similar structures, whose radius of curvature is
smaller the steeper the spectrum.

1. Introduction
A large number of natural phenomena show power law distributions; Paczuski &

Bak (1999) reported several examples for which model equations are not available or
have not been experimentally confirmed. In fluid dynamics, the equations describing
the flow physics are known; these are derived on solid principles and have been
confirmed by laboratory experiments. These equations generate energy spectra with
a wide distribution in wavenumbers, whose origin is related to the nonlinearity of
the Euler and Navier–Stokes equations. In real flows, a wide power law is achieved
when the nonlinear terms overcome the viscous terms. This condition is verified when
the Reynolds number, defined by the ratio of the two terms, is large, for instance
in turbulent flows, where the Kolmogorov (1941) theory for Re → ∞ predicts a k−5/3

power law. The theory is based on the hypothesis that the energy dissipation rate
ε = 2νSijSji , with ν the kinematic viscosity and Sij the strain rate tensor, remains
finite for ν → 0. This hypothesis which implies that the velocity gradients increase
at small scales continues to be debated. A demonstration of a limit to the rate of
dissipation has been obtained recently by numerical simulations (Ishihara et al. 2007)
for isotropic turbulence forced at low wavenumbers. At Rλ > 200 (Rλ indicates the
Reynolds number based on the Taylor microscale λ) they obtained a power law
one decade wide, and in addition they observed that the width of the power law
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did not increase with Rλ (Kaneda et al. 2003). An increase on Rλ only produced a
small correction to the power law. This power law correction was previously observed
by Mydlarski & Warhaft (1996). Several studies were devoted to understanding the
reasons for the correction, speculating that it should be attributed to the intermittency
of the rate of dissipation ε.

The dimensionless spectra of the Japanese team agree well with those measured
in different experiments, because in laboratories also, high-Re isotropic turbulence is
achieved by a sort of forcing at low wavenumbers, for instance in the outer region
of turbulent boundary layers (Saddoughi & Veeravalli 1994) or in the centreline of
round jets (Burattini, Antonia & Danaila 2005). Under these circumstances, a weak
mean velocity gradient produces turbulent energy at large scales. These simulations
have produced a deeper understanding of the physics of isotropic turbulence and
generated energy spectra which are here used to validate the present simulations.

The aim of the present work is to investigate whether it is possible to relate the
exponents of the spectra power law to the shape of vortical structures in the flow.
To find this relation, the velocity field must be a solution of the Navier–Stokes
equations; in fact any kind of spectra can be obtained with random phases, but
these spectra do not have a physical meaning. The connection between spectra and
vortical structures is facilitated by numerical simulations where all the quantities are
accessible, for instance the rate of strain, the vorticity components and the pressure.
It is impossible to cite the large number of papers on this topic; however, Jimenez
and coworkers obtained highly interesting results for forced simulations. In their first
study Jimenez et al. (1993) were interested in the structures with high vorticity, which
they denoted as ‘worms’. Previously, these structures were detected in less refined
numerical simulations by Vincent & Meneguzzi (1991) and by She, Jackson & Orszag
(1991). Following the flow description in the introduction of Moisy & Jimenez (2004)
of turbulent flows with the inertial range followed by an exponential decay range,
the large scales are immersed in a sea of small scales, and the structures can be

rod- or ribbon-like. The eigenvalues S̃λ of the strain rate tensor Sij , measured inside
and around the structures, allow us to characterize the structures. The intermediate

component S̃2 determines the sign of the determinant of the rate of strain tensor

RS̃ = S̃1S̃2S̃3, and this determines the nature of the vortex structures. Usually the
strain field is large in the regions surrounding the vortices. However, Orlandi &
Carnevale (2007), describing the mechanism of vorticity amplification, observed that

in the regions of vorticity amplification ω̃2
2S̃2 dominates the other two components of

the enstrophy production ω̃2
λS̃λ. The structures are rod-like if RS̃ > 0 and sheet-like if

RS̃ � 0. From databases of different flows (forced and decaying isotropic turbulence,
turbulent channels and free shear (Ashurst et al. 1987)), it was observed that sheet-like
structures dominate and that those with RS̃ < 0 are unstable and contribute the most
to the energy cascade.

To investigate whether the exponent of the power law in the inertial range is related
to the shape of the structures, it is interesting to analyse, in addition, flows having
spectra with wide power laws, without an exponential decay at high wavenumbers.
Under these conditions, the small rod-like structures do not affect the structures
related to the power law region. These flows can be obtained by the solution of the
Euler equations with smooth initial conditions. When the spectrum with a wide power
law is achieved, in a well-resolved simulation, the velocity field is saved to analyse
the properties of the structures. Efficient numerical methods, as shown by Cichowlas,
Debbashn & Brachet (2006), can generate flows with power spectra decaying up
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to a certain wavenumber, followed by a k2 scaling, typical of energy equipartition.
However, the structures related to the k2 range are unphysical. The inviscid simulations
require smooth initial conditions, with negligible energy at small scales.

Orlandi & Carnevale (2007) performed direct numerical simulations (DNS) of
the Euler equations to understand the process of vorticity amplification before the
occurrence of the hypothetical finite time singularity (FTS). They claimed that, at the
present time, it is impossible to have a definite and clear proof of the FTS existence
for the Euler equations. They demonstrated that a model equation can be derived
having a FTS. In addition they observed that, for a short time before the supposed
FTS, the energy spectrum has a rather wide range with a k−3 power law. At high
wavenumbers, the insufficient resolution produces a short range with a non-physical
energy pile-up. The achievement of the k−3 power law was hypothesized by Kerr
(1993) in a coarse simulation of interacting Gaussian dipoles (approximately 64 grid
points were used to resolve the initial vortex). Spectra with E(k) ≈ kγ with γ greater
than −4 were observed and from these it was postulated that at a later time the
asymptotic value for γ would be the order of −3.

The Orlandi & Carnevale (2007) simulations assigned as initial conditions two
orthogonal Lamb dipoles (Lamb 1932) having a k−6 power law energy spectrum (170
grid points across each vortex), and they demonstrated that Lamb dipoles are better
than Gaussian-shape vortices to study the vorticity amplification. In fact, the power
law exponent n= −6 is preserved during the approach of the dipoles towards each
other. On the other hand, during the interaction the power law is maintained with
the exponent varying between n= −6 and n= −3. A proof that the initial conditions
play a role in the existence of an FTS can be drawn by the results of Hou & Li
(2006) and by Grafke et al. (2007). In the latter paper, results of different numerical
schemes were compared by showing the influence of the numerical method. However,
the authors claimed that ‘the initial vortex tube should be chosen in such a way
that vortex shedding will not pollute the vorticity growth’. The Lamb dipole has this
property.

Cichowlas & Brachet (2005) assigned as the initial condition the Taylor–Green
vortex to find the FTS of the Euler equations. In this flow at t =0 the energy is
concentrated at k = 1.7 and, in time, is transferred to high k. It can be speculated that
a reason for the controversial arguments about the FTS, for this flow, could be related
to the formation of a logarithmic decrement δ(t) of the energy at high k that varies in
time. The eventual blow-up exists if δ(t) vanishes in a finite time. In the present work
several resolutions, without reaching the resolution of Cichowlas & Brachet (2005)
(kmax = 648), have been used to ascertain whether a spectrum with a wide power law
is generated. Cichowlas & Brachet (2005) terminated the simulation before reaching
a long k−3 range. In the present paper a simulation with kmax = 256 demonstrates
that, at a certain time, a satisfactory long k−3 is achieved. The shape of the vortical
structures and their relationship with the spectrum can then be investigated. With
this resolution the smallest scales are unresolved, but the enstrophy-containing scales
are not those close to kmax .

The present simulations were performed with a second-order finite-difference
scheme, with staggered velocities. This scheme is energy-conserving in the limit of
�t → 0. Orlandi (2000) validated this scheme for inviscid and viscous simulations.
Those sceptical of the qualities of this low-order scheme and about its capability to
produce results as good as those by pseudospectral methods can be convinced by
the comparisons among coarse simulations of the Taylor–Green flow (Duponcheel,
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Orlandi & Winckelmans 2008). For forced isotropic turbulence the same behaviour
of the exponential range is established and, in addition, the energy pile-up at the high
wavenumbers is smaller than found with pseudospectral methods. These comparisons
demonstrate that second-order energy-conserving finite-difference schemes can be
used to create databases to study the complex physics of flows with energy spectra
with a wide power law range.

In order to investigate the relation between the shape of the structures in a certain
range of scales in the energy spectrum, spectral filtering of the velocity field is used to
analyse whether the shape is preserved in the filtered fields and to search for a self-
organized critical (SOC) state. The occurrence of an SOC can be observed in several
natural phenomena (Paczuski & Bak 1999), where in an ordered state every place looks
like every other place. The filtering operation requires a transformation of the velocity
fields from the physical to the wavenumber space, a selection of a range of wavenum-
bers and also setting equal to zero the amplitude of the components outside this range.
A direct fast Fourier transform (FFT) of the filtered field gives the velocity components
in the physical space which can be used to evaluate the statistics and to perform
flow visualizations. From qualitative arguments, large differences in the statistics and
in the flow structures are expected for isotropic forced turbulence, depending on the
range of the spectrum considered. In addition, the weaker power law k−5/3 decay with
respect to the k−3, due to the formation of the exponential range, suggests a reduction
of the similarity of the structures. The constant slope over the whole spectrum in
inviscid flows is typical of a self-similar cascade and of self-similar structures.

2. Numerical method and initial conditions
The Navier–Stokes and the inviscid Euler equations are solved together with

the continuity equation. Since the Euler equations coincide with the Navier–Stokes
equations with ν = 0, the latter ones, in dimensionless form, are given as

∂Ui

∂t
+

∂UiUj

∂xj

= −∂P

∂xi

+
1

Re

∂2Ui

∂x2
j

,
∂Ui

∂xi

= 0, (2.1)

where P is the dimensionless pressure. The density is assumed constant in space and
time. The Reynolds number for forced turbulence is defined in § 2.3. The equations
are solved in a cubic box of size 2π with the periodicity assumption in the three
directions. To save computational time for the Taylor–Green and for the interacting
Lamb dipoles, symmetries can be imposed. Orlandi & Carnevale (2007) demonstrated
that this assumption does not affect the results. Thus in the discussion here, the full
dimensions and not the true number of grid points are mentioned. Smooth initial
conditions must be assigned to the Euler equations and these affect the evolution of
the spectra. The results using Lamb dipoles were described by Orlandi & Carnevale
(2007), and are briefly summarized here.

2.1. Lamb dipoles

The Lamb dipole is an exact two-dimensional form-preserving propagating solution
of the Euler equations (Lamb 1932) having continuous velocity field and continuous
first-spatial derivatives. In polar coordinates centred on the dipole, the vorticity
distribution is

ω = −2Uκ J1(κr)
J0(κa)

sin(θ − θ0), (r < a)

= 0, (r > a)
(2.2)
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Figure 1. (a) Energy spectra: �, t = 0; , t = 1.00; , t =2.00; , t = 2.50; ,
t =2.72 (tick 10243, thin 5123); the straight lines are k−6 and k−3 power laws; (b) Surface
contour |ω| = 7 and contour lines in two orthogonal planes with �ω = 0.5 at t = 1.

where U , the propagation speed of the dipole, is taken as the reference velocity;
a is its radius, the reference length; the time is non-dimensionalized by a/U ; κ

is a constant, where κa = j 1
1 ≈ 3.8317 is the first strictly positive zero of the Bessel

function J1. Equation (2.2) is a steady solution of the Euler equations in the co-moving
reference frame. The dipole propagates in the direction θ = θ0, and it can be located
at any position in the computational box by changing the point of origin of the
radius r .

The initial velocity fields were obtained by assigning the vorticity distribution given
by (2.2) on the x1 − x2 plane, centred at x1 = π/2 and x2 = 0. The vorticity component
ω3 extends uniformly in the x3 direction. The orientation of the dipole is such that it
moves in the negative x1 direction. The second dipole, with vorticity ω2 along x2, is
centred at x1 = −π/2 and x3 = 0. It moves in the positive x1 direction.

In Orlandi & Carnevale (2007) the energy spectrum at t = 0 was not shown. In this
paper, focused on the energy spectra, the comparison with the initial spectrum over
the period of time in which the two dipoles approach each other, before there is a
large deformation, is instructive. At t =0, figure 1(a) shows small oscillations, but with
a good approximation, the envelop follows a k−6 power law. The energy pile-up at the
highest wavenumbers depends on the vorticity discontinuity at the edge of the dipoles.
At t = 1, the oscillations disappear and the k−6 power law is established. To give an
idea about the deformations of the vorticity field of the dipoles, figure 1(b) shows the
|ω| = 7 surface contour with superimposed contour lines in two orthogonal planes. In
the region where the vortices interact, |ω| is distributed in a smaller area than that
at t = 0, but the shape of the vortices do not differ much. The distribution remains
rather compact, and small scales are not visible. By continuing the interaction, small
scales form, which generate energy spectra decaying with power laws with reduced
slopes. During the time evolution, figure 1(a) shows that the spectra maintain a
constant value of the exponent, which becomes n= −3 at t = 2.72; at this time the
simulations with two different resolutions produce spectra that, in large part of the
range, coincide rather well. The spectra at early times have been obtained by the
5123 resolution. The time variation of the spectra for the interacting Lamb dipoles
is different from that for the Taylor–Green flow, which is described in the next
section.
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Figure 2. (a) Compensated energy spectra (k3E(k)): �, t = 0; , t =1; , t = 2; ,
t = 3; , t = 4.27 (thick 5123, thin 2563); (b) inverse of maximum vorticity time evolution:

, 5123; , 2563; , 963; straight line, 0.25(4.1 − t).

2.2. Taylor–Green flow

For this flow the initial conditions are given by

u1 = U sin(x1) cos(x2) cos(x3),

u2 = −U cos(x1) sin(x2) cos(x3),

u3 = 0, (2.3)

which give an energy spectrum with only one non-zero mode E(k =1.7). As for
the Lamb dipoles the cubic box has a size 2π, the reference velocity is U = 1 and
the Euler equations are integrated in time with the third-order Runge–Kutta time-
stepping scheme, which is more accurate than that of Adams–Bashfort, as shown in
Duponcheel et al. (2008). The time evolution of the compensated spectra (k3E(k)) in
figure 2(a) shows, in the transient, the formation of logarithmic decrements of the
energy at high k and a smaller extension of the power law than that for the Lamb
dipoles. By triadic interactions, the energy content initially at k =1.7 is transferred
to high wavenumbers. This process is produced by the vortex tilting and stretching
terms in the vorticity transport equations. During the evolution, Cichowlas & Brachet
(2005) found that the spectra can be fitted to E(k) ≈ kγ (t)e−2δ(t)k , and they presented
the time evolution of γ (t) and δ(t). Here the interest is to find whether γ = −3 can be
achieved, and indeed figure 2(a) does show that at t = 4.27 a satisfactorily wide k−3

range is established. For the interacting Lamb dipoles, figure 1(a) shows that in time
the spectra have power laws extending over the whole range. For the Taylor–Green
flow the loss of self-similarity perhaps is one of the reasons of the controversy in
the demonstration of the hypothetical FTS. The spectra in figure 2(a) evaluated by
the simulation with the 5123 grid are compared with the spectra by a 2563 grid. The
comparison shows that the scales in the k−3 range are well resolved except for a short
range close to kmax . Better resolution should increase the length of the k−3 range.

In this paper, the question of the existence of an FTS is not discussed; however,
the vorticity amplification is analysed by looking at the time evolution of 1/|ω|max .
As in Cichowlas & Brachet (2005), without reaching their finest resolution, several
simulations produced the results as represented in figure 2(b). A 963 grid gives
inaccurate results, but those with a 2563 grid do not differ much from those with
a 5123 grid. The 1/|ω|max ≈ (ts − t) is well fit between t = 3 and t = 3.8. To extend
the fit, at t > 4, a huge number of grid points is required. The enstrophy-containing
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Figure 3. (a) Inverse of enstrophy (Ω = 〈ω2
i 〉/2) time evolution: , 5123; , 2563;

(b) enstrophy spectra at t =3.96 ( ), t = 4.00 ( ), t = 4.06 ( ), t = 4.27 ( );
� Cichowlas & Brachet (2005) in (b) indicates the spectrum at t = 4 obtained by their figure 2.

structures, for spectra decaying as k−3, are not linked to the highest wavenumbers.
The results in figure 2(b) show that a vorticity amplification similar to that for the
Lamb dipoles occurs, and accordingly a k−3 power law spectrum is achieved at a time
close to ts . The compensated energy spectra (k3E(k)) in figure 2(a) at t = 4.27 have
a constant value equal to 1 between k = 3 and k = 200, and the enstrophy-containing
range extends between k =2 and k =10 (figure 3b).

The present results seem to contradict those obtained by Cichowlas & Brachet
(2005). In fact, in their figure 3, n never reaches a value equal to −3. Therefore, it
is necessary to compare the two simulations. From their figure 1, the values of the
enstrophy Ω(t) have been evaluated and plotted as 1/Ω in figure 3(a). This shows
very good agreement between their enstrophy amplification and ours, implying that
their lack of resolution affects the high-wavenumber spectra and does not affect the
enstrophy. Cichowlas & Brachet (2005), by stopping the simulations at t = 4, could
not observe a k−3 range. In figure 3 the enstrophy spectra of the present simulations
at t = 4.00 compare rather well with that of Cichowlas & Brachet (2005) and, in
addition, show that in a short period after t =4.00, our simulations achieve a k−3

range. The small pile-up at t =4.27 indicates that the vorticity field is satisfactorily
resolved.

2.3. Forced isotropic turbulence

For this flow the initial conditions are unimportant; instead it is necessary to explain
the forcing at large scales which maintain constant the turbulent kinetic energy. The
present forcing is different from the negative viscosity coefficient for |k| < 2.5 used
by Jimenez et al. (1993), or the solenoidal random forcing at small scales by Gotoh,
Fukayama & Nakano (2002). Other ways of forcing at large scale were used, some of
which are described by Alvelius (1999), and there is the possibility that a way similar
to the present one was applied. However, despite the differences in the time evolution,
different simulations should give the same stationary value for the velocity derivative
skewness.

To maintain constant the r.m.s. of each velocity component, at each third sub-
step of the third-order Runge–Kutta time-stepping scheme, when the non-solenoidal
velocity field is evaluated, the dissipated energy is injected at large scales. The inverse
FFT furnishes the velocity in k space by fixing a wavenumber kF (here kF = 3), and
the energy content for each velocity component (Σk < kF

Ei(k)) is evaluated. At all
wavenumbers, the energy lost for viscous effects is injected at small k by multiplying
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Figure 4. (a) Time evolution of the three velocity derivative skewness: , i = 1; ,
i = 2; , i = 3 for Re =1568 and a 5123 grid; (b) Kolmogorov spectra, with an enlargement
near k∗ = 1: lines finite difference , Rλ = 127 (2563); , Rλ = 109 (5123), , Rλ =
252 (5123); symbols pseudospectral: �, Rλ = 62 (1283); �, Rλ = 95 (2563); �, Rλ = 142 (3843);
∇, Rλ = 168 (5123) (the data are in Jimenez et al. (1993)).

the amplitude of each component at wavenumbers k < kF , for Fi =
√

(1 + Qi) (i
indicates the velocity component), where Qi = (q2/3 − ΣEi(k))/Σk < kF

Ei(k). With this
operation the energy spectrum for k > kF does not change. The r.m.s. for each velocity
component remains identically equal to 1 (the value assumed as reference velocity).
Figure 4(a) shows that the three velocity derivative skewness,

SDi =

〈
∂ui

∂xi

3〉
〈

∂ui

∂xi

2〉3/2
, (2.4)

starting from the value of 0, characteristic of the random phases assigned at t = 0, grow
in time and finally oscillate around −0.5, which is expected for isotropic turbulence
at high Re. This figure is similar to figure 10 in Alvelius (1999), obtained at three
Re numbers smaller than that used here. Figure 4(a) shows that the statistical steady
state is reached at an earlier time.

The Reynolds number is Re = u′L/ν, with u′2 = 2/3
∫

E(k)dk. The size of the
computational domain is 2πL. To perform a true DNS it is necessary to assume a
value of the kinematic viscosity ν leading to a Kolmogorov length scale η = (ν3/ε)1/4,
with ε = 2ν

∫
k2E(k)dk the rate of energy dissipation, greater than the grid size �xi .

Three simulations were performed to investigate whether the present numerical scheme
predicts a satisfactory exponential decay of the energy dissipation range. At t =4,
with Re =294 and a 5123 grid, Rλ = u′λ/ν was equal to 109, λ=

√
(15νu′2/ε) being the

Taylor microscale. At this time, approximately one eddy turnover time, ηkmax = 4.5,
implying a good resolution of the small scales. To have large structures with the same
grid, the assumption of Re =1568, and consequently Rλ = 257, leads to ηkmax = 1.3
at t =7. This is a quite high Rλ with a short inertial range. In literature, energy
spectra by pseudospectral simulations with different resolutions (Jimenez et al. 1993;
also in AGARD AR-345 1998) allow to make comparisons. Figure 4(b) displays that
second-order finite differences produce dimensionless spectra (E∗(k∗) = E(k)/(ν5ε)1/4

and k∗ = kη) with a negligible energy pile-up at the highest k, with respect to that by
pseudospectral simulations. To investigate whether the negligible pile-up of the finite
difference could depend on the resolution, a further 2563 simulation with Re =400
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Figure 5. (a) Differentiated compensated spectra legend as figure 4(b) the fitted line is ob-
tained with C = 2, β =4.4, (b) Kolmogorov compensated spectra for � Jimenez et al.
(1993) at Rλ = 168, � Gotoh et al. (2002) at Rλ = 284, present at Rλ = 257.

(Rλ = 127 and ηkmax = 1.66) was performed. Also in this case the spectra do not show
any significant pile-up.

An analytical expression for E∗(k∗) is often used, and the most accepted is

E∗(k∗) = Ck∗α exp(−βk∗n), (2.5)

where C, α, β and n are constants. As resumed by Ishihara et al. (2005) a linearization
of the small-scale dynamics leads to n= 2, but spectral closures, DNS and experiments
suggest that n= 1 is more appropriate; in addition, they claimed that it seems unlikely
that it will be possible to give a rigorous theoretical derivation of the form of the
spectrum in the dissipation range. Since it is difficult to measure the spectrum at high
wavenumbers, as the signal level is so weak as compared to the background noise at
these scales, the only way is to use the results of DNS to get the values of the con-
stants. The plots of dlnÊ/dlnk∗, with Ê = k∗5/3E∗ (around k∗ = 1), are useful to
validate the results in the exponential range. The data in figure 4(b) generate the
curves of dlnÊ/dlnk∗ shown in figure 5(a), which, for both numerical methods, are
fitted by (2.5) with C = 2 and β = 4.4. This figure shows that despite the differences in
energy pile-up at high k, there is no influence of the numerical method. The absence
of differences near k∗ = 1 for forced isotropic turbulence confirms the message from
Grafke et al. (2007) that ‘the flow has to be resolved and this is more important than
the order of the scheme’.

The interest in the present paper is focused to analyse the shape of the structures
contributing to the energy spectrum in the inertial range and in the range of
wavenumbers where the bump in figure 5(b) occurs. These are the enstrophy-
containing structures. Figure 5(b) shows the compensated Kolmogorov spectra (Ê(k∗))
by the present simulation at Rλ = 257, the Jimenez et al. (1993) at Rλ = 168 and the
Gotoh et al. (2002) at Rλ = 284, obtained with different forcing and numerical methods.
The results show the formation of a short inertial range; the differences at the largest
scales depend on the different ways of forcing.

Before discussing the link between structures and power laws, a further validation
of the present simulations is obtained by comparing the values of the normalized
mean energy dissipation rate D = εLI/u

′3, with LI = π
∫

k−1E(k)dk/2u′2 the integral
length scale. For Rλ = 127, 105 and 257, the present values of D 0.39, 0.37 and 0.35
are close to those obtained by Ishihara et al. (2007). The value of LI in the present
simulation is approximately 1.4, indicating that the box size does not affect the results.
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Figure 6. (a) Compensated spectra: , Lamb dipoles; , Taylor–Green (m= 3);
, forced turbulence; �, Gotoh et al. (2002) (m= 5/3); (b) Not-compensated spectra.

3. Spectra and structures
To summarize, three fields have been considered, two without viscosity and one

with viscosity. The comparison between viscous and inviscid simulations allows to
investigate whether a connection between the turbulent structures, contributing to the
inertial range and those emerging from inviscid interactions, does exist. In the latter
flow the small scales related to the viscosity do not form, and then the enstrophy-
containing structures generated by the nonlinear term are not contaminated.

The inviscid fields evolving from smooth initial conditions are taken after a stage
of large vorticity amplification. Simulations with infinite resolution at a certain time
ts should lead to energy spectra with a k−3 power law, corresponding to infinite
enstrophy. A finite number of degrees of freedom produces unphysical small scales
with an energy pile-up at the highest wavenumbers. A non-dissipative numerical
method can integrate the inviscid equations for t > ts by reaching energy equipartition
with E ≈ k2, but the associated structures are unphysical. To have structures of
physical meaning the simulations were stopped when the widest k−3 range was
observed. The small energy pile-up at high wavenumbers has an enstrophy k2E

negligible with respect to that of the energy-containing scales. The insufficient
resolution thus produces small oscillations in the low-level vorticity contours. However,
the velocity contours are smooth, and the pressure contours even smoother.

A viscous simulation of forced isotropic turbulence furnishes the third field with
a k−5/3 spectrum one decade wide. It is important to recall that high resolution is
needed to generate the dissipation range. This is the requirement for a true DNS.
Figure 6(a) shows that the three compensated spectra kmE(k) have a long power law
(m =3 for inviscid, m =5/3 for viscous). Figure 6(a) shows that in the inertial range,
the present compensated spectrum at Rλ = 257 (not in Kolmogorov variables) agrees
with that by Gotoh et al. (2002) with a 10243 resolution. The difference in the large
scales for k < 10 depends on the different ways of forcing. The non-compensated
spectra in figure 6(b) show clearly that the pile-up has energy negligible with respect
to that at large scales.

3.1. Structures identification

3.1.1. Inviscid flows

Accurate numerical simulations promoted the interest to find methods to identify
vortical structures. For instance Horiuti & Takagi (2005) reported eduction methods
for sheet- and rod-like structures; the latter structures affect the inertial range. In
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x1

(a) (b)

Figure 7. (a) |ω| =80 surface contour for the Lamb dipoles; (b) , vortex lines originated
near the location of |ω|max = 550 and , |ω| contours with �|ω| = 50 in the x2 − x3 plane
passing through the point of |ω|max .

this paper the vortical structures are qualitatively identified by |ω| surface contours.
Work is in progress to give quantitative measures of curvature of vortex lines and
curvature of three-dimensional surfaces of |ω|. In the flow visualizations, different
values of |ω| are assumed; for inviscid flows depend on the vorticity magnitude
at t = 0, and on the Reynolds number for viscous flows. For the Taylor–Green
flow the amplification is |ω|max (t = 4.27)/|ω|max (t = 0) = 41, for the Lamb dipoles
it is |ω|max (t =2.72)/|ω|max (t = 0) = 47 and for forced isotropic turbulence at t = 7,
|ω|max = 250. For the Lamb dipoles the surface contour of |ω| =80 in figure 7(a)
shows the formation of two thin vorticity layers of lens shape. The qualitative
impression of the curvature of vortex lines is shown in figure 7(b) by nine vortex lines
originating from nine points around the location of |ω|max . The dashed lines depict
contours of |ω| in a x2 − x3 plane passing through the point with |ω|max . This figure
shows the occurrence of large values of curvature.

The amplification for the Taylor–Green flow leads to the formation of two thin
vortex-sheet structures (depicted by a surface contour of |ω| = 10) near the symmetry
planes (figure 8a has the x2-axis inverted for a better view); one is straight and long,
and the other short. The latter, in the symmetry plane, has |ω| contours with a small
curvature radius near the location of |ω|max . The contours of |ω| in the symmetry
plane are shown in figure 8(b) together with vortex lines originating from points near
the location of |ω|max . The vortex lines with small curvature radii lie between the
two vortex sheets, having the common feature to be thin and to extend for a short
distance in the x2 direction. From figures 7(a) and 8(a), it can be estimated that the
greatest enstrophy contribution comes from the curved structure with an approximate
size of 163 grid points, corresponding to the peak of k2E(k) at k =8.

3.1.2. Isotropic turbulence

The viscous simulations generate a large variety of structures (figure 9), with size
uniformly distributed. This behaviour explains why the inertial range of the spectrum
has a power law less steep than that for the isolated inviscid structures. The extension
of the power law in the entire range is a manifestation of self-similar structures
at different scales, with decreasing energy and enstrophy, implying a local energy
transfer between eddies of similar size. For isotropic turbulence the local transfer
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x2

x1

x3

(a) (b)

Figure 8. (a) |ω| surface contour for Taylor–Green |ω| = 10 (b) , vortex lines originated
near the location of |ω|max = 80 and , |ω| contours with �|ω| = 10 in the x1 − x3 plane
passing through the point of |ω|max .

Figure 9. |ω| surface contour for forced isotropic turbulence |ω| = 80.

was postulated by analysing the triadic interactions in spectral closures by Crocco &
Orlandi (1985), and later on verified by DNS (Domaradzki & Rogallo 1990). In
physical space it is rather difficult to understand how energy is transferred to smaller
scales; however, an approximate idea is obtained by filtering the velocity field. If this
operation shows that the shape of the structures does not change and reduces in size,
it can be postulated that energy is transferred to structures of similar shape, as it
will be demonstrated later on. The filtering operation consists of the application of
an inverse FFT to have the velocity components in wavenumber space, by setting
Ui(k1, k2, k3) = 0 for kL < k < kU . A direct FFT of this field gives the velocity fields in
physical space.
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(a) (b) (c) (d)y

x x x x

y y y

Figure 10. ω̂ = |ω|/|ω|max contours for the filtered Lamb dipoles at t = 1 with (a) kL = 0,
kU =256, |ω|max =11.94; (b) kL =6, kU = 20, |ω|max = 2.76; (c) kL = 20, kU = 60, |ω|max =0.91;
(d ) kL = 60, kU = 120, |ω|max = 0.23, �ω̂ = .1 Here x = x1, y = x2.

(a)
z

x

(b)
z

x
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z

x
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z

x

Figure 11. ω̂ = |ω|/|ω|max contours for the filtered Lamb dipoles with (a) kL = 0, kU = 500,
|ω|max = 565.8; (b) kL = 6, kU = 20, |ω|max = 48.8; (c) kL = 20, kU =110, |ω|max = 411.7;
(d ) kL = 110, kU = 200, |ω|max = 224.7, �ω̂ = 1. Here x = x1, z = x3.

3.2. Structure similarity

To see the shape of the resulting structure on filtering a velocity field associated
to simple vortical structures, the field of the two interacting Lamb dipoles at t =1
has been considered. The spectrum and the structures in figure 1 show that the
vorticity amplification is not initiated, and thus the 5123 resolution is used for the
analysis. A different value of |ω|max is found at each filtering level, and the contours
of ω̂ = |ω|/|ω|max are plotted. The dipole deformations can be observed in a x1 − x2

plane cutting the two dipoles. Figure 10(a) obtained with the unfiltered field shows a
mild deformation, which does not substantially change with kL = 0 and kU = 6. With
kL = 6 and kU = 20, thin curved vortical patches appear in the regions adjacent to
those where the vorticity in figure 10(a) is located. Figures 10(c) and 10(d ) emphasize
the reduction in size of the patches by filtering at high wavenumbers. Figures 10(b–d )
give a qualitative idea of the structure similarity related to the k−6 power law of
the energy spectrum between kL = 6 and kU = 120 (figure 1a). A more quantitative
demonstration of the self-similarity is given by one-dimensional profiles of ω̂. These
plots are shown at t = 2.72 when the highest vorticity amplification occurs.

Figure 6 exhibits three well-defined k−3 ranges, between kL = 6 and kU = 200, after
a sufficient long period of vorticity amplification. Figure 11 demonstrates, through
contour plots of |ω|/|ω|max in x1 − x3 planes passing through the point of |ω|max , that
enstrophy and energy (with similar figures not presented) are located in curved layers
thinner as higher the filtering interval is. The plots with kL = 200 and kU = 350 are
not given because the contours are affected by the scales not fully resolved. The size
of the structures does not decrease as fast as those in figure 10, and this explains why
the energy spectrum has a weaker power law (k−3 instead of k−6).

Also for the Taylor–Green flow, figure 6 shows a k−3 between kL = 50 and kU = 150
and figure 8(a) depicts ribbon-like thin vorticity layers near the symmetry plane.
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(a) (b) (c) (d)z

x x x x

z z z

Figure 12. ω̂ = |ω|/|ω|max contours for the filtered Taylor–Green with (a) kL = 0, kU =250,
|ω|max =41.6; (b) kL =6, kU = 20, |ω|max = 13.8; (c) kL =20, kU = 60, |ω|max = 20.7; (d ) kL = 60,
kU = 120, |ω|max =17.0, �ω̂ = 1. Here x = x1, z = x3.
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Figure 13. One-dimensional profiles of normalized |ω| versus normalized x1 at the point of
|ω|max , for the unfiltered field (tick solid line) and for the filtered fields; (a) Lamb dipoles:

, kM = 13; , kM = 65; , kM = 155; , kM = 275; (b) Taylor–Green: ,
kM = 3; , kM = 13; , kM = 40; , kM = 90; , kM = 188.

Visualizations in an x1 − x3 plane at x2 = 0 present the structures emerging from the
filtering operation. Figure 12(b) shows that at small k the enstrophy is concentrated
in two fat regions, which at higher wavenumbers become thin; one has a greater
curvature in the region where |ω|max is localized (figure 12c). Figure 12(d ) qualitatively
indicates that energy is transferred to smaller scales. The figure with kL = 120 and
kU = 250 is not shown because the insufficient resolution produces large oscillations
in the ω̂ contours. However, also in this range of wavenumbers, the most energetic
scales have a shape similar to that in figure 12(a). The plots of vorticity norm display
regions of high enstrophy, which coincide with the energy-containing scales. This
assertion has been verified by plots of velocity norm. In conclusion, the filtering
operation emphasizes that at all filtered scales, |ω| is concentrated in spiral regions
with high curvature; in these regions the vorticity is amplified. In fact, it has been
observed that at each filtering level in the symmetry plane, the thin straight vorticity
layer, on the left of figure 12(a), has contour levels ω̂ < 0.75.

The occurrence of self-similar structures in the k−3 range cannot be clearly
demonstrated by the planar view in figures 11 and 12, which is more quantitatively
emphasized by one-dimensional profiles of ω̂ crossing the location of |ω|max . A
self-similarity does exist when the size of the structures scale with the interval
of wavenumbers used for filtering. The comparison, in the one-dimensional plots,
requires the normalization of |ω| by the |ω|max at each filter level. The origin of
the coordinate x = x1 − x1M coincides with the point x1M where |ω|max is located. In
figure 13 the unfiltered profile and that with kL =20 are plotted versus x∗ = x, for the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

50
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008005016


Energy spectra power laws and structures 367

other filtered fields x∗ = x kM/kM3, where kM = (kL + kU )/2 and kM3 is the averaged
wavenumber with kL = 20. For the Lamb dipoles, figure 13(a) shows a collapse of all
curves around x∗ = 0, implying that at each filter level, the most energetic structures
are self-similar. The worse collapse for the Taylor–Green flow could be attributed to
the lack of self-similarity during the evolution. This is a further indication that the
flow generated by the interaction of Lamb dipoles should be useful to understand the
physical mechanism leading to an FTS.

The filtering of the isotropic forced turbulent flow gives rise to different shapes of
vorticity patches, depending on the values of kL and kU . For this flow the qualitative
picture is achieved by three-dimensional visualizations. The shape and the size of the
vortical patches are better appreciated by surface contours of |ω| in a small section
of the entire computational box. Figure 9 displays very elongated tubular structures
with a small core radius and a small number of ribbon-like structures. Vincent &
Meneguzzi (1991) were interested to detect tubular structures and observed that these
contribute to the entire energy spectrum. By filtering the field they produced a figure
(figure 17, p. 16), claiming the formation of helical structures. Holm & Kerr (2007)
considered turbulent fields, with a short k−5/3 range, evolving from smooth initial
conditions, and they observed in the first stage the formation of vortex sheets, which
later on became vortex tubes. Horiuti & Fujisawa (2008) at Rλ ≈ 75 showed that
vortex sheets are entrained by vortex tubes and form spiral vortices. Here the interest
is to isolate different parts of the spectra and to detect, by flow visualizations of |ω|
surface contours, the structures contributing to the part of the spectrum considered.
With kL = 6 and kU = 20 the very large scales (where the forcing is applied (k < 3)) and
the small scales are discarded. This interval of wavenumbers corresponds to the range
where the compensated spectra (k5/3E(k)) in figure 6(a) is constant. Figure 14(a)
shows the vorticity patches detected in this region; these structures are the unstable
ribbon-like structures which, by mutual interaction, transfer energy to small scales.

The structures are different by filtering at high k, and in particular in the region
where the bump in the compensated spectrum (figure 6a and emphasized in figure 5b)
occurs. Few ribbon-like structures in figure 14(b) are encircled by a large number of
rod-like structures. To understand whether the large structures in figure 14(a) or the
small ones in figure 14(b) contribute to the structures in figure 9, |ω| contour plots
in a x1 − x3 plane may help. In figures 15(a) and 15(b) the shaded contours of |ω|
obtained by the unfiltered field show that intense vorticity is concentrated in a circular
region of small size. In figure 15(a) the thick solid contour lines, corresponding to
|ω| = 20 in figure 14(a), show that often the large scales encircle the intense tubular
structures; this is an evidence of the local energy transfer from large to small scales. In
figure 15(b) the solid lines corresponding to |ω| =33.68 in figure 14(b) depict a good
correspondence between the structures. From this observation it can be asserted that in
isotropic turbulence the intense vorticity structures are due to the part of the spectra
near the end of the inertial range. The comparison between viscous and inviscid
visualizations shows that the viscosity destroys the structure self-similarity produced
by the inviscid vortices interaction. It seems correct to conclude that the bump in
the compensated spectra (the bottle-neck) observed also in laboratory experiments
(Saddoughi & Veeravalli 1994) is due to the roll-up of unstable ribbon-like structures
which form rod-like structures. By filtering at higher wavenumbers, at the beginning
of the exponential range, smaller rod-like structures appear in figure 14(c) than those
in figure 14(b); some degree of anisotropy persists, which disappears in figure 14(d )
with kL = 120 (k∗

L = 0.5) and kU = 240 (k∗
U = 1). In this figure the surface level has been

reduced to ω̂ = 0.15 because of the low energy content for k∗ =O(1).
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(a) (b)

(c) (d)

Figure 14. ω̂ surface contour for forced isotropic turbulence: (a) kL =, 6, kU = 30; (b) kL = 30,
kU = 70; (c) kL = 70, kU = 120; (d ) kL = 120, kU = 240; in (a)–(c) ω̂ = 0.3, and in (d ) ω̂ = 0.15.

x3

x1

x3

x1

(a) (b)

Figure 15. Shaded contours of |ω| considering the full spectrum: (a) solid line (that in
figure 14(a) with |ω| = 20), (b) solid line (that in figure 14(b) with |ω| =33.68).

3.3. Probability density function of |ω|
The |ω| visualizations for viscous and inviscid simulations present a qualitative picture.
A satisfactory comprehension of the differences or of the similarities between viscous
and inviscid flows is obtained by a more quantitative information drawn by the p.d.f.
of σ = |ω|/〈ω2/2〉1/2. The p.d.f. have been evaluated by considering all the points.
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Figure 16. The p.d.f. of σ = |ω|/〈ω2/2〉1/2 for (a) comparison of the three flows ( ,
Lamb; , Taylor–Green; and , forced turbulence); (b) Lamb full: � kL = 6
and kU = 20, � kL = 20 and kU = 110, � kL =110 and kU =200, � kL = 120 and kU = 250;
(c) Taylor–Green full: � kL = 6 and kU = 20, � kL = 20 and kU = 60, � kL = 60 and
kU =120, � kL = 120 and kU =240; (d ) forced turbulence full: � kL = 6 and kU = 30, �

kL = 30 and kU = 70, � kL = 70 and kU = 120, � kL = 120 and kU = 240.

For isotropic turbulence the log-normal distribution in figure 16(a) suggests and
confirms the intermittent character of the fluctuating enstrophy. For inviscid flows the
elongated tails with a less steep slope in figure 16(a) account for an increase of the
probability of high values of |ω|. By considering that 〈ω2/2〉1/2 for the Lamb dipoles,
the Taylor–Green flow and isotropic turbulence are 5.0, 1.8 and 16.0 respectively, the
p.d.f. confirm that in a reasonably large number of points, high vorticity levels may
occur. The flow visualizations in figures 11 and 12 revealed that the relevant structures
are sheet-like; the p.d.f. of σ emphasize that vorticity amplification is not an isolated
event. To see that the structures are thin curved ribbon-like, the visualizations are,
however, necessary. For viscous flows the thin curved layers, while are generated,
diffuse, and then the probability of high values of σ decreases.

The structure similarity was guessed by the energy spectra with wide power laws
and it was observed by flow visualizations, which is confirmed through the p.d.f. of σ

for the filtered fields. Figures 16(b) and 16(c) show that for the two inviscid flows the
distributions do not change. For isotropic turbulence figure 16(d ) demonstrates the
absence of structure similarity. The filtered fields at the end of the dissipation range
(kL = 120, kU = 240) give the anomalous curve in figure 16(d ), which could be related
to the insufficient resolution close to k∗ =1, causing the energy pile-up at k∗ = 1.2 in
figure 5(a).
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The short log distribution of σ in figure 16(d ) for the structures emerging from
the energy spectrum in the range between kL = 6 and kU = 30 is a convincing
demonstration that the viscosity reduces the vorticity intensity in the thin layers. In
the range between kL =30 and kU = 70, corresponding to the bump in the spectrum,
the tail extends (〈ω2/2〉1/2 = 10 and |ω|max = 158). In the first part of the dissipation
range the structures are more intermittent and the tail becomes wider for the decrease
of 〈ω2/2〉1/2 to 7.2.

3.4. Eigenvalues of the strain rate tensor

A further quantitative picture of the shape of the structures is obtained by the

eigenvalues of the strain rate tensor S̃λ, with S̃3 negative, S̃1 positive and the

intermediate S̃2 either positive or negative. In turbulent flows, the number of points
NS with sheet-like structures (RS̃ � 0) is greater than the number NR with rod-like
structures (RS̃ > 0). For Lamb dipoles, counting all the points, 53 % accounts for
RS̃ � 0; while by considering the points with vorticity amplification (|ω| >ΩT = 11),
the percentage of the locations with RS̃ � 0 increases to 60 %. It has also been found
that the space where vorticity is amplified covers 4.6 % of the whole computational
box. For the Taylor–Green flow |ω| is amplified (|ω| > ΩT =1) in 59 % of the points,
that is, in a region greater than that for the Lamb dipoles. Figure 8(a) indeed shows
that |ω| is amplified also in the elongated thin straight structures not relevant to
produce the k−3 power law in the energy spectrum. In the locations with |ω| >ΩT

the sheet-like structures prevail; in fact, NS is 75 % of the points. For isotropic
turbulence, the vorticity is uniformly distributed and then it is not important to
impose a threshold value ΩT to evaluate the locations of sheet-like structures. For
this flow RS̃ � 0 in 71 % of the points.

From these arguments it can be concluded that ribbon-like structures are generated
when the vortical structures interact inviscidly. For inviscid and for fully turbulent
flows, the ribbon-like structures overcome the rod-like structures. The latter are
responsible for the formation of the exponential range in the energy spectra; in fact,
in isotropic turbulence, filtered with kL = 120 and kU = 240, NS becomes equal to NR .

3.5. Enstrophy production

The enstrophy production 〈ωiωjSij 〉 is the term producing the vorticity amplification;
for inviscid flows it is a measure of the formation of the small scales, where high
vorticity is localized. In the principal axes the three terms of the enstrophy production

〈ω̃2
λS̃λ〉 allow to understand which are the events contributing to the formation of the

small scales with vorticity intensification.
In laminar and turbulent flows the vorticity vector tends to align with the

intermediate strain S̃2; this ω̃2 component is relevant to have information on the
dynamics of the structures. For the interacting Lamb dipoles, Orlandi & Carnevale

(2007) found that during the vorticity amplification, S̃2 is proportional to ω̃2. This
observation supports the idea that the ω̃2 transport equation can be approximated to

a one-dimensional model equation leading to FTS. If a proportionality between S̃2

and ω̃2 indeed exists, these two quantities should contribute to the total enstrophy
production, and consequently the sum of the other two terms is irrelevant. At high
Reynolds number or in inviscid simulations the total enstrophy production is positive.

Since ω̃2
1S̃1 > 0 and ω̃2

3S̃3 < 0 the intermediate component ω̃2
2S̃2 plays a relevant role.

For a large number of events the mutual cancellation between ω̃2
1S̃1 and ω̃2

3S̃3 has been

observed, and in addition it has been found that 〈ω̃2
1S̃1〉 > −〈ω̃2

3S̃3〉 and that 〈ω̃2
2S̃2〉

prevails. Indeed the observations for inviscid flows are verified during the vorticity
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A

A

B B

(a) (b)

(c) (d)

Figure 17. Joint p.d.f. of A =
√

6 S̃2/|S| (abscissa) and B =
√

1.5ω̃2
λS̃λ/(|S||ω|2) (ordinate), both

vary between −1 and +1, for (a) interacting Lamb dipoles at t = 1 �= 810−5, (b) at t = 2.72
�= 310−6, (c) Taylor–Green t = 4 �= 1.510−5 and (d ) isotropic forced turbulence at t = 7
�= 410−6.

amplification. The values of αλ = 〈ω̃2
λS̃λ〉/〈ω2/2〉 for the Taylor–Green flow at t = 4.27

for λ=1, 2 and 3, respectively, are 0.66, 1.41 and −0.30. For the interacting Lamb
dipoles, instants of high (t = 2.72, figure 7a) and low amplification (t = 1, figure 1b)
have been considered. At low amplification rate (t = 1) the values of αλ are 0.12, 0.0042
and −0.0297, and at high amplification rate (t = 2.72) they are 5.41, 7.99 and −4.14.
These values support the cancellation and remark that the enstrophy production in
large part comes from the component λ= 2. To demonstrate that the contribution

to 〈ω̃2
2S̃2〉 comes from ribbon-like structures (those with S̃2 > 0), the joint probability

distributions between A=
√

6S̃2/|S| and B =
√

1.5ω̃2
λS̃λ/(|S||ω|2) have been evaluated

(|S| =(SijSji )
1/2). The normalization is made to deal with the absolute values of

the coordinates not exceeding 1. The histogram of these two quantities were given
by Kerr (1987) for isotropic turbulence, and it was not possible to understand the

influence of S̃2 on the enstrophy production. The joint p.d.f. in figure 17(a) shows
that at t = 1, before the vorticity amplification stage, the enstrophy production is

small, and in particular because of S̃2 ≈ 0. During the strong interaction between
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the Lamb dipoles (figure 17b) there is a perfect correlation between A and B , and

the events with positive S̃2 contribute most to the enstrophy production term. For the
Taylor–Green flow (figure 17c) the correlation is reduced, and this reduction can be
related to the formation of the thin straight vorticity layers discussed above. For this

flow, figure 17(c) shows that quite high values of S̃2 are requested for the enstrophy
production. Even if the previous arguments do not apply to viscous flows, figure 17(d )
shows that the correlation is rather good.

4. Conclusions
By DNS any kind of quantity can be calculated and then any attempt to connect

the shape of the vortical structures to the shape of the power laws is facilitated. In real
flows, the viscosity produces at high wavenumbers (and also at very high Reynolds
numbers) spectra with an exponential range. The small scales, therefore, affect the
large scales, and in accord to the Kolmogorov theory, an inertial range with a k−5/3

power law forms. Often it was speculated that a similarity between the energy cascade
in turbulent flows and that in inviscid flows does exist. The DNS is the only way to
deal with a true inviscid flow evolving from smooth initial conditions. In addition,
these simulations could shed light on one of the most challenging open questions in
fluid dynamics as to whether it is possible to find a convincing proof of the FTS for
the Euler equations, and to analyse the influence of the initial conditions. This topic
has been discussed only marginally in the present paper, in part because the author is
convinced that a definite answer is impossible with the computer resources available
today. From the theoretical speculation, at a time close to the hypothetical FTS (Kerr
1993), the energy spectra should display a k−3 decay; two inviscid simulations, with
different initial conditions, allowed to find a time when the spectra approximate the
k−3 power law for a wide range of wavenumbers. The grid refinement checks have
demonstrated that the unphysical small scale structures related to the energy pile-up
at high k do not affect the enstrophy-containing scales of interest. From these fields
the statistics and the vorticity flow visualizations have been compared with those
obtained in forced isotropic turbulence. It has been found that in the inviscid flows
the k−3 is related to ribbon-like structures with small curvature radii near the location
of maximum vorticity amplification. By filtering the velocities in k space it was shown
that at each range of wavenumbers, the relevant structures are self-similar.

For isotropic turbulence in the inertial range, ribbon-like structures with mild
curvature radii have been detected. At high Rλ at the end of the inertial range, a
bump in the compensated spectrum is usually observed. By filtering the fields only
within this range of wavenumbers, elongated rod-like structures are detected, which
are surrounded by few ribbon-like structures. In the exponential range the latter
disappear, and the rod-like structures become shorter and are isotropically oriented.
The comparison between inviscid and viscous flows leads to the conclusion that the
slope of the power law depends on the shape of the structures. The slope is mild
when ribbon-like structures have large curvature radii and steep when the curvature
radii are small.

The DNS allow to evaluate the rate of strain and of rotation tensors, however, it
is difficult to relate the shape of the structures to them. The projection of the strain
tensor components on the principal axes shows that the most relevant structures, those

with S̃2 > 0, are ribbon-like. Among the three vorticity components the ω̃2 accounts
for |ω|. It has been finally observed that intense vorticity amplification is linked to
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strong enstrophy production, and in particular to ω̃2
2S̃2, which prevails because of the

proportionality between S̃2 and ω̃2. For the inviscid interaction of two Lamb dipoles,

during the vorticity amplification, a good correlation between ω̃2
λS̃λ and S̃2 has been

observed. This behaviour can be attributed to the persistence of a k−n of the energy
spectra during the interaction, with the exponent n varying continuously between

n= 6 and n= 3. The correlation between ω̃2
λS̃λ and S̃2 reduces for the Taylor–Green

flow because the structures have a mild curvature during the evolution and the energy

spectra at high k have a logarithmic decrement. The correlation between ω̃2
λS̃λ and S̃2

reduces for forced isotropic turbulence for the presence of a large number of rod-like
structures, those responsible for the exponential decay of E(k) at high k.
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